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Abstract 

The development of sequencing technology calls for new powerful methods to detect disease 

associations and lower the cost of sequencing studies. Family history (FH) contains information 

on disease status of relatives, adding valuable information about the probands’ health problems 

and risk of diseases. Incorporating data from FH is a cost-effective way to improve statistical 

evidence in genetic studies, and moreover, overcomes limitations in study designs with insufficient 

cases or missing genotype information for association analysis. We proposed family history 

aggregation unit-based test (FHAT) and optimal FHAT (FHAT-O) to exploit available FH for rare 

variant association analysis. Moreover, we extended liability threshold model of case-control 

status and FH (LT-FH) method in aggregated unit-based methods and compared that with FHAT 

and FHAT-O. The computational efficiency and flexibility of the FHAT and FHAT-O were 

demonstrated through both simulations and applications. We showed that FHAT, FHAT-O and 

LT-FH method offer reasonable control of the type I error unless case/control ratio is extremely 

unbalanced, in which case they result in smaller inflation than that observed with conventional 

methods excluding FH. We also demonstrated that FHAT and FHAT-O are more powerful than 

LT-FH method and conventional methods in many scenarios. By applying FHAT and FHAT-O to 
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the analysis of all cause dementia and hypertension using the exome sequencing data from the UK 

Biobank, we showed that our methods can improve significance for known regions. Furthermore, 

we replicated the previous associations in all cause dementia and hypertension and detected novel 

regions through the exome-wide analysis. 

Keywords: Genetic association, Family history, Rare variant analysis 

 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with complex diseases at the genome-wide significance level (P< 5x10-8). Most of the 

variants identified by GWAS are common variants with minor allele frequency (MAF)≥ 1%, and 

most of these variants display modest effect sizes and can only explain a small portion of the total 

heritability of complex diseases. Yet, rare variants (MAF< 1%) are of vital importance to 

uncovering unexplained heritability and discovering novel genes contributing to complex diseases. 

1-3 Because standard association approaches testing each variant individually are grossly 

underpowered for rare variants, aggregation unit-based methods that jointly analyze variants have 

been proposed to improve power to detect rare variant associations. Aggregation unit-based 

approaches include, among others, the sequence kernel association test (SKAT) 4, Burden tests 5-

7, SKAT-O 8, and aggregated Cauchy association test (ACAT) 9. However, power of these methods 

to identify disease regions can be limited by insufficient number of cases in unascertained cohorts.  

 In genetic association studies, family history (FH) of disease in relatives is often collected 

in large population cohorts. FH provides an overview of a phenotype within families. Such 

information typically includes phenotypes of un-genotyped parents or more distant relatives of 

probands. FH is related to the genotypes of probands at disease loci based on the Mendelian laws 
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of transmission, and is important in assessing health problems and risk of diseases. 10-12 While 

collecting cases is expensive, incorporating FH information into standard case-control genetic 

association analyses is a cost-effective way to potentially increase statistical power. 11, 13-15 Many 

study designs have limitations for genetic research of late-onset diseases such as Alzheimer’s 

disease (AD), because disease cases may be deceased with unavailable genotype data. The 

standard statistical association tests in younger cohorts with low prevalence of some late-onset 

diseases are not powerful to identify genetic regions associated to a trait of interest. In contrast, 

the incorporation of available information of disease status in the form of FH may increase the 

sample size in cohorts with limited cases or individuals with unavailable genotypes. Genetic 

association studies using only cases and controls will greatly benefit by incorporating available 

FH information to detect associations. 

 FH cannot be directly incorporated in standard genetic association methods, limiting its 

use in genetic association testing. FH has been included as a covariate to improve disease 

prediction, 16 or used to infer mode of inheritance to construct statistical tests. 17 However, there 

are a few reported methods that allow FH to be exploited in genetic association analysis to improve 

statistical power to detect disease loci. The method developed by Ghosh et al. 13 enables the 

incorporation of as a phenotype into the standard single variant analysis, and the results confirmed 

that exploiting the information contained in FH substantially boosts power to detect the individual 

variant at disease loci. Nevertheless, these single variant tests suffer from loss of power to detect 

rare variant associations. While numerous aggregation unit-based methods to jointly analyze rare 

variants have been proposed to improve power to detect rare variant associations, aggregation unit-

based methods that can directly incorporate FH information are needed. 
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 We developed a new and powerful method of family history aggregation unit-based test 

(FHAT) that enables the incorporation of FH to enhance the statistical power for rare variant 

associations. We also developed an optimal unified test FHAT-O to maintain robust power in 

complex scenarios regardless of directions of genetic effects or the proportion of causal variants. 

To make the comparison with the recent developed method, liability threshold model of case-

control status and FH (LT-FH) 11, we proposed a novel way to utilize LT-FH into aggregation unit-

based method for rare variant analysis (Supplemental Method). We performed an extensive 

simulation study to evaluate the type I error and power of FHAT and FHAT-O under various 

scenarios, and illustrated the methods using a real data example from the UK Biobank. We 

demonstrated that our methods and the LT-FH method control type I error in a reasonable range 

of significance levels and much better than SKAT, SKAT-O, Burden test, and ACAT when the 

disease prevalence is low in probands. With greatly reduced computational cost, FHAT and 

FHAT-O are more powerful than SKAT-LTFH and SKATO-LTFH when the effect of the variant 

increases with age. FHAT has greater power than SKAT and ACAT-V in most cases when 

exploiting additional FH information in relatives, and FHAT-O maintains robust power in various 

complex scenarios. We conducted the rare variant aggregation unit-based tests using unrelated 

white participants from the UK Biobank tranche of 200,000 individuals with whole-exome 

sequencing data for all cause dementia (including AD) and hypertension. Based on analysis of 

known regions associated with all cause dementia and hypertension, we showed that FHAT and 

FHAT-O have improved significance for most of the known disease regions after incorporating 

FH especially for all cause dementia given the low prevalence observed in UK Biobank probands. 

Through an exome-wide analysis, we identified associations with all cause dementia in six genes 

(TREM2, PVR, EFCAB3, EMSY, KLC3, and ABCA7) using a suggestive significance threshold 
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(P< 5.6×10-5), where TREM2 reached a stricter significance threshold (P< 2.8×10-6). We also 

found three genes (GATA5, FGD5, DDN) associated with hypertension at our suggestive 

significance level. With enhanced ability to detect disease susceptibility genetic associations, the 

new findings enabled by these novel methods will contribute to the understanding of the genetic 

etiology of complex diseases. 

 

Material and Methods 

Family History Aggregation unit-based Tests (FHAT) 

We propose a novel approach, FHAT, to incorporate FH information in the aggregation unit-based 

tests. We assume that there are 𝑛 probands with 𝑚 observed variants included in the aggregation 

unit-based test. When we have FH on the relative of the probands, let 𝑌!" denote the phenotype of 

the 𝑖#$  proband; 𝑌!%  denote the phenotype of the relative of the  𝑖#$	 proband, respectively; 𝐺!" 

denote the genotypes of the 𝑖#$		proband;  𝑋!" denote covariates for the 𝑖#$	 proband;  𝑋!% 	denote 

covariates of the relative of the 𝑖#$			proband, such as age and ancestral principal components (PCs) 

that account for population structure. The probability of observing (𝑌!",	𝑌!%)  conditional on 𝐺!" 

can be written as (see details in Supplemental Method) 

𝑃(𝑌! 	" , 𝑌!%+𝐺!" , 𝑋!" , 𝑋!%) = 𝑃(𝑌!"+𝐺!" , 𝑋!")𝑃(𝑌!%+𝐺!" , 𝑌!" , 𝑋!%).												(1) 

Therefore, the evidence for association can be assessed from two separate analyses for probands 

and relatives. Based on	𝑃(𝑌!"+𝐺!"), we first assess the association between probands’ genotypes 

and their disease status using 

𝑔(𝐸(𝑌!"+𝐺!" , 𝑋!")) = 𝑋!"𝛼"	 + 𝐺!"	𝛽"	 ,					(2) 
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where 𝑔(∙) is the link function, 𝛼"	  is a vector of regression coefficients for covariate effects, 𝛽"	  is 

a vector of regression coefficients for the observed genotypes in probands. The model for relatives 

based on 𝑃(𝑌!%+𝐺!" , 𝑌!")	is specified as 

𝑔(𝐸(𝑌!% 	+𝐺!" , 𝑌!" , 𝑋!%)) = 𝑋!%𝛼%	 + 𝐺!"𝛽%	 + 𝑌!"𝜆%	 ,					(3) 

where 𝜆% is scalar of regression coefficients for probands’ phenotypes for the relatives’ model; 𝛼%	  

is vector of regression coefficients for relatives’ covariates; 𝛽%	  is vector of regression coefficients 

for 𝑚 observed variants in probands. This relatives’ model (3)	can analyze FH from unrelated 

relatives, i.e. single relative per probands or FH from both parents since mothers and fathers are 

conditional independent. We observe that the two underlying association estimators, (𝛽9" , 𝛽9%), have 

the relationship 18 of 𝛽9%	 ≈ 2Ω𝛽9"	 , where Ω is the kinship coefficient between probands and their 

relatives and Ω = '
(
 for first-degree relatives such as parents.  

 Conventional aggregation unit-based methods evaluate the association between a set of 

variants and phenotype among probands. One such aggregation unit-based method is called the 

SKAT 4. The weighted score statistic based on the probands’ model (2) is  

𝑄)*+, =
(𝑌" − 𝜇̂"

	),𝐺"𝑊𝑊𝐺"!(𝑌" − 𝜇̂")	

𝜙B"-
	 , 

where 𝑊 = 𝑑𝑖𝑎𝑔(𝑤', 𝑤-, … , 𝑤.) is a pre-specified weight matrix for 𝑚	variants; 𝐺"	is a 𝑛 × 𝑚 

genotype matrix with (𝑖, 𝑗)#$ element corresponding to the additively coded genotype for variant 

𝑗	of proband 𝑖; 𝜇̂" is the estimated mean of 𝑌"using the null model with only covariates; 𝜙B"	is the 

dispersion parameter estimate under 𝐻/. The score statistic can be obtained similarly to evaluate 

whether genetic variants are associated with disease status using the relatives’ phenotypes to 

replace the probands’ phenotypes based on relatives’ model (3). In both probands and relatives 
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analyses, the pre-specified weights can be a function of minor allele frequency. For example, one 

can use Wu’s weights 4 𝑤0 = 𝐵𝑒𝑡𝑎	(𝑀𝐴𝐹0; 1, 25) to up-weight the effect of rarer variants. 

We propose to combine the score statistics from the two association models for probands 

and their relatives using a weighted meta-analysis. Meta-analysis is often used in genetic 

association analysis to increase the power by combining results from multiple studies. Methods to 

meta-analyze SKAT results have been developed. 19 Meta-analysis of rare variant association tests 

proposed are based on the study-specific summary statistics, that is, score statistics for each variant 

and linkage disequilibrium estimates in a region. Because of the genetic relationship between 

probands and their relatives, we down-weight the scores for relatives by 2Ω	when combining the 

score statistics in a meta-analysis by assuming the homogeneous genetic effects among probands 

and their relatives. Specifically, because relative 𝑘  of each proband may or may not have 

phenotype data available, we use 𝑌%" to denote the collective phenotype vector for relative 𝑘 of 

all probands (e.g., all mothers), including missing values, with kinship coefficient Ω1 . The 

diagonal matrix 𝐷(𝑅1)  indicates whether corresponding element in 𝑌%"  for each proband is 

missing (denoted by 0) or not (denoted by 1). Therefore, relatives with missing phenotype data do 

not contribute to the test statistic. We fit a single relative model jointly using all relatives’ 

phenotypes and covariates conditional on their probands’ phenotypes to get 𝜇̂%", the estimated 

mean vector of 𝑌%" for relative 𝑘 of all probands, as well as the dispersion parameter estimate 𝜙B% 

under the null hypothesis of no genetic effects. We assume that all relatives are independent in the 

model. The general form of FHAT statistics that incorporates FH from relatives is   𝑄23+, =

U(5
#678#)!	

:;#	
+∑

-<%=(%")(5&"678&")
!	

:;&	1 W 𝐺"𝑊	𝑊𝐺"! U(5
#678#)	

:;#	
+∑

-<%=(%")(5&"678&")

:;&	1 W
	

	(4)	.	  

Under the null hypothesis, 𝑄23+, follows a weighted sum of chi-square distributions with 1 degree 

of freedom, 𝑄23+, 	~	∑ 𝜆0𝜒',0-.
0?' . The weights 𝜆0 	can be estimated from the eigenvalues of 
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𝑊 	𝐺",[𝑃B + ∑ 4Ω@-𝐷(𝑅1)𝑃B%"𝐷(𝑅1)1 \𝐺"𝑊 	,	where 𝑃B  and 𝑃B%"  are the projection matrices in 

probands and relatives 𝑘, respectively, see Supplemental Method. The p-value can be estimated 

by the Davies’ method. 20 The general form can be reduced to 𝑄23+, = ](𝑌" − 𝜇̂"),	 +

=(%')(5&'678&')
!	

-	
+

=(%()(5
&(678&()

!	

-	
^ 𝐺"𝑊	𝑊𝐺"! ](𝑌" − 𝜇̂")	 +

=(%')(5&'678&')
!	

-	
+

=(%()(5
&(678&()

!	

-	
^	(5)	for incorporating FH from both parents (with mothers denoted by 𝑚 and 

fathers denoted by 𝑓) when using logistic models for binary trait with the estimates of dispersion 

parameters fixed to 1 (i.e., 𝜙B" = 𝜙B% = 1), and the kinship coefficients (ΩA, ΩB) fixed to '
(
.  

Optimal FHAT (FHAT-O) 

Using the same framework adopted in FHAT, we developed a FHAT-O statistic based on the 

optimal unified test SKAT-O 8. Since SKAT-O combines the feature of SKAT and Burden tests, 

the power is robust in the presence of both different and same directions of causal variant effects.  

We first developed a FHAT-Burden, which is a weighted sum of the weighted score statistics in 

probands, and relatives based on their relationships (Supplemental Method). Then we proposed 

unified test defining as the weighted average of FHAT and FHAT-Burden:  

𝑄C = (1 − 𝜌)𝑄23+, + 𝜌𝑄23+,6DEFGHI, 

where the weight 𝜌 can be estimated to minimize the p-value using the procedure proposed by Lee 

et al 21. When 𝜌 = 1, 𝑄C reduces to FHAT-Burden, and when 𝜌 = 0, 𝑄Cis equivalent to FHAT. The 

statistic for optimal test FHAT-O that combines the features of FHAT and FHAT-Burden is 

determined as  

𝑄23+,6J?	 min/KCK'
𝑃C , (6)	 
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where 𝑃C is the p-value estimated for each given 𝜌 (More details are in Supplemental Method). 

Simulation Analysis 

Simulations were performed to evaluate the FHAT and FHAT-O statistics in terms of empirical 

type I error and statistical power. We generated 10,000 haplotypes for a 4kb region on chromosome 

19 using HapGen2 software 22. The data from 1000 genomes project was used as the reference 

panel to simulate haplotypes. In all simulations, we focused on binary traits because they are more 

often collected through questionnaire in relatives and we focused on rare variants with MAF< 1%. 

We used the definition from Chen et al. 22 to calculate the genetic effect size. We simulated the 

probands with both genotypes and phenotypes, and available FH data from both parents. We used 

LT-FH phenotype in SKAT (SKAT-LTFH) and SKAT-O (SKATO-LTFH) and compared the 

results to FHAT and FHAT-O, and they were all calculated by combining the FH from relatives 

(i.e. mothers and fathers) into the analysis. The standard methods (SKAT, SKAT-O, Burden test 

and ACAT-V) only used proband data. Because mothers and fathers were simulated as 

independent samples, they were analyzed using a single relatives’ model (3) and then FHAT and 

FHAT-O statistics were calculated using (5) and (6). The type I error and power of FHAT and 

FHAT-O were compared to SKAT-LTFH, SKATO-LTFH, SKAT, SKAT-O, Burden test and 

ACAT-V. Note that ACAT-V is an aggregation unit-based test combining variant-level p-values 

using ACAT. The detailed description of type I error and power simulation can be found in 

Supplemental Method.  

Analysis of Whole Exome Sequencing Data in the UK Biobank 

The UK Biobank is a large prospective cohort study with information on clinical traits, covariates, 

and genome-wide genotype data for over 500,000 individuals with age at assessment between 37-

73 years at baseline (2006 to 2010). The second tranche of exome sequence data of approximately 
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4 million coding variants for 200,000 individuals has been recently completed in the UK Biobank.  

FH of all cause dementia and hypertension was collected from questionnaires. Rare variant (with 

MAF< 1%) gene-based analyses detailed in the Supplemental Method were conducted to analyze 

all cause dementia and hypertension in the UK Biobank data. 

 

Results 

Type I Error and Power 

A total of 2 million simulation replicates were first generated to evaluate type I error at various 

alpha levels for FHAT, FHAT-O, SKAT-LTFH, SKATO-LTFH, SKAT, SKAT-O, Burden test 

and ACAT-V using 5000 probands with available parental history (Table 1).  When the disease 

prevalence is low, SKAT and SKAT-O have inflated type I error for prevalence = 20% and alpha 

=2.5×10-4 and 2.5×10-5, while the type I error is controlled better in FHAT, FHAT-O, SKAT-

LTFH, and SKATO-LTFH when combining additional cases in relatives. When the prevalence is 

set to 50%, a slightly deflated type I error was observed in FHAT, SKAT-LTFH, and SKAT in 

some scenarios. The conservativeness of SKAT when the prevalence is 50% was also observed in 

prior publications 4, 8. The type I error evaluation results for other disease prevalence and alpha 

levels (including exome-wide significance) can be found in Table S2. We demonstrated that both 

FHAT and FHAT-O have reasonable type I error at the exome-wide significance (alpha= 2.5×10-

6) and other scenarios, and when the prevalence is low, FHAT and FHAT-O have lower inflation 

while other standard methods suffer from substantial inflation in type I error.  

 Figure 1 and Figure S1 summarize the power simulation results of FHAT, SKAT-LTFH, 

SKAT, FHAT-O, SKATO-LTFH, SKAT-O, Burden test and ACAT-V for disease prevalence = 

20% and 50%, alpha= 2.5×10-5 (Figure S1) and 2.5×10-6 (Figure 1). The causal variants in a 
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region were set to have positive effects, or half of the causal variants have positive effects and half 

of the causal variants have negative effects. In all scenarios, similar patterns are shown in Figure 

1 and Figure S1. Our main findings included: 1) FHAT and FHAT-O are more powerful than 

SKAT-LTFH and SKATO-LTFH, respectively, under many scenarios when the variants have 

larger effects on the disease among older people; 2) FHAT and FHAT-O have greatly improved 

power compared to standard method that do not incorporate FH in most scenarios except for the 

scenario when the proportion of causal variants is 10% and half of the causal variants have positive 

effects and half of the causal variants have negative effects. However, ACAT-V has substantial 

power loss in many other scenarios; 3) FHAT suffers from a loss of power when the proportion of 

causal variants is high and the causal variants have effects in the same directions. In contrast, 

FHAT-O outperforms FHAT in those scenarios, and remains powerful regardless of the directions 

of genetics effects or number of causal variants. 

Computational Cost 

FHAT and FHAT-O have lower computational cost compared to SKAT-LTFH and SKATO-

LTFH. Table 2 summarizes computation time (in minutes) for all methods for analyzing 1000 

regions that contain 30 variants. The computation time of FHAT, FHAT-O, SKAT, SKAT-O, 

Burden test and ACAT-V depends on sample size and region size, whereas the running time for 

SKAT-LTFH and SKATO-LTFH (conducting using the LT-FH software v2 11) depends on the 

number of configurations of probands’ disease status and FH.  

Application to the UK Biobank 

There are 129,670 unrelated white individuals (with ethnic background of White, British, Irish, 

and Any other white background) who passed all QC filters and have exome sequencing data, 

phenotype, and available parental disease status. The unrelated individuals were identified by 
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removing samples who have multiple 1st, 2nd, and 3rd degree relatives, randomly omitting one 

sample from each relative pair. The age at the first assessment visit for probands is between 38 

and 72 with the mothers of probands being between 60 and 105, and the fathers of probands being 

between 60 and 102. There are 27 dementia cases (p=0.02%) and 32,773 hypertension cases 

(p=25.3%) among probands. While mothers and fathers of probands have similar hypertension 

prevalence (37,145 hypertension cases in mothers, p=28.6%; 26,063 hypertension cases in fathers, 

p= 20.1%), more dementia cases are observed in the parents (10,654 dementia cases in mothers, 

p=8.2%; 5,720 dementia cases in fathers, p= 4.4%) compared to probands.  

 We first evaluated the associations between all cause dementia and hypertension with 

known regions previously implicated with AD/dementia risk and hypertension. We performed the 

analysis for all unrelated white individuals using FHAT, FHAT-O, SKAT-LTFH, SKATO-LTFH 

and other conventional tests (SKAT, SKAT-O, Burden test, and ACAT-V), see results in Table 3. 

The samples involved in the analyses varied because of missing values in the covariates used for 

adjustment in the models. FHAT, SKAT-LTFH, FHAT-O and SKATO-LTFH had improved 

significance after incorporating parental phenotype information compared to p-values calculated 

using other conventional tests for majority of genes. SKAT, SKAT-O and ACAT-V had almost 

no power to detect some associations for all cause dementia due to low prevalence in probands. 

The results show that BCL3 (P= 6.8×10-5 in FHAT, P= 2.5×10-5 in SKAT-LTFH,  P= 5.9×10-5 in 

FHAT-O, P= 1.8×10-5 in SKATO-LTFH) and TOMM4 (P= 3.0×10-4 in FHAT, P= 5.8 ×10-4 in 

SKAT-LTFH, P= 3.8×10-4 in FHAT-O, P= 7.7×10-4 in SKATO-LTFH) were significantly 

associated with all cause dementia status at a significance level of 6.3×10-3 for testing 8 genes. At 

the same significance level, DBH (P= 1.3×10-3 in FHAT, P= 2.0×10-3 in SKAT-LTFH, P= 2.6×10-

3 in FHAT-O, P= 3.3×10-3 in SKATO-LTFH) was identified for hypertension and which had 
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improved significance compared to the results from conventional methods. Although the tests that 

incorporate FH demonstrated an improved significance for all 8 AD/dementia genes we tested, 

some p-values for hypertension genes were less significant. This may be due to the fact that the 

prevalence for hypertension in probands was similar to that in parents, and the associations were 

diluted by the potential noises that were added when combining the FH from parents. 

 A comprehensive exome-wide analysis was then conducted. A total of ~18K genes with 

two or more rare genetic variants meeting our filtering criteria were included. We used models 

including the same covariates for all cause dementia and hypertension as we did in the known gene 

analyses. In the analysis of all cause dementia (Table 4, Figure 2), the gene TREM2 24 (P= 4.1×10-

9) with known effects on AD/dementia and late onset AD achieved a strict exome-wide 

significance (P< 2.8×10-6) using FHAT-O and it was also detected by FHAT (P= 5.2×10-6) with a 

suggestive exome-wide significance (P< 5.6×10-5). One known AD/dementia gene, PVR 25 (P= 

1.2×10-5 in FHAT and P= 1.8×10-5 in FHAT-O) was identified with both FHAT and FHAT-O 

analysis, and ABCA7 26 (P= 4.1×10-5) with known effects on AD/dementia was identified by 

FHAT-O. Moreover, three novel genes were found to be significantly associated with all cause 

dementia using FHAT and FHAT-O (EFCAB3 with P= 4.0×10-5 in FHAT and P= 4.2×10-5 in 

FHAT-O, EMSY with P= 4.4×10-5 in FHAT and P= 2.7×10-5 in FHAT-O, and KLC3 with P= 

1.4×10-5 in FHAT-O). Because we observed highly inflated results (Figure 2) from hypertension 

analysis due to the correlation among parents’ phenotypes, we corrected the analysis by 

additionally adjusting for the spouse’s hypertension status in the parents’ model. For the adjusted 

hypertension analysis (Table 4, Figure 2), FHAT identified GATA5 (P=4.1×10-5), and FHAT-O 

identified FGD5 (P= 4.3×10-5) and DDN (P= 4.2×10-5) at a suggestive significance level. Those 
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genes detected by our methods have previously been reported to be associated with hypertension-

related trait. 27-39  

 

Discussion 

We proposed two novel approaches, FHAT and FHAT-O, that incorporate FH to increase power 

to detect rare variant associations in aggregation unit-based analysis. We also offered a novel way 

to adapt the LT-FH method to analyze rare variants. Because FH of disease is often collected 

through questionnaires in large cohorts, the added power is at no added cost. We applied our 

methods to exploit the FH from parents in simulation analysis and using the UK Biobank data, by 

assuming that the parents are conditionally independent. We analyzed both parents through a 

single relatives’ model, and combined the scores calculated from parents and probands with 

appropriate weights to calculate the test statistics. Because the probands’ analysis is separate from 

the relatives’ analysis, our methods can handle the missingness in FH as presented in (1) and (4), 

and one can include all probands with or without FH to optimize the usage of data. 

 The power was evaluated at alpha= 2.5×10-6 to represent the exome-wide significance for 

testing 20,000 genes as well as at a suggestive threshold of alpha= 2.5×10-5. By assuming that the 

causal variants in older people have bigger effects compared to younger people, we showed FHAT 

and FHAT-O have greater power than SKAT-LTFH, SKATO-LTFH, with greatly reduced 

computational cost. We also note that, as we saw a slightly higher type I error inflation in SKAT-

LTFH and SKATO-LTFH than FHAT and FHAT-O, we would expect more power gain in FHAT 

and FHAT-O when using an empirical significance level. Compared with SKAT and ACAT-V, 

FHAT has greater gain in power in most cases. However, FHAT and SKAT are less powerful than 

Burden test and SKAT-O when there is a high proportion of causal variants, especially when the 
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causal variants all have the same direction of effects. FHAT-O combines the features of both 

FHAT and FHAT-Burden, has robust power in many scenarios, and outperforms other methods, 

as shown in our extensive power simulations. ACAT-V has slightly higher power in some cases 

where the proportion of causal variants is low, which was expected because only a few genetic 

variants contribute to the results in ACAT-V, though the score statistic for FHAT and FHAT-O is 

calculated using a linear combination of squared scores from both causal and non-causal variants.  

 We further demonstrated that our methods have improved significance after incorporating 

FH from association analyses with all cause dementia and hypertension using genotypes and 

phenotypes collected from the UK Biobank. We compared results using FHAT, FHAT-O, SKAT-

LTFH, and SKATO-LTFH for probands with both genotypes and phenotypes, and their parental 

history of disease to other methods only using probands. Variants in 8 known AD/dementia regions 

and 8 known hypertension regions were selected for the analysis. Using the significance level = 

6.3×10-3 for testing 8 known genes, BCL3 and TOMM40 were significantly associated with all 

cause dementia while other known AD/dementia regions had improved significance compared to 

the methods that do not incorporate FH. Some of the hypertension genes were less significant using 

our method to incorporate FH, which might be caused by additional noise resulting from a similar 

hypertension prevalence in probands and their parents. The FHAT and FHAT-O approaches 

yielded similar conclusions compared to SKAT-LTFH, and SKATO-LTFH, respectively.  

 We evaluated type I error at various alpha levels and disease prevalence. We did not 

evaluate the type I error for SKAT-LTFH and SKATO-LTFH at the exome-wide significance 

(alpha= 2.5 x 10-6) to limit the computational cost. The type I error of SKAT was previously found 

to be conservative when the disease prevalence is ~ 50%, and the Burden test was found to have 

appropriate type I error when the case-control ratio is balanced 5-7. However, SKAT, SKAT-O, 
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Burden and ACAT-V suffer from substantial inflated type I error when the prevalence is low, 

especially for lower alpha level (i.e., alpha< 2.5×10-4). In contrast, the FHAT, SKAT-LTFH, 

FHAT-O and SKATO-LTFH control the type I error rates relatively better. The type I error is 

overall well controlled using FHAT and FHAT-O in most scenarios, but a high inflation occurs 

for alpha= 2.5x10-6 and prevalence = 10% where the number of cases and controls is unbalanced 

(Table S2). Unbalanced case-control ratio yields inflated type I error rates because the imbalance 

invalidates the asymptotic assumption of logistic regression. Saddle point approximation (SPA) 30-

32 method and efficient resampling (ER) 33 have been successfully used to calibrate binary 

phenotype based logistic mixed models 19 when case-control ratios are extremely unbalanced. In 

the future, we plan to adopt these cutting-edge methods to properly account for unbalanced case-

control ratio. 

 In the exome-wide association analysis, we used the same covariates (age, sex, PC1-5, 

PC11) as we did in the known region analysis for all cause dementia. However, as the inflation 

was observed in our hypertension analysis (Figure 2), we further adjusted for the spouse’s disease 

status in the parents’ model to account for the correlations among parents in addition to the 

covariates of age, age2, sex, BMI, PC1-PC5, PC8, and PC14. In the future, we will extend the 

current approaches to allow for correlation, as might be induced by household effect, in the 

analysis. Through the exome-wide analysis using FHAT and FHAT-O, we confirmed previously 

reported genes (TREM2, PVR, and ABCA7) 25-27 for AD/dementia as well as genes (GATA5, FGD5, 

DDN) 28-30 related to blood pressure and hypertension. Moreover, our methods identified three 

novel regions associated with all cause dementia (EFCAB3, EMSY, KLC3) using a suggestive 

exome-wide significance threshold. Replication analyses are needed to confirm these findings. 

While we observed inflated type I error for low prevalence in our simulations, we did not see 
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evidence of large inflation of FHAT and FHAT-O in all cause dementia analysis, as seen from the 

Q-Q plot (Figure 2) and genomic control inflation factor (with 𝜆23+, = 1.13	and 𝜆23+,_J = 1.06 

for all cause dementia analysis). 

 Although the method development, simulation studies and UK Biobank analysis described 

in the paper were focusing on the population samples, our methods can also handle the 

ascertainment that happens in case-control analysis,  because the likelihood can be written as the 

product of the retrospective proband information, taking ascertainment into consideration, and the 

(unascertained) relative likelihood: 𝑃"𝐺!" , 𝑌!#&𝑌!" , 𝑋!" , 𝑋!#( = 	𝑃"𝑌!#&𝐺!" , 𝑌!" , 𝑋!#(𝑃"𝐺!"|𝑌!" , 𝑋!"( 

(Supplemental Method). The Equation (1)	was derived based on the assumption of independence 

of the relatives’ phenotype and probands’ covariates conditional on the relatives’ covariate and the 

strength of the associations in relatives. However, when the proband covariates are believed to 

have an effect on the relatives’ disease status, one can adjust for such covariates in the relatives’ 

model (3) to account for such an effect.  

 In this paper, we demonstrated that FHAT and FHAT-O are computationally efficient 

methods compared to SKAT-LTFH and SKATO-LTFH. The significant reduced computational 

cost using FHAT and FHAT-O was showed in the analysis time to run 1000 aggregation unit-

based tests. Although we focused on binary traits and rare variants, our method can be applied to 

analyze continuous traits using linear models and common variants. The framework in FHAT is 

flexible for various setting. While we applied FHAT and FHAT-O for probands with parental 

disease status available in simulations and the UK Biobank analysis, FHAT can be easily applied 

to other relative types. We also proposed an extension to FHAT, FHAT-O, to capture the features 

in SKAT-O, in particular the robustness of the power when all genetic variants have the same 

direction of effect and the proportion of causal variants is high. The framework can easily be 
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extended to incorporate any other established aggregation unit-based based methods. Our methods 

that allow the incorporation of available FH are innovations compared to traditional rare variant 

studies that only use cases and controls, which have great potentials to promote genetic association 

research. 
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Table 1. Type I Error Rates of FHAT, SKAT- LTFH, SKAT, FHAT-O, SKAT- LTFH, SKAT-O, Burden, and ACAT-V 

Alpha FHAT SKAT-LTFH SKAT FHAT-O SKATO-LTFH SKAT-O Burden ACAT-V 

Prevalence = 20% 

2.5 x 10-2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 

2.5 x 10-3 0.9 1.0 1.1 1.1 1.1 1.2 1.0 1.1 

2.5 x 10-4 0.9 1.0 1.3 1.2 1.3 1.6 1.0 1.2 

2.5 x 10-5 1.1 1.1 1.9 1.7 1.8 2.4 1.0 1.2 

Prevalence = 50% 

2.5 x 10-2 0.9 1.0 0.9 1.0 1.0 1.0 1.0 1.1 

2.5 x 10-3 0.9 0.9 0.9 1.0 1.1 1.0 1.0 1.1 

2.5 x 10-4 0.9 0.8 0.8 1.1 1.2 1.0 1.0 0.9 

2.5 x 10-5 0.6 0.6 0.7 1.0 1.0 1.1 0.8 0.7 
The number in each cell represents the ratio of type I error and expected significance level (column ‘Alpha’). Type I error was evaluated from the proportion of p-
values less than or equal to corresponding 2.5 x 10-2, 2.5 x 10-3, 2.5 x 10-4 and 2.5 x 10-5 using 2 million simulation replicates for prevalence = 20% and 50%. The total 
sample size of probands were 5000. FHAT, SKAT-LTFH, SKAT, FHAT-O, SKATO-LTFH, SKAT-O and Burden test all used the same Wu weights with beta 
(𝑀𝐴𝐹!;	1, 25). ACAT-V used the weight of 𝑤!,#$#%&' = 𝑤!,()#% ×)𝑀𝐴𝐹!	(1 −𝑀𝐴𝐹!) to make results comparable. FHAT, SKAT-LTFH,  FHAT-O and SKATO-
LTFH analyzed probands and incorporated the family history information, while SKAT, SKAT-O, Burden test and ACAT-V only included probands. The LTFH 
phenotype was computed using LT-FH software v2 and then used as the continuous outcome in SKAT and SKAT-O to obtain SKAT-LTFH and SKATO-LTFH.  
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Table 2. Computational Time for Testing 1000 Regions  
Sample Size  FHAT FHAT-O SKAT SKAT-O Burden ACAT-V SKAT-LTFH SKATO-LTFH 

200 0.09 0.25 0.12 1.38 0.13 0.04 540.33 544.83 

500 0.14 0.33 0.14 1.57 0.16 0.06 536.42 543.09 

1000 0.26 0.43 0.24 1.69 0.23 0.09 534.54 541.84 

2000 0.53 1.25 0.42 2.56 0.39 0.14 566.45 568.20 

5000 1.19 1.89 0.90 5.40 0.81 0.29 551.78 553.74 
Each cell summarizes the time (in minutes) that is required to preforming the tests on 100 regions using the methods of FHAT, SKAT- LTFH, SKAT, FHAT-O, 
SKAT- LTFH, SKAT-O, Burden, and ACAT-V. The regions contain 30 variants.  

 
 
 
 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438533


Table 3. Association Analysis for Genes Previously Implicated in All Cause Dementia and Hypertension Susceptibility 

 Gene FHAT SKAT_ 
LTFH SKAT FHAT-O SKATO_ 

LTFH SKAT-O Burden ACAT-V #variants cMAC cMAC in 
cases 

All cause dementia 
(N=129,670) 

            

  BCL3 6.8 x 10-5 2.5 x 10-5 0.02 5.9 x 10-5 1.8 x 10-5 0.029 0.11 0.36 65 1157 1 
  TOMM40 3.0 x 10-4 5.8 x 10-4 1 3.8 x 10-4  7.7 x 10-4 0.85 0.68 0.05 39 809 0 
  APOE 0.02 0.02 1 0.03 0.04 0.83 0.60 0.06 75 1372 0 
  PILRA 0.17 0.15 0.93 0.27 0.25 1.0 0.99 0.88 48 4406 1 
  BIN1 0.61 0.70 1 0.77 0.88 0.89 0.64 0.75 80 975 0 
  CR1 0.33 0.26 1 0.51 0.42 0.38 0.21 0.03 310 8500 0 
  CLU 0.44 0.43 1 0.59 0.59 0.66 0.45 0.79 75 2651 0 
  MAF 0.50 0.44 1 0.60 0.43 0.88 0.65 0.43 64 930 0 
Hypertension 
(N=129,206)               

  DBH 1.3 x 10-3 2.0 x 10-3 3.8 x 10-3 2.6 x 10-3 3.3 x 10-3 1.6 x 10-3 3.0 x 10-3 0.05 166 7708 1851 

  SVEP1 0.051 0.09 0.066 0.068 0.10 0.091 0.082 0.36 485 19123 4707 

  NPR1 0.069 0.06 0.042 0.026 0.03 6.9 × 10!" 4.0 × 10!" 0.06 147 2739 749 

  REN 0.069 0.12 0.22 0.13 0.22 0.38 0.83 0.45 68 586 145 

  NPPA 0.21 0.27 0.40 0.28 0.40 0.48 0.33 0.03 31 1200 309 

  CHDH  0.24 0.25 0.54 0.29 0.33 0.33 0.20 0.75 120 2346 556 

  NF1 0.28 0.43 0.27 0.44 0.63 0.43 0.51 0.43 325 7826 1944 

  AGPS 0.36 0.33 0.38 0.54 0.50 0.56 0.98 0.88 172 5748 1449 

  PABPC4 0.93 0.98 0.91 0.42 0.49 0.11 0.060 0.79 60 283 61 
The all cause dementia model adjusted age, sex, and PC1-5, and PC11 as covariates. The hypertension model adjusted age, age squared, sex, BMI, PC1-5, PC8 and PC14 as the covariates. Wu weights with 
beta (𝑀𝐴𝐹!;	1, 25). were used. The p-values were estimated using Davies’ method. The significance threshold is +.+-

.
= 6.3 × 10&/. cMAC is the cumulative minor allele counts for the gene we tested. 

#variants is the total number of variants tested in the gene. 
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Table 4.  Whole Exome-wide Association Analysis for All cause dementia and Hypertension 
  Gene name FHAT p-value FHAT-O p-value #variants cumMAC 
All cause dementia 
(N=129,670) 

     

  TREM2 5.2 x 10-6 4.1 x 10-9 45 4559 

  PVR 1.2 x 10-5 1.8 x 10-5 75 2068 

  EFCAB3 4.0 x 10-5 4.2 x 10-5 60 2579 

  EMSY  4.4 x 10-5 2.7 x 10-5 158 1543 

 KLC3 4.8 x 10-4 1.4 x 10-5 177 4174 

 ABCA7 2.9 x 10-3 4.1 x 10-5 487 12179 

Hypertension 
(N=129,206) 

     

  GATA5 4.1  x 10-5 9.1 x 10-5 88 5402 

 FGD5 2.3  x 10-4  4.3  x 10-5 254 5269 

 DDN 0.016 4.2  x 10-5 107 1621 

The exome-wide significance threshold is +.+-
0.,+++

= 2.8 x 10-6 the suggestive exome-wide significance threshold is 0
0.,+++

= 5.6 x 10-5. cumMAC is the cumulative minor allele 
frequency in the region. #variants is the total number of variants in the gene. 
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Figure 1. Empirical Power of FHAT, FHAT-O, SKAT-LTFH, SKATO-LTFH, SKAT, SKAT-O, Burden test and ACAT-V 
at Exome-wide Significance  
In each plot, the x axis in the format of +/-/0 indicates the proportion of variants with positive, negative and no effects. Each bar shows the empirical 
power evaluated as the proportion of p-values less than or equal to alpha= 2.5 x 10-6. The total sample size of probands was set to 5000. The 
analyses were restricted to rare variants with MAF< 1%. The disease prevalence was set to 20% and 50%. FHAT, FHAT-O, SKAT-LTFH, SKATO-
LTFH, SKAT, SKAT-O, and Burden test all used the same Wu weights with beta (𝑀𝐴𝐹!;	1, 25). ACAT-V used the weight of 𝑤!,#$#%&' =
𝑤!,()#% × )𝑀𝐴𝐹!(1 −𝑀𝐴𝐹!) to make results comparable. FHAT, FHAT-O, SKAT-LTFH, and SKATO-LTFH analyzed probands and incorporated the 
family history information, while SKAT, SKAT-O, Burden test and ACAT-V only included probands. The proportion of causal variants was set to 10%, 
20%, 50%, 80%, and 100%. The number of variants tested in a region considered were: 20, 40, 80.  
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Figure 2. QQ Plots of Whole Exome-wide Analysis Results for All cause dementia and Hypertension 
The p-values for regions with cumulative minor allele counts> 20 were used to generate the QQ plots. The left panel is the whole exome-wide 
analysis results for All dementia, where FHAT and FHAT-O were calculated using the model with the same covariates (age, sex, PC1-5, PC11) 
adjusted in AD/dementia known gene analysis. The right panel is the whole exome-wide analysis results for hypertension, where FHAT and FHAT-
O were calculated using the model with the same covariates (age, age2, sex, BMI, PC1-PC5, PC8, and PC14) adjusted in hypertension known gene 
analysis. FHAT_adjust and FHAT-O_adjust were calculated from the adjusted hypertension analysis, where the spouse’s hypertension status 
combining with other previously mentioned covariates were adjusted in the parental analysis. 
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