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Abstract

Drug combination therapy becomes promising method in the treatment of cancer. However,
the number of possible drug combinations toward cancer cell lines is too large, and it is chal-
lenging to screen synergistic drug combinations through wet-lab experiments. Therefore,
the computational screening has become an important way to prioritize drug combinations.
Graph attention network has recently shown strong performance in screening of compound-
protein interactions, but it has not been applied to the screening of drug combinations. In
this paper, we proposed a deep learning model (DeepDDS) based on graph neural networks
and attention mechanism to identify drug combinations that can effectively inhibit the via-
bility of specific cancer cell line. The graph representation of drug molecule structure and
gene expression profiles is taken as input to predict the synergistic effects of drug combi-
nations. We compare DeepDDS with traditional machine learning methods (random forest,
support vector machine) and other deep learning methods (DeepSynergy, DTF) on the same
data set. Our experimental results show that DeepDDS achieved best performance by the
AUC value 0.93. Also, on an independent test set released by AstraZeneca, DeepDDS is
superior to other comparative methods by 12.2% higher than the suboptimal method. We
believe that DeepDDS is a effective tool that can prioritize synergistic drug combinations.

Keywords: Drug combination, Graph attention network, compound-protein interactions,
deep learning

Introduction

Traditional and modern medicine has always taken advantage of the combined use of
several active agents to treat different diseases. Compared with single-drug therapy, the
combinatorial drugs instead of monotherapy can improve efficacy[1], reduce side effects[2]
and overcome drug resistance[3, 4].Drug combinations are increasingly used to treat a va-
riety of complex diseases, such as hypertension[5], infectious diseases[6], and cancer [7, 8].
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For example, triple-negative breast cancer is a malignant tumor with strong invasiveness,
high metastasis rate, and poor prognosis. Studies have shown that lapatinib or rapamycin
alone has no significant effect, but their combined treatment can significantly increase the
apoptosis rate of triple-negative breast cancer cells[9]. However, drug combination may also
cause antagonistic effect and aggravate the disease[10]. Therefore, it is crucial to accurately
discover synergistic drug combinations for specific disease types to improve the treatment
of patients.

The traditional screening based on clinical trials are limited to a tiny number of drugs[11],
far from meeting the urgent need of anticancer drugs. Due to the huge number of possi-
ble drug combinations, traditional screening is cost-consuming and impractical. With the
development and application of high-throughput drug screening technology, people can si-
multaneously carry out large-scale combinatorial drug screening on hundreds of cancer cell
lines[12–14]. Torres et al. utilized yeast to screen large drug combinations and provided a
method to identify preferential drug combinations for further testing in human cells[15]. In
despite of high degree of genomic correlation between the original tumor and the derived can-
cer cell line, in vitro experiments of high-throughput drug screening still cannot accurately
capture the mode of action of drug molecules in vivo[16]. Microcalorimetry screening[17]
and genetically encoded fluorescent sensors[18] have also been used to screen effective an-
timicrobial combinations in in vivo treatment. However, these technique all require skilled
operations and complicated experimental procedures.

In recent years, a few datasets of drug sensitivities to cancer cell lines greatly increase,
such as Cancer Cell Line Encyclopedia (CCLE)[19] and Genomics of Drug Sensitivity in
Cancer (GDSC), which contains a compilation of gene expression, chromosomal copy num-
ber and massively parallel sequencing data, as well as drug sensitivity to hundreds of human
cancer cell lines. Meanwhile, several large-scale data resource of drug combinations have
been proposed. For example, DrugCombDB[20] has more than 6,000,000 quantitative drug
dose responses, from which they calculated multiple synergy scores to determine the overall
synergy or antagonism of the drug combination. Recently, O’Neil et al. released a large-
scale high-throughput drug pair synergy study, which included more than 20,000 drug pair
synergy scores[21]. The famous pharmaceutical company AstraZeneca[22] also released the
latest drug pair collaboration experiments, which includes 11,576 experiments of 910 drug
combinations to 85 cancer cell lines with genomic characteristics. The above-mentioned
database and dataset provides reliable data support for the development of computational
study. As a result, many computational methods have been proposed to explore the vast
space of combinatorial drug for predicting synergistic combinations. For example, traditional
machine learning methods, such as support vector machine (SVM) and random forest, pre-
dict the maximal antiallodynic effect of a new derivative of dihydrofuran-2-one (LPP1) used
in combination with pregabalin (PGB) in the streptozocin-induced neuropathic pain model
in mice[23, 24]. Recently, the deep learning model DeepSynergy[25] uses the chemical infor-
mation of drugs and the genomic features of disease to predict drug pairs with synergistic
effects. We can study the synergy of anticancer drugs from multiple aspects. From the
perspective of the gene regulation level[26], a set of optimal control nodes can be identified
for perturbation on the disease gene regulatory network. Also, system pharmacology[27]
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characterize the disease and drug action mechanisms at the system level, via connectivity
mapping and network concentration analysis[28, 29]. Such multiscale understanding can
enable precision medicine by promoting the rational development of combination therapy at
individual patients for specific cancer.

Many researchers have successfully applied SMILES to characterize chemical properties
of drugs. For example, Gao et al. used the drug descriptors based on the SMILES to
predict drug synergy. Liu et al. regarded the SMILES code as a string and directly input
into a convolutional neural network[30]. In this paper, we propose a deep learning model,
DeepDDS (Deep Learning for Predict Drug-Drug Synergy), to predict the synergistic effect
of drug combinations. We employ graph embedding of drugs and gene expression profiles as
input to deep network. For the graph representation of drug chemical structure, the vertices
are atoms, and the edges are chemical bonds. Next, a graph convolutional network and
attention mechanism is used to compute the embedding vector of drug. By integration of
genomic features, DeepDDS can capture the important feature of the data to distinguish
drug synergy to specific cancer cell lines. We compare the prediction results of DeepDDS to
other latest deep learning and machine learning methods on two public data set[21]. The
comparative methods include DeepSynergy[25], DTF[31], support vector machine[23], and
random forest[24]. Overall, we found that DeepDDS can accurately predict drug synergy to
specific cancer cell line, and outperform other methods.

Materials and methods

Data source
The drug combinations were obtained from a recently released large-scale oncology screen

dataset by Merck&Co[21], where the viability of cells from tens of cancer cell lines treated
with over ten thousands of drug combinations was screened. The Loewe Additivity score[32],
a synergy score that can define the attribute (synergistic or antagonistic) of drug combination
based on the full dose-response screening matrix, was calculated for each drug pair using the
batch processing mode of Combenefit[33]. Specifically, a combination with a score above
0 is classified as synergistic, a combination below 0 is antagonistic. Of note, replicates
for one combination were tested in the original dataset. Therefore, the loewe scores of
the replicates for the same drug combination versus cell line were averaged, yielding a more
efficient benchmark training set that contains 22,737 unique drug-pair-cell-line combinations,
covering 38 anticancer drugs (14 experimental drugs and 24 approved) and 39 human cancer
cell lines from 7 different tissue types. According to the final Loewe scores, we manually
classified the drug combinations as synergistic or antagonistic.

The gene expression data of cancer cell lines were derived from Cancer Cell Line
Encyclopedia[19], an independent large-scale platform that makes the effort to characterize
genomes, mRNA expression, and anti-cancer drug dose responses across cell lines. By re-
trieving Drugbank[34], we can obtain the SMILES (Simplified Molecular Input Line Entry
System)[35] of the drugs, which are afterwards converted to graphs.
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Pipeline of DeepDDS
In this paper, based on the combination of GNN and conventional CNN, we proposed

a novel method, referred to as DeepDDS, to predict the synergistic effect of drug combi-
nations. Figure 1 illustrates the schematic diagram of our proposed model. The chemical
molecular structure map is non-Euclidean data and does not have translation invariance,
from which the convolution kernel cannot extract the structural information, thus the CNN
is inadequate for such type of data. Contrarily, DeepDDS can form a receiving field in a
graph where the data points are not arranged in a Euclidean grid. We also applied the at-
tention mechanism in the chemical molecular structure diagram. To verify the performance
of attention mechanism, we designed two models, refer to DeepDDS (GAT), which uses an
attention-based graph convolutional neural network, and DeepDDS (GCN), which uses a
graph convolutional neural network, respectively.

Drug representation based on GCN and GAT
In this paper, by using the open-source chemical informatics software RDKit[36], we

converted the SMILES into a molecular graph, where the vertices are atoms and the edges
are chemical bonds. To describe a node in the graph, we used a set of atomic features
adapted from DeepChem[37]. Specifically, each node is a multi-dimensional binary feature
vector expressing five pieces of information: the atom symbol, the number of adjacent atoms,
the number of adjacent hydrogens, the implicit value of the atom, and whether the atom is
in an aromatic structure. The application of graph convolution to the molecular structure
of compounds to obtain the characteristic information of the compound is the content of
many kinds of research and has been achieved extensive research results[38].

A graph for a given drug is represented as G = (V,E), where V is the set of N nodes
that represented by a C-dimensional vector, and E is the set of edges represented as an
adjacency matrix A. In a molecule, vi ∈ V is the ith atom and eij ∈ E is the chemical bond
between the ith and jth atoms. Message Passing that describes the learning process, is the
essence of GNN, as shown in 1.

X(k)
i = γ(k)(X(k−1)

i ,2j∈N(i)φ
(k)(X(k−1)

i ,X(k−1)
j , ei,j)) (1)

where x is node embeddings, φ is message function, 2 is aggregation function, γ is update
function, if the edges in the graph has no feature than connectivity , e is essentially the edge
index of the gragh. The vector representation is formulated as follows:

X(k)
i =

∑
j∈N(i)∪{i}

1√
deg(i) ·

√
deg(j)

· (Θ · x(k−1)j ) (2)

where Θ is the weight matrix (the parameter to be updated in the neural network), X(k)
i is

the eigenvector of the kth iteration of node i, deg(i) is the degree of node i, and N(i) is the
set of all neighbor nodes of node i.
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graph convolutional network (GCN)
The input of multilayer graph convolutional network (GCN) is a node feature matrix

X ∈ RN×C (N = |V |, C: the number of features per node) and an adjacency matrix
A ∈ RN×N . A layer-wise convolution operation in matrix can be approximated as follows:

Z = D̃−
1
2 ÃD̃−

1
2XΘ (3)

where the node-level output Z ∈ RN×F (F is the number of output features per node),
Θ ∈ RC×F (F is the number of filters or feature maps) is the matrix of filter parameters.

The normalized convolution propagation rules is formulated as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)) (4)

where Ã = Ã + IN(IN is the identity matrix) is the adjacency matrix of the undirected
graph with added self-connections, D̃ii =

∑
i Ãii ; H(l+1) ∈ RN×C is the matrix of activation

in the lth layer, H(0) = X, σ is an activation function, and W is learnable parameters.
Finally, the max-pooling layer is used to obtain the representations generated by the graph
neural networks[39].

Graph attention network (GAT)
Unlike GCN, the graph attention network (GAT) proposes an attention-based architec-

ture to learn hidden features of nodes in a graph by applying a self-attention mechanism.
The GAT architecture is built from the graphics attention layer. We use the node set of
the graph as the input and linearly transform each node through the weight matrix W. The
attention coefficient between each input node i and its first-order j neighbor in the graph is
calculated as follows:

X
′

i = αi,iΘXi +
∑

j∈N(i)

αi,jΘXj (5)

The attention coefficients αi,j can be computed as follows:

αi,j =
exp(ReLU(aT [ΘXi||ΘXj]))∑

k∈N(i)∪{i} exp(ReLU(aT [ΘXi||ΘXk]))
(6)

where Θ is weight matrix, a is attention coefficient vector, T is the corresponding transpose,
and ReLU is a Non-linear activation function, when x is negative, y is equal to 0. The
’softmax’ function is introduced to normalize all neighbor nodes j of i for easy calculation
and comparison.

Cell line representation based on DNN
To alleviate the imbalance between the features of drugs and cell lines, we further selected

the significant genes according to Genomics of Drug Sensitivity in Cancer (GDSC)[40]. The
LINCS project provides a set of about 1000 carefully chosen genes, referred to as ’Landmark
gene set’, which can capture 80% of the information[41] in the Connectivity Map (CMap)
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data (1). The intersection between the original gene expression and the Landmark set
was chosen. We subsequently used the gene annotation information in the Cancer Cell
Line Encyclopedia (CCLE)[19] and the GENCODE annotation database[42] to remove the
redundant data, as well as the transcripts of non-coding RNA. Finally, we selected 954 genes
from raw expression as the dimension-reduced input of a deep neural network. In particular,
our gene expression profile data comes from cell lines that have not been treated with the
compound.

Predicting the synergistic effect of drug combinations versus cell lines
We proposed DeepDDS as an end-to-end binary classification model. Upon obtaining

the embedding for drugs through GAT or GCN, and the embedding for cell lines through
DNN, the separate embeddings are concatenated as the input of a series of fully-connected
layers. The probability of the synergistic effect (label) for the combination can be achieved
by activating the output of the last hidden layer, as follows:

pt = softmax
(
Wout · al + bout

)
(7)

where pt is the probability of t, Wout and bout are the weight matrix and bias vector, al are
the embedding features learned by previous layers. as follows:

al = σ(W lal−1 + bl) (8)

Where l is the number of hidden layers,W and b are the matrices corresponding to all hidden
layers and output layers, bias vector, a1 = concat(Rdrug1, Rdrug2, Rcellline) is the input value
vector.

Given a set of combinations with labels, we adopted the cross-entropy as the loss function
to train the model, companying the aim to minimize the loss during the training process,
which is formulated as follows:

F = min

(
−

N∑
i=1

logPti +
2

λ
‖Θ‖

)
(9)

where Θ is the set of all weight matrices and bias vectors involved in the model, N is the total
number of samples in the training dataset, ti is the ith label, and λ is an L2 regularization
hyper-parameter. Then, we use backpropagation to train Θ .

Result

Hyperparameter setting
The real architecture of DeepDDS was determined by the hyperparameter selection.

DeepDDS-GAT has a spindle-shaped structure with three hidden layers. The first layer

1http://support.lincscloud.org/hc/en-us/articles/202092616-The-Landmark-Genes
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has 780 units, the second layer has 512 units and the third layer has 128 units. Based on
multi-head attention (head = 10), multiple independent attentions is calculated to prevent
overfitting. The learning rate (5× 10−5) and the dropout rate of the input layer and hidden
layer are set to 0.2. Use ELU and ReLU activation functions separately after the two GAT
layers at DeepDDS-GAT. For DeepDDS-GCN, it also has similar layer structure, but only
ReLU is used as activation function. We use a deep neural network (DNN) to obtain the
hidden features of the cell line, and the hidden layers in the deep neural network structure
has 2048, 1024 and 512 neural units, respectively.

Performance comparison
We compared DeepDDS with several state-of-the-art methods, includes:

• DeepSynergy. DeepSynergy[25] uses molecular chemistry and cell line genome infor-
mation as input, and uses three different types of input normalization. A cone layer
is used in a neural network (DNN) to simulate drug synergy and finally predict the
synergy score. We use the same input data as DeepSynergy.

• Random Forests(RF). Random forest contains many classification trees. Put the
input features on each tree in the forest to classify new objects. Each decision tree is a
classifier, so for an input sample, N trees will have N classification results, we choose
a moderate value[43]. Finally, the random forest integrates all the classification voting
results, and uses the category with the most votes as the final output category.

• Gradient Boosting Machines(GBM). Train the Gradient Boosting Machines by
continuously adjusting the decision tree, Boosting and other model parameters. Con-
struct the new base-learners to be maximally correlated with the negative gradient of
the loss function, associated with the whole ensemble[44].

• Support Vector Machines(SVM). We developed an SVM-based machine learning
model[45] using the same input features as DeepDDS. Continuously optimize the SVM
model’s prediction performance through grid search so that C (penalty coefficient) and
g (gamma: determine the distribution of the data mapped to the new feature space)
take values within a specific range. Use the K-CV method to obtain the validation
set’s classification accuracy under the combination of c and g, and finally get the group
of c and g with the highest validation classification accuracy of the training set as the
best parameters.

To further benchmark the predictive power of DeepDDS, we provide typical performance
measures for the classification tasks, including area under the receiver operator characteris-
tics curve (ROC AUC), area under the precision recall curve (PR AUC), accuracy (ACC),
balanced accuracy (BACC), precision (PREC), sensitivity (TPR) and Cohen’s Kappa. Ta-
ble 1 shows these performance measures of DeepDDS and counterpart methods. According
to the experimental definition, all synergy scores higher than zero indicate synergy. How-
ever, drug combinations that exhibit a high degree of synergy are attractive candidates
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for clinical research. Since there are many additive combinations in the training data (ie
synergy score around 0), we choose an appropriate threshold to binarize the drug synergy
score. Synergistic combinations with a measurement score higher than 10 are classified as
positive, and synergistic combinations with a measurement score less than 0 are classified
as negative, making the ratio of positive and negative samples close to 1:1. DeepDDS-GAT,
tends to make more conservative predictions, its performance measures of ROC AUC, PR
AUC, ACC, BACC, PREC, TPR, TNR and Kappa are 0.93, 0.93, 0.85, 0.85, 0.85, 0.85,
0.85 and 0.71, respectively. The performance of DeepDDS was better than other model in
terms of all these performance measures. Although DeepSynergy and DTF exhibited ob-
tain relatively high ACC metrics, our model achieve outperforms other methods in other
performance metrics.

Prediction analysis
We analyzed the correlation between the predictive score and the true synergy score of

the drug pairs with the top 100 synergy scores (Supplementary Table S1) in DeepDDS-GAT,
and the prediction accuracy reached 0.98. We analyzed the correlation between the overall
predictive score and the synergy score, and found that the higher the synergy score, the
higher the predictive score. Similarly, we also analyzed the correlation between the binary
prediction score and the synergy score of the 100 drug pairs with the lowest synergy score,
and the correlation coefficient also reach 0.83 (Supplementary Table S2).

Further, we verified the prediction upon different scheme of input features. In fact,
drug A-drug B and drug B-drug A are regarded as two different input schemes. Figure
2 shows prediction results of different scheme of input features by DeepDDS (GAT) and
DeepDDS (GCN), respectively. It can be found that most predicted values clustered at the
top or bottom. The Pearson correlation coefficients predicted on the GAT and GCN models
can reach 0.833 and 0.829, respectively. It can prove that our model is insensitive to the
input scheme of input features of drug combinations. Besides, the five-fold cross-validated
ROC AUC and PR AUC obtained by drug A-drug B and drug B-drug A can both reach
or be close to 0.93. For example, for the cell line T37D, the drugs BEZ-235 and MK-
8669, DASATINIB, LAPATINIB, GELDANAMYCIN, PD325901, ERLOTINIB, MK-4541,
TEMOZOLOMIDE, VINORELBINE, ABT-888, etc. all have a high experimental synergy
scores (Loewe>100). Expectedly, the prediction scores of these drug pairs also have prior
ranks among all candidate drug pairs.

Evaluation on independent test set
To further demonstrate the performance of our method, we use Merck&Co drug com-

bination dataset [21] as the training set to learn the DeepDDS model, and an independent
test set released by AstraZeneca[22] is used to evaluate the performance of DeepDDS and
other comparative methods. The independent test set contains 668 unique drug-pair-cell-line
combinations, covering 58 drugs (Supplementary Table S3) and 24 cell lines (Supplementary
Table S4).

Our prediction performance with the competitive model on the independent test set is
shown in Table 2. It can be seen that our model performance is better than the competitive
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model in all performance indicators. DeepDDS (GAT), DeepDDS (GCN), and DeepSynergy
respectively predicted 431, 402, and 317 drug pairs in independent test sets. We found that
the three models correctly predicted 162 groups ((99 drug pairs are synergistic, 63 drugs are
antagonistic)) of the same drug pairs (Supplementary Table S5), accounting for DeepDDS
(GAT), DeepDDS (GCN), and DeepSynergy predict 38% (162/421), 40% (162/402), and
51% (162/317). The confusion matrices of the three models are shown in Figure 3.

Predicting novel synergistic combinations
The above analysis results show that the DeepDDS model achieve high performance,

which means that we can reliably use the model to predict novel synergistic combination.
We use O’Neil drug combination dataset to train our model and selected 668 completely
novel drug pairs, from AstraZeneca[22], for discovery exploration.

We found that a number of predicted synergistic combinations are consistent with the
observations in previous studies. For example, crafter et al. found that the combination of
signal inhibitors AZD8931 and AZD5363 can limits AKT inhibitor induced feedback and
enhances antitumour efficacy in HER2-amplified breast cancer models[46]. The combination
of GDC-0941 and AZD6244 delayed tumor formation in the setting of prevention and
extended survival when used to treat advanced tumors[47], although no durable responses
were observed by Anchez et al. Also, the experimental results of other studies confirmed
the effectiveness of our predicted synergistic drug pairs, such as AZD2014 and AZD6244
in Bladder[48], GDC-0941 and MK2206 in breast[49] and Afatinib and MK2206 in
breast[50] etc.

Attention mechanism reveals important chemical substructure
We further explore the implications of attention mechanism in revealing the important

chemical substructure. In the GATmodule, DeepDDS convolves drug molecules based on the
attention mechanism. Unlike GCN, GAT absorb different weights from each neighbor node
so that each node capture the information of neighboring nodes. Similarly, each neuron
is connected to the neighborhood upper layer through a set of learnable weights in the
GAT network. As a result, the atom feature representation actually include the functional
information that exists in the substructure of the compound centered on the atom. From the
structural point of view of the graph, these information includes substructure formal charge,
the number of connected hydrogens, and undiscovered functional structure information. For
example, a dose-response experiments showed that MEK inhibitor AZD6244 (Selumetinib)
and mTORC1/2 inhibitor AZD2014 (Vistusertib) can effectively inhibit mTORC1 and S6
ribosomal protein[48] in 96 hours. As shown in the figure 4, AZD2014 after GAT and max-
pooling obtains the C atom characteristics in the methyl group in the substructure A region.
The same is true for AZD6244. We speculate that these two substructures may positively
affect the synergy of the pair of drugs.

Discussion and Conclusion

For both GAT and GCN models, the effect of GAT in the five-fold cross-validation
experiment is slightly better than that of GCN, and GAT is marginally higher in PR AUC
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and KAPPA indicators. In the independent test set experiment, the overall performance of
GCN will be slightly better than GAT, but the performance of both is unstable. In general,
the predictive values of all method are low, so new drugs and promotion cannot be reliably
predicted. We believe that the lower prediction performance is due to the smaller number
of training samples. Specifically, all models can only train 38 drugs and 39 cell lines, and
the space for possible drugs is much larger. And we have observed that drug pairs with high
prediction scores often have higher synergy scores. Therefore, it is reasonable to predict a
small number of drug combinations as highly synergistic pairs. It is worth noting that, in
the GAT and GCN modules of the DeepDDS model that we do not yet fully understand
the specific chemical physical meaning of the weights between the atoms in the molecular
graph and their adjacent atoms. In the future, we are interested in studying the connections
between atoms in the model to incorporate more information resources into the DeepDDS
model to improve the model interpretability and predictability.

We have proposed a novel method DeepDDS to predict the synergy of drug combina-
tions for cancer cell lines with high accuracy. We have demonstrate that DeepDDS achieve
state-of-the-art performance in a cross-validation setting with an independent test set. Our
performance comparison experiments showed that DeepDDS performs better than other
comparative methods. Thanks to the increase in the size of the data set, DeepDDS can be
further improved. We believe that our method can be applied to other fields where drug
combinations play an essential role, such as antiviral[51], antifungal[52] and multi-drug syn-
ergy prediction[53]. Overall, our findings indicate that DeepDDS is a effective tool to predict
synergistic drug combinations.
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Figure 1: The pipeline of the proposed DeepDDS. The representation of cell lines are obtained through
DNN using expression data; the representation of drugs are obtained through GAT and GCN based on the
graphs; the embedding of drugs and cell lines are concatenated, which are fed into a fully connected layer
to predict the synergistic effect.
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Figure 2: (a) In the DeepDDS (GAT) method, the two-class synergy prediction scores of drug pairs combined
in different orders, the x-axis is the drug pair, and the y-axis is the synergy score. The yellow dots are the
combination of drugA-drugB-cell line, and the green dots are the combination of drugB-drugA-cell line. (b)
In the DeepDDS (GCN) method, the two-class synergy prediction scores of drug pairs combined in different
orders, the x-axis is the drug pair, and the y-axis is the synergy score. The yellow dots are the combination
of drugA-drugB-cell line, and the green dots are the combination of drugB-drugA-cell line.

Figure 3: (a) The confusion matrix of DeepDDS (GAT) in the independent test set has an ACC of 0.64.
The confusion matrix of DeepDDS (GCN) in the independent test set has an ACC of 0.60. The confusion
matrix of DeepSynergy in the independent test set has an ACC of 0.47.
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Figure 4: Attention weights in the graph attention network effectively reveal the important substructures
of the drugs
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Table 1: Performance metrics for the classification task in 5-fold cross-validation
Performance Metric ROC AUC PR AUC ACC BACC PREC TPR KAPPA

DeepDDS(GAT) 0.93 ± 0.01 0.93 ± 0.01 0.85 ± 0.07 0.85 ± 0.07 0.85 ± 0.07 0.85 ± 0.07 0.71 ± 0.21
DeepDDS(GCN) 0.93 ± 0.01 0.92 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.70 ± 0.22
DeepSynergy 0.88 ± 0.01 0.87 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.81 ± 0.01 0.75 ± 0.01 0.59 ± 0.15
Random Forests 0.86 ± 0.02 0.85 ± 0.02 0.77 ± 0.01 0.77 ± 0.01 0.78 ± 0.02 0.74 ± 0.01 0.55 ± 0.04
Gradient Boosting Machines 0.85 ± 0.02 0.85 ± 0.01 0.76 ± 0.02 0.76 ± 0.02 0.77 ± 0.01 0.74 ± 0.01 0.53 ± 0.04
Support Vector Machines 0.58 ± 0.01 0.56 ± 0.02 0.54 ± 0.01 0.54 ± 0.01 0.54 ± 0.01 0.51 ± 0.12 0.08 ± 0.04

Table 2: Performance metrics for the classification task in independent test set
Performance Metric ROC AUC PR AUC ACC BACC PREC TPR KAPPA

DeepDDS(GAT) 0.66 ± 0.12 0.82 ± 0.15 0.64 ± 0.15 0.62 ± 0.13 0.80 ± 0.11 0.67 ± 0.12 0.21 ± 0.29
DeepDDS(GCN) 0.67 ± 0.12 0.83 ± 0.13 0.60 ± 0.11 0.63 ± 0.13 0.83 ± 0.10 0.56 ± 0.20 0.21 ± 0.23
DeepSynergy 0.55 ± 0.15 0.71 ± 0.13 0.47 ± 0.14 0.53 ± 0.13 0.75 ± 0.14 0.39 ± 0.17 0.04 ± 0.15
Random Forests 0.53 ± 0.14 0.76 ± 0.16 0.50 ± 0.14 0.54 ± 0.13 0.75 ± 0.14 0.49 ± 0.14 0.06 ± 0.11
Gradient Boosting Machines 0.51 ± 0.10 0.71 ± 0.09 0.45 ± 0.12 0.47 ± 0.08 0.69 ± 0.14 0.43 ± 0.12 -0.03 ± 0.14
Support Vector Machines 0.47 ± 0.11 0.71 ± 0.13 0.54 ± 0.13 0.47 ± 0.15 0.70 ± 0.13 0.63 ± 0.11 -0.04 ± 0.15
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