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Abstract

Multi-host pathogens are particularly difficult to control, especially when at least one of
the hosts acts as a hidden reservoir. Deep sequencing of densely sampled pathogens has
the potential to transform this understanding, but requires analytical approaches that
jointly consider epidemiological and genetic data to best address this problem. While
there has been considerable success in analyses of single species systems, the hidden
reservoir problem is relatively under-studied. A well-known exemplar of this problem is
bovine Tuberculosis, a disease found in British and Irish cattle caused by
Mycobacterium bovis, where the Eurasian badger has long been believed to act as a
reservoir but remains of poorly quantified importance except in very specific locations.
As a result, the effort that should be directed at controlling disease in badgers is
unclear. Here, we analyse densely collected epidemiological and genetic data from a
cattle population but do not explicitly consider any data from badgers. We use a
simulation modelling approach to show that, in our system, a model that exploits
available cattle demographic and herd-to-herd movement data, but only considers the
ability of a hidden reservoir to generate pathogen diversity, can be used to choose
between different epidemiological scenarios. In our analysis, a model where the reservoir
does not generate any diversity but contributes to new infections at a local farm scale
are significantly preferred over models which generate diversity and/or spread disease at
broader spatial scales. While we cannot directly attribute the role of the reservoir to
badgers based on this analysis alone, the result supports the hypothesis that under
current cattle control regimes, infected cattle alone cannot sustain M. bovis circulation.
Given the observed close phylogenetic relationship for the bacteria taken from cattle
and badgers sampled near to each other, the most parsimonious hypothesis is that the
reservoir is the infected badger population. More broadly, our approach demonstrates
that carefully constructed bespoke models can exploit the combination of genetic and
epidemiological data to overcome issues of extreme data bias, and uncover important
general characteristics of transmission in multi-host pathogen systems.
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Author summary

For single host pathogens, pathogen genetic data have been transformative for
understanding the transmission and control of many diseases, particuarly rapidly
evolving RNA viruses. However garnering similar insights where pathogens are
multi-host is more challenging, particularly when the evolution of the pathogen is slower
and pathogen sampling often heavily biased. This is the case for Mycobacterium bovis,
the causative agent of bovine Tuberculosis (bTB) and for which the Eurasian badger
plays an as yet poorly understood role in transmission and spread. Here we have
developed a computational model that incorporates M. bovis genetic data from cattle
only with a highly abstracted model of an unobserved reservoir. Our research shows
that a model in which the reservoir does not contribute to pathogen diversity, but is a
source of infection in spatially localised areas around each farm, better describes the
patterns of outbreaks observed in a population-level sample of a single M. bovis
genotype in Northern Ireland over a period of 15 years, compared to models in which
either the reservoir has no role, disease spread is spatially extensive, or where they
generate considerable diversity on their own. While this reservoir model is not explicitly
a model of badgers, its characteristics are consistent with other data that would suggest
a reservoir consisting of infected badgers that contribute substantially to cattle infection,
but could not maintain disease on their own.

Introduction 1

The analysis of high throughput genome sequence data for Mycobacterium bovis has 2

already generated important insights into the relative roles of direct transmission and 3

other mechanisms in the maintenance of bTB in cattle [1]. Central to this problem is 4

the well-documented involvement of the Eurasian badger (Meles meles) in the 5

persistence and spread of bTB. While it is known that badgers contribute to infection in 6

cattle, the relatively poor and biased data available regarding their contribution mean 7

that their importance to the problem remains poorly understood, a problem shared 8

with many other multi-host pathogen systems. Previous analyses have built on small 9

datasets, or used analytical tools based on evolutionary models (e.g. [2]) which, while 10

providing useful insight [3–6], have only limited ability to exploit the much richer data 11

available on the contact patterns recorded for the cattle population involved. 12

Here, we exploit these data in a agent-based simulation, using a partial-likelihood 13

fitting approach based on a measure previously developed to fit animal-level 14

transmission patterns to summary measures of herd outbreaks [7]. We compare models 15

where the diversity patterns are generated (i) by cattle only, (ii) by cattle with a passive 16

reservoir that produces minimal additional phylogenetic diversity and (iii) cattle plus an 17

active reservoir, generating diversity consistent with the observed bacterial mutation 18

rates. Considering also the spatial extent of reservoirs (locally around each farm or 19

across all farms), we fit the models to a previously described M. bovis dataset [3]. Our 20

analyses show a substantial preference for a model that includes a reservoir with only 21

short range interactions, and consistent with (ii) above, transmits the most recently 22

available genetic type back to the cattle population. 23

Data 24

Northern Ireland has a well-developed test and slaughter program in which all cattle 25

herds are tested for bTB on an annual basis. Since the 1990s, M. bovis isolates from 26

infected cattle have been stored and typed using spoligotyping and more recently, 27

combined with Variable Number Tandem Repeat (VNTR) typing, to differentiate 28
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molecular types [11,12]. Isolates are stored frozen and are available for re-culture to 29

extract further DNA for sequencing. As described previously [3], a total of 145 30

VNTR-10 M. bovis isolates were included in this study, from 66 herd breakdowns (i.e. 31

where at least one confirmed positive test occurred for a bovid in a herd previously 32

considered bTB-free) in 52 herds between June 1995 and December 2010. 33

In Northern Ireland, detailed information on the cattle population, movements 34

between herds and bTB test results is recorded by the Department of Agriculture, 35

Environment and Rural Affairs [10] on the Animal and Public Health Information 36

System (APHIS). All direct cattle movements between herds with VNTR-10 samples 37

represented in our dataset (66 sequenced breakdowns and 12793 individual cattle 38

movements) were made available, and were combined with the anonymised location and 39

date of each sequenced sample. The locations (main farm building) of 58 herds that had 40

a breakdown with VNTR-10 between 1995 and 2010 were made available from the 41

APHIS database. 42

The data describing the location of the herds consist of the (anonymised via rotation, 43

scaling and translation so that relative distances remained intact) x-y locations of 52 44

farms from which cultured samples were taken. The movement of cattle into or out of 45

this network extended the number of farms in our dataset to 21,012. 46

Because herd population data were not available for the entire period over which 47

bacterial samples were taken, we develop a parameterisation of the herd population 48

relevant to our study and use this to populate our simulations. The size of each herd 49

was recorded on the 1st of January and 1st of July of each year from 2003 to 2012 and 50

we draw the initial herd size for our simulations from this distribution of herd sizes. The 51

herd sizes in our available data were not found to change substantially over time (data 52

not shown) so this simplifying assumption is not thought to substantially affect the 53

results. Each herd is subjected to an annual whole herd test, and failing herds are 54

subjected to both movement restrictions and follow-up whole herd tests until two 55

successive clear tests are observed. From the record of herd tests on each farm, 403 56

herds had a whole herd test scheduled within 60 days of the start of the (recorded test) 57

dataset. Assuming that each of these herds with tests scheduled within 2 months of the 58

simulation start date were subject to follow-up tests, this represents ≈ 2% of farms 59

under movement restriction. At the start of each simulation we set a similar number of 60

herds under movement restrictions and to each herd we randomly assign the number of 61

clear tests achieved at the simulation start time (either 0 or 1) to mimic the observed 62

conditions. All other herds have routine tests scheduled every year (with the first test in 63

the simulation scheduled at a random time within the first year of the start of the 64

simulation), with each animal in the herd subjected to a test with sensitivity Ω. 65

The phylogenetic dataset has previously been described in [3]. In brief, high-density 66

whole genome sequencing (WGS) was performed on 145 (139 cattle and 6 badger) 67

VNTR-10 isolates. Some badger isolates were available from a survey of badgers killed 68

on the roads in Northern Ireland [8] [9]. However as these few isolates are likely to be 69

only a small proportion of the total infected badgers in the area, are unlikely to be 70

representative, and the locations of where the badger carcasses were found could not be 71

verified, they were deemed unsuitable for inclusion in any further population-wide 72

analysis (though we note the close phylogenetic relationship between the badger-derived 73

samples and nearby ones from cattle [3]). Pairwise single nucleotide polymorphism 74

(SNP) differences between sequenced samples were recorded and a histogram of these 75

SNP differences generated as the basis of our further analysis, Fig. 1. 76

Methods 77

As in our previous study [7], we consider a simple four state model for the transmission 78

of bTB where cattle are either susceptible (SC), exposed (EC), test-sensitive (TC), or 79
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Fig 1. Phylogeny of VNTR-1 and -10 isolates (from [3]) showing the distribution of
SNPs in sampled cattle. In this paper we have ignored the samples from badgers but
show them here to indicate the close phylogenetic relatonship to the cattle isolates.

infectious (IC). The tuberculin test, used in the UK, is based on a cow’s response to the 80

invading M. bovis and it is assumed that animals in the exposed stage have not yet 81

mounted a sufficient response to be detected. Thus for the purposes of this model, any 82

test on animals in this stage will return a negative result. Infections in both the 83

test-sensitive and infectious stages are detectable. Once an animal becomes infectious, it 84

remains so until it is detected, at which point the animal would be culled. In addition 85

we create an infectious ‘reservoir’ population which generates an infection pressure and 86

(potentially) generates additional genetic diversity in the bacterial population. Further 87

we extend this to also consider susceptible (Sr) and infected (Ir) reservoir locations. 88

Once infected, animals progress from the exposed to test-sensitive stage at a rate σ 89

and from the test-sensitive state to infectious at a rate γ. Cattle-to-cattle transmission 90

is at a rate βSCIC (where SC ,IC , are the numbers of cattle in these states) and we 91

separate the cattle-reservoir and reservoir-cattle transmission rates as βCr and βrC 92

respectively. 93

We can write the model excluding cattle movements between farms as a set of
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Ordinary Differential Equations (ODEs) in the form

ṠC = −βSCIC −
∑
r

βrCSCIr

ĖC = βSCIC +
∑
r

βrCSCIr − σEC

ṪC = σEC − γTC
İC = γTC

İr =
∑
F

βCrSrIC (1)

where the sums are over all reservoirs connected to each farm or all the farms connected 94

to each reservoir. We assume that reservoir populations cannot infect each other. Also, 95

once infected, reservoirs remain infected for the duration of the simulation. This could 96

be interpreted, for example, as at least one individual within the reservoir remaining 97

infected at any time once the reservoir has become infected. Animals in the TC and IC 98

states are routinely tested and if detected, are removed. A schematic of this model can 99

be found in the Supplementary Information (Fig. 4). 100

We solve the model using Gillespie’s τ -leap method [13] with a fixed τ of 14 days. In 101

each 14 day step we calculate the numbers of animals whose disease status will have 102

changed and update them accordingly, perform any whole herd tests (WHT), maintain 103

a record of scheduled WHTs (including any follow-up tests from failed WHTs in the 104

current period), move animals between farms, and update the transition kernel for the 105

Gillespie algorithm in the next time step. 106

Movements To reduce computational costs, we only create agents for infected cows, 107

as the number of cattle moved between farms is typically few compared to the herd size, 108

and the susceptible fraction in a herd is high. We assume that animals born into the 109

herd, replacing animals moved out of the herd and thus keeping the herd size constant, 110

are susceptible and thus not tracked so we do not explicitly simulate birth and death 111

processes. This simplifying assumption did not give results that differed significantly 112

from less computationally efficient simulations where the size of each herd, births and 113

deaths were explicitly tracked (not shown). As we do not know the the force of infection 114

associated with each reservoir we apply the assumption that it is constant once the 115

reservoir begins to harbour infection. We keep a record of each farm (herd) and its 116

associated reservoirs in memory. 117

Every movement of cattle that passes through the VNTR-10 herds was recorded and 118

used to create a distribution of farm-to-farm movements as well as a distribution of the 119

number of animals moved for each farm. The number of animals moved in any 14 day 120

period is uniformly distributed over the VNTR 10 outbreak (as consistent with what is 121

observed in the dataset of animal movements in Northern Ireland over the period 122

investigated) creating a total of 7749685 movements. In each time step we move a 123

constant number of cattle (19108) so that the total moved in the simulation is 7749685 124

using the following algorithm: 125

1. pick a farm-farm movement from the distribution of farm-farm movements, 126

ignoring farms that are under movement restriction (see the paragraph on testing 127

for details on these restrictions). 128

2. pick the number of cattle to be moved from the distribution of the number of 129

animals moved off the departure farm. 130
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3. perform pre-movement testing of all animals. If the departure farm contained 131

infected animals we sample a number of these animals at random from a 132

hypergeometric distribution and test them. If an animal fails the pre-movement 133

test their SNPs are recorded as being sampled, they are removed from the 134

simulation and the farm is put under movement restrictions with a follow-up test 135

scheduled for 60 days. If none of the infected animals are detected they are moved 136

to the new herd. 137

4. repeat until we have moved the required number of animals for the period. 138

Here we assume that the patterns do not change over timescales relevant to 139

transmission and evolution or in a way that substantially influences the metrics used (i.e. 140

the actual individual moves will be different, but not the overall pattern characteristics). 141

Testing Every head of cattle undergoes a pre-movement test with a sensitivity Ω and 142

any that fail this is considered to be a ‘reactor’ (i.e. is in either the test-sensitive or 143

infectious stage). Reactors are removed from the simulation and the herd they resided 144

in is put under movement restriction; cattle are not allowed into or out of the herd until 145

it passes two consecutive tests (scheduled at two monthly intervals starting from one 146

month after the time of the breakdown). Each herd undergoes annual whole herd 147

testing; herds that contain a reactor(s) are put under movement restriction and are 148

required to pass two successive whole herd tests before being allowed to resume trading. 149

Each herd is given a random test date at the start of the simulation which is repeated 150

annually unless an infected animal is detected on the farm. Cattle that are found to be 151

infected (in either the test sensitive or infectious states) are culled, i.e. removed from 152

the simulation. 153

A record of all the transmission events that occur in our simulation is kept; thus we 154

track all cattle→cattle, cattle→reservoir and reservoir→cattle transmission events. We 155

allow for substitutions within the M. bovis genome at a rate of µ substitutions (single 156

nucleotide polymorphisms, SNPs) per day. We don’t track the actual loci that have 157

evolved but rather label each strain of pathogen. Each transmission event is 158

accompanied by a transfer of all the genetic information (i.e. the virtual pathogen 159

containing all the SNPs) allowing us, over time, to calculate the distribution of single 160

nucleotide polymorphisms (SNP) within the population. The same substitution rate is 161

used for both cattle and within the reservoir. 162

Seeding the model We use the test histories of all herds observed to be part of the 163

VNTR-10 outbreak and determine those animals that had a probability of being in an 164

infected state at the start of the outbreak using the methods outlined in [1]. This 165

identified 6 animals, all from the same farm, that harboured infection at the start of our 166

simulation (June 1995) each of whom had the same probability of being in each 167

infection state (S=0.73, E=0.0, T=0.0, I=0.27). We seed each simulation by setting the 168

infection state of each of these animals according to these probabilities and assigning a 169

unique set of SNPs to each infected cow. For each infected cow we seed the simulation 170

with an infected reservoir animal with the same SNPs in one of the reservoirs connected 171

to the farm (selected at random). 172

Culling Infected Animals Cattle are removed from our simulation according to the 173

observed distribution of animal deaths; cattle are chosen at random, tested and if found 174

to be positive the herd is placed under movement restriction and follow up tests are 175

scheduled for 60 days (mimicking short interval testing used to “clear”a herd of 176

infection. The herd remains under movement restriction until 2 successive clear tests are 177
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observed 60 days apart. We ignore animal births as we assume that calves are born free 178

of the disease and enter the susceptible population that is not (explicitly) tracked. 179

Hidden reservoir We incorporated three different models for the hidden reservoir; 180

none (there was no reservoir and the epidemic was driven by cattle to cattle 181

transmission and movements only), considering both a single reservoir that is connected 182

to every farm in the network, and reservoirs that had a radius of 2km (similar to the 183

expected home ranges of badgers) so farms that were less than 4km apart could share 184

one or more reservoirs (see Fig 5). Our dataset did not contain location data for those 185

uninfected farms that were connected by movements so we assigned a reservoir to each 186

of these but did not include overlaps with other reservoirs in the simulations. This 187

resulted in a network with a subset of farms that were connected via a reservoir. For 188

comparison, we also created a second network where the distribution of connected farms 189

mimicked the distribution of connections that include farms for which we did not have 190

locations. We refer to this as our “synthetic”network. 191

Several models of a hidden reservoir are compared in our simulations: 192

1. A single reservoir connecting every farm (giant reservoir model): infections into 193

the reservoir are modelled as individuals without transmission within the reservoir. 194

Since the reservoir connects all the farms this individual is free to re-infect any 195

farm thus allowing for fast spatial transmission of M. bovis genotypes throughout 196

Northern Ireland. 197

2. No shared reservoir: each farm has a reservoir that is not shared with any other. 198

Infections into the reservoir are also modelled as individuals but without 199

transmission within the reservoir. In this model, long range transmission of 200

genotype information is only possible through movement of undiagnosed cattle. 201

3. Farms within 4km share a reservoir: to allow for a home range of wildlife we 202

connect farms within a 4km range by a reservoir (see Fig 5). In this scenario we 203

model the reservoir in three different ways: 204

(a) Individuals within the reservoir are not modelled (the maximum diversity 205

model). In this case, whenever infection is passed from the reservoir into a 206

herd, a new sequence type is created with a number of accrued single 207

nucleotide polymorphisms (SNPs or substitutions), counted from the point at 208

which infection first entered the reservoir. 209

(b) Individuals in the reservoir are modelled but without explicit transmission 210

within the reservoir (the intermediate diversity model). When infection is 211

transmitted from the reservoir into a herd an individual badger is selected 212

and their SNPs are transmitted along with any substitutions that might have 213

occurred since they were infected. 214

(c) Individuals in the reservoir are modelled but, without explicit transmission 215

within the reservoir, and so diversity is only generated by the simulated 216

cattle (the minimum diversity model). When infection is transmitted from 217

the reservoir into a herd an individual is selected but no new SNPs are 218

generated. This models the influence of a reservoir population which holds 219

infection even when the local cattle population is clear but only maintains 220

diversity via regular interaction with the cattle population. 221

4. The minimum diversity and maximum diversity models run on the synthetic 222

network. 223
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SNPs The number of samples taken from reactors shows a small but positive 224

correlation with the time since the start of the outbreak (fig. 6) so we sample from our 225

transmission trees accordingly, sampling preferentially from the end of the outbreak to 226

build a phylogeny from the underlying (simulated) epidemics. We use these trees to 227

create the distribution of SNP differences between the tips of the tree (defined as 228

|(A \B) ∪ (B \A)|) where A, B represent the sets of SNPs from the pair of samples. 229

The frequency distribution of the number of SNP differences is interpreted as a 230

multinomial trial with p1, p2, . . . , pn, the probability of observing 1, 2, . . . , n, SNP 231

differences and x1, x2, . . . , xn, the number of times we observed this number in our 232

simulations. The distribution p1, p2, . . . , pn is shown in fig. 2[left]. We can write our 233

[partial] likelihood function as 234

L =
n!

Πxi!
pxi
i (2)

where n is to the total number of observed SNP differences. 235

Simulating the Model 2000 simulations are run from 15th June 1995 until 31st

December 2010 (the period covered by our dataset) for each set of model parameters on
a local Condor network. We record the transmission tree for each of the simulations.
We calculate the expected value of the model as

E[θ] = 〈L(D|θ)〉

where the calculated likelihood is the mean of 2000 simulations of the model as 236

described above. We perform a Markovian-random walk, where each parameter in the 237

parameter set θ is perturbed using a zero mean Gaussian random variable with a small 238

variance, using the Metropolis-Hastings rejection algorithm to accept those parameter 239

vectors, θ, that maximise the likelihood in equation 2 to find the posterior values of θ 240

that corresponds to the maximum of the likelihood. 241

Results 242

We compared our 5 different models that incorporated the pattern of recorded animal 243

movements, births and removals. In each model investigated, we used the same priors 244

(table 1) which were chosen on the basis of existing field and experimental 245

estimates [15–18] where they existed. The substitution or SNP creation rate is informed 246

by our previous estimate [3]. For the transmission rates, rate of the pathogen and test 247

sensitivity, we used non-informative priors, i.e. uniform priors with a large range. 248

We calculated the AIC score of each of our 5 models to determine which model best 249

describes the observed diversity (for our final set of models presented here, each model 250

contains the same number of parameters so in comparing the AIC scores of each model 251

we are indirectly comparing their log-likelihoods). According to the AIC scores the 252

preferred model that best described the observed data was one that generated no 253

additional diversity within the reservoir population (the minimal diversity model)(Table 254

3). 255

Considering the univariate parameter distributions in the posterior, the length of the 256

exposed stage (i.e. 1/σ) was estimated to be 14.3 days (with lower and upper quartiles 257

5.5-16.1 days) in line with previous estimates [1, 7]. This is towards the longer duration 258

of the prior for this value. The length of the test-sensitive stage (i.e. 1/γ) was estimated 259

to be 155.7 days (with lower and upper quartiles 147.1 and 169.5 days, respectively) 260

also similar to previously published estimates [1, 7, 14, 15]. Estimates for the sensitivities 261

of the whole herd test test, 59% (with a 95% credible interval of 52-63%), are also 262

consistent with previous observations [16–18] and simulations [7, 14]. Neither the 263
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Table 1. Summary of the priors used in the model. In the cases of β, αRC , αCR, µ we
used non-informative priors whereas in the case of σ, γ,Ω the priors were chosen on the
basis of existing field and experimental estimates [3, 16,18].

Description Sampling Distribution
Cattle-cattle transmission rate, β Uniform[1× 10−6, 1× 10−1]

per contact per day
Rate exposed cattle become test
sensitive, σ Uniform[6hours− 100days]

per day
Rate test sensitive cattle become
infectious, γ Uniform[4months− 11months]

per day
Probability that a detectable
animal is detected, Ω Uniform[0.4− 0.8]
Reservoir-cattle transmission rate, βRC Uniform[1× 10−3, 0.4]

per contact per day
Cattle-reservoir transmission rate, βCR Uniform[1× 10−3, 0.4]

per contact per day
SNP generation rate per day, µ Uniform[0.00001, 0.005]

per day

minimum or maximum diversity model on our synthetic network generated a stable 264

posterior estimate (not shown). 265

The best fit model is compared to the SNP distance histogram in illustrated in Fig. 266

2(a,b), showing considerable fidelity of the model to these data; the simulated 267

distribution displays both the bi-modal nature of the differences and matches the 268

observed distribution. Though there is evidence of a small amount of overdispersion for 269

large SNP differences while underestimating lower numbers of SNP differences, results 270

lie within the 95% CI’s for most SNP differences compared. By comparison, a visual 271

inspection for the other models shows that, despite very similar univariate parameter 272

estimates (table 4), SNP distributions were clearly inferior when comparing to the data 273

(see Fig 3(a-d)). 274

Fig 2. Comparison of the pairwise distribution of SNP differences for observed cases in
Northern Ireland and in our simulations. The yellow boxes on the right hand plot
indicate the number of SNP differences associated with each point.

In order to determine whether removal of the reservoir alone could result in 275

eradication of bTB in this system, we sample from the posterior distributions of our 276

parameters and use this to calculate the cattle-only R0 using a next generation matrix 277
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Table 2. Summary of the posterior estimates for the minimal diversity model which
best fits the data from our calculations, (see table 3 for the AIC scores for each model).
95% credible intervals are given in square braces.

Description Posterior Estimates
Cattle-cattle transmission rate, β 6.3× 10−6

[4.4× 10−6, 7.0× 10−6]
per contact per day

Rate exposed cattle become test 0.042 ≈ 23.8 days
sensitive, σ [0.041, 0.062] ≈ [16.1, 24.4] days

per day
Rate test sensitive cattle become 0.0062 ≈ 161.3 days

infectious, γ [0.0052, 0.0064] ≈ [156.3, 192.3] days
per day

Probability that a detectable 0.506 [0.410, 0.626]
animal is detected, Ω

Reservoir-cattle transmission rate, βRC 4.39× 10−6

[4.01× 10−6, 6.73× 10−6]
per contact per day

Cattle-reservoir transmission rate, βCR 2.45× 10−6

[1.28× 10−6, 5.06× 10−6]
per contact per day

SNP generation rate per day, µ 0.0041 [0.0033, 0.0044]
per day

Table 3. AIC scores for the various models investigated. The best model is one in
which we have a reservoir population that does not actively contribute to pathogen
diversity the minimal diversity model).

AIC Score
No Connecting Reservoirs 4370.8
Intermediate Diversity model 2km radius Reservoir 3816.2
Maximum Diversity model 2km radius Reservoir 3232.2
Giant Connecting Reservoir 3056.8
Minimal diversity model 2km radius Reservoir 2192.7
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(a) A single reservoir connecting ev-
ery farm

(b) Maximum diversity model

(c) Intermediate diversity model (d) No Connecting Reservoirs

Fig 3. Comparison of the pairwise distribution of SNP differences for the four rejected
models; (a) A single reservoir connecting every farm (top left), (b) Maximum diversity
model (top right), (c) Intermediate diversity model (bottom left), (d) No Connecting
Reservoirs (bottom right)
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approach [19,20]. R0 was found to have a mean value of 1.89 with a standard deviation 278

of 1.04, as in Fig. 8. Thus the most likely result across the posterior is that, in the 279

absence of testing, cattle-to-cattle transmission can maintain bTB on its own (i.e. 280

Rcattle
0 > 1). 281

Discussion 282

The development of model inference with dense data from one mammalian host, but 283

only sparse, or in this case no, data from another is a challenging one. We discuss here 284

a generalisable approach to doing so, exploiting the existence of spatio-temporal 285

signatures in the phylogeny that are inconsistent with the pattern of known recorded 286

movements and contacts amongst the densely observed host (in this case, the cattle). 287

An important question is whether or not our reservoirs are in fact infected badger 288

populations. In our view this is the most parsimonious explanation. First, the poor fit 289

of the cattle-only model suggests that the transmission mechanisms involved are driven 290

by wholly local, unrecorded interactions that have a stronger impact than the direct 291

movement of cattle between farms. Thus any hidden agent infecting the cattle would 292

have to be spatially constrained in a way that the infected cattle that are allowed to 293

move between farms are not - i.e. behave very much like badgers. Second, our analysis 294

supports the need for a reservoir that is a source of infection but does not generate 295

substantial new genetic diversity, providing further hints of the nature of this reservoir. 296

This is consistent with recent results from an analysis of cattle and badger derived M. 297

bovis samples also from Northern Ireland where preliminary results indicate that, while 298

badgers do contribute to cattle transmission for that study site they did so rarely and 299

also rarely infect each other [21]. Biologically, this could be interpreted as implying 300

regular exchanges between the cattle and badger populations with infected badgers 301

“returning” very similar genetic types (in the model, the same type) to those it has 302

recently been infected with by the cattle - like our minimum diversity model. In 303

contrast, the maximum or intermediate diversity models would imply a badger 304

population that is able to maintain diversity independently. While this has been 305

observed elsewhere [6], the results here highlight the differences that arise from local 306

geographic and management considerations [22], even though the scenarios are 307

superficially very similar. Despite this consistency we must allow for other plausible 308

mechanisms that may also contribute, including e.g. unrecorded or illegal movements of 309

cattle, shared pastures, unrecorded movement of bulls etc. - this could be investigated 310

via field investigations. 311

A priori, it might be expected that our synthetic network, which provides estimated 312

geographical locations for all available herds, would be a better representation of the 313

true epidemiological situation. Thus our inability to fit this model to the data is 314

somewhat surprising. However, previous analyses of annual testing areas in England 315

identified having a past history of outbreaks of bTB as being the most important risk 316

factor predicting future outbreaks [23,24], implying the existence of important farm-level 317

risk factors not captured in our data, and thus more consistent with a model where only 318

herds that have been infected at some points in our records have this localised risk. 319

Our metric is based solely on observations of genetic diversity and do not 320

incorporate epidemiological observations. While our results show that this alone is 321

sufficient to distinguish between importantly different models of transmission, our 322

estimate of transmission parameters depends on the ability to generate diversity. 323

Because in our preferred (minimum diversity) model the reservoir generates no 324

independent diversity, the ability of the model to infer transmission rates from the 325

reservoir is limited (see Fig. 8). Ongoing work involves extending the partial likelihood 326

approach to include these epidemiological observations, better exploiting the detailed 327
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Table 4. S6 Comparison of the mean posterior values for the parameters in each of the
5 models: Minimum diversity model (Min), Intermediate diversity model (Int),
Maximum diversity model (Max), A single reservoir connecting every farm (Giant), No
Connecting Reservoirs (None)

Min Giant Max Int None
AIC 2192.7 3056.8 3232.2 3816.2 4370.8
β (per contact
per day) 6.31×10−6 4.46×10−6 4.11×10−6 4.71×10−6 7.08×10−6

σ (per day) 0.042 0.042 0.051 0.057 0.014
γ (per day) 0.0062 0.0068 0.0042 0.0058 0.0075
βCR (per contact
per day) 2.45×10−6 5.15×10−6 2.78×10−6 2.57×10−6 3.02×10−6

βRC (per contact
per day) 4.39×10−6 4.29×10−6 4.57×10−6 1.84×10−6 1.89×10−6

Ω 0.51 0.55 0.48 0.63 0.57
µ (per day) 0.001 0.0025 0.0029 0.0014 0.0010

contact information in the movement data. 328

Despite its limitations, the ability of our approach to identify key factors with 329

heavily biased data is promising. As this will often be the case where different species 330

are involved in transmission and pathogen replication, our method points a way to 331

generate important insights about hidden reservoir populations. 332

Supporting information 333
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Fig 4. S1 Schematic representation of the model used. The code implementing this
model can be found at https://github.com/anthonyohare/NIBtbClusterModel
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Fig 5. S2 Relative locations of the herds from which VNTR-10 samples were taken (km
scale). All herd locations are translated to anonymise them. Herds within a 2km radius
are assumed to be connected by a wildlife reservoir (left) while the other herds are
joined, indirectly, through animal movements (uniformly distributed throughout the
length of the simulation and between farms) or genetically (right).The determination of
those herds that had a seperation of 4km was made before the location data was
transformed.
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Fig 7. S4 Posterior kernel density estimates for the parameter distributions for the
model. Here β, σ, γ are the transition rates in our model, Ω is the sensitivity of the
routine and abattoir tests, βCR, βRC are the transmission rates from cattle to reservoir
and reservoir to cattle respectively and µ is the number of new SNPs generated in the
model per day. The horizontal scale on each figure corresponds to the priors used and
were taken from existing field and experimental estimates [16,18]. In the case of the σ
parameter our modelling suggests that the length of time an animal is in this stage is
towards the longer prior estimate.
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Fig 8. S5 Variation of cattle-only R0 with external force of infection where each dot
represents a simulation. The dashed line is the R0=1 line, indicating the proportion of
the posterior where removal of the external force of infection entirely would result in
eradication of the disease (i.e. the proportion below R0=1), our simulations suggests
this proportion is ∼ 0.068. The dotted line is the mean value of the distribution of R0

in our simulations and decreases slowly with increasing external force of infection (the
slope of this line is small but negative, -0.083) indicating that R0 decreases slowly with
increasing external force of infection.
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(a) A single reservoir connecting ev-
ery farm

(b) Maximum diversity model

(c) Intermediate diversity model (d) No Connecting Reservoirs
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