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Abstract 

Recent studies have shown that neuronal stability over time can be estimated by the structure of the 

spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has 

been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale 

of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis 

on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic 

nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was 

performed during the baseline period of a motivational visuomotor task in which monkeys had to apply 

different amounts of force to receive a different amount of reward. We found that the striatum and the 

STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these 

subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates 

of intrinsic timescales are important in adding further constraints in the development of computational 

models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops. 
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Introduction 

Organization of the brain has been described following different principles. For example, areas can be 

organized based on the laminar pattern of origins and terminations of cortico-cortical projections (Barbas 

and Rempel-Clower, 1997; Felleman and Van Essen, 1999) or based on topological projection sequences 

(Petroni et al., 2001). Following a proposed anatomical hierarchy of the visual, somatosensory, and motor 

cortices (Felleman and Van Essen, 1999), and considering the laminar structure of the prefrontal cortico-

cortical projections, prefrontal areas are at the top of this hierarchy (Murray et al., 2014). Interestingly, 

this anatomical hierarchy is mirrored by the intrinsic fluctuations in spiking activity across these areas at 

rest (Murray et al., 2014; Ogawa and Komatsu, 2010). Computed from their spike-count autocorrelation, 

these intrinsic timescales are considered to be a measure of neuronal stability. By comparing different 

cortical areas, past studies (Cirillo, Fascianelli et al., 2018; Ogawa and Komatsu, 2010) have shown that 

prefrontal areas have the longest timescales, the posterior parietal and the dorsal premotor cortex have 

intermediate timescales, and the somatosensory cortex has the shortest timescale. The proposed cortical 

hierarchy (Chen et al., 2015; Ogawa and Komatsu, 2010) is intended to reflect a scale detailing temporal 

receptive windows with higher-level areas with the longest timescales representing the progressive 

accumulation of neuronal inputs and supporting high-level cognitive decision-making processes.  

All cortical areas except for the primary visual and auditory areas project to the basal ganglia (BG), which 

serve as the substrate of several cognitive processes such as context- and value-based decision-making, 

reinforcement learning, inhibition control, and working memory (Mink, 1996). Here, we analyzed the 

intrinsic timescales of neuronal populations in the striatum (phasically active neurons, PANs, or putative 

projection neurons), the subthalamic nucleus (STN), and the external globus pallidus (GPe) of macaque 

monkeys during the baseline period of a visuomotor task (Nougaret and Ravel, 2015, 2018). We found 
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that the input structures of the BG, the striatum and the STN, exhibited longer timescales than the GPe. 

Describing the differences between the timescales of these populations can help lead to a better 

understanding of the functional specialization of these structures and validate computational models of 

action selection. 

 

Results 

We analyzed neuronal activity during the baseline period of a visuomotor task as described by Nougaret 

and Ravel (2015, 2018). During the 1 s baseline period, monkeys maintained a basal pressing force on a 

lever while waiting for the presentation of a pair of visual stimuli that informed them of the amount of 

force required and the amount of reward they would receive upon completion of the trial. We computed 

the spike-count autocorrelation structure for each neuron as a function of time lag, and estimated its 

decay constant (intrinsic timescale τ) with an exponential fit. We assigned the intrinsic timescale to the 

whole neuronal population and to single neurons as described in Materials and Methods. The database 

we analyzed consisted of 78 neurons recorded in the STN (30 and 48 from monkey M and monkey Y, 

respectively); 158 PANs (96 and 62 from monkey M and monkey Y, respectively) recorded in the striatum, 

presumed to be medium spiny projection neurons (Inokawa et al., 2010); and 92 irregular neurons, 

corresponding to high-frequency discharge neurons (HFD; DeLong, 1971), from the GPe (41 and 51 from 

monkey M and monkey Y, respectively). Only neurons from the GPe were analyzed in a previous study 

(Nougaret and Ravel, 2018). Localizations of PANs in the striatum and STN neurons were assessed as in 

previous studies (Nougaret and Ravel, 2015, 2018) using MRI scans with electrodes for locating 

trajectories, from which the neurons were recorded. 

 

Intrinsic timescales of STN neurons, PANs, and GPe neurons 

To assess the spike-count autocorrelation values as a function of time lags, a non-zero mean activity for 

each neuron in each 50 ms bin during the baseline period was required. In particular, 77/78 neurons in 

the STN, 103/158 PANs in the striatum, and 92/92 neurons in the GPe fulfilled this requirement (see 

Materials and Methods). Figure 1 (left) shows the autocorrelation values as a function of time lags 

averaged across neurons for each brain structure, with the exponential fit superimposed along with the 

estimated timescale τ. In particular, the GPe showed a shorter timescale (τ_GPe ± sem_GPe = (120 ± 3) 

ms, Figure 1C) than both the striatum (τ_PANs ± sem_PANs = (258 ± 35) ms; Figure 1B) within the error 

(τ_PANs − τ_GPe ± Δ(τ_PANs − τ_GPe) = (138 ± 35) ms) and the STN (τ_STN ± sem_STN = (230 ± 86) ms; 

Figure 1A) within the error (τ_STN − τ_GPe ± Δ(τ_STN − τ_GPe) = (110 ± 86) ms). Moreover, the intrinsic 

timescale of the STN is compatible with the timescale of the striatum within the error (τ_PANs − τ_STN ± 

Δ (τ_PANs − τ_STN) = (28 ± 93) ms).  
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Figure 1:  Mean autocorrelation values and single timescale distribution. A) Left Panel: mean 

autocorrelation averaged across all neurons (n = 77) recorded in the subthalamic nucleus (STN) using 50 

ms time bins in a 900 ms time window during the baseline period (mean ± SEM). The solid red line is the 

exponential fit. The autocorrelation at 50 ms has been excluded from the fit procedure. The intrinsic 

timescale τ is shown in the top right corner, with the R2 value as a goodness of fit estimator. Right panel: 

single neuron timescale distribution (n = 23) computed in the same baseline period as in the population 

timescale shown on the left panel. The solid and dashed lines are the mean(log(τ)) ± SD (log(τ)). The mean 

of the timescale distribution is shown in the top right corner. B) Left Panel: mean autocorrelation averaged 

across neurons (n = 103) recorded in phasically active neurons (PANs) of the striatum in the same baseline 

period as A). The autocorrelation value at 50 ms has been excluded from the fit procedure as in A). Right 

panel: single neuron timescale distribution (n = 53). C) Left Panel: mean autocorrelation averaged across 

neurons (n = 92) recorded in the external globus pallidus (GPe) in the same baseline period as A) and B). 

The autocorrelation values at all time lags have been included in the fit procedure. Right panel: single 

neuron timescale distribution (n = 77).  
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Comparing the timescales of the BG structures, we found that the estimated GPe timescale was more 

accurate than the timescale estimates for the other two BG structures. This result could be explained by 

less heterogeneity in the autocorrelation structures of single neurons compared to the other two BG 

structures. We then wanted to confirm the results found at the population level at the single-cell level. 

For this, we computed the timescale for each neuron (Figure 1, right) satisfying the requirements detailed 

in (1) and (4) in Materials and Methods. Following this selection process, we kept 23/78 neurons from the 

STN, 53/158 neurons from the striatum, and 77/92 neurons from the GPe. Even when selecting a subset 

of neurons, the results at the single-cell level were similar to the previous population analysis. The 

distribution of the timescale values of GPe neurons was significantly lower than the timescale distributions 

of STN neurons (Mann-Whitney test, p = 0.0074) and PANs (Mann-Whitney test, p = 4 × 10-5). No significant 

difference was found between STN and PAN timescale distributions (Mann-Whitney test, p = 0.9369).  

To investigate the degree of heterogeneity in the single timescale distributions for each BG structure, we 

computed the coefficient of variation (CV) of the timescale distribution using formula (5) in Materials and 

Methods. We found a higher degree of heterogeneity in STN neuron (CV = 23%) and PAN (CV = 19%) τ 

distributions than in the GPe neuron τ distribution (CV = 8%), in line with previous population analysis 

results.  

 

Discussion 

To our knowledge, our study is the first to report estimations of intrinsic timescales of neuronal 

populations at the subcortical level, and reveals timescale differences between the input structures of the 

BG, the striatum and the STN, and the GPe. Earlier studies have used the autocorrelation function to 

understand the firing pattern properties of single cells within the BG (Bar-Gad et al., 2002; Magill et al., 

2000, 2001) and midbrain dopaminergic neurons (Paladini and Tepper, 2016). Specifically, 

autocorrelograms of single cells have been used to classify these cells into different subpopulations, for 

example into GPe neurons (Bugaysen et al., 2010) or different types of dopaminergic neurons (Paladini 

and Tepper, 2016), and to assess firing rate rhythmicity of single neurons from BG nuclei in healthy and 

diseased conditions (Heimer et al., 2002; Magill et al., 2000, 2001; Raz et al., 2000). In this study, we used 

the autocorrelation function to characterize the properties of neuronal populations in the BG and place 

them in the context of already-known intrinsic timescales throughout the cortex.  

We found that the striatum and the STN exhibited longer timescales (258 and 230 ms respectively) 

compared to the GPe (120 ms). A cortical hierarchy has already been described (Murray et al., 2014) based 

on values from seven cortical areas (Figure 2, light gray circles), placing the prefrontal areas, anterior 

cingulate cortex (ACC; average value = 303 ms), orbitofrontal cortex (OFC; average value = 182 ms), and 

lateral prefrontal cortex (LPFC; average value = 166 ms) at the top of this hierarchy with the longest 

timescale values. The same study then reported intermediate timescales in the lateral intraparietal cortex 

(LIP; average value = 114.5 ms) and the secondary somatosensory cortex (S2), and the shortest timescales 

in the medio-temporal area (MT) of the visual cortex and the primary somatosensory cortex (S1). Other 

studies (Cavanagh et al., 2016, medium gray circles; Fascianelli et al., 2019, dark gray circles) later 

confirmed the previous results overall, reporting comparable LPFC (231/248 ms), OFC (241/190 ms), and 

ACC (332 ms) timescale values. Genovesio and colleagues (Cirillo, Fascianelli et al., 2018; Fascianelli et al., 

2019) then extended the hierarchy previously described by assigning intrinsic timescales to the 

frontopolar cortex (PFp; 242 ms) and the dorsal premotor cortex (PMd; 131 ms).  
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Figure 2: Hierarchical organization of intrinsic timescales of cortical and subcortical structures. Left 

Panel: Intrinsic timescales of nine cortical areas reported by Murray et al. (2014) in light gray, by Cavanagh 

et al. (2016) in medium gray, and by Genovesio and collegues (Cirillo, Fascianelli, 2018; Fascianelli et al., 

2019) in dark gray. The seven areas on the left (MT, LIP, PMd, LPFC, OFC, FP, and ACC) are part of the 

visual and prefrontal cortices. The two areas on the right are part of the somatosensory cortex (S1, S2). 

Each circle represents the average τ for each cortical area reported in each study. Each bar represents the 

average τ among the studies. Right Panel: Same representation for the three subcortical structures (GPe, 

STN, and striatum) analyzed in the present study. Abbreviations: ACC, anterior cingulate cortex; FP, 

frontopolar cortex; GPe, external globus pallidus; LIP, lateral intraparietal cortex; LPFC, lateral prefrontal 

cortex; MT, medio-temporal area (of visual cortex); OFC, orbitofrontal cortex; PMd, dorsal premotor 

cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; STN, subthalamic 

nucleus. 
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The striatum and STN intrinsic timescales reported here place these structures on a comparable level as 

the timescales assigned to prefrontal areas. Importantly, in both of these BG structures recordings were 

mainly from their associative parts, known for receiving their major inputs from the prefrontal cortex 

(Alexander et al., 1986; Haber and Knutson, 2010; Haynes and Haber, 2013; Nougaret et al., 2013). In 

contrast, the GPe exhibited an intrinsic timescale of only 120 ms, which places it at the same intermediate 

level as the PMd, LIP, and S2. One possibility is that this lower timescale could reflect lower temporal 

information integration ability of the GPe among BG structures. Our study shows a gradient of receptive 

time windows within BG circuitry (Figure 2, red circles). As suggested for areas of the visual system (Ogawa 

and Komatsu, 2010), the differences found among the BG nuclei could reflect a broader window of 

temporal information storage in the striatum and the STN compared to in the GPe. Indeed, intrinsic 

timescales could be described as “a temporal counterpart of the spatial hierarchy” (Chen et al., 2015). 

Previous studies (Chaudhuri et al., 2015; Murray et al., 2014) shed light on the existence of a parallel 

between the anatomical hierarchy of cortical areas and their intrinsic timescales. Drawing a parallel with 

the cortex, the interpretation of a functional hierarchy based on timescales described for cortical areas 

might apply to the BG. This would suggest a greater need for information accumulation within the BG 

input nuclei rather than in the GPe. The convergence of information from multiple cortical areas could 

explain the necessity for longer timescales in both input structures because of the need of striatal 

projection neurons and subthalamic neurons to gate and maintain information from prefrontal neurons 

(Frank et al., 2006; O’Reilly and Frank, 2006).  

A large body of work in primate neurophysiology has shown that, at the neural level, choosing corresponds 

to crossing a firing rate threshold in the cortex. Depending on the environment and on the decision being 

made, the threshold level can be regulated. A computational study (Lo and Wang, 2006) implemented a 

biophysically-based network model of decision thresholds of the cortical-BG-superior colliculus (SC) 

pathway. After comparing the different nodes of these networks, the authors concluded that the all-or-

none activity of SC neurons is triggered by a threshold crossed by cortical neurons that can be optimally 

tuned by the strength of cortico-striatal synapses. Indeed, through this pathway, the output structures of 

the BG inhibit cortex and SC activity to preclude inappropriate motor outputs (Jahanshahi et al., 2015). 

Ding and Gold (2013) have hypothesized that “the BG may convert cortical representations of sensory 

evidence into evaluative quantities”, allowing generation and adjustment of decisions. They suggest that 

the BG can modify the decision rules by modifying the decision threshold, but also modify the “value of a 

developing decision variable”. Different BG models hypothesize that the main role of the BG nuclei is to 

act as a central selection device (Redgrave et al., 1999) that examines each action requested based on its 

urgency and salience (Bogacz and Gurney, 2007) and that, with their unique anatomical properties, allows 

the allocation of motor resources to the appropriate actions. The striatum and the STN have distinct roles 

in these processes. According to Frank and colleagues, the former has a crucial role in gating sensory input 

for updating working memory in the prefrontal cortex and then in maintaining it, preventing the influence 

of distracting information (O’Reilly and Frank, 2006), especially when adaptive gating is necessary for the 

processing of multiple goal demands. The STN is supposed to act as a brake, particularly during high-

conflict decisions, reducing premature responses and refining the selection process that takes place via 

cortico-striatal pathways (Cavanagh et al., 2011; Frank, 2006, 2007). Both functions reflect the need to 

accumulate information over time, and support the long intrinsic timescales exhibited by the input 

structures of the BG.  
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On the other hand, models of BG action selection assign another role to GPe neurons. Gurney and 

colleagues (Bogacz and Gurney, 2007; Gurney et al., 2001) have proposed that the GPe, mainly through 

its massive projections into the STN, automatically limits the activity of BG output structures and allow 

the network to make a selection. The control that the GPe exerts on other BG nuclei is supported by in 

vitro electrophysiological studies showing that the firing rate of GPe neurons can be approximated by a 

linear function of the injected current (Namu and Llinaś, 1994). In contrast, the firing of the STN neurons 

fit better with an exponential function of their inputs (Bogacz and Gurney, 2007). This understanding is 

also consistent with in vivo electrophysiological studies in primates that report independent encoding of 

task variables by GPe neurons (Arkadir et al. 2004; Nougaret and Ravel, 2018), suggesting more of a 

parallel processing of information by GPe neurons rather than an integration of different variables 

(Nougaret and Ravel, 2018). Taken together, these results are in line with the intermediate intrinsic 

timescale exhibited by the GPe in the present study. However, a recent computational study (Chaudhuri 

et al., 2015) suggests caution around assigning timescales to brain areas too rigidly, because processing 

different sensory inputs may lead to different timescales based on their model. Moreover, the three BG 

nuclei studied here exhibited different degrees of heterogeneity in their single unit timescales (Figure 1, 

left panel). In particular, the input structures displayed a higher degree of heterogeneity than the GPe. 

Some studies have shown that within each cortical area, the individual intrinsic timescale computed 

during a baseline period predicted the strength of response modulation during following task periods in 

the LIP (Nishida et al., 2014), PMd (Cirillo, Fascianelli et al., 2018), and dlPFC (Fascianelli et al., 2019), 

suggesting that neurons with longer timescales are more involved in the encoding of task-related 

information. We could hypothesize that the high degree of heterogeneity found in the input structures of 

the BG could serve to support the heterogeneity of information that these structures have to process with 

different temporal integration requirements, although further study is necessary to reach conclusions 

about these functions.  

Our study is the first to quantify intrinsic timescales of BG nuclei, and some limitations should be 

considered. First, our datasets are relatively small compared to others used for the cortex and have high 

variability at the population level. This is mainly true for the input structures, which showed a higher 

degree of heterogeneity at the single-cell timescale level. Second, the BG nuclei are known to be partially 

specialized in sensorimotor, associative, and limbic territories, and our datasets cover mainly the 

associative and the limbic parts of these structures. For future studies, it remains to be investigated how 

our BG nuclei timescale estimates could be generalized at the whole-structure level, and whether our 

estimates are consistent with the timescales of other BG nuclei not studied here. It is also important to 

investigate the relationships within each structure at the single-cell level between timescales and show 

persistent representations of task-relevant signals, as has been done in the cortex (Cavanagh et al., 2016; 

Cirillo, Fascianelli et al., 2018; Fascianelli et al., 2019; Nishida et al., 2014). We believe that 

notwithstanding these limitations, the timescales reported here could be useful as a first approximation 

for the validation of computational models of action selection based on evidence accumulated through 

cortico-striatal/subthalamic synapses and architecture of cortico-BG-cortical loops, as has been done for 

the cortex (Chaudhuri et al., 2015). 
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Materials and Methods 

Resource availability 

Further information and requests for resources and reagents should be directed and will be fulfilled by 

Simon Nougaret (simon.nougaret@univ-amu.fr). 

The datasets and code supporting the current study have not been deposited in a public repository yet, 

but are available from the corresponding author on request. 

 

Experimental model and subject details 

Two male rhesus monkeys (Macaca mulatta) were used in this study. Relevant details about the animals 

have already been reported in Nougaret and Ravel (2015, 2018). 

 

Method details 

Dataset 

The experimental procedures followed French laws on animal experimentation, the European directive 

on animal protection, and the National Institute of Health’s Guide for the Care and Use of Laboratory 

Animals. The experimental details of the datasets used in the current study have already been reported 

(Nougaret and Ravel, 2015, 2018). The single-unit activity of two male rhesus monkeys (Macaca mulatta), 

recorded from three populations of neurons within the (BG), were analyzed during a foreperiod, 

considered as a baseline period in which no cognitive process was engaged. During this 1 s period, both 

monkeys needed to maintain a basal pressing force on a lever and wait for the presentation of a pair of 

visual stimuli indicating the amount of force needed and the amount of reward to be expected at the end 
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of the trial. The data set consisted of 1) a population of 158 putative projection neurons recorded in the 

striatum, also called phasically active neurons (PANs); 2) a population of 78 neurons from the subthalamic 

nucleus (STN); and 3) a population of 92 irregular neurons from the external globus pallidus (GPe).  

 

Quantification and statistical analysis 

Spike-count autocorrelation structure 

We analyzed the recorded activity of neurons in the STN, GPe, and striatum (PANs) from 100 ms after the 

beginning of the trial until the end of the baseline period for a total of 900 ms of baseline activity. The 

same baseline period had already been chosen (Nougaret and Ravel, 2015) for electrophysiological 

analysis of neurons recorded for the same task. We included only correct trials in the following analyses. 

For each structure, we selected neurons satisfying the following criterium: 

1. each 50-ms time bin in the baseline period with non-zero mean activity across trials.               (1) 

We performed all analyses with MatLab (The MathWorks, Inc., Natick, MA, USA). 

To assess the spike-count autocorrelation structure, we calculated the spike count during the baseline 

period in 50 ms time bins. It is worth noting that the results did not change within a difference of 20% of 

the bin length. Given a neuron, the spike-count autocorrelation value across trials between time bins k 

and j (k, j as integer numbers) at a time lag equal to |k-j|x Δ (Δ = 50 ms), the Pearson’s correlation 

coefficient r is defined as follows (Murray et al., 2014):  

r = 
𝐶𝑜𝑣(𝑁(𝑘),𝑁(𝑗))

√𝑉𝑎𝑟(𝑁(𝑘))×𝑉𝑎𝑟(𝑁(𝑗)) 
= 

<  (𝑁(𝑘) − 𝑁(𝑘)̅̅ ̅̅ ̅̅ ̅)(𝑁(𝑗) − 𝑁(𝑗)̅̅ ̅̅ ̅̅ ̅)    >

√𝑉𝑎𝑟(𝑁(𝑘))×𝑉𝑎𝑟(𝑁(𝑗))
                                                                                        (2) 

where N(k) and N(j) are the spike counts computed in the k and j time bins, respectively, and  𝑁(𝑘)̅̅ ̅̅ ̅̅ ̅ and 

𝑁(𝑗)̅̅ ̅̅ ̅̅  are the spike counts averaged across trials in k and j time bins, respectively. The covariance (Cov), 

the variance (Var), and the autocorrelation value r were computed for each possible combination of pair-

bins (k, j). We calculated the autocorrelation values as a function of the time lags for each neuron 

satisfying the criterion in (1). We subsequently computed the autocorrelation structure for the whole 

neuronal population by averaging the coefficient r across neurons at a fixed time lag. We obtained the 

autocorrelation values as a function of time lags for the entire population, and we performed an 

exponential fit as defined below (Murray et al., 2014): 

 

r(nΔ) = A[𝑒𝑥𝑝(−
𝑛𝛥

𝜏
) + 𝛣],                                                                                                                                       (3) 

 

where nΔ indicates the time lag between the time bins k and j, with n = |k - j | (n= 1,2, …, 18); r  is the 

autocorrelation value at time lag nΔ; A is the amplitude; τ is the decay constant of the exponential 

function, called intrinsic timescale; and B is the offset that mirrors the value of r in the limit of time lag 

nΔ→∞ (i.e., time lag values much larger than our 900 ms baseline length). Throughout this paper, we 

refer to intrinsic timescale as simply timescale or τ.  
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Single-neuron intrinsic timescale 

We also fit each single spike-count autocorrelation decay with the exponential function in (3) to estimate 

the single-neuron intrinsic timescale. We further reduced the neuronal sample by selecting those neurons 

satisfying both the criterion in (1) and the following requirements: 

1. τ > 0 ms;                                                                                                                                                      (4) 

2. R2> 50%, 

where R2 is the coefficient of determination obtained by the fit. The first requirement was introduced 

because a negative or 0 ms τ value is meaningless; the second requirement of an R2 larger than 50% was 

a trade-off between the need to keep as many neurons as possible and the importance of having a good 

fit. We also excluded outliers, defined as neurons having an intrinsic timescale below the 5th percentile 

and above the 95th percentile of the τ distribution, from the sample. This last requirement was established 

due to the heterogeneity of timescale values within each brain structure and to avoid having an estimate 

of the mean of the intrinsic timescales biased towards the outlier values. We further investigated the 

degree of heterogeneity of the single timescale distribution for each brain structure. To quantify this, we 

used the coefficient of variation (CV), defined as follows: 

                                                                      CV = sigma/mean,                                                                          (5) 

where sigma and mean are the standard deviation and mean of the timescale distribution, respectively.  
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