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Abstract
Neural representations of visual working memory (VWM) are noisy, and thus, decisions based
on VWM are inevitably subject to uncertainty. However, the mechanisms by which the brain
simultaneously represents the content and uncertainty of memory remain largely unknown.
Here, inspired by the theory of probabilistic population codes, we test the hypothesis that the
human brain represents an item maintained in VWM as a probability distribution over stimulus
feature space, thereby capturing both its content and uncertainty. We used a neural generative
model to decode probability distributions over memorized locations from fMRI activation
patterns. We found that the mean of the probability distribution decoded from retinotopic cortical
areas predicted memory reports on a trial-by-trial basis. Moreover, in several of the same
mid-dorsal stream areas the spread of the distribution predicted subjective trial-by-trial
uncertainty judgments. These results provide evidence that VWM content and uncertainty are
jointly represented by probabilistic neural codes.
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Introduction
Working memory extends the duration over which neural representations are available to guide
purposeful behaviors, and supports a wide range of cognitive functions, such as learning and
decision-making 1–3. Although working memory is a fundamental building block of cognition, the
neural activity that supports working memory is noisy and resource limited (reviewed in 4). Thus,
decisions based on working memory are inevitably subject to uncertainty 4–6. Access to the
uncertainty in our working memory enables us to use the extent to which we ‘trust’ our memory
to make better decisions. Indeed, people’s reported confidence in their working memory
performance correlates with the magnitude of memory errors, reflecting their ability to track the
quality of their memory 5,7–9. Moreover, people incorporate knowledge of working memory
uncertainty to improve their decisions in change detection tasks 6,10,11 and post-memory wagers
12,13.

Even though uncertainty plays a key role in supporting working memory-guided behavior,
we know little about how working memory uncertainty is represented in the brain. Previous
studies have established that the contents of visual working memory (VWM; e.g., the specific
remembered orientation, color, motion direction, or spatial location) can be decoded from
activation patterns in visual, parietal, frontal cortex and subcortical regions 14–33. However, these
previous studies decoded VWM representations assuming a single point estimate of the
memorized stimulus averaged over many trials. As we motivate next, ignoring both the
distribution of decoded estimates and their trial-by-trial variability limits our ability to test theories
of how neural populations encode VWM content and uncertainty, especially when it comes to
links to memory behavior.

Neural population activity is noisy 34–36. According to the theory of probabilistic population
codes, the brain knows the generative model that describes neural population activity as a
function of stimulus features (e.g., location or orientation), including the distribution of the noise.
Using this knowledge would make it possible to assess the appropriate level of uncertainty
associated with a stimulus feature 37–41, a process known as ‘inverting’ the generative model.
Under this theory, a population of neurons contains a joint representation of a stimulus along
with uncertainty about the stimulus, and potentially even an entire Bayesian posterior probability
distribution over the stimulus. Probabilistic population coding thus provides a testable
hypothesis for how neural populations jointly represent a stimulus estimate and the associated
uncertainty. In support of this hypothesis, previous studies reported that the probability
distributions decoded from neural activity measured in visual cortex predict aspects of visual
behavior 42–44. Here, we ask whether higher cognitive processes, like the items maintained by
VWM, are also encoded as probability distributions by neural populations. We hypothesized that
similar computational principles explain how neural populations maintain VWM representations.
Specifically, we predicted that an item maintained in VWM is represented as a posterior
probability distribution over the feature space (e.g., location). In this scenario, access to the
content of VWM (e.g., remembered location) would involve a read-out of the mean of the
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distribution, while memory uncertainty would be reflected in the width of the distribution (Fig.
1B). The critical direct test of this hypothesis hinges on whether the parameters of the
probability distribution actually predict the quality and uncertainty of measured memory
behavior.

Figure 1. Procedures and working memory performance in Experiment 1. (A) Procedures.
Participants maintained fixation while remembering the location of the target, presented at a
pseudorandom position 12° from fixation. After which, participants generated a memory-guided saccade
to the remembered location. Feedback, in the form of a white dot presented at the actual target location,
permitted comparison with the landing spot following the memory-guided saccade. (B) We hypothesized
that VWM is represented by a probabilistic population code. Per this hypothesis, populations of neurons
represent the remembered target as a probability distribution over stimulus feature values (polar angle of
the target in this case). This probability distribution allows a joint representation of the estimate of the
memorized target (mean of the distribution) and the uncertainty of memory (standard deviation of the
distribution). Two key predictions stem from this hypothesis: read-out of the mean of the maintained
probability distribution guides memory reports, and the standard deviation of the probability distribution
forms one’s memory uncertainty. (C) Example traces of memory-guided saccades for different locations
across one scanning run (16 trials). The colored dots evenly spaced on an imaginary circle represent the
target locations. (D) Memory reports from an example participant plotted against the target location. (E)
Memory error distribution from the example participant in (D). (F) The variability of memory reports for
individual participants (dots), quantified by the standard deviation of the memory error distribution.
Dashed line shows mean across participants, and gray shaded interval shows ±SEM.
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We measured fMRI BOLD activity in humans during two experiments to test each
prediction from the above hypothesis. We then adapted and inverted a generative model for the
BOLD activity 42,45. This yielded, on a trial-to-trial basis, a probability distribution over a
memorized stimulus location from an activation pattern measured from retinotopic visual,
parietal, and frontal cortex. While fMRI BOLD activity is subject to measurement noise, we still
predicted that the decoded probability distribution would bear a resemblance to the one that the
brain might use for its decision-making. In Experiment 1, we demonstrated that we can reliably
decode the content of spatial VWM from BOLD activation. Moreover, trial-by-trial errors in the
decoded positions predicted behavioral recall errors, revealing a close relationship between the
decoded memory content and memory recall. In Experiment 2, we further established that the
decoded uncertainty predicted explicit uncertainty reports when participants introspected the
quality of their VWM in a wager task. Our results support the theory that the brain utilizes
knowledge of the generative process of neural activity to represent memorized items
probabilistically; in other words, that neural activity multiplexes the content of VWM and its
uncertainty.

Results

Experiment 1
In Experiment 1, we used a Bayesian generative model to decode single-trial VWM
representations from neural activation patterns, and assessed how the decoded memory
content related to memory reports. We studied spatial VWM in a memory-guided saccade task.
In each trial, we presented participants with a brief (500 ms) target dot, followed by a 12-second
delay period (Fig. 1A). The polar angle of the target was chosen pseudo-randomly from 1 of 32
positions that spanned the full circle. Participants were asked to remember the location of the
target while maintaining central fixation throughout the delay period. After the delay period, the
empty fixation dot was replaced by a filled dot serving as the response cue. Upon the response
cue onset, participants reported the remembered position by making a saccadic eye movement
(e.g., 46,47; Fig. 1A and Fig. 1B). Behavioral memory reports were measured as the polar angle
of the saccade endpoint.

We adapted a generative model 42,45 to decode a probability distribution over the stimulus
location (polar angle) from the delay-period brain activity for each single trial. To focus on VWM
maintenance activity, we used the averaged BOLD response for each voxel from 5.25 to 12.00
seconds after the delay period onset as the input to the model. The generative model described
the multivariate voxel response given a stimulus location by a multivariate normal distribution. To
estimate the mean of this distribution, the model approximated each voxel’s spatial tuning curve
by a weighted sum of eight basis functions (channels) that evenly tiled visual (polar angle)
space (Fig. 2A). For the covariance of the multivariate normal distribution, the model
incorporated the empirical noise covariance estimated by the data and a theoretical noise
covariance matrix that considered two sources of variability: the noise of each location channel
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and the noise specific to each voxel (see Methods). For each trial, we used the circular mean of
the decoded probability distribution to represent the decoded remembered location.

Figure 2. Generative model used to
estimate and decode working memory
representations. (A) Schematic of the
generative model for BOLD response for
spatial VWM (van Bergen & Jehee; 2021).
The tuning function (mean response
amplitude as a function of remembered
target location) of each voxel is modeled
as a weighted sum of eight basis functions
evenly spanning the entire location space
(0 to 360°; note: six shown here in cartoon
depiction). Two sources of noise are
considered: noise arising from each
channel, which is shared across voxels,
and noise arising from each voxel
independently. (B) Posterior probability
distributions decoded from the memory
delay of three example trials. The decoded
memorized location is derived from the
circular mean of the posterior distribution.

The decoded uncertainty in memory is derived from the circular standard deviation of the posterior
distribution. (C) Posterior probability distributions decoded from an example participant’s primary visual
cortex. Each row presents the posterior probability distribution decoded from the delay period of a single
trial, where trials are sorted (from top to bottom) based on the decoded uncertainty of each trial (from
lowest to highest uncertainty). The posterior distributions are circularly shifted to align to the target
position of each trial (0°).

We first demonstrated that we can decode VWM content from delay period fMRI signals.
We defined four retinotopic visual (V1, V2, V3 and V3AB), four parietal (IPS0, IPS1, IPS2 and
IPS3) and two frontal areas (iPCS and sPCS) as regions of interest (ROIs) using population
receptive field mapping techniques 48,49. Similar to previous studies using other decoding
methods 16,23,25,28,50, we found that the remembered stimulus location could be decoded from the
delay period BOLD responses in retinotopic visual, parietal, and frontal cortex. First, we plotted
a distribution of the trial-wise decoding error (decoded location minus target location; Fig. 3A)
for each ROI. These decoding error distributions reliably exhibited a single peak centered near
0° indicating the robustness of our decoder (Supplementary Table 1). We quantified the
existence of decodable VWM information by comparing the standard deviation of the decoding
error distributions to a null distribution obtained by a permutation procedure (see Methods). At
the individual participant level, target locations were robustly decoded in most ROIs
(Supplementary Table 2). At the group level, VWM contents were decoded in all ROIs (p <
0.001; unless otherwise noted, we report p-values corrected for multiple comparisons across
ROIs via FDR with q = 0.05). The standard deviation of the decoding error distributions varied
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significantly across ROIs (permutation one-way repeated-measures ANOVA, p < 0.001, =
0.56; Fig. 3B), with smaller standard deviations in extrastriate cortex regions V3AB and V3, and
IPS0 in intraparietal sulcus, indicating a more precise decoding performance in these regions.
Two regions in the prefrontal cortex, iPCS and sPCS (the putative human homolog of macaque
frontal eye field), had the largest standard deviations, indicating lower decoding performance in
these areas. In another analysis, we obtained similar results when using the circular correlation
between decoded location and target location to quantify the decoding performance
(Supplementary Fig. 1A and Supplementary Table. 3).

Figure 3. Working memory
content can be precisely
decoded. (A) Decoding
performance of an example
participant. For each ROI, the
top figure represents the
decoded location as a function
of the memorized target
location. The bottom figure is
the distribution of signed
decoding error (decoded
location minus the memory
target location). (B) Decoding
performance quantified as
decoding variability, the
standard deviation of the
decoding error distribution. The
filled gray dots represent
individual participants. The
empty white dots represent the
group average. The error bars
represent ±SEM. Decoding
performance varied
significantly across ROIs
(permutation one-way
repeated-measures ANOVA,

F(7, 70) = 12.6, p < 0.001,
= 0.56).

As we are interested in working memory, we established that the signals we decoded
cannot be attributed to sensory responses to the target stimuli. First, we are modeling the BOLD
responses well into the delay period. Second, in a passive viewing experiment, a subset of
participants (n = 3) performed a discrimination task at central fixation without the requirement to
remember peripheral targets. Instead, we presented a highly salient, but irrelevant, flickering
checkerboard at the same locations used in the WM task for the same duration as the VWM
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target stimulus (500 ms). Compared to the VWM experiment, the standard deviation of the
decoding error distribution (averaged across subjects and ROIs) based on the same
delay-period time points increased from 71° to 130° in the passive viewing experiment
(Supplementary Fig. 2A and 2B). The near doubling of variability of the decoding error was
only barely distinguishable from the null distribution in a subset of ROIs and participants
(Supplementary Table 2). Moreover, the circular correlation between the decoded location and
the target location was at zero under passive viewing for most participants and ROIs
(Supplementary Fig. 2C and Supplementary Table 3). When we instead decoded stimulus
location from earlier timepoints with strong evoked sensory signals (0.75 to 5.25 seconds from
the delay deploy period onset), we were able to accurately decode stimulus location
(Supplementary Fig. 2D-2F). Together, these results indicated that the neural representations
of the target only persisted through the late delayed period when they were actively maintained
in VWM.

So far, we have shown that we can decode the location of the memorized target. However,
if the decoded VWM representation obtained from the BOLD signal drives behavioral
performance, the decoded VWM representation should contain information relevant for
behavioral memory reports beyond the physical location of the target. To investigate this issue,
we leveraged our single-trial decoded locations, and we tested the prediction that (signed)
memory error and (signed) decoding errors correlate at the trial-by-trial level. That is, we tested
whether the direction of errors in memory and errors in decoding are the same (e.g., clockwise)
with respect to the target. Accordingly, we computed the trial-wise circular correlation between
memory error and decoding error for each participant and ROI. We found that the strength of
this correlation varied across ROIs (permutation one-way repeated-measures ANOVA, p <

0.001, = 0.24). For individual ROIs, we found significant positive correlations in multiple
regions including V2, V3, V3AB, IPS0, IPS2, IPS3 and sPCS (bootstrapping test, p < 0.05; Fig.
4B). Following previous studies using a similar Bayesian decoding approach 42,45, we quantified
the correlations by binning the trials based on their decoding errors, computing the memory
error of each bin and pooling the data across participants. We observed similar patterns as
significant positive correlations were observed in multiple ROIs including V3, V3AB, IPS0, IPS2
(permutation test, p < 0.05; Fig. 4C). Overall, we found that memory behavior was linked to the
neural representations we decoded, supporting our prediction that access to the content of
VWM involves a read-out of the mean of the population-encoded probability distribution.
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Figure 4. Errors in neural decoding of
working memory predict behavioral
memory errors in Experiment 1. (A)
Memory errors plotted against neural
decoding errors of an example participant
for 3 ROIs. (B) Correlations are computed
as circular correlations between the
behavioral memory errors and neural
decoding errors. The filled gray dots
represent individual participants. The
unfilled white dots represent the group
average. The error bars represent ±SEM.
(C) Memory errors plotted against
decoding errors. The four colors indicate
four bins (within each of 14 participants)
sorted by decoding error. The gray line in
each panel represents the best linear fit.
The value at the lower right of each panel
is the Pearson correlation coefficient.

Experiment 2
In Experiment 1, participants reported the remembered location using a memory-guided
saccade, and we quantified performance based on saccade landing position. We found that the
population activity encoded not only the VWM target location, but additionally that errors in the
decoder predicted errors in memory. Next, we tested the hypothesis that the population activity
encodes a joint representation of both memory content and the uncertainty of their memory.
Indeed, we can reflect on and directly report the confidence we have in our memory 5,7,12,13. Do
these introspective reports reflect the uncertainty associated with the neural representation,
quantified based on the posterior distribution decoded from neural activation patterns? To test
this, in Experiment 2, we adapted our task so that participants were required to explicitly report
the uncertainty of their memory with a wager.
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The experimental procedures were similar to Experiment 1, with a few modifications. In
addition to the filled dot at central fixation, the response cue contained a circular annulus with a
radius matching the eccentricity of the target (Fig. 5). Participants reported their memory by
making a saccade to the position on the annulus that matched the remembered target. Then,
participants placed a wager by adjusting the length of an arc attached to the reported location
12,13. Participants were instructed to use the length of the arc to reflect the uncertainty of their
memory. At the end of a trial, a feedback dot was presented at the true target location.
Participants gained points if the target location was within the arc or otherwise gained zero
points. The points they could gain decreased with the length of the arc, so observers were
motivated to reflect their uncertainty using the arc length. In order to obtain the highest points,
an optimal observer would increase the length of the arc with higher VWM uncertainty 12,13.

Figure 5. Procedures and working memory
performance in Experiment 2. (A) The
procedures were similar to those of
Experiment 1 except for a few modifications.
To report the remembered location, the
participants generated memory-guided
saccades onto a ring, and then reported their
memory uncertainty by adjusting the length of
an arc centered at the reported location. The
trial ended with the onset of the feedback
stimulus, a white dot presented at the target
location. Participants earned points only if the
target location was within the arc, and the
points they earned decreased with the arc
length. To earn a high score, participants
should set shorter arcs when less uncertain.
(B) The distribution of memory error from one
example participant. (C) The variability of
memory reports for individual participants,
quantified by the standard deviation of the
memory error distribution. (D) Memory error
as a function of reported arc length, binned.
Four colors represent four bins (within each of
14 participants) with increasing arc length. (E)
Behavioral variability as a function of reported
arc length. On trials where participants
reported longer arc lengths, behavioral recall
of remembered positions had larger errors (D;
permutation test, p < 0.001) and was more
variable (E; permutation test, p < 0.001). In
(D) and (E) the gray lines represent the best
linear fits.
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Behaviorally, participants were able to monitor the quality of their VWM. Both the
magnitude of memory errors (Fig. 5D; permutation test, p < 0.001) and the variability of memory
reports (Fig. 5E; permutation test, p < 0.001) increased with the reported arc length. For some
participants, the reported arc length varied as a function of target location, with shorter arc
lengths and smaller errors at the cardinal angles (Supplementary Fig. 3). To evaluate whether
the participants can track VWM uncertainty independent of the target location, we regressed-out
the effect of target location (the polar angle between the target to the nearest cardinal angles)
from the arc length. Still, the arc length correlated with the magnitude of memory error and the
variability of memory reports (Supplementary Fig. 4), indicating that the participants’ ability to
track the uncertainty across trials was not solely driven by the physical locations of the target. In
sum, participants were not only aware of their memory uncertainty, but used these estimates to
inform their wagers.

Next, we tested the hypothesis that these subjective estimates of memory uncertainty are
jointly represented in the neural population activity that encodes the memory itself. To test this
hypothesis, we correlated decoded uncertainty (standard deviation of the decoded posterior
probability distribution) with behaviorally reported memory uncertainty (arc length, with the effect
of target angle regressed out) at a single-trial level for each participant and each ROI. Decoded
uncertainty correlated with the reported arc length significantly in V2, V3AB, IPS0 and IPS1
(bootstrapping test, p < 0.05; Fig. 6B). Additionally, we binned each participant’s trials based on
decoded uncertainty and pooled the data across participants. Consistently, we found that
participants reported larger arc length in trials with higher decoded uncertainty in V2, V3AB,
IPS0 and IPS1 (permutation test, p < 0.05; Fig. 6B). These results support the notion that the
uncertainty of VWM can be represented along with the memorized location by a probabilistic
population code, and the uncertainty encoded in the neural population is used for explicit
uncertainty reports.

In perceptual decision-making, people utilize their knowledge of their own reaction time
when making uncertainty judgements 51. Thereby, saccade reaction time might implicitly track
VWM uncertainty in both experiments. Behaviorally, reported arc length increased with saccade
reaction time, indicating an impact of reaction time on uncertainty judgement (Supplementary
Figure 5A). In terms of fMRI BOLD activity, saccade reaction time correlated with decoded
uncertainty in V3AB and IPS0, when binning trials based on decoded uncertainty
(Supplementary Figure 5C and 5E).
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Figure 6. Decoded memory
uncertainty predicts subjective
memory uncertainty. (A) Reported arc
length (subjective VWM uncertainty
report) plotted against decoded
uncertainty of an example participant
for 3 ROIs. (B) Correlations between
reported arc length and decoded
uncertainty. The filled gray dots
represent individual participants. The
empty white dots represent the group
average. The error bars represent
±SEM. (C) Reported arc length plotted
against decoded uncertainty. The four
colors indicate four bins (within each of
14 participants) with increasing decoded
uncertainty. The gray line in each panel
represents the best linear fit. The value
at the lower right of each panel is the
Pearson correlation coefficient.

Regarding the decoded memorized location, the results of Experiment 2 replicate those of
Experiment 1. VWM contents were decodable in all the ROIs (permutation test, p < 0.001 for all
ROIs). The precision of the neural decoding error distribution varied across ROIs (permutation

one-way repeated-measures ANOVA, p < 0.001, ; Supplementary Fig. 6; also see
Supplementary Table 4 - 6), with the highest precision observed in V3AB and the lowest
precision in iPCS and sPCS (Supplementary Fig. 6). To further evaluate the behavioral
relevancy of the decodable information, we correlated (signed) memory error with (signed)
decoding error. The main effect of ROI on this correlation was significant (permuted one-way

repeated-measures ANOVA, p < 0.01, = 0.17). Memory error correlated with the neural error
in all the ROIs, except iPCS (bootstrapping test, p < 0.05; Fig. 7B). We obtained similar results
when binning each participant’s trials based on decoding error and pooled the data across
participants (Fig. 7C).
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Figure 7. Errors in neural decoding of
working memory predict behavioral
memory errors in Experiment 2. (A)
Behavioral memory error plotted against
neural decoding error of an example
participant. (B) Correlations are computed
as circular correlations between the
memory error and neural decoding error.
The filled gray dots represent individual
participants. The empty white dots
represent the group average. The error
bars represent ±1 SEM. (C) Memory error
plotted against decoding error. The four
colors indicate four bins (within each of 14
participants) sorted by the decoding error.
The gray line in each panel represents the
best linear fit. The value at the lower right
of each panel is the Pearson correlation
coefficient. Overall, these results replicate
those reported in Experiment 1 (Figure 4).

While our model made direct predictions that the decoded location and decoded
uncertainty are reflected in memory reports and uncertainty judgments, respectively, there could
additionally exist a relationship between the decoded uncertainty and the variability of memory
reports 42. Within the context of spatial VWM, decoded uncertainty did not correlate with the
magnitude of memory error, or with the variability of memory reports (Supplementary Fig. 7).
To investigate whether such relationships between decoded uncertainty and memory errors
exist at a cross-subject level, for each participant, we averaged the decoded uncertainty across
trials. Widespread across multiple ROIs in visual cortex and IPS, we found that participants with
larger averaged decoded uncertainty performed worse in the behavioral memory reports when
quantified as their averaged magnitude of behavioral memory error (Fig. 8) or as the standard
deviation of their behavioral error distribution (Supplementary Fig. 8). These results
demonstrate a linkage between the precision of VWM neural representation in these brain
regions and the precision of behavioral memory reports.
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Figure 8. Participants with
overall greater decoded
uncertainty have less
precise working memory.
(A) Experiment 1. Each dot
represents one participant.
The decoded uncertainty
(x-axis) and the absolute
value of memory error
(y-axis) was averaged
across trials for each
participant. The gray lines
represent the best linear fit.
(B) Experiment 2.

Discussion
Although it is well established that the contents of working memory can be decoded from

human brain activity, it remains unknown whether and how memory uncertainty is represented
in the brain. Here, inspired by the theory of probabilistic population codes 37,38,40,41, we tested the
hypothesis that the human brain encodes VWM as a probability distribution over the
remembered feature space. In two independent experiments using a generative model of neural
activity combined with a multivariate Bayesian decoder, we tested two central predictions that
stem from this hypothesis. First, after validating that our procedures could decode the precise
contents of VWM during a memory retention interval, we discovered that errors in our neural
decoder predicted the direction and amplitude of memory errors made later in the trial. Second,
we discovered that the uncertainty in our neural decoder predicted the memory uncertainty
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explicitly reported by our participants. Together, these results provide strong evidence that the
content of our working memory is a read-out of a noisy probability distribution encoded in the
population activity of neurons whose distribution width conveys information about memory
uncertainty.

The theory of probabilistic population codes was originally proposed to explain how the
brain can jointly represent the estimate and the uncertainty of sensory stimuli used during
perception. Per this theory, the brain possesses knowledge about the generative process of
neural activity 37–41,52. This knowledge and the variability in the response of cortical neurons
naturally allow the neural population to represent the probability distribution over the perceptual
stimulus space for any pattern of neural activity. Neurophysiological experiments measuring
population-level neural responses have found evidence supporting the predictions of
probabilistic population codes for visual perception in non-human primates 44,53,54. Here, we
demonstrate that probabilistic population codes are not limited to visual perception, but are also
used to represent information actively maintained in working memory in support of higher
cognition. Our computational neuroimaging approach—utilizing the knowledge of a generative
model and applying Bayesian decoding on the observed fMRI activation—mimics how the
‘decision maker’ in the brain performs inference based on its knowledge of its own generative
model and the observed neural activity during the VWM delay period.

Under the rubric of probabilistic population codes, the fluctuations of both the content and
the uncertainty of VWM arise from the noise in the neural population response that encodes the
memorized stimulus. Thus, it is critical that we are able to decode VWM content and its
uncertainty on a trial-by-trial basis in order to study their relationships with behavior. Previous
neuroimaging studies have mostly reported VWM decoding accuracy (or fidelity) per condition,
averaged across all trials in the experiment (e.g., 14–26,28–30,55). These indices represent decoding
quality aggregated across many trials, and thus they are inadequate to explain or to estimate
how VWM content and its uncertainty fluctuate across individual trials.

Unlike previous studies that used simpler linear encoding models 56 to decode the content
of spatial VWM 16,23,25,50, we used a generative model that improves the precision of decoding by
estimating sources of measurement and neural noise 45. In both experiments, we found
remarkably precise representations of the memorized target locations in a widely distributed
network of brain regions including visual, parietal, and frontal cortex. Encouraged by the
robustness of the decoding, we asked whether these population responses in fact encoded the
memory, including small spatial errors in memory, rather than the veridical target locations. On a
trial-by-trial basis, we found that errors in our neural decoder predicted the direction and
amplitude of memory errors (Fig. 4). These results indicate that the neural representations we
decoded from the late delay period preceding the participants’ memory-guided responses,
contain information that affects behaviours beyond that present in the physical stimulus.
Specifically, it strongly suggests that one’s memory depends on the read-out of these population
encoded representations. In neurophysiological studies, this type of correlation (between neural
noise and behavioral choices) has sometimes been used to infer a causal link between neural
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responses and behaviors (reviewed in 57) We observed the strongest correlations in V3AB in
dorsal extrastriate cortex, followed by neighboring regions V3 and IPS0. These results are
generally consistent with neurophysiological studies of perceptual decisions reporting that
choice-related activity is weak at best in early sensory cortex, and stronger in higher-tier sensory
cortices 57–63.

Next, we leveraged the signal-trial decoding to investigate the neural basis of VWM
uncertainty. As VWM uncertainty is defined as the width of one’s belief distribution over possible
stimulus values (memorized location) or the subjective sense of the quality of one’s own
memory, uncertainty can fluctuate across trials even when remembering the exact same
stimulus. In line with previous behavioral studies 5,7,9,12,13, we found that uncertainty judgements
tracked the quality of VWM on a trial-by-trial basis (Fig. 5D and 5E). Importantly, this
demonstrates that participants were aware of the quality of their memory and adjusted their
uncertainty reports in step with their memory fidelity. We also found that the measured
population encoded responses, when analyzed with our generative model, stored memory
uncertainty. On a trial-by-trial basis, memory uncertainty decoded from the retention interval in
V2, V3AB and IPS0 predicted the uncertainty explicitly reported and utilized by the participants
in the wagers made later in the trial (Fig. 6). Recall we also observed strong correlations
between decoding error and memory error in V3AB and IPS0. Theoretically, an estimate of an
item and the uncertainty of the estimate can be jointly encoded as a single probability
distribution by the same population of neurons. Our findings suggest that such an efficient
mechanism exists in V3AB and IPS0 to support VWM.

Our theory-guided approach of decoding uncertainty from the width of a modeled
probability distribution is a departure from previous fMRI studies investigating the neural
correlates of uncertainty or confidence in perception 64 and decision-making 65,66. These previous
studies used linear regression to identify brain regions whose activity increased (or decreased)
with uncertainty report or confidence rating, thereby identifying the brain regions that represent
uncertainty by a ‘rate code’ (i.e., increasing or decreasing averaged response amplitude with
uncertainty or confidence). Perhaps such regions act as a downstream decoder and extract the
uncertainty information represented by the neural populations that encode the stimulus features,
in a way similar to how we decode uncertainty from voxel activity. How the regions with different
coding schemes for uncertainty—the probabilistic population code reported here and the rate
code described in these previous studies—interact is still an open question.

The decodable VWM signals across nearly all retinotopic ROIs in both experiments are
generally consistent with the notion that the storage of VWM content involves a widespread
cortical network 24,27,50,67. Nonetheless, the quality of VWM representations varies greatly across
different brain regions. In dorsal extrastriate cortex, V3AB and its neighboring regions IPS0 and
V3 showed the highest performance in decoding the memorized target locations. The standard
deviations of decoding error distributions were about one third of that of the region with the
lowest decoding performance. Moreover, decoding error and decoded uncertainty from V3AB
and IPS0 exhibited the strongest correlations with behavioral memory error and uncertainty
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judgement respectively. Thus, these regions could be most critical for maintaining the content of
spatial VWM. These results converge with recent studies on mental imagery and episodic
memory: Breedlove et al. 68 built an encoding model to predict the brain activity corresponding to
different ‘imagined’ images. They found higher prediction accuracy in higher-level visual areas
(V3AB and IPS) than in early visual cortex. Similarly, Favila et al. 69 found that during retrieval of
spatial positions from episodic memory, the spatially-localized memory-evoked responses in
extrastriate regions V3AB and hV4 were more precise than those observed in early visual
cortex. Together, their and our results highlight the importance of dorsal mid- and high-level
visual cortex in maintaining behaviorally relevant information in the absence of bottom-up
inputs.

Despite the centrality of the prefrontal cortex to working memory theory 70,71, the inferior
and superior branches of the precentral sulcus (iPCS and sPCS) had the lowest decoding
performance, and only in sPCS did decoding error correlate with memory error. In addition,
across participants the decoding quality from frontal cortex did not predict how well a participant
performed in the VWM tasks (Fig. 8 and Supplementary Fig. 8). We choose sPCS and iPCS
as ROIs because in the frontal cortex they exhibit the clearest retinotopic organization 48, and
the strongest decodable spatial VWM signals in previous fMRI studies 16,23,25. The sPCS is
believed to be the human homologue of monkey frontal eye field (FEF) 72,73, a macaque region
known to be critically involved in spatial VWM 74–76, covert attention orienting 77,78 and saccadic
eye movement 79,80. Perhaps surprisingly, our results indicate that compared to dorsal high-level
visual cortex and IPS0, sPCS contained a quite coarse representation of memorized locations.

In a previous study, van Bergen et al. 42 developed and applied the Bayesian decoding
method used here to quantify sensory uncertainty from early visual cortex activation patterns
(voxels pooled across V1, V2 and V3) evoked by visual stimuli. They found that the uncertainty
decoded from early visual cortex correlated with participants’ behavioral variability and errors in
an orientation estimation task. Here, we did not observe a correlation between the decoded
uncertainty and the variability (or error) of memory reports within individuals (when the
individual-participant means were removed) (Supplementary Fig. 7). This discrepancy might
reflect differences in how locations and orientations are encoded. Perhaps the correlation
between decoded uncertainty and behavioral variability reported by van Bergen et al 42 indicates
that their observers did not solely use the posterior mean when reporting orientation. For
example, the use of a “posterior probability matching” strategy (reporting an orientation by
drawing a sample from the posterior distribution e.g., 81) would increase the correlation between
uncertainty and behavioral variability. Uncertainty and error (or bias) would correlate if an
observer weighted the prior information more when the uncertainty was high. It is well
documented that in orientation estimation, observers employ a prior reflecting the statistics of
the orientations in the natural environment (e.g., more cardinal than oblique orientations 82,83),
which is different from the statistics of the orientations used in van Bergen et al. 42 (e.g., uniform
distribution). In the case of spatial VWM employed here, it is unlikely that observers utilized a
prior for encoding locations and instead assumed that objects appeared uniformly at all possible
locations (polar angles).
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In a number of cortical areas, we observed strong correlations between participants'
average decoded uncertainty (across all trials) and their average memory error (across all trials;
Fig. 8). Participants who on average represented remembered locations more precisely in their
neural activation patterns—that is, with lower decoded uncertainty—were those whose working
memory was more precise. This result was consistent across both experiments, and the result
stands when we used an alternative index, the standard deviation of the distribution of memory
errors, to quantify memory precision (Supplementary Fig. 8). These findings support previous
studies that identified cross-subject correlations between average decoding performance and
average behavioral performance 19,22,29. Overall, the strong cross-subject correlations we
observed demonstrated that our model-based decoding approach not only provided
unprecedented accuracy of decoding single-trial spatial VWM content, but also extracted
features of individuals’ neural circuitry that constrained individual working memory performance.
Working memory abilities predict a number of cognitive and intellectual functions, suggesting
that it might be a core component upon which many high-level cognitive abilities depend 84,85.
Although the neural sources of these individual differences in working memory remain elusive,
our results suggest that the noise in the population-encoding may be an important neural source
of the individual differences in VWM quality.

Overall, across two computational neuroimaging experiments we demonstrated that
humans encode working memory representations as a probability distribution maintained via the
activity patterns in posterior parietal and extrastriate visual cortex. These results extend
previous studies identifying probabilistic sensory representations during perceptual processing
and establish that probabilistic population codes are an efficient and general neural coding
principle used to support higher cognitive behaviors like working memory.
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Methods

Participants
Thirteen participants took part in Experiment 1 (two authors). Data of two participants were
excluded because the eye tracking data were too noisy for extracting gaze positions reliably.
Nine participants from Experiment 1 and five additional participants joined in Experiment 2. All
participants had normal or corrected-to-normal vision. The experiments were conducted with the
written, informed consent of each participant. The experimental protocols were approved by the
University Committee on Activities involving Human Subjects at New York University, and
participants received monetary compensation ($30/hr).

Procedures
Experiment 1. Participants performed a memory-guided saccade task in the fMRI scanner. Each
trial started with the onset of the working memory target (light gray dot) with a duration of 500
ms followed by a delay period of 12000 ms. Participants were required to remember the location
of the target, and hold their gaze at the fixation point at the screen center until the end of the
delay period. After the delay period, the response cue, the fixation point changing from a light
gray circle outline into a filled light gray circle, instructing participants to make a saccadic eye
movement to the remembered location. 700 ms after the onset of the response cue, a feedback
stimulus (a white dot) was presented at the target location for 800 ms. Participants made a
saccade to the feedback dot before moving their eyes back to the screen center. The intertrial
interval was pseudo-randomly chosen from a range between 6, 9, or 12 seconds. Each
participant completed 304 to 496 trials (346 trials per participant on average) in 2 to 3 1.5-hr
scanning sessions on separate days. Each session consisted of 9 to 10 runs, each with 16 trials
evenly spanning the circular space (22.5 deg spacing). Participants were allowed to take a
break between runs.

Experiment 2. The procedures of Experiment 2 were the same as Experiment 1 except the
following: In addition to the filled black dot at the screen center, the response cue contained a
dark ring of which radius matching the eccentricity of the target. Participants made a saccadic
eye movement onto the ring when reporting the remembered locations. Upon the detection of
the saccade offset, a dot was presented at participants’ saccade landing location. Participants
held a dial in their dominant hands, and were allowed to use the dial to manually adjust the
location of the dot if they felt that its location did not match the location they intended to report
(e.g., due to the noisy online gaze position readout). On average, only in 14% of the trials,
participants’ final reported location was the same as the location initially marked by the dot. To
finalize the memory report, the participants pressed the button on a button box on the other
hand. Upon the button press, an arc centered at the dot (reported location) appeared on the

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.05.438511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438511
http://creativecommons.org/licenses/by-nc-nd/4.0/


ring. In a post-estimation wager, the participants used the dial to adjust the length of the arc.
Spinning the dial clockwise increased the length of the arc along the ring and vice versa.
Participants were instructed to reflect the uncertainty of their memory on the length of the arc,
the longer the arc, the more uncertain. Participants finalized the arc length by pressing a button
and then the feedback stimulus (a white dot) appeared at the true target location. The number of
points earned by participants for each trial was displayed on the screen along with the feedback
stimulus. Participants were rewarded with some points only if the true target location fell within
the arc. The number of points was 100e−0.08d, in which d was the length of the arc in polar angle
(°). That is, the number of points they could gain decreased exponentially with the length of the
arc. To gain more points, an optimal observer should increase the length of the arc with their
uncertainty. Participants were well-informed regarding the structure of the betting game and the
policy of reward. Each participant completed 180 to 270 trials (227 trials per participant on
average) in 2 to 3 2-hr scanning sessions on separate days.

Passive viewing control experiment. We scanned a subset of participants (n = 3) on an
additional control experiment in which we presented a high-contrast, salient flickering
checkerboard stimulus at the same locations as the WM target stimuli while participants
performed a demanding discrimination task at fixation. Trial timing was identical to that used in
Experiments 1 and 2. Instead of a dim target stimulus, we presented a full-contrast flickering
checkerboard (0.875 deg radius; 1 cycle/deg spatial frequency; 8 Hz flicker) for 500 ms,
followed by a 12 s ‘delay’ period. Throughout the trial, including during the stimulus presentation
period, participants carefully attended a rapidly-flashing “+” stimulus at fixation (4 Hz) to detect
targets defined by a widening or heightening of the “+” and responding with one button for each
target type. We adjusted the aspect ratio of the fixation discrimination stimulus across scanning
runs to maintain performance ~75%. At the end of the 12 s “delay” period, the fixation task
concluded and participants received feedback about their detection performance via
green/red/yellow dots (for correct/incorrect/missed responses) presented around fixation. Each
of the 3 participants performed 2 sessions of this task, totaling 20-24 runs per participant.

Setup and stimuli
Visual stimuli were presented by an LCD (VPixx ProPix) projector located behind the

scanner bore, and were viewed by participants through an angled mirror with a field of view of
52° by 31°. A gray circular aperture with a diameter of 30° was presented on the screen
throughout the experiments. The working memory target was a light gray dot with a diameter of
0.65°. It had an eccentricity at 12° from the central fixation point and its polar angle was
pseudo-randomly chosen from 1 of 16 locations that evenly tiled the full circle within each run,
and the polar angle offset of the 16 locations was varied across runs.

Eyetracking

For all imaging sessions, we measured eye position using an EyeLink 1000 Plus infrared
video-based eye tracker (SR Research) mounted beneath the screen inside the scanner bore
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operating at 500 Hz. The camera always tracked the participant’s right eye, and we calibrated
using either a 13-point (Experiment 1, Experiment 2, and the passive viewing experiment) or
5-point (retinotopy) calibration routine at the beginning of the session and as necessary
between runs. We monitored gaze data and adjusted pupil/corneal reflection detection
parameters as necessary during and/or between each run.

Behavioral data analysis

For Experiment 1, we used gaze position estimated from eye position traces as our
measurement of VWM performance. We preprocessed raw gaze data using fully-automated
procedures implemented within iEye_ts (github.com/tommysprague/iEye_ts) to remove blinks,
adjust for drift over the course of a run, recalibrate gaze data trial-by-trial, automatically identify
memory-guided saccades, and flag trials for rejection (for behavioral analyses).

We defined blinks as 200 ms before and after periods when pupil size fell below the 1.5th
percentile of the distribution across all pupil size samples of the entire run (396 s). We computed
velocity based on smoothed gaze time courses (5 ms standard deviation Gaussian kernel). We
defined saccades based on a velocity threshold of 30 deg/s and a minimum duration of 0.0075 s
and 0.25 deg amplitude. We defined periods between saccades as fixations. We drift-corrected
each trial based on the modal fixation position during the trial period before the go cue
appeared. To recalibrate gaze traces on each trial, we found the nearest fixation to the known
target position during the feedback period (800 ms during which target was re-presented and
participants were instructed to fixate this position) and fit a 3rd-order polynomial for each
coordinate (X,Y) to map between actual WM position and measured gaze coordinate. We used
this polynomial to recalibrate the X and Y traces across all trials within each run. We used trials
for which measured gaze position was within 2.5 deg visual angle of the feedback target
location for fitting the polynomial, but all trials were subjected to the resulting recalibration.

We quantified WM error based on the endpoint of the large saccadic eye movement
towards the remembered position (> 5 deg amplitude, < 150 ms saccade duration), which we
call the ‘primary saccade’, and the final eye position before the feedback stimulus appeared
(‘final saccade’). On trials in which a subsequent corrective saccade is not made before the
feedback stimulus appeared, these positions were considered identical. For both primary and
final saccades, the saccade must have both begun and ended during the response period.
Moreover, we exclude trials in which participants initiate a saccade faster than 100 ms after the
response cue appeared 86.

We flagged trials for exclusion based on: (1) failures of automatic drift correction and/or
excessive necessary drift correction (beyond 2.5 deg), (2) fixation outside a 2.5 deg aperture
around fixation during the delay period, (3) ill-defined primary saccade, or (4) excessive error for
primary saccade (> 5 degree visual angle). We included all trials for fMRI data analyses
regardless of behavioral exclusion criteria during model estimation to ensure a balanced
sampling of spatial positions, but only included trials with reliable behavioral estimates for all

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.05.438511doi: bioRxiv preprint 

https://paperpile.com/c/hHoPbd/OHOm
https://doi.org/10.1101/2021.04.05.438511
http://creativecommons.org/licenses/by-nc-nd/4.0/


subsequent analyses including quantifying the decoding performance and correlating decoded
results with behaviors (Fig. 1-8).

The analysis for Experiment 2 was similar to that of Experiment 1, with a few exceptions.
As participants were allowed to use the dial to manually adjust the remembered location, we
used the final dot location after the manual adjustment as the participants’ memory reports.
Different from the definition of excessive error (> 5 degree visual angle) used in Experiment 1,
we computed the memory error and the reported arc length in unit of degree polar angle and
excluded the trials with memory error exceeding the mean error plus three standard deviations.
The same exclusion criterion was applied to the trials with excessive reported arc length.

For both experiments, when quantifying participants’ behavioral memory error (Fig. 1, 4, 5
and 7), we computed the error as the (signed) difference between the reported location and WM
target position in polar angle.

Retinotopic mapping and the identification of region of interest (ROI)

Each participant was scanned for one 1.5-2 hour fMRI session for retinotopic mapping.
The experimental procedures followed those reported by Mackey et al. 48. Participants
maintained fixation at the screen center while covertly tracking a bar aperture sweeping across
the screen in discrete steps and in four directions: a vertical aperture moving from the left to the
right, or from the right to the left of the screen; a horizontal aperture moving from the top to the
bottom, or from the bottom to the top of the screen. The bar aperture was divided into three
rectangular segments (defined as a central segment and two flanking segments) with equal
sizes, each containing a random dot kinematogram (RDK). Participants’ task was to discriminate
in which one of the two flanking segments, the motion direction of the RDK was in the same
direction as the one within the central segment. The dot motions of all the three segments
changed with each discrete step. Participants reported their answer by a button press before the
bar moved into the next step. The coherence of the random dot motion was staircased in order
to keep the difficulty of the task at about 75% accuracy. Each session contained eight to nine
runs. In each run, the bar aperture swept across the screen 12 times, and each swept consisted
of 12 discrete steps. The four sweeping directions were interleaved and randomized within each
run. While Mackey et al 48 presented different bar widths in different scanning runs, here we
interleaved 3 different bar widths during the same run.

We fit a population receptive field (pRF) model with compressive spatial summation to the
BOLD time series of the retinotopic mapping data for each participant 49,87 after smoothing on
the surface (5 mm FWHM Gaussian kernel). We visualized on the cortical surface the voxels’
preferred phase angle and eccentricity estimated by the pRF model. To define the ROIs, we set
a threshold to only include voxels with greater than 10% response variability explained by the
pRF model. We then drew ROIs by visual inspection, primarily by identifying reversals of the
voxels’ preferred phase angle on the cortical surface. We define bilateral dorsal visual ROIs V1,
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V2, V3, V3AB, IPS0, IPS1, IPS2, IPS3, iPCS and sPCS, each with a full visual field
representation.

MRI acquisition
MRI data were acquired on a Siemens Prisma 3T scanner with a 64-channel head/neck

coil. We collected functional imaging for the working memory experiments and the passive
viewing experiment with 44 slices and a voxel size of 2.53 mm (4x simultaneous-multi-slice
acceleration; FoV 200 x 200 mm, no in-plane acceleration, TE/TR: 30/750 ms, flip angle: 50
deg, Bandwidth: 2290 Hz/pixel; 0.56 ms echo spacing; P→ A phase encoding). Intermittently
throughout each scanning session we acquired pairs of spin-echo images in the forward and
reverse phase-encoding direction with identical slice prescription and no
simultaneous-multi-slice acceleration (TE/TR: 45.6/3537 ms; 3 volumes per phase encode
direction). These pairs are used to estimate a field map used to correct for local spatial
distortions. The slice prescription was approximately parallel to the calcarine sulcus and
covered most of the occipital lobe and the parietal lobe, with the exception of ventral temporal
poles and ventral orbitofrontal cortex in some participants. The functional imaging data for
retinotopic mapping was acquired in a separate session at a higher resolution, with a slice
prescription spanning 56 slices (4x simultaneous multislice acceleration) and a voxel size of 23

mm (FoV 208 x 208 mm, no in-plane acceleration, TE/TR: 36/1200 ms, flip angle: 66 deg,
Bandwidth: 2604 Hz/pixel (0.51 ms echo spacing), P→A phase encoding).

For each participant, in the retinotopic mapping session, we also collected 2 or 3 T1
weighted whole-brain anatomical scans (MPRAGE sequence; 0.8 mm3).

MRI data preprocessing
T1-weighted anatomical images were segmented and cortical surfaces were constructed

using Freesurfer (v6.0). Functional data (EPI time series) of both the retinotopic mapping
experiment and the VWM experiments were preprocessed by customized scripts using functions
provided by AFNI. We applied B0 field map correction and reverse-polarity phase-encoding
(reverse blip) correction to the functional data. Spatial smoothing (5 mm FWHM on the cortical
surface) was only applied to the retinotopic mapping data. All the functional data were
motion-corrected (6-parameter affine transform), aligned to the anatomical images, projected
onto the cortical surface, then re-projected into volume space. This process incurs a small
amount of smoothing along vectors perpendicular to the cortical surface, but no additional
smoothing was applied. When possible, all linear and nonlinear spatial transformations were
concatenated into a single transform operation to minimize additional smoothing. Linear trends
were removed from the time series. For the VWM experiments, the time series of each voxel
was first converted into percentage signal change for each run, and then normalized (z-score)
across time points within each run.
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Generative model
We decoded the content of WM using a generative model proposed by van Bergen et al. 42

and van Bergen and Jehee 45. Specifically, we used the method named TAFKAP described in 45.
Here, in this and the next section we briefly describe the critical components of the model and
the model-fitting procedures. In the generative model, the multivariate voxel response given the
stimulus location (polar angle) was modeled as a multivariate normal distribution. The average
response (mean) of each voxel given a stimulus was determined by its tuning function (voxel
response as a function of polar angle). The voxel tuning function was approximated by a
weighted sum of eight basis functions that evenly tiled the location space. The basis functions
are raised sinusoidal functions

where represents half-wave rectification and is the center of the kth channel. The
response of ith voxel given a stimulus s is then modeled as𝑏

𝑖

where is a weighting matrix that determines the weights of each basis function for each
voxel. Here, two sources of variability are considered. First, is the noise specific to each basis
function. This noise was carried over into each voxel by the weighting matrix . It modeled the
noise shared across voxels with similar voxel tuning functions. The model assumed that
follows a zero-mean normal distribution whose covariance matrix is a constant noise magnitude

multiplied with an identity matrix . Second, v represents the noise specific to
each voxel. The model assumed that the voxel-wise noise follows a zero-mean normal
distribution . The covariance matrix of this distribution is approximated by a
rank-one covariance matrix plus a diagonal matrix

where represents Hadamard product, element-wise product between two matrices. Thus,
based on this generative process, the theoretical covariance matrix of the multivariate response
of the voxels given a stimulus s is

In addition to the theoretical covariance matrix, the model also considered the empirical
sample covariance
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where is the training data and is the response of the basis functions given the training set
stimuli. Thus, for each training dataset, we assumed that the voxel activity pattern followed a
multivariate normal distribution.

When the number of variables (voxels) is larger than the number of observations (trials),
the sample covariance is not invertible. To ensure an invertible and stable estimation of the
covariance matrix, here the covariance matrix was modeled as the sample covariance matrix
“shrunk” 88 to a target covariance matrix, the theoretical covariance matrix . The degree of
shrinkage is determined by a free parameter (see details in 45).

Model fitting and decoding
For each voxel, we averaged the z-normalized percentage signal change of the BOLD

time-series over a time window at 5.25 to 12.00 seconds from the delay onset. This (averaged)
voxel response corresponding to the delay period was the input to the model. We trained the
model and decoded spatial positions using a leave-one-run-out cross-validation procedure. For
each participant, we trained the model using all the trials except those from one held-out run.
We first selected the voxels with the strongest location selectivity. For each voxel, we performed
a one-way ANOVA on the training dataset using the 32 target locations as a categorical
independent variable and the voxel response as the dependent variable. We selected 750
voxels with the largest F value. These voxels were used for training the model, and later for
decoding the data in the testset.

TAFKAP used a method called “bootstrap aggregating” or “bagging” to take the uncertainty
of model parameters into account. Bagging is a special case of model averaging. By
bootstrapping, the trials in the training dataset were resampled with replacement for multiple
times to generate many bootstrap resampled datasets. Each resampled dataset had the same
number of trials as the training dataset. For each resampled training dataset , a set of free
parameters was estimated by ordinary least squares. Each trial in the testset (the held-out
run) was then decoded based on Bayes rule. For each trial in the testset, the posterior
probability of the stimulus given the multivariate voxel response was computed as
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We assumed the prior to be a uniform distribution and we approximated the continuous
posterior probability function by sampling 1000 steps evenly spanning the location space. The
normalization factor in the posterior was computed by numerical integration. Note that for each
trial in the testset, decoding was performed multiple times based on the parameters estimated
using each resampled training dataset. The decoding results were averaged across all
resampled training datasets to obtain one decoded posterior probability distribution

We then numerically estimated the circular mean of the posterior ( ) to represent the
decoded location, and the circular standard deviation of the posterior to represent the
uncertainty of the remembered location. The number of bootstrap resampled dataset generated
( ) was determined by a stopping criterion based on Jensen-Shannon divergence (see
details in 45).

Statistical analysis
We tested whether the decoding error distributions (Fig. 3A and Supplementary Figure

6A) departed from a uniform distribution by a (permutation-based) V test 89, which is a circular
variable equivalent of the Rayleigh test with the alternative hypothesis that the decoding error
distributions had means centered at zero degree (polar angle). For each participant and each
ROI, we computed the V statistics and compared it with the null distribution, obtained by
randomly permuting the target location and then recomputing the decoding errors and their V
statistics for 2000 times. The results of the V test are reported in Supplementary Table 1 and 4.

Decoding performance was quantified by two indices: the standard deviation of the
decoding error (the decoded location minus the target location in polar angle) distribution
(Supplementary Table 2 and 5), and the circular correlation between the decoded location and
the target location (Supplementary Table 3 and 6). For each subject and ROI, we computed
the standard deviation of the decoding error distribution and compared it with the null
distribution. We obtained the null distribution by randomly permuting the target location and then
recomputing the standard deviation of the decoding error for 2000 times. At the group level, we
conducted the same permutation procedure to obtain the null distribution of the group-averaged
standard deviation of the decoding error distribution. The same statistical procedures were
applied to the circular correlation.

To relate decoding outputs to behaviors we conducted two sets of statistical tests in
parallel (1) We conducted non-parametric bootstrapping to test the significance of the single-trial
correlations reported in both experiments, including the circular correlation between the
decoding error and memory error (Fig. 4B and Fig 7B), the correlation between decoded
uncertainty and reported arc length (Fig. 6B), the correlation between decoded uncertainty and
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saccade reaction time (Supplementary Fig. 5B and 7D), and the correlation between decoded
uncertainty and the magnitude of memory error (Supplementary Fig. 7A and 7D). For each
ROI, we computed the correlation (or circular correlation) between the two variables in interest
for each participant, and averaged the correlation coefficients across participants. We then
resampled the correlation coefficients (with replacement) and computed the averaged
correlation coefficients. We repeated this procedure for 2000 iterations to obtain a bootstrapped
distribution of the averaged correlation coefficients. The percentage of the iterations in this
distribution that was higher or lower than zero was used to compute (two-tailed) p-values. (2)
Following the statistical tests conducted in the previous studies applying the same Bayesian
decoding method 42,45, we also computed binned-correlation for statistical analysis (Fig. 4C, 6C,
7C and Supplementary Fig. 5C, 5E, 7B, 7C, 7E and 7F). For each participant, the trials were
sorted into four bins with increasing decoding error or decoded uncertainty. The memory error or
reported arc length was then computed for each bin. We then pooled data points across
participants (four data points per participant) after removing the mean of each participant. For
visualization, we added the grand means back to the data when plotting binned correlations.
Pearson correlation coefficients were then computed based on the pooled data. We compared
the correlation coefficients to the null distribution obtained by permuting the data points in the
pooled data set.

We conducted permutation ANOVA to test the effect of ROI on decoding performance
(Fig. 3B and Supplementary Fig. 1) and error correlations (Fig. 4B and 7B). The F-statistic
computed from the original data was compared to the null distribution of F-statistics, which was
obtained by randomly permuting the ROI labels and calculating the F-statistic for 2000 times.
We used a false-discovery rate (Benjamini–Hochberg procedure) for correction of multiple
comparisons (the number of ROIs) with q = 0.05. We reported adjusted p-values unless
otherwise specified.
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Supplementary Materials

Supplementary Figure 1. Decoded location correlates with target location. (A) Experiment
1. All ROIs showed above chance correlations (p<0.001 for all ROIs, permutation test). (B)
Experiment 2 All ROIs showed above chance correlations (p<0.001 for all ROIs, permutation
test). Decoding performance varied significantly across ROIs in both experiments (permutation

one-way repeated-measures ANOVA, F(9, 90) = 17.12, p < 0.001, = 0.63 for Experiment 1;

F(9, 117) = 48.16, p < 0.001, = 0.79 for Experiment 2).
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Supplementary Figure 2. Decoding performance is low in the late time window in the
passive viewing experiment. In a control experiment, a subset of participants (n = 3)
performed a demanding task at fixation throughout each trial. During the same interval of the
trial during which the WM target was presented in Experiment 1 and 2, we presented a
high-contrast flickering checkerboard stimulus to drive strong sensory responses. (A) - (C) are
the decoding results from a late time window (5.25 to 12 seconds from the delay period onset),
same as the time window used for VWM analyses in Figs. 3-4 and Fig. 6-8. (A) Decoding
performance of an exemplar participant, as in Fig. 3A. The top row, decoded location plotted
against target location. The bottom row, the distributions of decoding error (decoded location
minus the target location). (B) Decoding variability, quantified as the standard deviation of the
decoding error distribution. (C) Circular correlation between the decoded location and the target
location. In (B) and (C), the filled gray dots represent individual participants. The empty white
dots represent group average. The error bars represent ±SEM. For comparison, the blue and
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the green data points represent the results of Experiment 1 and 2 using the same late time
window. (D) - (F) represent the decoding results from an early time window (0.75 to 5.25
seconds from the delay period onset). Decoding performance was high for early, but not late,
time periods. See Supplementary Table 1 and 2 for statistical tests on the decogin variability and
circular correlation. For the late time window, decoding performance was higher in VWM
experiments (Experiment 1 and 2) than in the passive viewing experiment.
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Supplementary Figure 3. Arc length reports as a function of target location for individual
participants. Here 90° corresponds to the top of the vertical meridian and 180° represents the
left of the horizontal meridian.
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Supplementary Figure 4. Memory error and memory variability increase with reported arc
length. The data here are similar to those reported in Fig. 5D and 5E, except that the effect of
target location was regressed out from the arc length. (A) Behavioral error as a function of
reported arc length. Four colors represent four bins (within each of 14 participants) with
increasing arc length. (B) Behavioral variability as a function of reported arc length. On trials
where participants report longer arc lengths, behavioral recall of remembered positions has
greater error magnitude (permutation test, p < 0.05) and is more variable (permutation test, p <
0.01).
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Supplementary Figure 5. Saccade reaction time. (A) Reported arc length increased with
saccade reaction time. Four colors represent four bins (within each of 14 participants) with
increasing saccade reaction time. (B) Correlations between saccade reaction time and decoded
uncertainty in Experiment 1. The filled gray dots represent individual participants. The empty
white dots represent the group average. The error bars represent ±SEM. (C) Saccade reaction
time plotted against decoded uncertainty in Experiment 1. The four colors indicate four bins
(within each of 14 participants) with increasing decoded uncertainty. The gray line in each panel
represents the best linear fit. The value at the lower right of each panel is the Pearson
correlation coefficient. (D-E) Same analysis for Experiment 2, corresponding to (B) and (C).
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Supplementary Figure 6. Working memory content can be precisely decoded in
Experiment 2. (A) Decoding performance of an example participant. For each ROI, the top
figure represents the decoded location as a function of target location. The bottom figure is the
distribution of decoding error (decoded location minus the target location). (B) Decoding
performance quantified as decoding variability, the standard deviation of the decoding error
distribution. The filled gray dots represent individual participants. The empty white dots
represent group average. The error bars represent ±SEM. Decoding performance varied

significantly across ROIs (permutation one-way repeated-measures ANOVA, p < 0.001, =
0.82).
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Supplementary Figure 7. Correlations between the decoded uncertainty, memory error
and memory variability. (A) Correlations are computed between decoded uncertainty and the
magnitude of memory error for Experiment 1. The filled gray dots represent individual
participants. The empty white dots represent the group average. The error bars represent
±SEM. (B) The magnitude of memory error plotted against decoded uncertainty. The four colors
indicate four bins (within each of 14 participants) sorted by decoded uncertainty. The gray line in
each panel represents the best linear fit. The value at the lower right of each panel is the
Pearson correlation coefficient. (C) Similar to (B), but for each bin, the variability of memory
recalls is plotted for the y-axis instead of the magnitude of error. (D-F) Correspond to (A-C) but
for Experiment 2. Across (A-F) no ROI shows significant correlations between decoded
uncertainty and memory error (or variability).
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Supplementary Figure 8. Participants with higher decoded uncertainty exhibit larger
variability in memory report. . Each dot represents one participant. The decoded uncertainty
(x-axis) was averaged across trials per participant. Memory variability (y-axis) is the standard
deviation of behavioral error distribution of each participant. The gray lines represent the best
linear fit.
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V1 V2 V3 V3AB IPS0 IPS1 IPS2 IPS3 iPCS sPCS

S1 192 (<.001) 223 (<.001) 236 (<.001) 240 (<.001) 246 (<.001) 224 (<.001) 228 (<.001) 199 (<.001) 78 (<.001) 175 (<.001)

S2
18 (0.073) 34 (0.001) 22 (0.022) 19 (0.066) 15 (0.142) 15 (0.133) 8 (0.408) 8 (0.429) -11 (0.319) 1 (0.914)

S3
295 (<.001) 302 (<.001) 291 (<.001) 314 (<.001) 286 (<.001) 245 (<.001) 293 (<.001) 256 (<.001) 78 (<.001) 186 (<.001)

S4
138 (<.001) 177 (<.001) 204 (<.001) 256 (<.001) 253 (<.001) 194 (<.001) 286 (<.001) 269 (<.001) 94 (<.001) 131 (<.001)

S5
129 (<.001) 192 (<.001) 195 (<.001) 224 (<.001) 214 (<.001) 133 (<.001) 177 (<.001) 164 (<.001) 34 (0.001) 98 (<.001)

S6
161 (<.001) 189 (<.001) 181 (<.001) 254 (<.001) 213 (<.001) 181 (<.001) 233 (<.001) 211 (<.001) 47 (<.001) 150 (<.001)

S7
60 (<.001) 66 (<.001) 91 (<.001) 119 (<.001) 127 (<.001) 78 (<.001) 90 (<.001) 40 (<.001) 18 (0.076) 1 (0.885)

S8
55 (<.001) 82 (<.001) 108 (<.001) 142 (<.001) 137 (<.001) 92 (<.001) 113 (<.001) 107 (<.001) 45 (<.001) 65 (<.001)

S9
197 (<.001) 226 (<.001) 247 (<.001) 261 (<.001) 251 (<.001) 168 (<.001) 115 (<.001) 194 (<.001) 17 (0.189) 90 (<.001)

S10
195 (<.001) 225 (<.001) 214 (<.001) 228 (<.001) 219 (<.001) 165 (<.001) 160 (<.001) 136 (<.001) 51 (<.001) 55 (<.001)

S11
38 (0.001) 64 (<.001) 98 (<.001) 109 (<.001) 142 (<.001) 115 (<.001) 129 (<.001) 34 (0.002) 6 (0.632) 7 (0.511)

Supplementary Table 1. Statistical test for the uniformity of the decoding error
distributions in Experiment 1. For each participant and ROI, we reported a V statistics
and the (uncorrected) p-value obtained by permutations (see Methods). A p-value
smaller than 0.05 indicates that the error distribution is not uniform and favors the
alternative hypothesis that the error distribution has a mean centered at zero degree
(polar angle). The p-values smaller than 0.05 are highlighted by red color.
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V1 V2 V3 V3AB IPS0 IPS1 IPS2 IPS3 iPCS sPCS

Experiment 1

S1
50 (<.001) 38 (<.001) 33 (<.001) 32 (<.001) 29 (<.001) 38 (<.001) 36 (<.001) 47 (<.001) 91 (<.001) 55 (<.001)

S2
127 (0.447) 110 (0.006) 121 (0.185) 122 (0.222) 131 (0.660) 130 (0.564) 145 (0.591) 143 (0.692) 140 (0.827) 161 (0.143)

S3
28 (<.001) 26 (<.001) 30 (<.001) 20 (<.001) 32 (<.001) 45 (<.001) 29 (<.001) 42 (<.001) 97 (<.001) 62 (<.001)

S4
74 (<.001) 62 (<.001) 54 (<.001) 37 (<.001) 38 (<.001) 57 (<.001) 26 (<.001) 33 (<.001) 90 (<.001) 76 (<.001)

S5
70 (<.001) 48 (<.001) 47 (<.001) 36 (<.001) 40 (<.001) 69 (<.001) 54 (<.001) 58 (<.001) 115 (0.024) 82 (<.001)

S6
73 (<.001) 65 (<.001) 68 (<.001) 49 (<.001) 60 (<.001) 68 (<.001) 54 (<.001) 60 (<.001) 116 (0.005) 76 (<.001)

S7
90 (<.001) 86 (<.001) 73 (<.001) 60 (<.001) 56 (<.001) 80 (<.001) 74 (<.001) 103 (0.001) 125 (0.355) 139 (0.876)

S8
96 (<.001) 81 (<.001) 69 (<.001) 55 (<.001) 57 (<.001) 76 (<.001) 67 (<.001) 69 (<.001) 103 (<.001) 90 (<.001)

S9
54 (<.001) 45 (<.001) 38 (<.001) 33 (<.001) 37 (<.001) 63 (<.001) 80 (<.001) 55 (<.001) 136 (0.688) 90 (<.001)

S10
47 (<.001) 36 (<.001) 41 (<.001) 35 (<.001) 39 (<.001) 58 (<.001) 59 (<.001) 68 (<.001) 105 (<.001) 103 (<.001)

S11
108 (0.002) 92 (<.001) 75 (<.001) 71 (<.001) 57 (<.001) 68 (<.001) 62 (<.001) 112 (0.010) 155 (0.287) 141 (0.874)

Passive viewing experiment

S3
142 (1.000) 151 (0.539) 126 (0.156) 126 (0.143) 142 (0.977) 171 (0.080) 132 (0.431) 140 (0.894) 149 (0.596) 122 (0.073)

S4
121 (0.057) 102 (<.001) 88 (<.001) 85 (<.001) 123 (0.089) 131 (0.367) 101 (<.001) 133 (0.456) 124 (0.093) 120 (0.052)

S6
135 (0.456) 113 (<.001) 161 (0.281) 123 (0.051) 111 (0.001) 122 (0.041) 141 (0.831) 152 (0.568) 127 (0.118) 157 (0.349)

Supplementary Table 2. The variability of decoding error in Experiment 1 and the
passive viewing experiment. For each participant and ROI, we report the standard
deviation of the decoding error distribution (in unit of degree polar angle). The values in
the parenthesis are uncorrected p-values computed by comparing the variability of the
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data with a null distribution obtained by a permutation procedure. The p-values smaller
than 0.05 are highlighted by red color.
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V1 V2 V3 V3AB IPS0 IPS1 IPS2 IPS3 iPCS sPCS

Experiment 1

S1 0.47
(<.001)

0.64
(<.001)

0.71
(<.001)

0.74
(<.001)

0.78
(<.001)

0.64
(<.001)

0.67
(<.001)

0.51
(<.001)

-0.01
(0.051)

0.35
(<.001)

S2 -0.02
(0.030)

0.02
(0.029)

0.00
(0.429)

-0.01
(0.324)

-0.01
(0.088)

-0.01
(0.335)

-0.01
(0.275)

-0.03
(0.001)

-0.01
(0.129)

-0.01
(0.076)

S3 0.78
(<.001)

0.82
(<.001)

0.76
(<.001)

0.88
(<.001)

0.73
(<.001)

0.53
(<.001)

0.77
(<.001)

0.59
(<.001)

0.04
(<.001)

0.30
(<.001)

S4 0.19
(<.001)

0.31
(<.001)

0.41
(<.001)

0.65
(<.001)

0.64
(<.001)

0.36
(<.001)

0.82
(<.001)

0.72
(<.001)

0.08
(<.001)

0.11
(<.001)

S5 0.22
(<.001)

0.49
(<.001)

0.50
(<.001)

0.67
(<.001)

0.61
(<.001)

0.23
(<.001)

0.41
(<.001)

0.36
(<.001)

0.02
(0.010)

0.08
(<.001)

S6 0.19
(<.001)

0.27
(<.001)

0.24
(<.001)

0.48
(<.001)

0.33
(<.001)

0.24
(<.001)

0.41
(<.001)

0.32
(<.001)

0.01
(0.073)

0.15
(<.001)

S7 0.08
(<.001)

0.10
(<.001)

0.18
(<.001)

0.31
(<.001)

0.35
(<.001)

0.14
(<.001)

0.17
(<.001)

0.03
(0.001)

0.01
(0.249)

-0.00
(0.754)

S8 0.06
(<.001)

0.13
(<.001)

0.23
(<.001)

0.40
(<.001)

0.37
(<.001)

0.17
(<.001)

0.24
(<.001)

0.23
(<.001)

-0.00
(0.476)

0.08
(<.001)

S9 0.41
(<.001)

0.54
(<.001)

0.65
(<.001)

0.72
(<.001)

0.66
(<.001)

0.29
(<.001)

0.13
(<.001)

0.40
(<.001)

-0.01
(0.049)

0.08
(<.001)

S10 0.50
(<.001)

0.66
(<.001)

0.60
(<.001)

0.68
(<.001)

0.63
(<.001)

0.35
(<.001)

0.29
(<.001)

0.21
(<.001)

0.01
(0.039)

-0.01
(0.237)

S11 0.02
(0.002)

0.07
(<.001)

0.18
(<.001)

0.21
(<.001)

0.35
(<.001)

0.24
(<.001)

0.30
(<.001)

0.01
(0.029)

-0.00
(0.598)

-0.00
(0.697)

Passive viewing experiment

S3
-0.00 (0.6030.00 (0.878)0.01 (0.163)0.00 (0.266)0.00 (0.971)-0.01 (0.080-0.00 (0.5830.00 (0.579)-0.01 (0.0540.01 (0.060)

S4
-0.01 (0.0650.03 (<.001)0.09 (<.001)0.11 (<.001)0.01 (0.070)-0.04 (<.0010.04 (<.001)-0.00 (0.8330.01 (0.076)0.01 (0.033)

S6
0.00 (0.422)0.02 (<.001)-0.00 (0.2370.00 (0.576)0.02 (<.001)-0.00 (0.278-0.00 (0.927-0.00 (0.386-0.00 (0.779-0.00 (0.572

Supplementary Table 3. Circular correlation between the decoded location and
the target location in Experiment 1 and the passive viewing experiment. For each
participant and ROI, we report the circular correlation and the values in the parenthesis
are uncorrected p-values computed by comparing the correlation with a null distribution
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obtained by a permutation procedure. The p-values smaller than 0.05 are highlighted by
red color.
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V1 V2 V3 V3AB IPS0 IPS1 IPS2 IPS3 iPCS sPCS

S1
56 (<.001) 65 (<.001) 79 (<.001) 119 (<.001) 99 (<.001) 63 (<.001) 77 (<.001) 64 (<.001) 35 (0.001) 41 (<.001)

S2
158 (<.001) 173 (<.001) 178 (<.001) 185 (<.001) 182 (<.001) 146 (<.001) 154 (<.001) 141 (<.001) 70 (<.001) 110 (<.001)

S3
176 (<.001) 187 (<.001) 189 (<.001) 194 (<.001) 154 (<.001) 122 (<.001) 156 (<.001) 151 (<.001) 23 (0.024) 106 (<.001)

S4
157 (<.001) 157 (<.001) 160 (<.001) 167 (<.001) 155 (<.001) 122 (<.001) 152 (<.001) 136 (<.001) 43 (<.001) 70 (<.001)

S5
170 (<.001) 209 (<.001) 213 (<.001) 221 (<.001) 216 (<.001) 126 (<.001) 175 (<.001) 162 (<.001) 26 (0.018) 111 (<.001)

S6
51 (<.001) 85 (<.001) 126 (<.001) 157 (<.001) 129 (<.001) 94 (<.001) 81 (<.001) 91 (<.001) 13 (0.232) 66 (<.001)

S7
39 (<.001) 84 (<.001) 95 (<.001) 159 (<.001) 161 (<.001) 118 (<.001) 105 (<.001) 70 (<.001) -16 (0.105) 10 (0.327)

S8
104 (<.001) 154 (<.001) 183 (<.001) 191 (<.001) 181 (<.001) 138 (<.001) 131 (<.001) 137 (<.001) 68 (<.001) 40 (<.001)

S9
104 (<.001) 132 (<.001) 128 (<.001) 145 (<.001) 120 (<.001) 62 (<.001) 53 (<.001) 82 (<.001) -10 (0.230) 37 (<.001)

S10
199 (<.001) 211 (<.001) 218 (<.001) 216 (<.001) 218 (<.001) 191 (<.001) 180 (<.001) 170 (<.001) 123 (<.001) 135 (<.001)

S11
119 (<.001) 140 (<.001) 144 (<.001) 165 (<.001) 138 (<.001) 129 (<.001) 148 (<.001) 146 (<.001) 12 (0.192) 50 (<.001)

S12
132 (<.001) 172 (<.001) 176 (<.001) 192 (<.001) 192 (<.001) 173 (<.001) 173 (<.001) 106 (<.001) 12 (0.233) 72 (<.001)

S13
140 (<.001) 153 (<.001) 168 (<.001) 191 (<.001) 166 (<.001) 161 (<.001) 90 (<.001) 127 (<.001) 18 (0.117) 44 (<.001)

S14
181 (<.001) 190 (<.001) 192 (<.001) 189 (<.001) 180 (<.001) 162 (<.001) 135 (<.001) 135 (<.001) 63 (<.001) 54 (<.001)

Supplementary Table 4. Statistical test for the uniformity of the decoding error
distributions in Experiment 2. For each participant and ROI, we reported a V statistics
and the (uncorrected) p-value obtained by permutations (see Methods). A p-value
smaller than 0.05 indicates that the error distribution is not uniform and favors the
alternative hypothesis that the error distribution has a mean centered at zero degree
(polar angle). The p-values smaller than 0.05 are highlighted by red color.
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V1 V2 V3 V3AB IPS0 IPS1 IPS2 IPS3 iPCS sPCS

S1
91 (<.001) 86 (<.001) 78 (<.001) 58 (<.001) 68 (<.001) 87 (<.001) 79 (<.001) 86 (<.001) 106 (0.002) 102 (<.001)

S2
41 (<.001) 34 (<.001) 31 (<.001) 26 (<.001) 29 (<.001) 48 (<.001) 43 (<.001) 50 (<.001) 84 (<.001) 64 (<.001)

S3
38 (<.001) 32 (<.001) 31 (<.001) 28 (<.001) 48 (<.001) 62 (<.001) 47 (<.001) 49 (<.001) 121 (0.167) 69 (<.001)

S4
30 (<.001) 30 (<.001) 27 (<.001) 22 (<.001) 31 (<.001) 50 (<.001) 33 (<.001) 43 (<.001) 97 (0.001) 79 (<.001)

S5
46 (<.001) 27 (<.001) 25 (<.001) 20 (<.001) 23 (<.001) 64 (<.001) 44 (<.001) 49 (<.001) 120 (0.114) 70 (<.001)

S6
99 (0.001) 81 (<.001) 63 (<.001) 50 (<.001) 62 (<.001) 77 (<.001) 82 (<.001) 78 (<.001) 128 (0.426) 89 (<.001)

S7
105 (0.002) 79 (<.001) 74 (<.001) 45 (<.001) 44 (<.001) 63 (<.001) 69 (<.001) 86 (<.001) 122 (0.198) 143 (0.714)

S8
69 (<.001) 47 (<.001) 33 (<.001) 29 (<.001) 34 (<.001) 55 (<.001) 57 (<.001) 55 (<.001) 87 (<.001) 105 (0.002)

S9
59 (<.001) 44 (<.001) 46 (<.001) 36 (<.001) 50 (<.001) 83 (<.001) 88 (<.001) 71 (<.001) 132 (0.808) 100 (0.001)

S10
35 (<.001) 29 (<.001) 25 (<.001) 26 (<.001) 25 (<.001) 38 (<.001) 43 (<.001) 47 (<.001) 66 (<.001) 61 (<.001)

S11
55 (<.001) 44 (<.001) 42 (<.001) 29 (<.001) 45 (<.001) 49 (<.001) 40 (<.001) 40 (<.001) 124 (0.350) 93 (<.001)

S12
58 (<.001) 40 (<.001) 38 (<.001) 30 (<.001) 29 (<.001) 39 (<.001) 40 (<.001) 69 (<.001) 137 (0.995) 85 (<.001)

S13
59 (<.001) 54 (<.001) 48 (<.001) 38 (<.001) 49 (<.001) 51 (<.001) 80 (<.001) 64 (<.001) 130 (0.497) 105 (0.001)

S14
30 (<.001) 24 (<.001) 23 (<.001) 25 (<.001) 31 (<.001) 41 (<.001) 53 (<.001) 53 (<.001) 88 (<.001) 94 (<.001)

Supplementary Table 5. The variability of decoding error in Experiment 2. For each
participant and ROI, we report the standard deviation of the decoding error distribution
(in unit of degree polar angle). The values in the parenthesis are uncorrected p-values
computed by comparing the variability of the data with a null distribution obtained by a
permutation procedure. The p-values smaller than 0.05 are highlighted by red color.
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V1 V2 V3 V3AB IPS0 IPS1 IPS2 IPS3 iPCS sPCS

S1 0.08
(<.001)

0.10
(<.001)

0.15
(<.001)

0.35
(<.001)

0.24
(<.001)

0.10
(<.001)

0.14
(<.001)

0.08
(<.001)

0.01
(0.160)

0.03
(0.005)

S2 0.59
(<.001)

0.71
(<.001)

0.75
(<.001)

0.81
(<.001)

0.78
(<.001)

0.49
(<.001)

0.55
(<.001)

0.46
(<.001)

0.07
(<.001)

0.21
(<.001)

S3 0.65
(<.001)

0.73
(<.001)

0.74
(<.001)

0.78
(<.001)

0.49
(<.001)

0.30
(<.001)

0.51
(<.001)

0.47
(<.001)

-0.01
(0.218)

0.23
(<.001)

S4 0.76
(<.001)

0.77
(<.001)

0.80
(<.001)

0.86
(<.001)

0.74
(<.001)

0.46
(<.001)

0.71
(<.001)

0.58
(<.001)

0.04
(0.001)

0.14
(<.001)

S5 0.52
(<.001)

0.80
(<.001)

0.83
(<.001)

0.89
(<.001)

0.85
(<.001)

0.28
(<.001)

0.55
(<.001)

0.48
(<.001)

0.00
(0.349)

0.17
(<.001)

S6 0.03
(0.002)

0.12
(<.001)

0.30
(<.001)

0.46
(<.001)

0.30
(<.001)

0.16
(<.001)

0.12
(<.001)

0.15
(<.001)

0.01
(0.235)

0.07
(<.001)

S7 0.03
(0.002)

0.13
(<.001)

0.17
(<.001)

0.52
(<.001)

0.54
(<.001)

0.29
(<.001)

0.22
(<.001)

0.10
(<.001)

0.01
(0.122)

-0.00
(0.345)

S8 0.23
(<.001)

0.51
(<.001)

0.71
(<.001)

0.77
(<.001)

0.69
(<.001)

0.39
(<.001)

0.34
(<.001)

0.38
(<.001)

0.05
(<.001)

-0.02
(0.030)

S9 0.34
(<.001)

0.56
(<.001)

0.52
(<.001)

0.67
(<.001)

0.45
(<.001)

0.09
(<.001)

0.08
(<.001)

0.22
(<.001)

-0.01
(0.086)

0.04
(<.001)

S10 0.70
(<.001)

0.78
(<.001)

0.83
(<.001)

0.81
(<.001)

0.83
(<.001)

0.64
(<.001)

0.56
(<.001)

0.50
(<.001)

0.22
(<.001)

0.30
(<.001)

S11 0.40
(<.001)

0.55
(<.001)

0.58
(<.001)

0.77
(<.001)

0.53
(<.001)

0.48
(<.001)

0.62
(<.001)

0.61
(<.001)

0.01
(0.185)

0.07
(<.001)

S12 0.35
(<.001)

0.61
(<.001)

0.65
(<.001)

0.76
(<.001)

0.77
(<.001)

0.63
(<.001)

0.62
(<.001)

0.22
(<.001)

0.00
(0.686)

0.09
(<.001)

S13 0.35
(<.001)

0.41
(<.001)

0.50
(<.001)

0.64
(<.001)

0.48
(<.001)

0.46
(<.001)

0.12
(<.001)

0.27
(<.001)

-0.01
(0.065)

0.01
(0.052)

S14 0.76
(<.001)

0.84
(<.001)

0.85
(<.001)

0.83
(<.001)

0.75
(<.001)

0.60
(<.001)

0.38
(<.001)

0.40
(<.001)

0.06
(<.001)

0.07
(<.001)

Supplementary Table 6. Circular correlation between the decoded location and
the target location in Experiment 2. For each participant and ROI, we report the
circular correlation and the values in the parenthesis are uncorrected p-values
computed by comparing the correlation with a null distribution obtained by a permutation
procedure. The p-values smaller than 0.05 are highlighted by red color.
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