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Abstract 33 

Adaptive sequential behavior is a hallmark of human cognition. In particular, humans can learn to 34 

produce precise spatiotemporal sequences given a certain context. For instance, musicians can not only 35 

reproduce learned action sequences in a context-dependent manner, they can also quickly and flexibly 36 

reapply them in any desired tempo or rhythm without overwriting previous learning. Existing neural 37 

network models fail to account for these properties. We argue that this limitation emerges from the fact 38 

that order information (i.e., the position of the action) and timing (i.e., the moment of response 39 

execution) are typically stored in the same neural network weights. Here, we augment a biologically 40 

plausible recurrent neural network of cortical dynamics to include a basal ganglia-thalamic module 41 

which uses reinforcement learning to dynamically modulate action. This “associative cluster-dependent 42 

chain” (ACDC) model modularly stores order and timing information in distinct loci of the network. This 43 

feature increases computational power and allows ACDC to display a wide range of temporal properties 44 

(e.g., multiple sequences, temporal shifting, rescaling, and compositionality), while still accounting for 45 

several behavioral and neurophysiological empirical observations. Finally, we apply this ACDC network 46 

to show how it can learn the famous “Thunderstruck” song and then flexibly play it in a “bossa nova” 47 

rhythm without further training. 48 

 49 
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Introduction 50 

Learning and manipulating sequential patterns of motor output are essential for virtually all domains of 51 

human behavior. For instance, musicians can learn multiple precise spatiotemporal sequences each with 52 

their own rhythm. They can modify the rhythm within each sequence, i.e. speed up or slow down the 53 

tempo; or apply different rhythms on a previously learned sequence, i.e. perform a rock song with a 54 

bossa nova rhythm. This implies that musicians can quickly and flexibly manipulate action timing in 55 

action sequences. Similar capabilities abound in many other domains, such as language production and 56 

athletics.   57 

Precisely timed action sequences are thought to emerge from dynamical neural patterns of activity. In 58 

particular, sparse sequential activity patterns observed in basal ganglia (Jin et al., 2009; Gouvêa et al., 59 

2015; Mello et al., 2015; Bakhurin et al., 2017; Dhawale et al., 2017), hippocampus (Pastalkova et al., 60 

2008; MacDonald et al., 2013; Eichenbaum, 2014) and the cortex (Luczak et al., 2007; Harvey et al., 61 

2012; Remington et al., 2018) are thought to provide a temporal (ordinal) signal for these action 62 

sequences to emerge. However, the mechanistic and dynamic principles by which these neural patterns 63 

afford sequential flexibility remain unknown. While several neural network models of corticostriatal 64 

circuit exist, these are typically applied to single shot stimulus-action pairings rather than sequential 65 

choices, despite extensive evidence that basal ganglia is implicated in such sequential behaviors 66 

(Graybiel, 1998).   67 

In this paper, we sought to develop a biologically plausible neural computational model of cortico-basal 68 

ganglia circuitry sufficiently powerful to learn arbitrary sequences (e.g., scales) and easily adjust their 69 

timing and expression on the fly. In particular, we aimed for the network to be able to learn multiple 70 

arbitrary sequences and to allow for temporal asynchrony, shifting, rescaling, and compositionality. We 71 

define these terms more precisely below. 72 

Existing neurocomputational models of sequence production can be broadly categorized in three 73 

classes, each with their advantages and disadvantages in computational power and their ability to 74 

account for behavioral and neural features of action sequences.  75 

 In associative chain models (also termed synfire chain; e.g., Fiete et al., 2010), activation flows 76 

sequentially from one neuron (or neuronal population) to another through feedforward 77 

connections (e.g., Cone and Shouval, 2021). The sequence emerges from the hard-wired 78 
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structure of the chain.  Associative chain models naturally produce sequential but also 79 

persistent neural activity, both of which are observed empirically (Veliz-Cuba et al., 2015; 80 

Pereira and Brunel, 2020). They can also deal with inherent compression of sequential activity, 81 

and thereby learn to produce each action in the sequence at any desired precise time (Cone and 82 

Shouval, 2021). However, these models are not equipped to facilitate temporal rescaling: the 83 

finding that learned action sequences can be sped up (compressed) or slowed down (dilated) 84 

without the need to overwrite previous learning (Goodbody and Wolpert, 1998; Shmuelof et al., 85 

2012). Indeed, a musician who has learned a novel rhythm can directly speed up or slow down 86 

this tempo without any additional learning. Moreover, it is unclear how these models 87 

implement temporal shifting: the ability to start the action sequence earlier or later in time, 88 

without modifying the action sequence structure. Chain models also do not straightforwardly 89 

allow networks to encode more than a single sequence, given their hard-wired nature. 90 

 91 

 Cluster-based models also involve a chained sequence of activation, but this sequence is learned 92 

via cell assemblies (i.e. clusters) that form within a recurrent neural network (RNN) through, for 93 

instance, spike timing dependent plasticity (Murray and Escola, 2017; Maes et al., 2020). 94 

Depending on the timing of the sequential input to the distinct subsets of the RNN, connectivity 95 

may emerge within and between clusters. Once this connectivity matrix is learned, input to the 96 

RNN induces a sequential activation whereby activation flows from one cluster to another. In 97 

contrast to associative chain models, cluster-based models allow temporal rescaling (Murray 98 

and Escola, 2017) while also producing sequential and persistent patterns of activity (Maes et 99 

al., 2020). Furthermore, they provide a simple mechanism allowing a network to encode 100 

multiple sequences. By selectively activating a specific cluster within the RNN, only the cluster 101 

“in line” (i.e., connected to the previous cluster) will be activated sequentially (and so forth). 102 

Therefore, the RNN can encode multiple sequential behaviors by learning (and selectively 103 

activating) distinct cluster chains encoded in the RNN connectivity matrix (Murray and Escola, 104 

2017). Yet, it is unclear how these models could facilitate action sequences with temporal 105 

asynchrony: the ability to learn, and flexibly manipulate, motor sequences with varying inter 106 

action intervals (an advantage of associative chain models, see Cone and Shouval, 2021). Indeed, 107 

cluster-based models can flexibly manipulate sequences; however, these sequences are typically 108 

iso-synchronous (see Murray and Escola, 2017). 109 

 110 
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 State-space models (e.g., Hardy et al., 2018) do not assume a chaining structure at all. Based on 111 

a sparsely connected RNN structure, these models are able to learn and reproduce (in the 112 

presence of a noise) a neural trajectory represented in high-dimensional space (Sussillo and 113 

Abbott, 2009; Laje and Buonomano, 2013; Rajan et al., 2016). This neural trajectory acts as a 114 

travelling wave which can then be decoded by downstream neurons to produce sequential 115 

orders.   State-space models have the ability to learn highly complex and flexible motor 116 

sequences. However, unlike the other models, state-space models typically require highly 117 

supervised (i.e. continuous teaching signal) and non-biological learning mechanisms. Moreover, 118 

they do not provide a potential mechanism for encoding multiple sequences and fail at 119 

implementing temporal rescaling (unless resorting to very specific learning regimes, see Hardy 120 

et al., 2018).  121 

 122 

 Finally, none of the models have tackled how a learned sequence at a particular tempo can be 123 

executed with a completely different tempo which may have been learned for a different 124 

sequence (e.g., applying a bossa nova rhythm to a rock song). We refer to this ability as 125 

temporal compositionality.  126 

In sum, all models can account for distinct functionalities in sequence production, but fail to provide a 127 

plausible neurocomputational mechanism from which most fundamental abilities – temporal 128 

asynchrony, shifting, rescaling, compositionality – can emerge and interact. These limitations arise from 129 

a property common to all action sequence models: action identity, timing and order are represented 130 

jointly within the recurrent weights of the network1. In related sequential decision-making contexts in 131 

                                                             
1  

In associative chain models, action timing is principally controlled by the strength of recurrent 

connections of each excitatory neuron pool, which controls delay times for the next action in line (Cone 

and Shouval, 2021).   Similarly, in cluster models, order and timing information (i.e., when activation 

“jumps” from one cluster to the other) also depends on the RNN weights (Maes et al., 2020). Finally, 

state-space models contain both order and time information within the same sets of RNN weights, 

which define both the neural trajectory and the speed at which the trajectory unfolds (Rajan et al., 2016; 

Remington et al., 2018).  
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the reinforcement learning domain, such joint coding of task features facilitates only very rigid forms of 132 

generalization and transfer, whereas the ability to code task features compositionally facilitates more 133 

robust transfer (Franklin and Frank, 2018) that can better account for human behavior (Franklin and 134 

Frank, 2020). However, the mechanisms for such compositionality in neural networks remains unknown. 135 

Here, we develop a biologically plausible RNN called the associative cluster-dependent chain (ACDC) 136 

model. By combining strengths of the associative chain and cluster-based models, ACDC accounts for 137 

biological data. To increase computational flexibility, the network factorizes order and timing 138 

information by storing them separately in a premotor cortical RNN which is dynamically gated by a basal 139 

ganglia-thalamus module. This modularity thereby affords independent (and flexible) manipulation of 140 

sequence order and action timing. For instance, once an action sequence has been learned, temporal 141 

rescaling can be accomplished by targeting the locus representing time, while still allowing the network 142 

to produce the same desired action order sequence.  143 

In the remainder of the paper we first present the architecture of the model, and ground it within the 144 

context of neurophysiological observations on the premotor cortex (PMC) and the BG. Second, we 145 

describe how the model learns to produce precisely timed, temporally asynchronous, action sequences. 146 

Third, we demonstrate how the mechanistic properties of the model can account for temporal 147 

properties: temporal shifting, rescaling, compositionality, and sustained motor activation. Fourth, we 148 

simulate both empirical and neurophysiological observations. Finally, we discuss the characteristics and 149 

abilities of the ACDC model in light of neurophysiological evidence and alternative neurocomputational 150 

models. 151 

Methods 152 

The associative cluster-dependent chain (ACDC) model for flexible motor timing  153 

In this section, we provide the reader with an intuitive functioning of the ACDC model in simplified and 154 

more detailed forms (Fig. 1); we refer to Appendix A for a comprehensive mathematical formulation. A 155 

context module encodes the sequences to be executed (e.g., which song is to be played), and is 156 

provided as input to an RNN, which learns to encode sequence order via Hebbian learning. Order is 157 

encoded as a sequence of attractor states represented by persistent activation in distinct excitatory RNN 158 

unit clusters. Cell assemblies (or clusters) learn to project to the appropriate action identity (again via 159 

Hebbian learning), represented topographically in the BG. In turn, the BG project to the corresponding 160 
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motor thalamus to control action execution. To optimize precise action timing, the weights between 161 

action identity and execution are learned via supervised learning (i.e. Delta rule), perhaps summarizing 162 

the role of cerebellum in error corrective learning.  Finally, thalamic activity about the executed action is 163 

fed back to the RNN, ultimately creating a cortico-basal ganglia loop. Each loop subtends the 164 

appropriate action order, identity and timing execution, allowing precisely timed action sequences to 165 

unfold. 166 

In a more detailed manner, our ACDC model contains four main modules (Fig. 1 right panel): an input 167 

layer (Fig. 1A), an RNN (representing premotor cortex; Fig. 1B) and a BG-thalamus unit (Fig. 1C).  168 

The input layer (Fig. 1A) consists of a vector of neurons, of which a subset is activated, representing 169 

sensory or other context that would signal the identity of the sequence to be produced or learned.  170 

Crucially, the dynamics within the ACDC model evolve as a sequential unfolding of RNN-BG-thalamus-171 

RNN (i.e., cortico-basal ganglia) loops, depicted by the light blue arrows in figure 1. The sequence starts 172 

with the activation of a cluster (i.e., densely interconnected) of excitatory RNN neurons (Fig. 1B). Each 173 

cluster will come to encode the ith element in the action sequence. As opposed to single unit, clustered 174 

neurons provide a biologically plausible mechanism for supporting persistent activation within the 175 

cluster given a phasic input (i.e., an attractor; Amit, 1988; Durstewitz et al., 2000). In prefrontal cortical – 176 

BG models, such clusters are referred to as “stripes” based on their anatomical existence, and are 177 

independently gated by BG (O’Reilly and Frank, 2006). Once a cluster is activated, the RNN temporarily 178 

settles on an attractor state indicating the ordinal position (order or rank) in the sequence, analogous to 179 

how distinct PFC stripes code for ordinal positions in phonological loop tasks(O’Reilly and Frank, 2006). 180 

However, in ACDC such clusters emerge naturally via learning rather than hard-coded anatomical 181 

entities. Moreover, attractor states are maintained via E-I balance: each excitatory neuron projects to a 182 

common single inhibitory neuron (orange circle in Fig. 1B) which reciprocally inhibits all excitatory RNN 183 

neurons. As long as the E-I balance is not perturbed by another input (see below), activation in the 184 

cluster will persist and the RNN will continue representing the ith order in the sequence.   185 

In turn, each excitatory RNN cluster projects to its corresponding “Go” unit in the BG (blue arrow 1 from 186 

ith cluster in Fig. 1B to G node in Fig. 1C), and each Go cell accumulates evidence for the jth action 187 

associated to the ith order (see Frank, 2006 and Ratcliff and Frank, 2012 for related computational 188 

models of evidence accumulation in these units, and Doi et al., 2020 for empirical data). Striatal Go cells, 189 

via the basal ganglia direct pathway machinery (Alexander and Crutcher, 1990; Mink, 1996), facilitate 190 
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response execution by projecting towards the corresponding motor thalamus neurons, from here on 191 

termed Action nodes for simplicity (blue arrow 2 from Go to Action nodes in Fig. 1C).  192 

Action nodes possess a negative bias, which acts as a decision threshold, i.e., the net input needs to 193 

exceed this bias in order for action to be executed. This feature again summarizes the computational 194 

role of the output of the BG, which serves to inhibit action execution until sufficient evidence reaches 195 

the threshold for action gating (Frank, 2006; Wiecki and Frank, 2013; see also Lo and Wang, 2006). 196 

Therefore, the weight values between Go and Action nodes control the speed of action execution: the 197 

BG encode the rhythm. Action execution can be expressed either as a transient or persistent response 198 

(see simulations; Pereira and Brunel, 2020).  199 

In turn, Action nodes project excitatory connections to three distinct parts of the network 200 

simultaneously. First, Action nodes project to the cluster of excitatory neurons in the RNN representing 201 

the i+1th order in the sequences (blue arrow 3a in Fig. 1). Second, Action nodes project to the inhibitory 202 

shared neuron (blue arrow 3b to orange node in Fig. 1), that in turn globally inhibits all the clusters in 203 

the RNN. In this manner, thalamic Action nodes can update the cortical representation by separately 204 

projecting to both inhibitory and excitatory neurons (Schmitt et al., 2017; Rikhye et al., 2018), enabling 205 

the RNN to transition from the current state to the next. That is, the activation of action nodes perturbs 206 

the E-I RNN balance in a way that allows the ith cluster to shut down and the i+1th cluster to be expressed 207 

(see Appendix A for further details). Third, Action nodes project excitatory connections back to their 208 

corresponding No Go cells (blue arrow 3c from jth Action node in the thalamus to jth No Go node in the 209 

BG, see Fig. 1C). In turn, No Go cells strongly inhibit their corresponding Go cells (Taverna et al., 2008; 210 

Wiecki and Frank, 2013; Dobbs et al., 2016), thereby shutting down evidence in favor of the jth action, 211 

and hence stopping the execution of the jth action. This loop is then reproduced with the ith+1 RNN cluster 212 

and jth+1 G-A-N triplet in the BG-thalamus unit, and so forth until the action sequence is performed in its 213 

entirety.  214 
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 215 

Figure 1. Left panel: Simplified ACDC model architecture. An input context layer indicates which 216 
sequence needs to be learned or executed. The premotor cortex (PMC) is subtended by a RNN that 217 
learns (via Hebbian learning) to form clusters of excitatory neurons encoding order in the sequence, and 218 
which are regulated by an inhibitory pool. In turn, each cluster learns to trigger action plans, 219 
topographically represented in the BG. Specific actions are executed in the thalamus at specific times 220 
based on learned connections from BG to thalamus. Motor activity is then fed back to the RNN, closing 221 
the cortico-basal ganglia loop. The unfolding of several iterations of this loop is responsible for the 222 
execution of precisely timed action sequences.  Right panel: ACDC full model architecture. A. Input 223 
layer: codes for contexts indicating the sequence to be learned/produced in a N length binary vector. B. 224 
RNN: represents recurrently interconnected neurons of the PMC, composed of a subset of 225 
interconnected neurons (i.e., clusters) that can give rise to sequential activation states after learning via 226 
cortico-basal ganglia loops. All excitatory nodes in the RNN project to a shared inhibitory neuron (orange 227 
node), which in turn inhibits all excitatory neurons (purple nodes; shown for just one cluster for visual 228 
simplicity). C. The BG: composed of two neuron types G (Go cells) and N (No Go cells). Go nodes 229 
accumulate evidence over time and excite Action (A) nodes in the BG output /thalamus layer. Once 230 
activity in the Go nodes reaches a specific threshold, the corresponding action is executed. Once 231 
executed, Action nodes reciprocally activate No Go nodes which in turn suppress Go nodes, shutting 232 
down action execution. The thalamus: is composed of Action nodes whose activity represents action 233 
execution. The jth Action node selectively projects excitatory connections to the ith+1 cluster in the RNN, 234 
the shared inhibitory neuron and the jth No Go node in the BG. Light blue arrows represent the ith 235 
cortico-basal ganglia loop instance.  236 

Several features of the model should be highlighted. First, each cluster activation within the RNN acts as 237 

an attractor state representing the ith order in the sequence. Interestingly, cells in the monkey PMC code 238 

for the position in sequence, regardless of the actual movement produced during that position (Clower 239 

and Alexander, 1998; Shima and Tanji, 2000; Isoda and Tanji, 2003, 2004; Averbeck et al., 2006; 240 

Berdyyeva and Olson, 2009; Salinas, 2009). We therefore assume that the neurons forming each cluster 241 
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represent rank-order-selective neurons whose activation unfolds sequentially: the RNN encodes order 242 

information.  243 

Second, the speed at which each action is executed is driven by how quickly the evidence in the Go 244 

nodes of the BG can cross the decision threshold in the Action nodes: the BG encode time information. 245 

Indeed, several studies suggest that temporal processing is subtended by the BG in the (non)human 246 

primates and rodent brain (Jin et al., 2009; Schwartze et al., 2011; Gershman et al., 2014; Jones and 247 

Jahanshahi, 2014; Mello et al., 2015; Thura and Cisek, 2017; Paton and Buonomano, 2018). Note that 248 

there are multiple routes by which timing can be altered within Go nodes in our model: (i) the learned 249 

weight value between Go and Action nodes; (ii) a bias input to Go nodes (in addition to that coming 250 

from the RNN cluster); and (iii) a multiplicative gain on Go unit activity (see model simulations).  As 251 

shown below, these separate routes will become important for providing timing and rhythm flexibility.  252 

Third, as in many cortico-BG models (e.g., Gurney et al., 2001; Frank, 2006), and motivated by 253 

anatomical data (Alexander et al., 1986) our model is characterized by topographical organization of 254 

actions across the BG circuit and its outputs (i.e., indexed in our model by the subscript j associated in 255 

the G-A-N triplet projections). Recent evidence further confirms topographical action representations in 256 

BG-thalamocortical loops (Oh et al., 2014; Hintiryan et al., 2016; Hunnicutt et al., 2016), whereby causal 257 

activation of specific subregions is related to specific output behaviors (Peters et al., 2021), and is also 258 

supported by human neuroimaging (Gerardin et al., 2003) and monkey/rodent neurophysiology studies 259 

(McHaffie et al., 2005; Jin et al., 2009; Znamenskiy and Zador, 2013; Friedman et al., 2015; Gremel et al., 260 

2016; Hooks et al., 2018; Lee et al., 2020). However, in contrast to previous models in which BG gating 261 

affords action selection of the corresponding cortical action, in the ACDC model BG gating triggers a 262 

cortical dynamical state that initiates the evolution of the subsequent item in the sequence. 263 

Fourth, we clarify how the ACDC model combines properties of associative chain and cluster-based 264 

models. While the ACDC model does initiate a chain via sequential propagation across cortico-BG loops, 265 

the timing of such transitions is controlled by learning the weights within the BG-thalamus unit, and 266 

moreover, what is learned are transitions between clusters of excitatory RNN neurons representing 267 

order in the sequence (Maes et al., 2020). Hence, the ACDC model makes use of two distinct 268 

conceptualizations of sequence learning, to achieve greater computational flexibility (as demonstrated 269 

in the result section). 270 

Learning in the ACDC model: Hebbian learning for order and Delta rule for time 271 
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Learning in the ACDC model takes place in three distinct loci of the network, comprising Hebbian 272 

learning for sequence transitions and error-driven learning for precise timing.  273 

First, as previously mentioned, order is coded via persistent activation within clusters of the RNN. 274 

However, in contrast to pure associative chain models, the ACDC does not assume any feedforward 275 

hard-wired structure, but rather learns it. Selective time-dependent inputs to the RNN (i.e., from the 276 

input layer and thalamic Action nodes) activate a subset of neurons within the RNN, which get clustered 277 

together through dynamic synaptic weights: 278 

))(())1(( max21 ijjiji

ij
WWxxxx

dt

dW
 

                                                                     equation 1 279 

 where 𝑥𝑗 is presynaptic activity low-pass filtered over a time scale τw; 𝑥𝑖  is postsynaptic activity; α1 and 280 

α2 are learning rate parameters. When 𝑥𝑗 and 𝑥𝑖  are both simultaneously > 0, Wij  goes to Wmax; 281 

otherwise Wij goes to 0. Note that 𝑥𝑗(𝑡) will be non-zero if unit j is active within the time window from t 282 

- τw → t (as in Murray and Escola, 2017). 283 

Second, Equation 1 is also used to learn connections between the RNN and the Go nodes of the BG 284 

module; here, pre- and postsynaptic activity refer respectively to RNN excitatory unit activity and Go 285 

nodes activity (weight values between RNN units and Go nodes are randomly initialized from a Gaussian 286 

distribution with mean = 0.5 / N and s.d. = 0.1 / N, where N is the number of RNN excitatory units).  287 

Third, action specific execution time is coded in the weights connecting Go and Action nodes. Here, we 288 

describe time learning as a delta rule, whereby an agent receives a supervisory signal explicitly indicating 289 

whether a specific action has been produced before (positively signed signal to increase weights) or 290 

after (negatively signed signal to decrease weights) the appropriate time, as described in equation 2: 291 

)( desiredobserved ttW                                                                                                             equation 2 292 

where the change in weight (ΔW) between the jth Go and Action nodes is driven by the learning rate η, 293 

and the error computed as the difference between the observed and desired response time (t) for each 294 

action. Weight values between Go and Action nodes are randomly initialized and drawn from a random 295 

Gaussian distribution (mean = 2, s.d. = 0.2). Learning of precisely timed sequences is shaped sequentially 296 

(i.e., in chunks):  the model first learns to produce the first action at the appropriate time (i.e. until the 297 

error < φ and φ is a low value, see table 1 in Appendix A), then the second, and so forth. Note that 298 
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learning by chunking improves motor execution (Wymbs et al., 2012; Boutin et al., 2013; Lungu et al., 299 

2014; Graybiel and Grafton, 2015; Doyon et al., 2017), and chunk-based representation is at the base of 300 

several theoretical models of motor sequence learning (Abrahamse et al., 2013; Verwey et al., 2014; 301 

Diedrichsen and Kornysheva, 2015). 302 

Below we describe all the simulations emerging from the ACDC model; parameter values for all 303 

simulations are reported in table 1 of Appendix A, and simulation code is available from 304 

https://github.com/CristianBucCalderon/ACDC. We start by describing how the model can learn to 305 

produce precise spatiotemporal sequences. We then simulate all the temporal properties of the model: 306 

reproduction of an action sequence with temporal asynchrony, temporal shifting, rescaling, and 307 

compositionality, and sustained motor activation. Finally, we describe and simulate empirical and 308 

neurophysiological observations.      309 

Results 310 

Learning precise spatiotemporal sequences 311 

Figure 2 shows the result of the first simulation, where the ACDC model learns to produce a precisely 312 

timed, temporally asynchronous, action sequence. For the purpose of clarity, we limit the sequence to 6 313 

actions. The goal of the model in this simulation is to produce each action sequentially at the 314 

appropriate time, i.e. action 1 through 6 have to be executed respectively at times 200, 250, 400, 700, 315 

750 and 900 ms (within a 1 second window). Note that this is an arbitrarily chosen timing sequence; the 316 

model can (learn to) produce any timed, synchronous (see Thunderstruck simulation below) or 317 

asynchronous, sequence. Figure 2A shows how the activity of each Action node goes down the gradient 318 

and progressively reaches the optimal time (depicted by color coded vertical dashed lines), reflected in a 319 

decrease in the action timing error (Fig. 2B) and in the weight changes between Go and Action nodes 320 

(Fig. 2C).  321 

Figure 2D depicts the RNN connectivity matrix after learning (weights are zero before learning). 322 

Excitatory projections to the RNN from the input and motor layer are pseudo-random, with the 323 

restriction that two different projections never excite the same RNN neuron. These pseudo-random 324 

projections make it hard to visually identify the presence of clusters in fig2D; importantly however, this 325 

connectivity matrix does induce clustered dynamics (see Video 2 and Fig. 7A below).   Finally, figure 2E 326 

shows how the ith cluster in the RNN learns to be (almost) selectively wired with the jth Go node. 327 
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 328 

Figure 2. ACDC’s learning dynamics. A. Learning a precisely timed action sequence. Each action 329 

execution (A node activation) is progressively shifted towards the optimal action time (depicted by the 330 

color coded vertical dashed line; x-axis represents time). Learning progresses from darker to brightest 331 

colors. B. Learning evolution. Color coded traces represent the evolution of the error as a function of 332 

trial number for each action in the sequence. Learning unfolds sequentially, whereby timing errors are t 333 

minimized for the first action before the second action starts learning. Therefore, each action (except 334 

action 1) starts off with a plateaued error level until the preceding action reaches the optimal time. 335 

Some action timings are learned faster than others because their optimal time weight value is closer to 336 

their initial value. The error is computed by subtracting the observed from the desired response time 337 

and plotted in seconds. C. BG weights encode time. Action timing is learned by changing the weights 338 

from BG Go nodes to thalamus Action nodes. The left and right panel show respectively the weights 339 

values before and after learning. For instance, the second action (red trace in B) starts off being 340 

produced too slowly. Hence, weights increase until they produce the optimal action time for action 2. 341 

Color bars indicate weight values. D. RNN connectivity matrix after learning. The RNN connectivity 342 

matrix is initialized as a blank slate (all values are set to 0).  After learning, the RNN connectivity matrix 343 
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displays the appearance of clusters, whereby groups of 20 neurons are fully interconnected with each 344 

other and not connected with other neurons in the RNN (please refer to Video 2 and Fig. 7A for better 345 

visualization of clusters and their transitions as the sequence unfolds). Color bar represents weight 346 

values. E. RNN ith cluster learns to project to jth Go node. The top panel shows the randomly initialized 347 

weight values between the RNN excitatory units (before learning). The bottom panel shows how each 348 

cluster (represented by a subset of RNN neurons) is connected to a specific Go node after learning. Color 349 

bars represent weight values. 350 

 351 

Temporal flexibility properties of the ACDC model 352 

Having established learned clusters within the RNN and learned sequences in the ACDC model, we now 353 

focus on the flexibility properties of the model after learning, without having to overwrite learned 354 

weights. First, we show that a previously learnt action sequence with temporal asynchrony can be 355 

flexibly reproduced. Second, we show that this sequence can be initiated earlier or later in time; we call 356 

this property temporal shifting. Third, we demonstrate how action sequences can be compressed or 357 

dilated, i.e., temporal rescaling. Fourth, we show how a given ordered sequence can be produced with a 358 

completely different tempo, a property that we refer to as temporal compositionality. Fifth, we describe 359 

how the model can also output sustained action execution. Finally, we show how the ACDC model can 360 

learn (a part of) the Thunderstruck song, which is then flexibly played on a bossa nova tempo; thereby 361 

recapitulating the temporal flexibility properties. 362 

Simulation 2: Reproduction of previously learnt action sequence displaying temporal asynchrony. In 363 

simulation 1, we demonstrated that the ACDC model can learn precisely timed, temporally 364 

asynchronous, action sequences. In simulation 2, we now clamp learning (i.e., freeze the weights). We 365 

provide the network with the same input and observe that the network can reproduce the sequence 366 

maintaining its precision in action timing. Figure 3A shows that, given the clamped set of learned 367 

weights, each Action node (color coded for order) within the thalamus layer gets activated at the 368 

previously learnt precise timing, in a phasic/transient fashion.  369 

Simulation 3: temporal shifting. The previous action sequence can be shifted in time, i.e., started earlier 370 

or later. Importantly, this shift can occur without changing the timing between actions (i.e., sequence 371 

timing is preserved). The ACDC model achieves flexible temporal shifting by either adding an additional 372 

positive (to start the sequence earlier) or negative (to start it later) input to the first Go node of the 373 

sequence, analogous to the top-down input from pre-SMA to striatum thought to bias starting points for 374 

evidence accumulation (Forstmann et al., 2008; although similar effects could be implemented by 375 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.07.438842doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438842


15 
 

dopaminergic modulation; see Discussion). In simulation 3, we inject an additional input of +1 or -1 to 376 

the first Go node during the first 100 ms of the 1 second time window. Figure 3B shows how the 377 

sequence is shifted earlier in time for the positive input (left panel) and later in time for the negative 378 

input (right panel). Moreover, figure 3C shows that as this additional input lasts longer, the distance (in 379 

time) between the first action of the shifted sequence and that of the original sequence increases 380 

linearly. Naturally, intrinsic temporal constraints of the model limit this distance for earlier shifts, as 381 

shown by the negative plateau in figure 3C (black circles). 382 

Simulation 4: Temporal rescaling. Musicians possess the ability to learn a rhythm, i.e., a precisely timed 383 

action sequence, and instantly temporally rescale (compress or dilate) that rhythm without additional 384 

learning. In our model, flexible rescaling is achieved by sending a multiplicative input (ρ) to all Go nodes 385 

simultaneously; if ρ > 1 or 0 < ρ < 1 the sequence is respectively compressed or dilated. Figure 3D shows 386 

temporal rescaling for ρ values of 1.2 (compression, left panel in Fig. 3D) and 0.9 (dilation, right panel in 387 

Fig. 3D). Importantly, temporally rescaling the sequence does not affect the temporal structure of action 388 

sequences. For 100 values of ρ, ranging from 0.9 to 1.2, we computed the relative ratio between a 389 

sequence of 3 actions. The ratio was computed by subtracting the time of action 1 from that of action 2 390 

(subtraction 1), then the time of action 2 from that of action 3 (subtraction 2), and dividing subtraction 2 391 

/ subtraction 1. We performed this computation for the action triplets 1-2-3, 2-3-4, 3-4-5 and 4-5-6, and 392 

summed the ratios. Figure 3E shows that this sum of rations stays constant (mean = 7.5, s.d. = 0.12), 393 

thereby indicating that temporal structure is maintained albeit rescaled. 394 

Simulation 5: Temporal compositionality. Musicians must also be capable of temporal compositionality; 395 

that is, apply a different tempo to an action sequence that was learned in a different tempo (e.g., apply 396 

a bossa nova tempo to a rock song; see below). In simulation 5, we assume that the brain can extract 397 

and store a tempo, which then can be used as a dynamical multiplicative signal to all Go nodes as in 398 

simulation 4. In simulation 5, we apply a dynamical multiplicative signal (Fig. 3F right panel) to the Go 399 

nodes. The result is to produce the learned sequence (described in Fig. 3A) to the tempo described by 400 

the multiplicative signal. Figure 3F (left panel) shows how the time of each action in the sequence does 401 

not fall on the previous tempo (color coded vertical dashed lines), but now rather is produced at the 402 

novel timing (vertical solid lines). 403 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.07.438842doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438842


16 
 

 404 

Figure 3. Temporal properties of the ACDC model. A. Simulation 2: Reproduction of action sequence 405 
with temporal asynchrony. Each action (i.e. A node activation, color coded) is produced at the precise 406 
desired time indicated by the vertical dashed line (also color coded), within a 1 second time window. 407 
Inter-action interval varies as the sequence unfolds.  B. Simulation 3: Temporal shifting. A precisely 408 
timed action sequence can be started earlier (left panel) or later (right panel) by respectively injecting an 409 
additional positive or negative input to the first G node (i.e. associated to accumulating evidence in 410 
favor of the first action). Importantly, the temporal structure of the action sequence is not altered. C. 411 
Simulation 3: Temporal shifting varies linearly with additional input time. Applying longer input times 412 
leads to increasingly earlier or later shifts in sequence initiation times, depending on whether additional 413 
input is positive (circles) or negative (squares).   D. Simulation 4: Temporal rescaling. Action sequences 414 
can be compressed (left panel) or dilated (right panel) by adding a multiplicative input to all G nodes 415 
simultaneously. E. Simulation 4: Temporal rescaling preserves action sequence structure. Importantly, 416 
when temporal rescaling is applied to the action sequence, the relative timing between each action (i.e. 417 
the structure) is preserved. Here, we plot the sum of ratios (y-axis, see main text) as a function of the 418 
multiplicative input ρ (x-axis). The sum of ratios value (black circles) stays constant as a function of ρ, 419 
indicating a preserved temporal structure even though the sequence is rescaled. F. Simulation 5: 420 
Temporal compositionality. The left panel shows how A nodes activity are activated on the tempo 421 
described by the multiplicative signal (left panel). Vertical dashed and solid lines on the left panel 422 
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indicate the timing of each action for the previous and novel tempo respectively. As shown, the 423 
respective A nodes become active on the novel tempo. 424 

 425 

Simulation 6: Sustained motor activation. The ACDC model is also capable of producing sustained 426 

motor activation for any element within the sequence, for instance sustained notes in a musical scale. 427 

Our model can achieve sustained motor activation via two mechanisms. First, via a flexible mechanism 428 

similar to that of rhythm compositionality, a multiplicative signal (ρ = 0.1) is sent to the Go node during 429 

the period in which sustained motor activation is needed. On the left panel of figure 4, we show the 430 

results of applying such a signal during the period between the start of the second action and the 431 

beginning of the third one. The motor activation of the second Action node (red trace) is sustained until 432 

the third action is executed (purple trace). Second, via a learning mechanism, the weight value between 433 

a specific Action-No Go nodes pair can be decreased to induce sustained activation of the Action node. 434 

On the right panel of figure 4, we decreased the weight value connecting the third Action-No go nodes 435 

pair. Such a weight change produced a similar result to that of implementing a multiplicative input to 436 

the No Go node, i.e. sustained activation of the corresponding Action node. 437 

 438 

Figure 4. Simulation 6: Sustained motor activation. Both panels demonstrate that the ACDC model is 439 
able to output sustained motor activation as desired within a sequence. The left panel shows the results 440 
of applying a multiplicative signal (ρ = 0.1) to the second No Go node, inducing a sustained activation of 441 
the second action (red trace). The right panel shows a similar effect this time by decreasing the value of 442 
the Action-No Go connection of the third action, in turn inducing sustained activation of the third Action 443 
node (purple trace). 444 

Simulation 7: The ACDC model in action and sound. Here, the ACDC model learns to produce the 445 

second guitar riff of ACDC’s (the rock group) Thunderstruck song. This riff is composed of 16 actions 446 

hitting six different notes (B5, A5, G#5, F#5, E5, D#5) following an isosynchronous rock tempo (Fig. 5A). 447 

By allowing the model to record each note corresponding to each sequential action (following Fig. 5A), 448 
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the ACDC model was able to musically reproduce the riff (Audio file 1). Notably, video 1 shows that the 449 

RNN dynamics (during the song) represent sequential attractor states, encoding order and leading to the 450 

production of each action (and sound) in the sequence (for a slowed down demonstration of similar 451 

dynamics with a less complex action sequence see Video 2 below). Next, we imposed the ACDC model to 452 

play the riff but now based on a bossa nova tempo without further training (Fig. 5B). The ACDC model 453 

was able to flexibly reproduce the riff following the bossa nova tempo (Fig. 5C and Audio file 2). The 454 

model thereby displays the ability to produce complex temporal compositionality. Further note that, 455 

altogether, this simulation encapsulates distinct temporal flexibility properties. First, flexibly 456 

reproducing the Thunderstruck song following a bossa nova tempo requires the ability to generate an 457 

action sequence with temporal asynchrony. Second, temporal rescaling is applied to parts of the song as 458 

the sequential execution of consecutive notes need to be sped up or slowed down. Third, the model 459 

displays its ability to produce sustained motor activation (see Audio file 2).     460 

 461 

Figure 5. Simulation 7: the ACDC produces the Thunderstruck song. A. Second guitar riff from ACDC’s 462 
(the group) Thunderstruck song. The riff is composed of 16 sequential actions creating a isosynchronous 463 
rock rhythm over a window of 3500 ms (given a 140 bpm tempo). Each action is associated to a color 464 
coded note). B. Generic bossa nova tempo. We imposed the model to replay the thunderstruck rock 465 
tempo song following a bossa nova rhythm whose tempo is described by the blue trace multiplicative 466 
signal. C. Flexible generation of the Thunderstruck song following a bossa Nova tempo. When the 467 
multiplicative input (Fig. 3B) is given to the Go nodes of the BG, the ACDC model flexibly reproduces the 468 
Thunderstruck song but now following the bossa nova tempo. 469 

 470 

--Insert Video 1— 471 

Video 1. Simulation 7: Dynamical visualization of RNN and Action nodes activity coupled with 472 
simulation-based Thunderstruck song sound. The top left panel shows how RNN sequential and 473 
persistent activity unfolds as a function of time. The bottom left panel is a visualization of RNN dynamics 474 
as a neural trajectory in PC space. The neural trajectory displays a pattern of sequential attractor states. 475 
The right panel displays how activity in each Action node (and hence Thunderstruck song note) is 476 
executed at the learned action time. 477 

 478 
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Behavioral and neurophysiological simulations 479 

Simulation 8: Behavioral simulation. In the motor timing literature, a ubiquitous finding is scalar 480 

variability:   when asked to produce an action after a specific time interval, the variability in action 481 

execution timing increases with the length of interval timing (Ivry and Hazeltine, 1995; Rakitin et al., 482 

1998; Jazayeri and Shadlen, 2010; Acerbi et al., 2012). In simulation 8, our model learns to produce a 483 

single action at distinct interval timings (i.e.  200, 400, 600 and 800 ms). For each timing, the model 484 

produces 500 reaction times (RTs), from which we extract the standard deviation (SD), and reproduce 485 

this process for 100 simulations and two noise values (i.e. gaussian random noise with zero mean and SD 486 

of 0.01 or 0.05 is added to the model equations 3-5 and 7). As predicted by empirical work, figure 6 487 

shows how the SD of RTs increases as a function of interval timing for both noise values, and thereby 488 

demonstrates that the ACDC model displays scalar variability (see also Egger et al., 2020). Furthermore, 489 

the SD value range also increases with noise values. This effect is explained in our model by having a 490 

fixed negative bias on the Action nodes in the motor layer. Such a feature reduces to having an 491 

accumulation-to-bound process for action execution. Hence, given a specific amount of noise, longer 492 

RTs are associated to wider RT distributions (i.e. larger SD, Ratcliff and Rouder, 1998). The underlying 493 

reason is that the effect of noise on evidence accumulation is amplified as time elapses. 494 

 495 

Figure 6. Simulation 8: The ACDC model displays scalar variability. Left (low noise value = 0.01) and 496 
right (high noise value = 0.05) panels show that the standard deviation of RTs increases as a function of 497 
the desired action time (i.e. interval timing). Moreover, higher noise values increase the range of 498 
standard deviation. Each dot is the result of 1 out of 100 simulations for each interval timing. 499 

Simulation 9: Neurophysiological simulations. Two other ubiquitous findings are persistent and 500 

sequential neural activity. First, several studies have observed persistent neuronal firing rates in 501 

temporal (Miyashita and Chang, 1988; Nakamura and Kubota, 1995; Erickson and Desimone, 1999), 502 

parietal (Koch and Fuster, 1989; Chafee and Goldman-Rakic, 1998; Gail and Andersen, 2006; Klaes et al., 503 
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2011), premotor (Cisek and Kalaska, 2005) and prefrontal (Funahashi et al., 1989, 1990; Miller et al., 504 

1996) cortices whenever an agent has to hold in working memory task-relevant stimulus features (e.g., 505 

spatial location). Theoretical work suggests that persistent activation patterns emerge from recurrently 506 

connected networks that settle in one of multiple potential attractor state (Durstewitz et al., 2000; 507 

Wang, 2001; Brunel, 2003). Second, as motivated in the introduction, sequential activity has also been 508 

observed in distinct sequential behaviors such as spatial navigation (Eichenbaum, 2014) and bird song 509 

(Hahnloser et al., 2002; Kozhevnikov and Fee, 2007; Amador et al., 2013; Okubo et al., 2015). 510 

Interestingly, recent work suggests that sequential switches in attractor states (and hence persistent 511 

neural activity), are associated to the timing of behavioral switches in action sequences (Recanatesi et 512 

al., 2020). Therefore, persistent and sequential activity may emerge from the same mechanism. In our 513 

model, the RNN activation dynamics display such switches from one attractor to another as the action 514 

sequence unfolds. Each attractor state is associated to the persistent activity of neurons forming a 515 

cluster in the PMC (RNN). When the action associated to that attractor state (i.e. the jth action 516 

associated to the ith order) is executed, this triggers a switch in attractor state in the RNN (via cortico-517 

cortical projections from M1 to PMC), as empirically observed by Recanatesi et. al (2020). In simulation 518 

1, the ACDC learns to produce an arbitrary sequence of 6 actions, each with their own desired execution 519 

time within a window of 1 sec (i.e. at 200, 250, 400, 700, 750, 900 ms). Figure 7A shows the RNN 520 

dynamics after learning. Each cluster of activation displays persistent neural activity until the action is 521 

executed, which triggers the following cluster of persistent neural activity. Hence, activity in the RNN is 522 

both persistent and sequential in nature. 523 
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 524 

Figure 7. Simulation 9: A. Sequential and persistent activation of clustered neural populations within 525 
the RNN. The y-axis represents each RNN unit, the x-axis represents time. The first cluster is activated by 526 
the input layer, and maintains persistent activity until the first action is executed. At that moment, via 527 
excitatory projections from the Action nodes (Fig. 1C) to the following (i+1th) cluster in the RNN (Fig. 1B) 528 
gets activated, and thus displays persistent activation, and so forth via the cortico-basal ganglia loops 529 
(light blue arrows in Fig. 1). Color bar represents firing rate. B. Sequential and sparse activation in the 530 
BG. The y-axis represents the G unit activity over time (x-axis). Each G unit responds in a sequential and 531 
transient manner, as has been shown in neurophysiological single-cell recordings of the BG (e.g., Gouvêa 532 
et al., 2015). Color bar represents normalized firing rate. 533 

To gain better visual intuition on the RNN dynamics, we performed dimension reduction on the row 534 

space of the unit (i.e., neuron) by time matrix displayed in figure 7A. We then dynamically plotted the 535 

first 3 principal components (PCs) as a function of time. Video 2 shows that each cluster of persistent 536 

neural activity acts as an attractor state (within the highly dimensional space of the RNN), and the 537 

dynamics in the RNN switch from one attractor to the other when an action is executed, again displaying 538 

both persistent and sequential neural dynamics. 539 

--Insert Video 2-- 540 
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Video 2. Simulation 9: Dynamical visualization of RNN and Action nodes activity. The left panel shows 541 
how activity in each Action node is executed at the learned action time, each color represents the 542 
activation of a specific A node in the thalamus. Given the structure and mechanism described in figure 1, 543 
the right panel displays the neural RNN trajectory showing that each action execution triggers a switch 544 
from the ith to the ith+1 attractor state. 545 

The qualitative pattern of the RNN sequential and persistent dynamics (Fig. 7A) is different than 546 

observed in rodent (Harvey et al., 2012; Eichenbaum, 2014; Mello et al., 2015) or monkey (Jin et al., 547 

2009) neurophysiological recordings, which  reveal sequential sparse activation (individual neurons 548 

display quick and transient activation as behavior unfolds). Notably however, the Go nodes in the BG 549 

module of our model display qualitatively similar sequential and sparse activation patterns as that seen 550 

empirically in the BG (Fig. 7B; see figures 2A, 3B, 1E, 8C, respectively of Mello et al., 2015; Rueda-Orozco 551 

and Robbe, 2015; Bakhurin et al., 2017; Dhawale et al., 2017)  552 

Discussion 553 

We have presented a neurocomputational model combining the strength of associative chains (e.g., 554 

Pereira and Brunel, 2020) and cluster-dependent (e.g., Maes et al., 2020) models, while also providing a 555 

model of how the BG contribute to recurrent cortical dynamics in sequential behaviors.   Our model 556 

factorizes action order, identity, and time, which are represented in distinct loci of the cortico-basal 557 

ganglia neural network. Crucially, factorizing these features provides the network with the ability to 558 

independently manipulate the building blocks of precisely timed action sequences, thereby increasing 559 

the computational power of our model. This increased power is illustrated through several interesting 560 

emergent properties. First, we demonstrated that the ACDC model can learn and reproduce precise 561 

spatiotemporal action sequences with temporal synchrony or asynchrony (i.e., constant or varying inter 562 

action intervals). Second, our model displays several flexibility properties: temporal shifting, rescaling 563 

and compositionality, and sustained motor activation; culminating in our model’s ability to reproduce 564 

the Thunderstruck song and change it to a bossa nova tempo. Third, the model can account for 565 

behavioral and neurophysiological empirical observations.   566 

Encoding order as attractor state switches in the RNN 567 

Recent work suggests that dynamic representations can be understood as switches in activity of neural 568 

networks (Ju and Bassett, 2020). Within this framework, one can envision action sequences as neural 569 

states unfolding over time. By analyzing the neural activity of secondary motor cortex in rodents, 570 

Recanaseti et al. (2020) showed that sequential behavior was subtended by the sequential unfolding of 571 
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attractor states, whereby each action in the sequence was subtended by a particular attractor state. 572 

Furthermore, these authors were able to model variability in action timing by adding correlated noise to 573 

the dynamics of a RNN. This addition allowed their RNN to display dynamics that jump from one 574 

attractor state to another, but at random times (hence explaining the variability in action timing). Our 575 

model is based on a similar mechanism. The dynamical activity of the RNN reflects switches in attractor 576 

states induced by excitatory projections to the RNN that transiently modify its E-I balance. However, via 577 

BG learning and modulation, our model precisely controls the switch to another cortical attractor state, 578 

thereby influencing output timing. Within our conceptualization, we suggest that persistent activity 579 

within a cluster indicates the latent state that the system is in (e.g., Collins and Frank, 2013), which in 580 

this case reflects the ordinal position in the sequence. Moreover, in contrast to previous models, the 581 

clusters themselves were not assumed to be anatomically hard-wired but emerged within the RNN via 582 

learning. 583 

Alternative models have proposed different mechanisms for encoding ordinal position. Some models 584 

possess a temporal context layer whose state is modified dynamically as time passes. The nature of this 585 

activity can take the form of a cyclical signal (Hartley and Houghton, 1996), decaying start signal (Page 586 

and Norris, 1998), or a sequence of overlapping states (Burgess and Hitch, 1999, 2006). Other models 587 

assume that the network input (used to learn the sequence) is itself sequential in nature (Murray and 588 

Escola, 2017; Maes et al., 2020), and learning the spatiotemporal signal depends on the sequential 589 

nature of the input. Our model is free of this assumption; the network input is a single pulse of 590 

activation, but can nevertheless reproduce a precisely timed spatiotemporal signal. This ability emerges 591 

from the feedback loop from thalamic Action nodes to the cortical RNN, triggering transitions to a 592 

subsequent cortical attractor. One can therefore consider motor output as part of the teaching input 593 

signal to the RNN; because motor activation unfolds sequentially in our model, the sequential nature of 594 

the teaching signal emerges from our network architecture.  595 

Interestingly, the idea that the motor cortex (presumably via motor thalamus neurons) acts as a 596 

teaching signal to other brain areas has received strong support from rodent lesion studies. For instance, 597 

rats are unable to learn a precisely-timed lever press when their M1 cortex is lesioned (Kawai et al., 598 

2015), and transiently inactivated or disturbed via optogenetic manipulation (Otchy et al., 2015). More 599 

generally, the notion that motor output can influence cognitive representations and transitions is 600 

consistent with the emerging literature on how cognitive functions scaffold on top of motor functions in 601 

cortico-basal ganglia circuits (Koziol and Budding, 2009; Collins and Frank, 2016a). 602 
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Motor sequence flexibility as inputs to the basal ganglia 603 

Humans can adapt their motor output almost instantaneously given external or internal stimuli. For 604 

instance, musicians can modify the tempo of a song upon signaling of the conductor. Such flexibility 605 

necessarily needs to stem from fast reconfiguration of neural dynamics, rather than emerge from 606 

changes in networks weights (Remington et al., 2018). Murray and Escola (2017) proposed a model of 607 

interconnected medium spiny neurons in the striatum that can apply such dynamic reconfiguration. In 608 

particular, their model could perform temporal rescaling of sparse sequential activity. Yet, flexibility in 609 

this model is constrained to isosynchronous sequences (see also Egger et al., 2020; Kozachkov and 610 

Michmizos, 2020)(see also Egger et al., 2020). However, a recent model making use of eligibility traces 611 

(Florian, 2007; Izhikevich, 2007; Frémaux et al., 2010; Soltoggio and Steil, 2013; Bellec et al., 2019), 612 

manages to learn precise non-isosynchronous spatiotemporal sequence learning (Cone and Shouval, 613 

2021). Still, it is unclear how such a model can rescale non-isosynchronous sequences, and neither of 614 

these models is capable of exhibiting temporal compositionality. Crucially, the ACDC model can perform 615 

temporal rescaling for both isocynchronous and non-isosynchronous sequencing, and it can also flexibly 616 

switch the tempo altogether through a multiplicative signal to the BG. 617 

The temporal properties of our model discussed in the previous paragraph emerge from additional 618 

inputs to the BG. What is the nature of this input? One possibility could be dopaminergic. Indeed, 619 

midbrain dopaminergic nuclei massively broadcast to the striatum (Watabe-Uchida et al., 2017), and 620 

several studies have implicated dopamine in controlling movement vigor (Beierholm et al., 2013; Hamid 621 

et al., 2015, 2021; Panigrahi et al., 2015; Zénon et al., 2016; Berke, 2018; Gaidica et al., 2018; Sedaghat-622 

Nejad et al., 2019; Augustin et al., 2020). Dopamine has also been extensively implicated in impulsive 623 

(i.e. pathologically speeded) behavior (van Gaalen et al., 2006; Frank et al., 2007; Pattij and 624 

Vanderschuren, 2008; Buckholtz et al., 2010; Pine et al., 2010; Dalley and Roiser, 2012; Economidou et 625 

al., 2012). Furthermore, administration of amphetamine and haloperidol to human participants, 626 

respectively increasing and decreasing tonic dopamine levels, has been associated to faster and slower 627 

response times during a simple reaction time task (Lake and Meck, 2013). 628 

If dopamine can flexibly modulate (i.e. speed up or slow down) action execution timing, the question 629 

remains upon which psychological process this neuromodulatory effect takes place. Within the 630 

accumulation-to-bound framework (Ratcliff, 1978; Ratcliff and Rouder, 1998), this effect could 631 

potentially alter two distinct processes. First, dopamine could play a role on the speed (or rate) of 632 

evidence accumulation. In line with this hypothesis, several studies have highlighted a clear effect of 633 
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dopamine on the drift rate of evidence accumulation in perceptual (Yousif et al., 2016; Beste et al., 634 

2018) or reward-based (Westbrook et al., 2020) decision-making tasks. Our model implements this 635 

possibility. Indeed, inputs to Go nodes modify (i.e. increase or decrease) the drift rate of evidence 636 

accumulation. Yet, the speed at which an action is produced also depends on the response threshold, 637 

with lower thresholds increasing speed at the expense of accuracy (Heitz, 2014). Therefore, a second 638 

alternative is that dopamine or other BG modulations may modify the threshold of action execution 639 

(Wiecki and Frank, 2013; Lloyd and Dayan, 2015). Interestingly, Parkinson’s disease patients on 640 

subthalamic deep brain stimulation tend to behave impulsively (Frank et al., 2007), due to modulation of 641 

the decision threshold (Frank, 2006; Cavanagh et al., 2011; Herz et al., 2016). Naturally, both hypotheses 642 

are not mutually exclusive; further research should investigate the effects of dopaminergic and 643 

subthalamic modulations regarding motor sequence flexibility.  644 

Biological basis and learning 645 

In line with recent models (Murray and Escola, 2017; Maes et al., 2020; Cone and Shouval, 2021), the 646 

ACDC model implements a certain level of biological plausibility, and still is able to capture a plethora of 647 

data both at the neurophysiological and behavioral level. For instance, we demonstrate that the model 648 

can replicate sequential sparse activation observed within the basal ganglia (Gouvêa et al., 2015). 649 

Another model making use of RNNs set at a near chaotic regime (Rajan et al., 2016) has been able to 650 

replicate sparse sequential activations as recorded in mice parietal cortex during spatial navigation 651 

(Harvey et al., 2012). Yet, training in these networks is based on highly supervised mechanisms that are 652 

not biologically plausible (Sussillo and Abbott, 2009; Laje and Buonomano, 2013; Hardy et al., 2018). 653 

Therefore, future research should analyze whether more biological plausible RNNs (see Miconi, 2017) 654 

can reproduce such action patterns. Note that some of the implementation details of our model have 655 

still to be worked out (see limitations section below). 656 

Encoding and executing multiple sequences  657 

One important advantage of cluster-based models is the potential to encode multiple sequences within 658 

the same network of interconnected neurons. Within our model, this would tantamount to having 659 

several sequential attractor state neural trajectories, each of which subtends the execution of one 660 

specific action sequence. Therefore, action sequence selection is seen as targeting a specific cluster of 661 

units within the RNN, leading to the execution of the corresponding sequence. Moreover, the ability to 662 

produce various sequences simultaneously would resume to simply activating more than one cluster 663 

(Murray and Escola, 2017).  664 
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Another important question focuses on investigating how sequences are chained one after the other in 665 

order to produce adaptive behavior. Neurophysiological recordings in mice have revealed the existence 666 

of specific neural codes during sequences that signal the beginning and end (or boundaries) of a 667 

sequence (Jin et al., 2014; Jin and Costa, 2015). These go and stop signal may be used to signal the 668 

system to transition from one neural trajectory to the other, thereby allowing action sequences to be 669 

chained (Logiaco et al., 2019). 670 

Limitations and future directions 671 

As previously noted, some of the implementation details of our modem have still to be worked out. For 672 

instance, reinforcement learning of action timing is conceptually thought to take the form of a tri-factor 673 

hebbian learning rule (Montague et al., 1995; Bailey et al., 2000; Izhikevich, 2007; Hoerzer et al., 2014; 674 

Miconi, 2017), where neurons subtending a rewarding behavior (and hence forming a specific cortical 675 

activity patterns) increase their connectivity to D1 receptor striatal populations (also known as Go cells) 676 

via dopaminergic activity bursts stemming from midbrain nuclei (Frank, 2005; Collins and Frank, 2013). 677 

Our implementation is slightly different. Reinforcement is shifted later in the information processing 678 

pipeline, and action time learning takes place between Go nodes (which we also consider as D1 receptor 679 

cells in the striatum) and thalamic motor neurons. We applied a delta rule within the BG-thalamus 680 

module. Much evidence indicates that the BG learn via reinforcement learning (e.g., McClure et al., 681 

2003; O'Doherty et al., 2004; Badre and Frank, 2012), but the brain also makes use of signed errors for 682 

precise timing e.g., in the cerebellum. Our learning rule in the BG-thalamus thus summarizes the 683 

contributions of these systems in conjunction. In contrast, classical Hebbian learning rule was applied 684 

within the RNN and between the RNN and BG. Indeed, these projections simply carry “chaining” 685 

information (i.e. they allow for the sequential structure of the chain to emerge during learning), and 686 

therefore do not need to be fine-tuned to a specific value for the emergence of precise action timing. 687 

Future work should consider both biological learning constraints and implement a more detailed 688 

architecture of the basal ganglia networks. 689 

Moreover, future work on the ACDC should focus on investigating the limits with which RNNs can 690 

encode multiple sequences without creating interference. This entails exploring two aspects of the 691 

model. First, our model forces orthogonalization of the inputs to the RNN in order to make sure that no 692 

clusters are interconnected. Novel versions of the ACDC need to investigate how this orthogonalization 693 

may emerge from specific learning rules. Second, cluster size mater, as bigger cluster size may be more 694 

robust to noise. Therefore, given an initial number of RNN excitatory neurons, only but a limited amount 695 
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of sequences can be encoded. Therefore, the interaction between learning, cluster size and sequence 696 

interference should also be investigated more systematically. 697 

Our model simulates action sequences such as those needed to play the guitar or the piano. Within this 698 

context, each action is represented as a discrete entity. However, many daily life action sequences are 699 

subtended by more continuous actions, as for instance when playing violin with a bow. The ACDC could 700 

be expanded by having more continuous representations of action plans and execution in our BG-701 

thalamus module. Based on dynamic field theory, one potential approach would be to represent actions 702 

as dynamic neural fields (Erlhagen and Schöner, 2002; Cisek, 2006; Klaes et al., 2012), which have been 703 

shown to successfully model more continuous reaching actions (Christopoulos et al., 2015). Moreover, 704 

these continuous action representations in the BG may require additional inputs from the cerebellum 705 

for movement coordination (Thach et al., 1992) or sequence prediction for motor control (Bastian, 706 

2006).  707 

Finally, recent research focused on how humans extract abstract knowledge, and generalize this 708 

knowledge to other situations (Collins and Frank, 2016b) (Collins and Frank, 2013; Whittington et al., 709 

2020; Baram et al., 2021). Indeed, abstracting the action sequence structure of the Thunderstruck song 710 

may be useful for future learning. Transferring the abstract structure of the Thunderstruck song when 711 

learning a novel song that shares a similar structure should improve learning (Lehnert et al., 2020).  712 

Conclusion 713 

Separating time and order information in two distinct loci of a biologically inspired model of action 714 

sequences allowed us to increase computational power, and to capture a significant amount of data at 715 

the neurophysiological and behavioral levels. Although some specific aspect of the implementation of 716 

this functional specialization need still to be resolved, we demonstrate that such an architecture 717 

increased motor flexibility. We propose a concrete and tractable mechanism of this flexibility, and thus 718 

suggest a model of how humans and animals can learn and effortlessly manipulate precise 719 

spatiotemporal signals at the basis of complex behavior. 720 
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 1050 

Appendix A 1051 

Our ACDC model contains three main modules (Fig. 1): an input layer (Fig. 1A), an RNN (representing 1052 

premotor cortex; Fig. 1B), a BG-thalamus unit (Fig. 1C).  1053 

The input layer reflects a vector of N =200 neurons of which a subset (20) is activated and each neuron 1054 

excites only one neuron in the RNN. 1055 

The dynamics within the ACDC model represent the sequential unfolding of RNN-BG-thalamus-RNN (i.e., 1056 

cortico-basal ganglia) loops, depicted by the light blue arrows in figure 1. The loop starts with the 1057 

activation of a cluster of excitatory RNN neurons, and the dynamics of the RNN excitatory neurons are 1058 

governed by equation 3: 1059 

                                                        equation 3 1060 

where xi and xj represent post and pre-synaptic RNN unit activity (purple nodes in Fig. 1B) and Wij is the 1061 

recurrent weight matrix. JEI and JEA represent respectively the weights from the shared inhibitory neuron 1062 

(orange node in Fig. 1B) and from the motor thalamus neurons (from here on termed Action nodes for 1063 

simplicity) to the excitatory RNN units. xI, xA and xin represent respectively the activity of the shared 1064 

inhibitory neuron, Action nodes (see below), and the input to the excitatory RNN units. γE is the gain on 1065 

Action nodes activation projected to the excitatory RNN neurons (see below for the functional property 1066 

of this parameter). Ө, the non-linear transformation function, is governed by Ө(x) = (2 / (1 + e-λx)) – 1 1067 














 



in

iEA

EA

I

EI
N

j

jiji
i

rnn xxJxJxWx
dt

dx
)(

1



was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.07.438842doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438842


39 
 

(where λ is the gain parameter and with additional non-linearity at zero, i.e. Ө(x) = 0 if Ө(x) < 0); and τrnn 1068 

is the encoding constant. Note that input projections and all Action nodes to RNN projections are 1069 

orthogonal (i.e. some RNN excitatory neurons receive inputs from the input layer, whereas others 1070 

receive from inputs from Action nodes; each projection excites 20 RNN units). The shared inhibitory xI 1071 

activation is described by equation 4: 1072 

                 equation 4 1073 

 where JIE, JIA and γI respectively represent the weights from the excitatory RNN neurons to their shared 1074 

inhibitory neuron, the weights from the Action nodes to the shared inhibitory neuron, and the gain on 1075 

Action nodes activation for the projections towards the inhibitory neuron in the RNN.  1076 

In turn, each excitatory RNN cluster projects to its corresponding “Go” cell in the BG (blue arrow 1 from 1077 

Fig. 1B to Go node in Fig. 1C), and each Go cell accumulates evidence for the jth action associated to the 1078 

ith order, following equation 5:  1079 

                 equation 5 1080 

where gj is the activation of the jth Go units, Wij is the weight matrix representing connectivity between 1081 

RNN and Go units, xi is the acitivity of the RNN excitatory units, JGN is the inhibitory weight between the 1082 

jth No Go and Go nodes, nj is the activation of the jth No Go node, and τg is the encoding constant (with τg 1083 

>>> 0, thereby simulating evidence accumulation-like dynamics). 1084 

Striatal Go cells facilitate response execution by projecting towards the corresponding Action nodes 1085 

(blue arrow 2 from the Go to Action nodes in Fig. 1C), whose dynamics are governed by equation 6: 1086 

                                         equation 6 1087 

where aj is the activation of the jth action, gj is the activation of the jth Go unit, b is the negative bias (i.e. 1088 

threshold), Ө is a nonlinear function as in equation 3, and τa is the encoding constant. JAG is the weight 1089 

from the jth Go unit to the jth Action unit, and was randomly drawn from a Gaussian distribution with 1090 

mean = 2 and s.d. = 0.2. In turn, Action nodes project excitatory connections to three distinct parts of 1091 

)( IA

IA

i

IE

I
I

rnn xJxJx
dt

dx
 

j

GN
N

i

iijj

j

g nJxWg
dt

dg
 

 bgJa
dt

da
j

AG

j

j

a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.07.438842doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.07.438842


40 
 

the network simultaneously. First, Action nodes project to the cluster of excitatory neurons in the RNN 1092 

representing the i+1th order in the sequences (blue arrow 3a in Fig. 1). Second, Action nodes project to 1093 

the inhibitory shared neuron (blue arrow 3b to orange node in Fig. 1), that in turn globally inhibits all the 1094 

clusters in the RNN. Note that the gain parameter values on Action nodes activity are larger for 1095 

projections to the excitatory clusters vs inhibitory neuron of the RNN (i.e. γE > γI ). This allows the 1096 

activation of Action nodes to perturb the E-I RNN balance in a way that allows the ith cluster to shut 1097 

down and the i+1th cluster to be expressed. Third, Action nodes project excitatory connections back to 1098 

their corresponding No Go cells (blue arrow 3c from jth Action node in the thalamus to jth No Go node in 1099 

the BG, see Fig. 1C). The dynamics of No Go cells are in turn dictated by equation 7: 1100 

                   equation 7 1101 

where nj is the activation of the jth No Go node, JNA is the weight from the jth Action unit to the jth No Go 1102 

unit, aj is the activation of the jth Action node, and τn is the encoding constant. 1103 

In Table 1 we report the parameter values used for all eight simulations described in the main text.  1104 

Table 1. Parameter values for all simulations 1105 

Parameters Values 

α1 (RNN) / α1 (RNN-Go) 0.01 / 0.00002 

α2 (RNN) / α2 (RNN-Go) 0.1 / 0.4 

Wmax (RNN) / Wmax (RNN-Go) 1 / 0.05 

τw, b 0.5 

η 0.4 

φ 0.01 

τa, τn, JIE 0.1 

γE / γI 21.4 / 21 

τrnn, xin
, JEI

, JEA
, JIA

, JGN
, JNA 1 

λrnn / λa 10 / 10000 

τg 0.001 
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