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Abstract 

Genome wide analysis of cell-free DNA (cfDNA) methylation profile has been shown to 

be a promising approach for sensitive and specific multi-cancer detection. However, scaling these 

assays for clinical translation is impractical due to the high cost of whole genome bisulfite 

sequencing. We showed that the small fraction of GC-rich genome is highly enriched in CpG sites 

and disproportionately harbored the majority of cancer-specific methylation signature. Here, we 

report on the simple but effective Heat enrichment of CpG-rich regions for Bisulfite Sequencing 

(Heatrich-BS) platform that enables focused methylation profiling in these highly informative 

regions. Our novel method and bioinformatics algorithm enable high accuracy and sensitivity in 

tumor burden estimation and quantitative monitoring of colorectal patient response to treatment, 

at much reduced sequencing requirement. Heatrich-BS holds great potential for highly scalable 

screening and regular monitoring of cancer using liquid biopsy. 

 

 

Recent studies have demonstrated the promising use of methylation profiling of cell-free 

DNA (cfDNA) for multi-cancer detection, leveraging on tissue and cancer specific methylation 

patterns1,2. Methylation-profiling of cfDNA has been shown to outperform mutation assays in 

cancer detection and tissue of origin localization2. Such improved detection can be achieved 

because methylation-based cfDNA assays offer the following advantages: (i) Methylation patterns 

are specific to the tissue and type of cancer. This enables the use of published data from resected 

tumors to generate a unique methylation signature for the cancer of interest3. (ii) The methylome 

of cancer cells exhibit a distinct pattern of methylation changes – hypermethylation of CpG islands 

(CGIs) and hypomethylation of the genome4. Despite their advantages, the high cost associated 
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with the high number of sequencing reads required (>100 million reads) for whole-genome cfDNA 

methylation assays makes them impractical for routine use. 

The need to cover sufficient informative regions in the genome necessitates a high number 

of sequencing reads. Whole genome bisulfite sequencing (WGBS), the most comprehensive and 

unbiased method to profile the epigenome, requires at least 30 million reads to achieve 1X 

coverage of the human genome. However, methylation in human DNA predominantly occurs in 

the CpG context, and the human genome is generally CpG poor, punctuated by short stretches of 

CpG-rich regions that collocate with many gene regulatory elements such as promoters. DNA 

methylation differences between tissue and disease is disproportionately found in these CpG-rich 

regions that form <1% of the genome4. Reduced representation bisulfite sequencing (RRBS), 

which enriches for these regions by selecting short fragments flanked by CG-containing restriction 

enzyme sites, allows for selective profiling of these information-rich areas. A wealth of public 

methylation databases of various healthy and diseased tissues have been generated by applying 

RRBS. However, RRBS is expected to have limited selectivity on cfDNA, as many cfDNA 

fragments that are not flanked by the restriction sites will also be sequenced. On the other hand, 

while alternative approaches based on hybridization capture2 can focus the sequencing on 

informative regions, there is a very high upfront cost involved for optimal probe design. Due to 

permutations of the methylation state in DNA, using completely methylated or completely 

unmethylated probes renders this method ineffective when heterogeneous methylation is 

involved2. Single nucleotide variations (SNVs), which are especially common in cancer, would 

also affect capture of tumor-derived fragments using these probes. Furthermore, once a panel is 

designed, it is inflexible to be applied to other types of cancers that have a different set of 

differentially methylated regions (DMRs). Currently, there is a lack of a simple, cost-effective 

method to enrich for epigenetically important regulatory regions based on natural features of 

genome content in the liquid biopsy context. 

Another factor that necessitates high amount of sequencing for detection of tumor 

fragments in cfDNA is the high depth needed for tumor fraction estimation. Traditionally, the beta 

value, which is the average methylation of CpG at particular site, is used for estimation of tumor 

fraction5–7. However, tumor contents are typically low (<1%) for early stage cancers, requiring 

high sequencing depths for reliable detection of tumor fragments. Recently, the analysis of 

methylation haplotype blocks1, which are genomic regions where neighboring CpGs are highly 

correlated, have open up a new approach for more sensitive detection. Interestingly, these 

methylation haplotype blocks are highly enriched in CpG-dense regions. Using a new measure of 

methylation haplotype load (MHL), which considers both the average methylation of all CpGs in 

the block and also captures patterns of co-methylation on single DNA molecules, the authors are 

able to improve robustness and sensitivity of detecting tumor-specific cfDNA. In CancerDetector, 

the authors exploited the co-methylation patterns to assign a tumor and normal probability for each 

fragment8. In this method, a marker-specific tumor fraction estimate is made by considering all 

reads that fall within the marker region and the tumor fraction from all markers undergoes iterative 

pruning until their values converges to a final global tumor fraction. Although proven to work at 
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lower sequencing depth for high tumor fraction, more than 2X sequencing depth is still needed to 

detect low tumor fractions. Altogether, the need for deep sequencing for detecting low tumor 

fractions is a key cost bottleneck for liquid biopsy. 

Therefore, in order to fully utilize the potential of methylation profiling in liquid biopsy, 

we developed a two-pronged approach. Firstly, we developed a method that effectively enriches 

for CpG-dense regions, that are known to harbor significant methylation changes in cancer, 

regardless of their methylation status. This method, known as Heat enrichment of CpG-rich regions 

for Bisulfite Sequencing (Heatrich-BS), is a novel assay that can enrich for CpG-rich regions using 

heat denaturation to eliminate low GC-content fragments. While the concept of melting 

temperature and the relationship between GC content and heat denaturation is well known, this is 

the first assay that utilizes the relationship between CpG density and GC content to achieve CpG 

enrichment. The simple workflow of Heatrich-BS makes it very easy to perform and the use of 

heat denaturation as a selection method is independent of restriction enzyme recognition 

sequences. Secondly, we developed a new bioinformatics algorithm that assigns a tumor 

probability for individual fragments, and integrates these fragment-based probabilities across the 

entire genome to accurately estimate tumor fractions. This is achieved without the need to estimate 

tumor fractions from any aggregate measurement within individual markers. This approach 

capitalizes on the widespread epigenetic DMRs, to integrate low coverage measurement in each 

informative region and allow tumor fraction estimation with much lower sequencing requirement 

compared to current methods. Together, heat enrichment and genome-wide read aggregation 

addresses the critical sensitivity and cost issue for implementing cfDNA methylation-based assays 

for routine cancer screening and monitoring. 

 

Results 

Enrichment of DMRs in GC-rich regions 

 The sequence content in the human genome is highly non-uniform. Long stretches of CpG-

poor regions are punctuated by short stretches of CpG-dense regions that coincide with important 

gene regulatory elements such as promoters. These CpG-dense regions are often differentially 

methylated between tissues and disease such as cancer1,9,10. We use DMRfinder11 to identify 

DMRs between publicly available data on DNA methylation in colorectal cancer (CRC) tissue and 

healthy plasma (details in Step 1 of tumor fraction determination algorithm in Online Methods) 

and found that nearly 45% of the DMRs lie within CGIs (Fig 1a), which originates from less than 

1% of the genome (Fig 1b). As such, it is of value to focus on this small fraction of CpG-rich 

genome for epigenetic profiling. The traditional approach to enrich for CGIs is RRBS12, with a 

single-tube variant termed single-cell RRBS (scRRBS)13 for low input samples. However, this 

approach is still limited in utility for enrichment of fragmented cfDNA, as very few fragments can 

meet the requirement for a CCGG cut site on both ends. In a study that uses scRRBS to perform 

methylation profiling in cfDNA, henceforth referred to as cell-free RRBS, only 6.4% of the reads 

are located in CGIs1. As such, CGI enrichment in fragmented DNA is limited in efficiency. 
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While there is no known means to physically enrich for CpG-dense DNA, it is long known 

that the G+C content of a double-stranded DNA fragment is closely related to its thermal stability. 

It has been shown that the GC bond in DNA has a binding energy of 25.4 kcal mol-1, which is two 

times stronger than the AT bond, with a binding energy of 12.4 kcal mol-1 14. As the presence of a 

CpG dinucleotide in a fragment adds 2 GC bonds to the duplex, we ask if effective selection of 

CpG-dense fragments can be achieved by selection of GC-rich fragments. To check this 

hypothesis, we calculated the GC content and number of CpGs in each fragment in a random 

sample of 0.5 million 200bp fragments of the human genome (Fig 1c). The excellent correlation 

between GC content and number of CpGs suggests that CpG-rich fragments can be recovered by 

selecting DNA fragments with high GC content. Using GC-content as a proxy for CpG-density, 

we identified that fragments with GC content greater than 0.6 constitutes only 2.5% of the genome, 

but disproportionately includes 85% of CGIs and 58% of identified DMRs between colorectal 

cancer tissues and healthy plasma. Therefore, we established that cancer-specific DMRs, which 

are overrepresented in CpG-dense regions, can be effectively enriched with selection of high-GC 

DNA fragments. 

To further verify if GC-content selection can enable enrichment of cancer-specific DMRs, 

we identified DMRs between publicly available DNA methylation data of various cancer tissues 

and healthy plasma. We then determined the number of DMRs that could be detected per 1000 

fragments using different GC content thresholds (Fig 1c). Selection of fragments above 0.6 GC 

content affords nearly 8-fold enrichment of reads in DMRs across different cancers (COAD: 

colorectal adenocarcinoma, BRCA: breast invasive carcinoma, LUAD: lung adenocarcinoma, 

KIRC: kidney renal clear cell carcinoma, UCEC: uterine corpus endometrial carcinoma). This 

enrichment would translate to a reduction is sequencing reads needed to detect tumor-derived 

fragments as the sequenced fragments are significantly more informative. 
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Figure 1: Enrichment of cancer-specific DMRs in CpG-dense and high GC content regions. (a) 

Percentage of DMRs between colorectal cancer tissue and healthy plasma in different genomic 

regions. (b) Proportion of DMRs and Illumina 450K Methylation Array probes in CGI with respect 

to the genomic distribution. (c) Relationship between GC content and number of CpGs in 200bp 

fragments of the human genome. (d) Number of DMRs of different cancers detected per 1000 

fragments using different GC-content thresholds. COAD: colorectal adenocarcinoma, BRCA: 

breast invasive carcinoma, LUAD: lung adenocarcinoma, KIRC: kidney renal clear cell 

carcinoma, UCEC: uterine corpus endometrial carcinoma. 

 

Using heat denaturation to select for GC-rich fragments 

 Having established the strong correlation between GC content and CpG density, we then 

explored the use of thermal denaturation as a means of selecting DNA fragments based on GC 

content. The workflow of the Heatrich-BS assay is shown in Fig 2a. Fragmented DNA was first 

end repaired and A-tailed. Following this, the sample was heated to denature the GC-poor 

fragments and adapter ligation was immediately performed. The process of adapter ligation allows 

selection of intact double-stranded fragments, as T4 DNA ligase has a high selectivity for 
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dsDNA15. In this way, only the non-denatured GC-rich DNA fragments are ligated with 

sequencing adapters. The selected fragments were bisulfite converted and subsequently sequenced. 

 In order to identify the temperature needed to achieve the desired enrichment, we tested a 

range of temperatures from 75°C to 95°C on sheared genomic DNA (Fig 2b). DNA samples heated 

to temperatures ranging from 87°C to 90°C had the highest GC content and enrichment of reads 

in CGI. At higher temperatures, even the fragments with high GC content were denatured, reducing 

the enrichment in CGIs. We chose 88°C as the optimal denaturation temperature, as this condition 

had the highest alignment rate along with a high GC content (~0.62) and enrichment of reads in 

CGIs (28%). From multiple experiments performed at the selected temperature, we observed that 

the GC content of the heat-enrichment (Heatrich) samples was much higher than the average GC 

content of the unheated samples (Fig 2c). The consistent GC content obtained from multiple 

replicate experiments shows the high degree of reproducibility of our assay. 

 

Enrichment of CpG-rich regions using Heatrich-BS 

Analysis of the mapping of heat-treated sheared DNA showed that there is a significant 

enrichment of reads that localized to CpG islands and shores, comparing favorably to the 

theoretical genomic distribution and even RRBS (SRR222486), the gold standard technique for 

CGI enrichment (Fig 2d). The accumulation of reads around CGIs was visualized (Fig 2e), 

showing that Heatrich samples displayed significant piling up of reads around CGI. More detailed 

analysis of the genomic distribution of Heatrich reads showed a remarkable similarity to that of 

standard RRBS (Fig 2f&g), suggesting that this non-enzymatic approach can be a viable 

alternative to RRBS for detailed methylation profiling in important genomic regulatory elements. 

Notably, Heatrich is independent of restriction enzyme sequence, and will thus robustly profile the 

same regions even in the presence of restriction site polymorphisms, and could find applications 

when DNA is already fragmented prior to restriction digestion (e.g. FFPE, degraded DNA, 

cfDNA) where RRBS is not well-suited. 
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Figure 2: Using heat denaturation to select GC and CpG-rich fragments. (a) Workflow of Heatrich-

BS to select for GC-rich fragments. (b) Trend of GC content and read enrichment at CGI over a 

range of temperatures. (c) Average GC content of sequenced fragments with and without heat 

denaturation. (d) Distribution of Heatrich and RRBS reads in CpG islands, shores and other 

regions. (e) Localization of Heatrich and RRBS reads to CGI regions. CGIs are marked in red. (f) 

Distribution of RRBS reads in different genomic regions. (g) Distribution of Heatrich reads in 

different genomic regions. 
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Heatrich-BS is suitable for CpG-enrichment in cfDNA 

 cfDNA has promising applications for non-invasive disease detection, and can be suitably 

profiled using Heatrich-BS due to its fragmented nature. We tested the performance of Heatrich-

BS on cfDNA samples obtained from colorectal cancer patients. Bisulfite treatment was performed 

on samples with and without heat denaturation. We first visualized the reads obtained from 

Heatrich-BS and compared it with WGBS and previously reported cell-free RRBS1, subsampled 

to similar read counts for comparison (Fig 3a). Mapped reads from cell-free RRBS and WGBS 

were distributed almost uniformly across all genomic regions. On the other hand, the vast majority 

of Heatrich-BS reads were concentrated at CpG islands and shores, with little reads in the other 

regions. This shows the specificity of Heatrich-BS in selecting fragments of high CpG density and 

high GC content. Furthermore, with comparable read counts, the average height of Heatrich-BS 

peaks is appreciably more than the other datasets. This shows that Heatrich-BS can obtain higher 

depth in informative regions using the same number of total sequencing reads. 

The distribution of cfDNA sequenced reads from Heatrich-BS and other methods were 

quantified, and it was seen that the Heatrich-BS samples displayed up to 15-fold enrichment of 

reads in CGIs compared to WGBS (Fig 3b). Heatrich-BS also outperformed cell-free RRBS, with 

30% of Heatrich-BS reads in CGIs but only 5% of cell-free RRBS reads localized to CGIs. This 

demonstrates that Heatrich-BS displays more effective CGI enrichment for fragmented DNA, 

compared to current gold standard methods. Furthermore, the number of reads in DMRs were 

measured for different number of total sequencing reads (Fig 3c). Heatrich-BS had up to 10-fold 

more reads localizing to DMRs and Heatrich-BS was able to detect up to 10-fold more DMRs than 

no heat controls using comparable number of sequencing reads (Supplementary Fig 1). This would 

provide higher sensitivity in detecting fragments of tumor origin for the same number of 

sequencing reads. These results highlight the strength of Heatrich-BS, which is the effective 

enrichment of reads in CGI and DMRs with fewer total sequencing reads.  
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Figure 3: Heatrich-BS effectively enriches cfDNA reads in CpG-rich regions. (a) Piling up of 

cfDNA reads and localization to CGI using WGBS, RRBS and Heatrich-BS methods. CGI regions 

are marked in red. (b) Percentage of cfDNA reads in CGI using Heatrich-BS, RRBS and WGBS. 

(c) Number of cfDNA reads in DMR for different total reads with and without heat denaturation. 

 

Estimating the tumor fraction 

Recent studies have shown that the co-methylation patterns within individual DNA 

fragments can be used to distinguish the origins of cfDNA fragments with higher sensitivity. This 

has led to development of methods such as those that make use of methylation haplotype load1 or 

-values8 for tumor fraction estimation in cfDNA. However, population-averaged measurements 

at the marker level are still invariably needed, either as a metric for read discordance within a 

marker, or as a requisite for removing confounding markers in other study. The need for a 

minimum read-depth in marker regions, especially for low tumor fraction samples, imposes a 

bottleneck to further reducing sequencing cost without compromising sensitivity. In this work, we 

developed a bioinformatics algorithm that estimates global tumor fraction by considering only the 

tumor probability of individual sequenced fragments, without having to estimate population 

metrices from individual marker regions. The workflow of the algorithm is shown in Fig 4a and 

detailed in the online methods. Our developed algorithm allows for accurate estimation of low 

cfDNA tumor fractions (0.5%) with very low coverage (1X) sequencing data.  

 We first generated a colorectal cancer methylation reference using publicly available 

Illumina 450K Methylation array data from TCGA, in accordance with previous practices1,6–8. We 

identified DMRs for colorectal cancer using WGBS datasets5 of cfDNA from 23 healthy subjects 

and Illumina 450K Methylation array datasets of 353 colorectal adenocarcinoma samples from 

TCGA. In order to validate our algorithm with precisely controlled tumor fractions and sequencing 
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depths, we simulated cfDNA of different tumor fractions by mixing WGBS reads (that are not 

included in reference generation) from plasma of healthy individuals5 and tumors of colorectal 

cancer patients16 at different proportions.  

When we used the methylation information in the DMRs identified to estimate the tumor 

fraction of 3 other cfDNA samples from healthy subjects, we observed a non-zero baseline value 

that was stable regardless of the sequencing depth (Supplementary Fig 2). To identify the source 

of this baseline, we noted that the resected tumor samples used for generation of methylation data 

in public databases were often contaminated with non-neoplastic cells. This contamination has 

been widely acknowledged in previous literature17,18 and could lead to overestimation of the tumor 

fraction in methylation-based analysis. Therefore, we attempted to identify the contribution of 

these non-neoplastic cells to the colorectal cancer reference, and eliminate its effect on our tumor 

fraction determination. In order to determine a tumor purity correction factor, we performed 

Receiver Operating Characteristic (ROC) analysis on simulated plasma cfDNA WGBS samples at 

0.5% tumor fraction and identified the correction factor that maximized sensitivity and specificity 

across multiple sequencing depths (Supplementary Table 1). This correction factor () is dependent 

on the reference used and only needs to be determined once for each reference.  

Using the determined correction factor, we tested our algorithm on simulated plasma 

WGBS cfDNA samples from 0% to 5% tumor fraction, at different sequencing depths (Fig 4b). 

At sequencing depths of 5X and 1X, we obtained a high degree of linearity (Pearson correlation 

>0.99) between the simulated and predicted tumor fraction values while the estimated tumor 

fraction for the healthy individuals was correctly called as zero. Notably, at 1X depth, where each 

DMR is covered only once on average, our algorithm is able to accurately detect the presence of 

small tumor fractions. This is because we can aggregate reads from multiple loci, without requiring 

high coverage at individual DMRs. Despite this improvement, excessively low coverage would 

lead to limited number of DMRs being interrogated, which would in turn affect the specificity and 

confidence of tumor calling. This is seen at very lower depth (0.1X), where we observed larger 

variations in the predicted tumor fractions, including a higher likelihood of false positives in 

simulated healthy cfDNA samples. Nevertheless, the sequencing requirement can be kept low 

without sacrificing coverage at DMRs if the Heatrich-BS assay is used to enrich informative 

regions. To validate this, we approximated the Heatrich-BS assay by selecting only fragments with 

GC content more than 0.6 as a simulated plasma cfDNA sample (simulated Heatrich-BS samples). 

We observed that even using very modest number of total sequencing reads (2-6 million reads), 

high specificity and tumor calling confidence could be achieved (Fig 4c). Notably, the tumor 

fraction prediction from simulated Heatrich-BS samples had much higher specificity and lower 

variance compared to a similar read count simulated WGBS samples (0.1X) at 3 million reads. We 

also performed ROC analysis to compare the predictive accuracy of using WGBS and Heatrich-

BS for low tumor burden detection in cfDNA (0.5% tumor fraction). The predictive accuracy using 

Heatrich-BS samples is significantly better than conventional WGBS samples (AUC 0.988 vs 

0.547) (Supplementary Fig 3). These results demonstrate that Heatrich-BS and the corresponding 
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algorithm enable accurate and confident tumor DNA detection in cfDNA with significantly lesser 

sequencing requirement compared to existing methods. 

 

Figure 4: Development and validation of the tumor fraction prediction algorithm. (a) Workflow of 

tumor fraction prediction algorithm. (b) True and algorithm predicted values of simulated plasma 

WGBS cfDNA samples at different sequencing depths. (c) True and algorithm predicted value of 

simulated Heatrich-BS samples using different total sequencing reads. 
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Application of Heatrich-BS on patient cfDNA samples 

 Finally, we applied Heatrich-BS and the developed algorithm on healthy volunteers and 

colorectal cancer patient cfDNA samples. We observed that Heatrich-BS reads contain more CpGs 

per fragment (Supplementary Fig 4), making each sequenced read more informative. Therefore, 

there were more fragments with tumor probability higher than 90% or lower than 10% when 

applying the Heatrich-BS method (Supplementary Fig 5), which increases the confidence and 

accuracy of the tumor fraction called. We then compared our algorithm predicted values to the 

tumor fraction estimated using the gold standard amplicon sequencing (amplicon-seq) method for 

mutation detection (Fig 5a). We obtained a Pearson correlation of 0.92 between the Heatrich-BS 

and amplicon-seq predicted tumor fractions, proving the accuracy of our method and algorithm 

even in clinical cfDNA samples. 

 Besides non-invasive cancer diagnosis, liquid biopsy is useful for non-invasive tracking of 

disease progression. The low cost and high sensitivity for quantitative tumor fraction estimation 

enabled by Heatrich-BS is attractive for frequent monitoring of patients undergoing treatment and 

those in remission to detect possibility of relapse. To further validate the applicability of Heatrich-

BS in cancer progression monitoring, we tested cfDNA collected from two colorectal cancer 

patients at different time points during treatment. Using Heatrich-BS, we were able to estimate 

tumor percentage values and track the patients’ response to treatment (Fig 5b&c). The overall trend 

in tumor percentage predicted by Heatrich-BS is comparable to the carcinoembryonic antigen 

(CEA) values, which is a known biomarker for colorectal cancer diagnosis and monitoring. In both 

patients, the introduction of treatment results in a decline in the tumor fraction, which is seen in 

Heatrich-BS as well as CEA values, indicating the effectiveness of the treatments administered.  

However, changes in blood CEA level is not specific to colorectal cancer, and has been shown to 

only have 34% sensitivity and 84% specificity for recurrence monitoring19. Since Heatrich-BS 

requires fewer reads for tumor burden prediction, and therefore can be performed at lower cost, it 

could allow more frequent and regular monitoring using this more specific method. Furthermore, 

CEA level only offers one-dimensional data on the level of cancer while Heatrich-BS can offer 

multi-dimensional data, including a more quantitative measure of tumor burden as well as other 

patient-specific information (Fig 5d). It is interesting to note that, on performing Principal 

Components Analysis (PCA) on the longitudinal patient samples, PC1 separates the patients while 

PC2 separates along tumor burden. This multi-dimensional information provided by Heatrich-BS 

can potentially be used to infer sub-type classification, drug resistance and other tumor-specific 

characteristics. Therefore, cost-effective Heatrich-BS can be used to sensitively monitor tumor 

progression and characteristics in the clinical context. 
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Figure 5: Application of Heatrich-BS on patient cfDNA samples. (a) Amplicon-seq and Heatrich-

BS predicted tumor fractions for patient cfDNA samples. (b) Longitudinal tumor monitoring of 

Patient 1. XELOX (green) and FOLFIRI-Cetuximab (purple) treatment introduction points are 

marked with arrows. The dashed horizontal line indicates the clinical CEA cut-off. (c) 

Longitudinal tumor monitoring of Patient 2. 5FU/Oxaliplatin (green) and Irinotecan (purple) 

treatment introduction points are marked with arrows. The dashed horizontal line indicates the 

clinical CEA cut-off. (d) PCA analysis of Patients 1 and 2. PC1 separates patients while PC2 

separates along tumor burden. 

 

Discussion 

The only FDA approved circulating DNA-based assay for colorectal cancer is Epi 

proColon, which tests for the presence of methylated Septin-9. However, this assay has a 

sensitivity of only 70% and false positive rate of 20%20 as studies have shown that methylated 

Septin-9 is only present in about 70% of colorectal cancer patients, and Septin-9 methylation is 

not specific to colorectal cancer21,22. Therefore, while such targeted assays are cost-effective and 

easy to perform, the limited sensitivity and high non-specificity pose challenges for early cancer 

detection and recurrence monitoring. Genome-wide cfDNA studies like CCGA2 use array-based 

approaches, which can cover more regions, but is also inflexible to incorporate additional 

informative regions. On the other hand, WGBS would be the most comprehensive method, 

allowing detection of multiple cancers and subtypes using a single assay. Despite the significant 

advantages of whole-genome methods, there is no such assay commercially available. This is 

because WGBS methods are very expensive, making such assays commercially non-viable. 
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Therefore, there is a need for a method to fill the gap between comprehensiveness and cost-

effectiveness. In this study, we present a novel assay Heatrich-BS, which uses the well-established 

concept of melting temperature, to enable CpG enrichment in fragmented DNA. The relationship 

between GC content and heat denaturation, and the correlation between CpG density and high GC 

content, was applied in unison to effectively perform enrichment of CpG rich fragments for 

methylation analysis. This is the first assay that utilizes the well-known concept of melting 

temperature to achieve CpG enrichment. Heatrich-BS fills the gap between comprehensiveness 

and cost-effectiveness, by enabling extensive coverage of epigenetically informative regions with 

low sequencing requirement. It also offers significant advantages compared to targeted methods, 

as different cancers would not require their own specific panels. The high sensitivity and 

specificity of Heatrich-BS also allows for its application in early cancer detection. As such, 

Heatrich-BS can potentially be used as a universal liquid biopsy method for screening and early 

detection of cancer with high sensitivity, specificity and accuracy. 

We have shown that our developed method, Heatrich-BS, was able to enrich for DNA 

fragments with GC content exceeding 60%. As a result, nearly 30% of Heatrich-BS reads fell into 

CGIs. This enrichment of reads in CpG-rich regions resulted in greater coverage of DMRs 

compared to existing methods. We also developed a tumor burden prediction algorithm to augment 

our assay and validated its application for tumor fractions as low as 0.5%. Furthermore, we have 

demonstrated proof-of-concept of this novel assay through application on patient cfDNA, enabling 

deep and comprehensive coverage of cancer-specific DMRs using relatively few total reads. The 

tumor burden values and trend determined by Heatrich-BS was comparable to the values obtained 

by orthogonal methods. Therefore, Heatrich-BS and the corresponding algorithm can enable 

accurate and sensitive prediction of tumor burden in cfDNA. 

Heatrich-BS offers significant advantages compared to current assays: (i) The workflow of 

Heatrich-BS is short and easy to perform. (ii) Heat denaturation is independent of DNA sequence 

biases that can arise from the use of restriction enzymes in assays like RRBS. This enables its use 

for CpG enrichment even in genomic DNA, by first performing mechanical fragmentation to 

obtain short fragments followed by the application of Heatrich-BS. It can also be used to profile 

fragmented DNA, such as FFPE samples, where current assays could face significant challenges23. 

(iii) Heatrich-BS requires fewer sequencing reads compared to conventional untargeted assays, 

which makes it cost-effective to perform. This low sequencing depth requirement could prove 

valuable for applications where targeted methods are limited in scope while genome-wide methods 

are too expensive. 

Given the valuable information that can be obtained from the Heatrich-BS assay, future 

work can focus on exploring tumor characteristics that can be inferred from the data. Furthermore, 

since Heatrich-BS data is untargeted, this assay can be extended to multiple cancers, by obtaining 

multi-cancer DMRs and optimizing the algorithm accordingly. This presents the potential for 

Heatrich-BS to be a low-cost multi-cancer screening assay, which would be an important 

innovation to enable the scaling up of cfDNA methylation profiling in liquid biopsy for clinical 

translation. 
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Methods 

Generating sheared DNA 

K562 cells (ATCC® CCL-243™) were cultured in high glucose Dulbecco's modified 

Eagle's medium (DMEM) (Gibco) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco) 

and 1% penicillin-streptomycin (Gibco). Genomic DNA was extracted from cultured K562 cells 

using the DNeasy Blood and Tissue Kit (Qiagen). The extracted gDNA was fragmented using the 

LE220 Focused ultrasonicator (Covaris) at the following settings: 450W peak incidence power, 

30% duty factor, 200 cycles per burst for 420 sec. The fragmented DNA was size selected for 100-

200 bp fragments using BluePippin 2% agarose cassette (Sage Sciences). 

 

Heatrich-BS protocol 

3-5ng of cfDNA was used as input for the Heatrich-BS protocol. Library preparation was 

done using KAPA Hyper Prep Kit (Kapa Biosystems). 1.4μl of End Repair & A-tailing buffer 

(Kapa Biosystems) and 0.6μl of End Repair & A-tailing enzyme mix (Kapa Biosystems) was 

added to 10μl of input DNA, and incubated at 20°C for 30 min, 65°C for 30 min. Following this, 

the sample was heated at 88°C for 5 min, and immediately placed on ice. The sample was then 

topped up with 6μl of Ligation buffer (Kapa Biosystems), 2μl of DNA Ligase (Kapa Biosystems), 

1μl of nuclease-free water and 1μl of 750nM methylated Truseq adapter (Illumina). For no-heat 

controls, 1μl of 1.5μM methylated Truseq adapter (Illumina) was used instead. After adding these 

reagents, the sample was incubated at 25°C for 1 hour and then cleaned up by performing two 

rounds of 1.2x SPRI Select (Beckman Coulter). The sample was then subject to bisulfite 

conversion following the recommended protocol of Zymo EZ DNA Methylation kit (Zymo 

Research). The bisulfite converted DNA was amplified for 15 cycles using Pfu Polymerase 

(Agilent), cleaned up using 1.2x SPRI Select (Beckman Coulter) and re-amplified using KAPA 

Hyper Hot-Start Polymerase (Kapa Biosystems) until plateau was reached. The amplified sample 

was cleaned up using 1.2x SPRI Select (Beckman Coulter), size selected for 190-350 bp fragments 

using 2% agarose Bluepippin kits (Sage Sciences), quantified using Kapa Library quantification 

kits (Kapa Biosystems) and sequenced using MiSeq v3 150 cycle kit (Illumina). Pair end 

sequencing of 75bp each was performed. 

 

Heatrich-BS Analysis Pipeline 

 Fastqc24 was used to check the quality of the pair-end reads generated by MiSeq. After 

adapter trimming using Cutadapt25, the reads were aligned to the hg38 human genome using 

Bismark26. The aligned reads were deduplicated using Picard tools27, following which the Bismark 

methylation extractor was used to obtain per-base methylation status of each fragment.  

 

GC content calculation 

 To calculate the GC content of each fragment, the forward and reverse reads were aligned 

separately, and then combined to generate a single coordinate range encompassing the entire 

fragment. The coordinates of the fragment were then used to obtain its sequence from the reference 
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genome. For each fragment, the GC content was defined as the number of Cs and Gs, divided by 

the total length of the fragment. 

 

Tumor fraction determination algorithm 

 

The tumor fraction determination algorithm has three major steps: 

 

Step 1: Identifying the differentially methylated clusters 

To identify differentially methylated clusters for tumor-specific cfDNA detection, normal plasma 

whole genome methylation data5 and colorectal adenocarcinoma (COAD) methylation array from 

TCGA was used. 23 WGBS datasets for normal plasma and 353 Illumina 450K Methylation array 

datasets from TCGA was used for cluster generation. The TCGA methylation values were 

extrapolated to ± 100bp of each probe site. To ensure selection of only consistent sites, only 

methylation values with a standard deviation less than 0.4 between the various sample in that class 

were chosen, to ensure confidence for the reference. DMRfinder11 was used to identify 

differentially methylated clusters. Within these clusters, sites with a 0.5 difference in methylation 

were selected. 

 

Step 2: Using a bimodal distribution to calculate the class-specific probability of each site. 

Using the generated reference, a normal and tumor class-specific must be assigned to each assayed 

fragment. Since methylation values are binary, the average methylation value observed in the 

reference is a proportional combination of the unmethylated and methylated reads. As such, a 

bimodal distribution can accurately represent the proportional methylation status of the reference. 

For every site in the reference, the contribution from the unmethylated and methylated mode (0 

and 1) was calculated. The relative contributions of each mode in the two classes was used to 

assign class-specific probabilities for the methylation values in the assayed fragment. In this way, 

a bimodal reference was used to assign normal or tumor probability values to each site assayed. 

 

Step 3: Using maximum likelihood estimation to predict the tumor fraction of the sample. 

After assigning class-specific probabilities to each fragment, the fraction of fragments that come 

from the tumor must be enumerated. The tumor-derived cfDNA in a sample, also known as tumor 

fraction, can be denoted as , where 0 ≤   1. To estimate the tumor fraction , a maximum 

likelihood estimation approach and grid search, adapted from CancerDetector8, was used to 

calculate the raw tumor fraction for each sample. The determined tumor purity correction factor 

() is then applied to the raw tumor fraction to generate the final tumor fraction. 

 

Data sources 

In order to compare our assay with existing methods, we obtained the following data from 

NCBI GEO: RRBS (SRR222486), cell-free RRBS (GSM2090507). cfDNA WGBS data for 

algorithm development and validation was obtained by request from the EGA database 
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(EGAS00001001219). Colorectal cancer tumor WGBS data was obtained from NCBI GEO 

(SRR1035745). 

 

Supplementary information 

Supplementary information is available for this manuscript. 
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