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Abstract 
 
Each year vast international resources are wasted on irreproducible research. The scientific 
community has been slow to adopt standard software engineering practices, despite the 
increases in high-dimensional data, complexities of workflows, and computational environments. 
Here we show how scientific software applications can be created in a reproducible manner when 
simple design goals for reproducibility are met. We describe the implementation of a test server 
framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-
macromolecular modeling. High performance computing cluster integration allows these 
benchmarks to run continuously and automatically. Detailed protocol captures are useful for 
developers and users of Rosetta and other macromolecular modeling tools. The framework and 
design concepts presented here are valuable for developers and users of any type of scientific 
software and for the scientific community to create reproducible methods. Specific examples 
highlight the utility of this framework and the comprehensive documentation illustrates the ease 
of adding new tests in a matter of hours. 
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Introduction 
  
Reproducibility in science is a systemic problem. In a survey published by Nature in 2016, 90% 
of scientists responded that there is a reproducibility crisis1. Over 70% of the over 1,500 
researchers surveyed were unable to reproduce another scientist's experiments and over half 
were unable to reproduce their own experiments. Another analysis published by PLOS One in 
2015 concluded that, in the US alone, about half of preclinical research was irreproducible, 
amounting to a total of about $28 billion being wasted per year2! 
 
Reproducibility in biochemistry lab experiments remains challenging to address, as it depends on 
the quality and purity of reagents, unstable environmental conditions, and accuracy and skill with 
which the experiments are performed. Even small changes in input and method ultimately lead to 
an altered output. In contrast, computational methods should be inherently scientifically 
reproducible since computer chips perform computations in the same way, removing some 
variations that are difficult to control. However, in addition to poorly controlled computing 
environment variables, computational methods become increasingly complex pipelines of data 
handling and processing. This effect is further compounded by the explosion of input data through 
“big data'' efforts and exacerbated by a lack of stable, maintained, tested and well-documented 
software, creating a huge gap between the theoretical limit for scientific reproducibility and the 
current reality3.  
  
These circumstances are often caused by a lack of best practices in software engineering or 
computer science4,5, errors in laboratory management during project or personnel transitions, and 
a lack of academic incentives for software stability, maintenance, and longevity6. Shifts in 
accuracy can occur when re-writing functionality or when several authors work on different parts 
of the codebase simultaneously. An increase in complexity of scientific workflows with many and 
overlapping options and variables can prevent scientific reproducibility, as can code 
implementations that lack or even prevent suitable testing4. Absence of testing and maintenance 
cause software erosion (also known as bit rot), leading to a loss of users and often the termination 
of a software project. Further, barriers are created through intellectual property agreements, 
competition, and refusal to share inputs, methods and detailed protocols.  
  
As an example, in 2011 the Open Science Collaboration in Psychology tried to replicate results 
of 100 studies as part of the Reproducibility Project7. The collaboration consisting of 270 scientists 
could only reproduce 39% of study outcomes. Since then, some funding agencies and publishers 
have implemented data management plans or standards to improve reproducibility8–11, for 
instance the FAIR data management principles12. Guidelines to enhance reproducibility13 are 
outlined in Table 3 and are discussed in detail in an excellent editorial14 describing the Ten Year 
Reproducibility Challenge15 that is published in its own reproducibility journal ReScience C16. 
Other efforts focus directly on improving the methods with which the researchers process their 
data – for instance the Galaxy platform fosters accessibility, transparency, reproducibility, and 
collaboration in biomedical data analysis and sharing13. 
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Reproducibility is also impacted by how methods are developed. Comparing a newly developed 
method to established ones, or an improved method to a previous version, is important to assess 
its accuracy and performance, monitor changes and improvements over time and evaluate the 
cost/benefit ratio for software products to commercial entities. However, biases in publishing 
positive results or improvements to known methods, in conjunction with errors in methodology or 
statistical analyses17, lead to an acute need to test methods via third parties. Often, methods are 
developed and tested on a specific benchmark set created for that purpose and will perform better 
on that dataset than methods not trained on that particular dataset. A rigorous comparison and 
assessment require the benchmark to be independently created from the method, which 
unfortunately is rarely the case. Compounding issues are lack of diversity in the benchmark set 
(towards easier prediction targets) and reported improvements smaller than the statistical 
variation of the predicted results. Guidelines on how to create a high-quality benchmark18,19 are 
outlined in Table 3.  
  
Scientific reproducibility further requires a stable, maintainable and well-tested codebase. 
Software testing is typically achieved on multiple levels4,20. Unit tests check for scientific 
correctness of small, individual code blocks, integration tests check an entire application by 
integrating various code blocks, and profile and performance tests ensure consistency in runtime 
and program simplicity. Scientific tests or benchmarks safeguard the scientific validity and 
accuracies of the predictions. They are typically only carried out during or after the development 
of a new method (‘static benchmarking’), as they require domain expertise and rely on vast 
computational resources to test an application on a larger dataset. However, accuracy and 
performance of a method depend on the test set, the details of the protocol (i.e. specific command 
lines, options and variables), and the software version. To overcome the static benchmarking 
approach, blind prediction challenges such as the Critical Assessments in protein Structure 
Prediction (CASP21), PRediction of protein Interactions (CAPRI22), Functional Annotation 
(CAFA23), Genome Interpretation (CAGI24), RNA Puzzles25, and Continuous Automated Model 
EvaluatiOn (CAMEO26 15) hold double-blind competitions at regular intervals. While these efforts 
are valuable to drive progress in method development in the scientific community, participation 
often requires months of commitment and does not address the reproducibility of established 
methods over time. 
  
The Rosetta macromolecular modeling suite27,28 has been developed for over 20 years by a global 
community with now hundreds of developers at over 70 institutions4,29. This history and growth 
required us to adopt many best practices in software engineering4,28, including the implementation 
of a battery of tests. A detailed description of our community, including standards and practices, 
is available in4. Scientific tests are important to maintain prediction accuracies for our own 
community and our users (including commercial users whose licensing fees, in our case, support 
much of Rosetta’s infrastructure and maintenance). We further want to directly and quickly 
compare different protocols and implementations and monitor the effect of score function changes 
onto the prediction results. For many years, Rosetta applications30,31 and score functions32–35 have 
been tested independently using the static benchmarking approach19,36, often with complete 
protocol captures37,38. The disadvantage of static benchmarking is that the results become 
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outdated due to the lack of automation. Reproducibility becomes impossible due to lack of 
preservation of inputs, options, environment variables and data analyses over time.  
 
This background highlights the challenges in rigorously and continuously testing how codebase 
changes affect the scientific validity of a prediction method, while maintaining or improving 
scientific reproducibility. Running scientific benchmarks continuously (1) suffers from a lack of 
incentive to set up as the maintenance character of these tests collides with academic goals; (2) 
requires both scientific and programming/technical expertise to implement, interpret and maintain; 
(3) is difficult to interpret with pass/fail criteria; and (4) requires a continuous investment of 
considerable computational resources. Here we address these challenges by introducing a 
general framework for continuous scientific benchmarks for a large and increasing number of 
protocols in the Rosetta macromolecular modeling suite. We present the general setup of this 
framework, demonstrate how we solve each of the above challenges and present the results of 
the individual benchmarks in the supplement of this paper, complete with detailed protocol 
captures. The results can be used as a baseline by anyone developing macromolecular modeling 
methods, and the code of this framework is sufficiently general to be integrated into other types 
of software.  

Results and Discussion 
 
Over the past 15 years, the Rosetta community has created its own custom-built test server 
framework connected to a dedicated High-Performance Computing (HPC) cluster - its setup is 
shown in FIG 1A and also described in the Supplement. The scientific testing setup is integrated 
into this framework.  
 
Insights from previous round of scientific tests led to specific goals 
The Rosetta community learned valuable lessons from the long-term maintenance (or lack 
thereof) of several scientific benchmark tests set up over 10 years ago. Their deterioration and 
development life cycle motivated specific goals that we think lead to more durable scientific 
benchmarks (FIG 1B): (1) Simplicity of the framework to encourage maintenance and support; (2) 
Generalization to support all user interfaces to the Rosetta codebase (command line, 
RosettaScripts39, PyRosetta40,41); (3) Automation to continuously run the tests on an HPC cluster 
with little manual intervention; (4) Documentation on how to add tests and scientific details of each 
test to allow maintenance by anyone with a general science or Rosetta background; (5) 
Distribution of the tests to both the Rosetta community and their users, and publicizing their 
existence to encourage addition of new tests and maintenance by the community; (6) 
Maintenance of the tests, facilitated by each of the previous points.  
 
Fig 1: (A) Test server setup with the web browser as the user interface, the frontend in bright 
green and the backend in light green. The code is stored in GitHub, shown in dark gray. (B) 
Specific goals for our scientific tests, driven by flaws in a previous iteration of these tests. Each 
point is described in detail in the text. (C) Basic infrastructure of the scientific test framework, 
motivated by simplicity. Each box represents a file, folder, or script that is either provided in the 
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template folder or generated throughout the protocol run. The basic workflow is highlighted in 
green with components that facilitate documentation and maintenance shown in white.  
 

 

Simplicity: Simple setup facilitates broad adoption and support from our community 
To encourage our community to contribute as many tests as possible, the testing framework 
needs to be simple and support fast and easy addition of tests. We decided on a Python 
framework that integrates well with our pre-existing testing HPC cluster. We further require these 
tests to be able to run on local machines (with different operating systems) as well as various 
HPC clusters with minimal adjustments. Debugging the scripts should be as simple as possible. 
With these requirements in mind, we decided on a setup as shown in FIG 1C. We provide a 
template directory with all necessary files (described in detail in Methods). Simple modifications 
like naming scripts in the order in which they run - e.g. 0.compile.py to 9.finalize.py - greatly 
facilitates debugging or extension by new users.  
 
Generalization: New tests support interfaces of command line, PyRosetta, or RosettaScripts 
Rosetta supports several interfaces to facilitate quick protocol development while lowering the 
necessary expertise required by new developers to join our community4. Many mainstream 
protocols have been developed as standalone applications to be run via command line, while 
customized protocols have been developed in RosettaScripts39 and PyRosetta40,41. For our test 
server framework, we sought a general code design that allows input from all three interfaces 
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while supporting different types of outputs, quality measures, and analyses, sometimes even 
written in different scripting languages. 

Automation: Tests require substantial compute power and are run on a dedicated test server 
Running scientific benchmarks requires extensive CPU time; hence we chose to integrate them 
with our own custom-built test server framework connected to a dedicated HPC cluster (FIG 1A 
and Supplement). This test server framework consists of two main components: the backend 
holds low-level primitive code for compilation on different operating systems and HPC 
environments, cluster submission scripts and web server integration code. The frontend contains 
the test directories that are implemented by the test author. Our test server is accessible through 
a convenient web interface (FIG. 2A; available at https://benchmark.graylab.jhu.edu/). This 
framework has had a hugely positive impact on the growth and maintenance of both the Rosetta 
software and our community, due to its accessibility, GitHub integration, ease-of-use, and 
automation. In software communities that lack the ability to set up a dedicated test server, 
integration testing via external services like Travis CI or Jenkins are an alternative. 
 
The RosettaCommons supports our benchmarking effort through expansion of our centralized 
test server cluster hardware and labor with an annual budget (see Supplement and reference 4). 
Because the scientific tests are integrated into our test server framework, authors of the tests can 
focus on the scientific protocols (starting from a template directory set up as in FIG 1C) instead 
of debugging errors in compilation, cluster submission and computational environment. This 
pattern also makes these tests system-independent (the author writes the setup for a local 
machine and runs it on this server), i.e., portable between operating systems and computational 
environments. We currently limit the runtime per scientific test to typically 1,000-2,000 CPU hours. 
 
Due to the required computational resources, we are unable to test every code revision in the 
main development branch of Rosetta; instead, we dedicate computational nodes to the scientific 
tests and run tests such that the nodes are continuously occupied. We found that scheduling the 
earliest-run test on an individual rolling basis, as compute nodes become available, is most 
efficient in balancing the server load while keeping nodes available for tests in feature branches. 
Upon discovery of a test failure and to find the specific revision (and therefore the code change) 
that caused the failure, our bisect tool schedules intermediate revisions on a low-priority basis. All 
test results are stored in the database and are accessible through a web interface (FIG 2). 
 
Fig 2: (A) Dashboard of our benchmark server testing infrastructure. Each test is colored 
according to its test results: red denotes breakage, magenta denotes script failure, green denotes 
passing of a test, yellow denotes the test is currently running, and white denotes the test has yet 
to be run. All broken tests are shown prominently at the top of the page. All scientific tests are 
shown in the blue tab below (also encircled in bold black). Tests of the latest revision merged into 
the main branch are shown below with information about the committer, the pull request ID, a link 
to the code difference, and the commit message. (B) The results page that shows the results of 
the run, the documentation, and the description of whether the test passes or fails. Results pages 
are automatically generated at the end of the run for each test.  
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Documentation: Anyone can quickly and easily add new tests 
Creating well designed scientific benchmarks requires expertise in defining the scientific objective, 
establishing a protocol, and creating a high-quality test dataset. The last step of incorporating the 
test into our framework should be as simple as possible (as per our simplicity requirement). Once 
the dataset, interface (command line, RosettaScripts, or PyRosetta), specific command line, and 
quality measures have been chosen, the author can simply follow the individual steps outlined on 
the documentation page42 to contribute the test; the template guides the setup. We found that the 
setup is simple enough that untrained individuals can contribute a test in a few hours based on 
documentation alone – hence we achieved our goal of simplicity and detail in our documentation.  
 
One of the reasons for deterioration of earlier scientific tests was lack of maintenance due to 
insufficient documentation. Our goal is to drive the creation of extensive documentation for each 
test such that anybody with an average scientific knowledge of biophysics and introductory 
knowledge of programming in Rosetta can understand and maintain the tests. To ensure 
comprehensive documentation and consistency between tests, we provide a readme template 
with specific sections and questions that need to be answered for each test (see Supplement). 
The template discourages writing short, insufficient, free-form documentation, and instead 
encourages the addition of important details and significantly lowers the barrier for writing 
extensive documentation. The questionnaire-style readme template saves time to locate 
necessary details to repair broken tests. The extent and quality of documentation is independently 
approved by a pull-request reviewer before the test is merged into the main repository. The 
benchmark framework is configured such that documentation needs to be written once and is 
then directly embedded into the results page. Thus, the documentation is accessible both in the 
code and on the web interface while eliminating text duplication that could lead to discrepancies 
and confusion.  
 
Distribution: Additions and usage of tests by our community requires broad distribution 
Earlier scientific tests also deteriorated due to poor communication as to the existence of these 
tests, which resulted in a small pool of maintainers. Because our new scientific tests are integrated 
into our test server framework which the majority of our community uses and monitors, developers 
are immediately aware of the tests that exist and their pass/fail status. In conjunction with regular 
announcements to our community, this visibility should significantly broaden the number of people 
able and willing to sustain the scientific tests for a long time. If we nevertheless find that our new 
tests deteriorate, we will host a hackathon (eXtreme Rosetta Workshop4) to supplement or repair 
these tests in a concentrated effort.  

Maintenance: Test failures are handled by a defined procedure 
The often overlooked, real work in software development is not necessarily the development of 
the software itself, but its maintenance. We have a system in place outlining how test failures are 
handled and by whom. Each test has at least one dedicated maintainer (aka ‘observer’, usually 
the test author) who is notified of the test breakage via email and whose responsibility it is to 
repair the test. Test failures can be three-fold: technical failures, stochastic failures, or scientific 
failures. Technical failures (such as compiler errors, script failures due to new versions of 
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programs, etc.) typically require small adjustments and fall under the responsibility of the test 
author and our dedicated test engineer.  
 
Stochastic failures are an uncommon feature in software testing but are possible in this 
framework. Rosetta often uses Metropolis Monte Carlo algorithms and thus has an element of 
randomness present in most protocols. Scientific tests are interpreted in a Boolean pass/fail 
fashion but generally have an underlying statistical interpretation and are sampling from a 
distribution against a chosen target value. The randomness of Monte Carlo will occasionally cause 
a stochastic test failure because those runs happen to produce poor predictions by the tested 
metric. This is handled by simply rerunning the test: rare stochastic failures are not likely to occur 
repeatedly, and if they do, it merits re-examination of the test to change its structure or pass/fail 
criteria. 
 
A scientific failure requires more in-depth troubleshooting and falls under the responsibility of the 
maintainer. If the maintainer does not fix the test, we have a rank-order of responsibilities to 
enforce the test repair. The principal investigator of the test designates someone in their lab. If 
the necessary expertise does not exist in the lab at the time (usually because people have moved 
on in their career), repairing the test becomes the responsibility of the person who broke it. If this 
developer lacks the expertise, the repair becomes community responsibility, which typically falls 
onto one of our senior developers.  
 
Most major Rosetta protocols are now implemented as scientific benchmarks  
Using the framework described above, our community implemented 40 scientific benchmarks 
spanning a broad range of applications including antibody modeling, docking, loop modeling, 
incorporation of NMR data, ligand docking, protein design, flexible peptide docking, membrane 
protein modeling etc. (Table 1 and Supplement). Each benchmark is unique in its selection of 
targets in the benchmark set, the specific protocol that is run, the quality metrics that are 
evaluated, and the analysis to define the pass/fail criterion. The details for all of the benchmarks 
are provided in the comprehensive supplement to this paper. We further publish the benchmarks 
with results and protocol captures on our website (https://graylab.jhu.edu/download/rosetta-
scientific-tests/) twice per year for our users to see, download, run, and compare their own 
methods against. This transparency is crucial for representation of realistic performance and to 
enhance scientific reproducibility of our tools. 
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Table 1: Scientific tests continuously running on our testing server framework. The number of 
tests is constantly being expanded. The test suite is the overall application, the test is the specific 
test, implemented by the test author(s). The quality measures are evaluated to choose a pass/fail 
criterion. The targets are the number of different proteins (or biomolecules) tested on, nstruct is 
the number of models built for each target, and the runtime in CPU hours is the total runtime over 
all targets. 
 

 
 
for table references – not part of the actual manuscript: 
antibody grafting 43, antibody H3 44, antibody snugdock 45, dock glycans 46, glycan structure prediction 47, RosettaCM 48, ddg_alanine scan 49, SEWING 50, enzyme 
design 51, fast design 52, mhc epitopes 53, docking 54, ensemble docking 55, FlexPepDock 56, fragment picking 57, make fragments 57, [iHyb], cofactors 58, ligand docking 
59, ligand scoring ranking 59, loops CCD 60, loops KIC 61, loops KIC fr 62, loops NGK 63, mp energies 36, mp decoy discrimination 36, mp seq rec 36, mp ddg 64, mp dock 
65, mp domain assembly 66, mp lipid acc 67, mp relax 65, mp symdock 65, [abinitio (Simons, K. T., Kooperberg, 1997)], PDB diagnositics, simple cycpep 68, pnear 69, 
relax cart 31, relax fast 70, relax fast5 70, RNA denovo 71, stepwise 72 
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Standardizing workflows highlights heterogeneity in score function implementations 
Standardizing the workflows and creating this framework provides us with the possibility of 
running some protocols with different score functions. Rosetta has been developed over the past 
25 years and the score function has been constantly improved over this timeframe. Details of this 
evolution and the latest standard score function REF2015 can be found in references 34,35. The 
attempt to easily switch score functions for an application reveals a major challenge: many 
applications employ the global default score function differently, a problem exacerbated by the 
various user interfaces to the code (see Supplement for details). The heterogeneity in 
implementations makes it impossible to easily test different score functions for all of the 
applications and reveals that it hinders both progress and unification of the score functions, 
possibly into a single one. 
 
Use case #1: Test framework allows comparison of score functions for multiple protocols 
Using our framework, we are able to compare different score functions for various applications: 
protein-protein docking, high-resolution refinement, loop modeling, design, ligand docking, and 
membrane protein ddG’s (Table 2 and FIGs 3 - 5). We test the latest four score functions: score12, 
talaris2013, talaris2014, and REF2015 for all but ligand docking and membrane protein ddG’s. 
Ligand docking has a special score function and requires adjustments – we test the ligand score 
function, talaris2014, REF2015, and the experimental score function betaNov2016. Membrane 
protein ddG’s are tested on the membrane score functions mpframework2012, REF2015_mem, 
franklin2019 and the non-membrane score function REF2015 as a control.  
 
The benchmark sets and quality metrics are described in Table 2 and in detail in the Supplement. 
To compare the score functions, we plot each application’s quality metrics (for instance interface 
score vs. interface RMSD for protein-protein docking, total score vs. loop RMSD for loop 
modeling). We then evaluate the “funnel quality” by computing the PNear metric, which falls 
between 0 and 1, with higher values indicating higher quality68,73. For the protein design test, we 
compute the average sequence similarity of the 10 lowest-scoring (best) models instead of PNear 
and for the membrane ddG test we use the Pearson correlation coefficient between experimental 
and predicted ddG’s. We further summarize the quality metrics per protocol and score function 
by a 'winner-takes-it-all' comparison (FIG 5 A) and by an average metric over all targets per 
application per score function (FIG 5 B).  
 
A few main observations follow from this comparison: at first glance, in this comparison, REF2015 
performs generally better overall, yet the best score function to use depends on the application – 
even different types of protocols can impact prediction accuracy. However, it should be noted that 
some tests have a small sample size due to the required computational resources, therefore 
impacting the statistical significance of these outcomes. Second, more recent score functions are 
not automatically better for any given application, likely because performance depends on how 
the score function was developed and tested. For a more detailed discussion, see the 
Supplement. Third, results differ in some cases depending on how the data were summarized; 
the top-performing score functions per application from the 'winner-takes-it-all' comparison are 
not necessarily the top performers when the average of the PNear value is used, as can be seen 
in ligand docking (FIG 5B – reference 59 discussed this in depth).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 
Table 2: Tests for which we compare different scorefunctions (score12, talaris13, talaris14, 
ref2015, ligand, betaNov16, mpframework, ref2015mem, and franklin2019), complete with quality 
measures, number of targets in each benchmark, number of models created (nstruct) and runtime 
in CPU hours per scorefunction. The ligand docking and membrane ddG applications require 
specialized scorefunctions.   

 
 
 
 
 
 
 
 
 
 
 
 
Fig 3: Comparison of different score functions for different applications using the PNear metric as 
indication of "funnel quality". PNear falls between 0 (no funnel or incorrect global minimum) and 1 
(perfect funnel). The lambda parameter indicates the spread on the x-axis and is set to 4.0. Score 
functions are sorted from oldest to newest (left to right) and the models are colored in gray as the 
native (PDB) structure, then according to the score functions in order: yellow, green, cyan, and 
teal. (A) and (B) comparison for protein-protein docking on target 3eo1. The starting model is 
shown in dark blue - the docking partner of the starting model is too far away to be shown in the 
picture. The quality of the prediction improves over different score functions as indicated by 
tightening of the energy funnel. (C) and (D) comparison for ligand docking on target 4bqh. The 
native ligand pose is shown in dark blue. The quality of the prediction improves over different 
score functions as indicated by tightening of the energy funnel. (E / F) and (G / H) ligand docking 
comparison on targets 3tll and 4uwc, respectively. Newer score functions lower the energy of an 
incorrect, alternative docking conformation, leading to a worse prediction.  
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Fig 4: Comparison of different score functions for different loop modeling protocols. Score 
functions are sorted from oldest to newest (left to right) and the models are colored in gray as the 
native (PDB) structure, then according to the score functions in order: yellow, green, cyan, and 
teal. This figure shows a particular interesting example, which is not necessarily representative 
for other targets. Interesting for this target are the differences in the energy landscapes that are 
sampled and the presence of a second, incorrect conformation with low energy for some protocols 
and some score functions, but not others. For 3 out of 7 targets in our comparison, including this 
one, most conformations that KIC with fragments samples, are close to the native structure. 
Again, for larger benchmarks, this is likely not as often the case. The protocols are (1) Cyclic 
Coordinate Descent - CCD, (2) Kinematic Closure - KIC, (3) KIC with fragments, and (4) Next-
generation KIC - NGK.  
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Fig 5: Comparison of different scorefunctions (one per column) for different applications and 
protocols, using the PNear metric as indication of "funnel quality". PNear falls between 0 (no funnel 
or incorrect global minimum) and 1 (perfect funnel). The lambda parameter indicates the spread 
on the x-axis and is set to 4.0 in our comparison. Cells are colored according to the color bar on 
the right, yellow is better. Zero values in dark blue indicate unavailable data. (A) The panel uses 
a "winner-takes-all" comparison: for each protein, the score function with the highest (i.e., best) 
PNear value (see methods) gets a point. Points are then summed by column, identifying the score 
function with the most and highest PNear values across proteins, the higher the better. (B) The 
averages of the PNear values for each score function were used, i.e. computed over each column. 
Higher values are better. 
 

 
 
Use case #2: Scientific test framework facilitates bug fixes and maintenance  
The scientific test framework is also useful for code maintenance, to ensure that the correction of 
bugs does not invalidate the scientific performance of Rosetta. For example, in October 2019, we 
identified an integer division error in one of our core libraries: the fraction 2/3 was incorrectly 
assumed to evaluate to 0.6666…, when in fact integer division discards remainders, yielding 0. 
This calculation affected the computation of hydrogen bonding energies and their derivatives, and 
correcting it resulted in a small but perceptible change in some of the hydrogen bond energies. 
This led to the need to balance between fixing the bug and managing the complex 
interdependencies or to preserve the existing scoring behavior, since the rest of the score function 
had been calibrated with the bug present. By running the scientific tests on a development branch 
in which we had fixed the bug, we confirmed that although the correction results in a small change 
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in the energies, it had no perceptible effect on the scientific accuracy of large-scale sampling runs 
for structure prediction, docking, design, and any other protocol tested. This allowed us to make 
the correction without harming Rosetta’s scientific performance. We are certain that the scientific 
tests will be invaluable for ensuring that future bug-fixing and refactoring efforts do not hinder the 
scientific performance of our software, thus illustrating a key example of scientific benchmarks 
informing substantive decisions developers have to make as they navigate code life cycles.  
 
Use case #3: Test framework allows detailed investigation of new score functions under 
development 
Although small molecules and proteins are generally more rigid structures, intermediate-scale 
molecules are frequently disordered and flexible. A recent study shows that Rosetta's estimates 
of rigidity (using the funnel quality metric PNear computed to a designed binding conformation) for 
peptides designed to bind to and inhibit a target of therapeutic interest correlate well with IC50 
values69. Since this prediction has relevance to computer-aided drug development efforts, we 
want to ensure that future protocol development would not impair these predictions. We created 
a test (called peptide_pnear_vs_ic50) which performs rigidity analysis on a pool of peptides that 
were previously characterized experimentally, and computes the correlation coefficient for the 
PNear values from predicted models to the experimentally-measured IC50 values. We find that the 
current default score function, REF2015, produces much better predictions than the legacy 
Talaris2013 and Talaris2014 score functions (R2 = 0.53, 0.53, and 0.90 for Talaris2013, 
Talaris2014, and REF2015, respectively), indicating an improvement of the score function 
accuracy for this particular application34. However, this correlation is considerably worse with the 
score function Beta currently under development (R2 =0.19). This reveals problems in the 
candidate next-generation score function that will have to be addressed before it becomes the 
default. Our scientific tests embedded in the test server framework provide a means of rapidly 
benchmarking and addressing these problems. 
 
Use case #4: This framework and tests encourage scientific reproducibility on several levels 
How is this framework useful beyond the specific tests mentioned here? Its usefulness for Rosetta 
developers and users lies in the protocol captures, the specific performance of each protocol and 
the knowledge that the scientific performance is monitored over time. Developers of 
macromolecular modeling methods outside of Rosetta can use and run the exact test protocol 
captures to compare Rosetta’s results to their own, newly developed methods. The code for the 
general framework to run large-scale, continuous, automated tests is available under the standard 
Rosetta license and is useful for developers of any type of software. Lastly, the framework 
highlights how software can be developed in a scientifically reproducible manner, lessons of which 
are useful and necessary for the scientific community at large. While we recognize the time and 
work required to implement such tests and the underlying framework, the benefits far outweigh 
the effort spent in trying to reproduce results that were implemented in a manner that lacks 
necessary aspects for reproducibility, as discussed in Table 3. 
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Table 3: Guidelines for reproducible research and for development of high-quality methods.  

 

Conclusion 
Here we present a test server framework for continuously running scientific benchmarks on an 
integrated HPC cluster and detail the manner in which this framework has had a positive and 
substantive effect on our large community of scientists. The framework itself is sufficiently general 
that it could in principle be used on many types of scientific software. We use it on Rosetta 
protocols that cover the three main interfaces to the codebase: the command line, RosettaScripts 
and PyRosetta. New benchmarks are easily added and debugged, and the workflow for setting 
them up is well-documented and general: new tests can be added in a matter of hours and require 
minimal coding experience in Rosetta. We provide detailed documentation and consistency in the 
presentation of results, thereby facilitating maintenance by more than just experts in the 
community and ensuring longevity of these tests. Automated and continuous runs of these tests 
allow us to recognize shifts in performance, as development is simultaneously carried out on 
several interdependent but otherwise unrelated fronts. Thus, we are able to build a longitudinal 
map of accuracy and scientific correctness in a constantly evolving codebase (for ourselves and 
our users), provide realistic protocol captures of how to run applications, and build tools that follow 
guidelines for improving reproducibility. Diversity in the choice of targets in the benchmark sets 
provides a realistic performance somewhat insulated from institutional and career incentives. So 
far, 40 benchmarks for various biomolecular systems and prediction tasks have been added to 
our server framework and more will be added over time. Running these benchmarks requires a 
substantial amount of resources, which are funded through RosettaCommons, since such 
benchmarks are a priority for software sustainability. Even though our setup involves integration 
of a custom software framework and web interface with typical HPC hardware, we expect our 
design choices to be of general interest and integrable with paid services such as Travis CI74 or 
Jenkins75. This framework demonstrates how challenges in scientific reproducibility can be 
approached and handled in a general manner, even in a large and diverse community.  

Methods 
 
The RosettaCommons community of developers has emphasized software testing for over 15 
years. To support our community of hundreds of developers, our user base of tens of thousands 
of users, and the codebase of over 3 million lines of code4, we implemented a custom testing 
architecture to fit our needs. We use this platform (a.k.a. the “Benchmark Server”) to run all of our 
tests including unit tests, integration tests, profile tests, style tests, score function tests, build tests 
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and others. Using this benchmark server to implement scientific tests is therefore a natural 
extension of its current use. Our custom testing software runs on a dedicated HPC cluster (which 
also runs the ROSIE server76), paid for by the RosettaCommons from government and non-profit 
funding, and commercial licensing fees. 
 
The backend of the benchmark infrastructure consists of several servers 
Our testing infrastructure consists of a number of machines: 
[1.] Database server. Our data center stores information about revisions, test and sub-test results 
as well as auxiliary data like comments to revisions or list of branches that are currently tracked 
via GitHub4,77. We are using PostgreSQL. 
 
[2.] Web server. The web interface for Rosetta developers connects to the database server. 
When a developer asks for a particular revision or test results, the web server gathers these data 
from the database server, generates the HTML page and sends it to the developer who looks at 
the page in a web browser. The web server also allows developers to queue new tests through 
the submit page on the web interface. 
 
[3.] Revision daemon. This application watches the state of various branches, queues tests and 
sends notifications. The daemon tracks the list of branches and periodically checks if a new 
revision for a particular branch was committed. When a new revision has been committed, it 
schedules the default test set for that branch. The daemon also watches for open pull requests 
on GitHub, and for each pull request, it checks for specific test labels (for instance 'standard 
tests'). The revision daemon schedules any tests with that label for that pull-request.  
 
Because scientific tests require an enormous amount of compute power, we are currently unable 
to test every single revision in the Rosetta main branch. Instead, we run scientific tests on a best-
effort basis. The tests run continuously, but because there are sometimes multiple updates to the 
main branch per day and it takes the scientific tests about a week to run, many revisions in the 
main branch remain untested. In case of a test failure, the revision daemon performs a binary 
search bisecting the untested revisions to determine the exact revision that is responsible for the 
breakage. 
 
[4.-N.] Testing daemons. The testing daemons run on various platforms: Mac, Linux, and 
Windows. We currently have 18 of these daemons, some of which are meant for build tests (i.e., 
on Windows) and some of which are capable of running tests on our HPC cluster. Each daemon 
periodically checks the list of queued tests from the database server. If there is any test which 
that daemon is capable of running, it runs the test and then uploads the test results (logs, result 
files and test results encoded in JSON) to our SQL database. 
 
This backend code is specific to our hardware, HPC use patterns and system administration 
environment, and maintained separately from the code that performs or tests science. This code 
does not include the frontend scientific testing framework (next paragraph) and is not needed to 
replicate any of the scientific results. The frontend implementation of the scientific testing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

framework including all of the scientific benchmarks are fully available under the 
RosettaCommons license.  
 
Setup of the scientific tests 
We chose a simple setup as shown in FIG 1C. Each scientific test requires a small number of 
files, available in a template directory. All files in this directory are well documented with 
comments, and the lines that require editing for specific tests are highlighted. Each scientific test 
directory starts from a template containing the following files: 
  
• input files – are either located in this directory or in a parallel git submodule if the input files 

exceed 5 MB. This policy prevents our main code repository from becoming overly inflated 
with thousands of input files for scientific benchmarking. 

• 0.compile.py – compiles the Rosetta and/or PyRosetta executable. 
• 1.submit.py – submits the benchmark jobs either to the local machine or to the HPC cluster. 

Note that this “or” provides hardware non-specificity; the user writes and debugs locally and 
can run at scale on the benchmark server. 

• 2.analyze.py – analyzes the output data, depending on the scientific objective. Analysis 
functions that are specific to this particular test live in this script, while broadly useful analysis 
functions are located in a file that is part of the overall Python test server framework and that 
contains functions to evaluate quality measures. 

• 3.plot.py – plots the output data via matplotlib78, or other plotting software as appropriate. 
• … – other numbered scripts can be added as needed; they will run consecutively as 

numbered. 
• 9.finalize.py – gathers the output data and classifies the test as passed or failed, creates an 

HTML page by combining the documentation from the readme file, the plots of the output data 
and the pass/fail criterion. The HTML page is the main results page that developers, 
maintainers, and observers examine. 

• citation – includes all relevant citations that describe the protocol, the benchmark set or the 
quality measures. 

• cutoffs – contains the cutoffs used for distinguishing between a pass or a fail for this test. 
• observers – email addresses of developers that either set up the test and / or maintain it. If a 

test fails on the test server, an email is sent to the observers to inform them of the test 
breakage. 

• readme.md – is a questionnaire-style markdown file that contains all necessary 
documentation to understand the purpose and detailed methods of the test. Obtaining detailed 
documentation is essential for maintenance and longevity of the test. The goal is that anyone 
with basic Rosetta expertise and training can understand, reproduce, and maintain the test. 
The template readme file is provided in the supplement of this paper. 

Acknowledgements 
 
ARO MURI W911NF-16-1-0372 to Watkins; American Heart Association 18POST34080422 to 
Kuenze; BSF 2015207 to Schueler-Furman, Ben-Aharon; Cancer Research Institute Irvington 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Postdoctoral Fellowship (CRI 3442) to Roy Burman; Candian Institutes of Health Research 
Postdoctoral Fellowship to Yachnin; Cyrus Biotechnology to Lewis; Simons Foundation to 
Bonneau, Koehler Leman, Mulligan; German Research Foundation KU 3510/1-1 to Kuenze; 
H2020 MSCA IF CC-LEGO 792305 to Ljubetic; HHMI to Baker; Hertz Foundation Fellowship to 
Alford; ISF 717/2017 to Schueler-Furman, Ben-Aharon; Lundbeck Foundation Fellowship R272-
2017-4528 to Stein; Mistletoe Research Foundation Fellowship to Yachnin; NCN 
2018/29/B/ST6/01989 to Gront, Krys; NIAID R01AI113867 to Schief, Adolf-Bryfogle; NIEHS 
P42ES004699 to Siegel; NIH 1R01GM123089 to Farrell, DiMaio; NIH 2R01GM098977 to Bailey-
Kellogg; NIH F31-CA243353 to Smith; NIH F31-GM123616 to Jeliazkov; NIH GM067553 to 
Maguire; NIH NCI R21 CA219847 and NIH R01 GM121487 to Das, Watkins; NIH NHLBI 
2R01HL128537 to Yarov-Yarovoy; NIH NIAID R21 AI156570 and NIH NIBIB R21 EB028342 to 
Bahl; NIH NIAID U01 AI150739, NIH NIDA R01 DA046138 and NIH NIGMS R01 GM080403 to 
Meiler; NIH NIGMS R01 GM073151 to Kuhlman, Gray, Leaver-Fay, Lyskov, Moretti, Meiler; NIH 
NIGMS R01 GM121487 and NIH NIGMS R35 GM122579 to Das; NIH NIGMS 1R01GM132110 
and NIH NINDS 1R01NS103954 to Yarov-Yarovoy; NIH NINDS UG3NS114956 to Nguyen, 
Yarov-Yarovoy; NIH R01 DA046138 to Moretti; NIH F32 CA189246 to Labonte; NIH R01 GM 
076324-11 to Siegel; NIH R01 GM080403 to Kuenze; NIH R01 GM129261 to Woods; NIH R01 
GM078221 to Harmalkar, Roy Burman, Jeliazkov and Gray; NIH R01 GM127578 to Gray and 
Labonte; NIH R01 GM110089 to Loshbaugh, Kortemme, Barlow; NIH R35 GM131923 to Leaver-
Fay, Teets, Kuhlman; NIH R01 GM132565 to Hansen, Khare; NSF 1507736 to Gray, Roy 
Burman; NSF 1627539 and NSF 1827246 to Siegel; NSF 1805510 to Siegel, Fell; NSF 2031785 
to Bahl; NSF DBI-1564692 to Loshbaugh, Kortemme, Barlow and O'Connor; NSF GRFP 
Fellowship to Alford; NSF CBET1923691 to Hansen, Khare; Novo Nordisk Foundation 
NNF18OC0033950 to Tiemann, Stein, Lindorff-Larsen; RosettaCommons Licensing Fund 
RC8010 to Bahl; RosettaCommons to Hansen, Moretti, Lyskov, Khare, Gray; NIH NRSA 
T32AI007244 and NIH U19AI117905 to Schief, Adolf-Bryfogle. 
 
The authors further thank Matt Mulqueen for expert administration of the multiple benchmark 
testing servers and cluster, RosettaCommons for hardware and staff support after the NIH ended 
their software infrastructure program, and companies that license Rosetta, providing support for 
critical software sustainability practices. 

Author Contributions 
The benchmark testing server framework was implemented and is being maintained by SL. The 
scientific testing framework was created jointly by JKL, SL, and SML. Specific tests were 
implemented and validated by the test authors as outlined in Table 1. All tests went through 
independent scientific and technical review by SML, JKL, SL with help from VKM, RM, AMW and 
others for review of pull requests. Further, benchmarks were provided by JM, CB, KB, SOC, GK, 
and HW and independently reviewed by JKST, AS, KLL. JJG supervised the creation of the 
benchmark infrastructure and secured funding, together with BK. This project was jointly 
supervised by RB, JJG, DG, ALF, CB, CBK, DB, RD, FDM, SK, TK, JWL, JM, WS, OSF, JS, AS, 
VYY, and BK.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Competing Interests Statement 

Rosetta software has been licensed to numerous non-profit and for-profit organizations. Rosetta 
Licensing is managed by UW CoMotion, and royalty proceeds are managed by the 
RosettaCommons. Under institutional participation agreements between the University of 
Washington, acting on behalf of the RosettaCommons, their respective institutions may be entitled 
to a portion of revenue received on licensing Rosetta software including programs described here. 
DB, JJG, RB, OSF, DG, TK, JM, and VYY are unpaid board members of the RosettaCommons. 
As members of the Scientific Advisory Board of Cyrus Biotechnology, DB and JJG are granted 
stock options. SML, ALL, and DF are employed by or have a relationship with Cyrus 
Biotechnology. Cyrus Biotechnology distributes the Rosetta software, which includes methods 
discussed in this study. VKM is a cofounder of and shareholder in Menten Biotechnology Labs, 
Inc. The content of this manuscript is relevant to work performed at Menten. JM is employed by 
Menten with granted stock options. DB is a cofounder of, shareholder in, or advisor to the following 
companies: ARZEDA, PvP Biologics, Cyrus Biotechnology, Cue Biopharma, Icosavax, Neoleukin 
Therapeutics, Lyell Immunotherapeutics, Sana Biotechnology and A-Alpha Bio. CBK is a co-
founder and manager of Stealth Biologics, LLC, a biotechnology company. 

Data availability 
The frontend implementation of the scientific testing framework including all of the scientific 
benchmarks are fully available under the RosettaCommons license. Additionally, complete 
protocol captures for all benchmarks with input files, command lines, output files, analyses and 
result summaries are publicly available to view and download at 
https://graylab.jhu.edu/download/rosetta-scientific-tests/. These will be automatically expanded 
with new revisions about every 6 months. Older revisions remain on the server.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

References 
1. Baker, M. & Penny, D. Is there a reproducibility crisis? Nature 533, 452–454 (2016). 
2. Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The Economics of Reproducibility in 

Preclinical Research. PLOS Biol. 13, e1002165 (2015). 
3. Peng, R. D. Reproducible research in computational science. Science (80-. ). 334, 1226–

1227 (2011). 
4. Koehler Leman, J., Weitzner, B. D., Renfrew, P. D., Lewis, S. M., Moretti, R., Watkins, A. 

M., Mulligan, V. K., Lyskov, S., Adolf-Bryfogle, J., Labonte, J. W., Krys, J., Bystroff, C., 
Schief, W., Gront, D., Schueler-Furman, O., Baker, D., Bradley, P., Dunbrack, R., 
Kortemme, T., Leaver-Fay, A., Strauss, C. E. M., Meiler, J., Kuhlman, B., Gray, J. J. & 
Bonneau, R. Better together: Elements of successful scientific software development in a 
distributed collaborative community. PLOS Comput. Biol. 16, e1007507 (2020). 

5. Adorf, C. S., Ramasubramani, V., Anderson, J. A. & Glotzer, S. C. How to professionally 
develop reusable scientific software-And when not to. Comput. Sci. Eng. 21, 66–79 (2019). 

6. Baker, M. 1,500 scientists lift the lid on reproducibility : Nature News & Comment. Nature 
533, 452 (2016). 

7. Open Science Collaboration. Estimating the reproducibility of psychological science. 
Science (80-. ). 349, aac4716–aac4716 (2015). 

8. Stodden, V., Mcnutt, M., Bailey, D. H., Deelman, E., Gil, Y., Hanson, B., Heroux, M. A., 
Ioannidis, J. P. A. & Taufer, M. Enhancing reproducibility for computational methods. 
Science (80-. ). 354, 1240–41 (2016). 

9. Jeffrey Mervis. NSF to Ask Every Grant Applicant for Data Management Plan | Science | 
AAAS. Science (80-. ). (2010). at <https://www.sciencemag.org/news/2010/05/nsf-ask-
every-grant-applicant-data-management-plan> 

10. Editorial. Everyone needs a data-management plan. Nature 555, 286–286 (2018). 
11. Williams, M., Bagwell, J. & Nahm Zozus, M. Data management plans: the missing 

perspective. J. Biomed. Inform. 71, 130–142 (2017). 
12. Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., 

Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, 
A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., 
Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t Hoen, 
P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., 
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S. A., 
Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., Van Der 
Lei, J., Van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., 
Zhao, J. & Mons, B. The FAIR Guiding Principles for scientific data management and 
stewardship. Sci. Data 3, 1–9 (2016). 

13. Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M., Chilton, 
J., Clements, D., Coraor, N., Eberhard, C., Grüning, B., Guerler, A., Hillman-Jackson, J., 
Von Kuster, G., Rasche, E., Soranzo, N., Turaga, N., Taylor, J., Nekrutenko, A. & Goecks, 
J. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 
2016 update. Nucleic Acids Res. 44, W3–W10 (2016). 

14. Perkel, J. M. Challenge to scientists: does your ten-year-old code still run? Nature 584, 
656–658 (2020). 

15. ReScience C - Ten Years Reproducibility Challenge. at <https://rescience.github.io/ten-
years/> 

16. ReScience C. at <http://rescience.github.io/> 
17. Van Bavel, J. J., Mende-Siedlecki, P., Brady, W. J. & Reinero, D. A. Contextual sensitivity 

in scientific reproducibility. Proc. Natl. Acad. Sci. 113, 6454–6459 (2016). 
18. Peters, B., Brenner, S. E., Wang, E., Slonim, D. & Kann, M. G. Putting benchmarks in their 

rightful place: The heart of computational biology. PLOS Comput. Biol. 14, e1006494 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

(2018). 
19. Ó Conchúir, S., Barlow, K. A., Pache, R. A., Ollikainen, N., Kundert, K., O’Meara, M. J., 

Smith, C. A. & Kortemme, T. A Web Resource for Standardized Benchmark Datasets, 
Metrics, and Rosetta Protocols for Macromolecular Modeling and Design. PLoS One 10, 
e0130433 

20. Huizinga, D. & Kolawa, A. Automated Defect Prevention: Best Practices in Software 
Management | Wiley. (2007). at <https://www.wiley.com/en-
us/Automated+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-
9780470042120> 

21. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment 
of methods of protein structure prediction (CASP)-Round XII. Proteins Struct. Funct. 
Bioinforma. 86, 7–15 (2018). 

22. Wodak, S. J. & Janin, J. Modeling protein assemblies: Critical Assessment of Predicted 
Interactions (CAPRI) 15 years hence. Proteins Struct. Funct. Bioinforma. 85, 357–358 
(2017). 

23. Friedberg, I. & Radivojac, P. in Methods Mol. Biol. 1446, 133–146 (2017). 
24. Daneshjou, R., Wang, Y., Bromberg, Y., Bovo, S., Martelli, P. L., Babbi, G., Lena, P. Di, 

Casadio, R., Edwards, M., Gifford, D., Jones, D. T., Sundaram, L., Bhat, R. R., Li, X., Pal, 
L. R., Kundu, K., Yin, Y., Moult, J., Jiang, Y., Pejaver, V., Pagel, K. A., Li, B., Mooney, S. 
D., Radivojac, P., Shah, S., Carraro, M., Gasparini, A., Leonardi, E., Giollo, M., Ferrari, C., 
Tosatto, S. C. E., Bachar, E., Azaria, J. R., Ofran, Y., Unger, R., Niroula, A., Vihinen, M., 
Chang, B., Wang, M. H., Franke, A., Petersen, B.-S., Pirooznia, M., Zandi, P., McCombie, 
R., Potash, J. B., Altman, R. B., Klein, T. E., Hoskins, R. A., Repo, S., Brenner, S. E. & 
Morgan, A. A. Working toward precision medicine: Predicting phenotypes from exomes in 
the Critical Assessment of Genome Interpretation (CAGI) challenges. Hum. Mutat. 38, 
1182–1192 (2017). 

25. Miao, Z., Adamiak, R. W., Antczak, M., Boniecki, M. J., Bujnicki, J., Chen, S. J., Cheng, C. 
Y., Cheng, Y., Chou, F. C., Das, R., Dokholyan, N. V., Ding, F., Geniesse, C., Jiang, Y., 
Joshi, A., Krokhotin, A., Magnus, M., Mailhot, O., Major, F., Mann, T. H., Piątkowski, P., 
Pluta, R., Popenda, M., Sarzynska, J., Sun, L., Szachniuk, M., Tian, S., Wang, J., Wang, 
J., Watkins, A. M., Wiedemann, J., Xiao, Y., Xu, X., Yesselman, J. D., Zhang, D., Zhang, 
Y., Zhang, Z., Zhao, C., Zhao, P., Zhou, Y., Zok, T., Żyła, A., Ren, A., Batey, R. T., Golden, 
B. L., Huang, L., Lilley, D. M., Liu, Y., Patel, D. J. & Westhof, E. RNA-Puzzles round IV: 3D 
Structure predictions of four ribozymes and two aptamers. RNA 26, (2020). 

26. Haas, J., Barbato, A., Behringer, D., Studer, G., Roth, S., Bertoni, M., Mostaguir, K., 
Gumienny, R. & Schwede, T. Continuous Automated Model EvaluatiOn (CAMEO) 
complementing the critical assessment of structure prediction in CASP12. Proteins Struct. 
Funct. Bioinforma. 86, 387–398 (2018). 

27. Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J. M., Jacak, R., Kaufman, 
K., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, 
D. J., Richter, F., Ban, Y.-E. A., Fleishman, S. J., Corn, J. E., Kim, D. E., Berrondo, M., 
Mentzer, S., Popovic, Z., Havranek, J. J., Karanicolas, J., Das, R., Meiler, J., Kortemme, 
T., Gray, J. J., Kuhlman, B., Baker, D. & Bradley, P. ROSETTA3: An Object-Oriented 
Software Suite for the Simulation and Design of Macromolecules. Methods Enzymol. 487, 
545–74 (2011). 

28. Koehler Leman, J., Weitzner, B. D., Lewis, S. M., Adolf-Bryfogle, J., Alam, N., Alford, R. F., 
Aprahamian, M., Baker, D., Barlow, K. A., Barth, P., Basanta, B., Bender, B. J., Blacklock, 
K., Bonet, J., Boyken, S. E., Bradley, P., Bystroff, C., Conway, P., Cooper, S., Correia, B. 
E., Coventry, B., Das, R., De Jong, R. M., DiMaio, F., Dsilva, L., Dunbrack, R., Ford, A. S., 
Frenz, B., Fu, D. Y., Geniesse, C., Goldschmidt, L., Gowthaman, R., Gray, J. J., Gront, D., 
Guffy, S., Horowitz, S., Huang, P. S., Huber, T., Jacobs, T. M., Jeliazkov, J. R., Johnson, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

D. K., Kappel, K., Karanicolas, J., Khakzad, H., Khar, K. R., Khare, S. D., Khatib, F., 
Khramushin, A., King, I. C., Kleffner, R., Koepnick, B., Kortemme, T., Kuenze, G., Kuhlman, 
B., Kuroda, D., Labonte, J. W., Lai, J. K., Lapidoth, G., Leaver-Fay, A., Lindert, S., Linsky, 
T., London, N., Lubin, J. H., Lyskov, S., Maguire, J., Malmström, L., Marcos, E., Marcu, O., 
Marze, N. A., Meiler, J., Moretti, R., Mulligan, V. K., Nerli, S., Norn, C., Ó’Conchúir, S., 
Ollikainen, N., Ovchinnikov, S., Pacella, M. S., Pan, X., Park, H., Pavlovicz, R. E., Pethe, 
M., Pierce, B. G., Pilla, K. B., Raveh, B., Renfrew, P. D., Burman, S. S. R., Rubenstein, A., 
Sauer, M. F., Scheck, A., Schief, W., Schueler-Furman, O., Sedan, Y., Sevy, A. M., 
Sgourakis, N. G., Shi, L., Siegel, J. B., Silva, D. A., Smith, S., Song, Y., Stein, A., Szegedy, 
M., Teets, F. D., Thyme, S. B., Wang, R. Y. R., Watkins, A., Zimmerman, L. & Bonneau, 
R. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. 
Methods 17, 665–680 (2020). 

29. RosettaCommons. at <https://www.rosettacommons.org/> 
30. Kaufmann, K. W. & Meiler, J. Using RosettaLigand for Small Molecule Docking into 

Comparative Models. PLoS One 7, e50769 (2012). 
31. Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation of backbone 

bond geometry improves protein energy landscape modeling. Protein Sci. 23, 47–55 
(2014). 

32. Leaver-Fay, A., O’Meara, M. J., Tyka, M., Jacak, R., Song, Y., Kellogg, E. H., Thompson, 
J., Davis, I. W., Pache, R. A., Lyskov, S., Gray, J. J., Kortemme, T., Richardson, J. S., 
Havranek, J. J., Snoeyink, J., Baker, D. & Kuhlman, B. Scientific benchmarks for guiding 
macromolecular energy function improvement. Methods Enzymol. 523, 109–43 (2013). 

33. O’Meara, M. J., Leaver-Fay, A., Tyka, M. D., Stein, A., Houlihan, K., DiMaio, F., Bradley, 
P., Kortemme, T., Baker, D., Snoeyink, J. & Kuhlman, B. Combined Covalent-Electrostatic 
Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory 
Comput. 11, 609–622 (2015). 

34. Park, H., Bradley, P., Greisen, P., Liu, Y., Mulligan, V. K., Kim, D. E., Baker, D. & DiMaio, 
F. Simultaneous Optimization of Biomolecular Energy Functions on Features from Small 
Molecules and Macromolecules. J. Chem. Theory Comput. 12, 6201–6212 (2016). 

35. Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O’Meara, M. J., Dimaio, F. P., Park, H., 
Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. 
S., Bonneau, R., Bradley, P., Dunbrack, R. L., Das, R., Baker, D., Kuhlman, B., Kortemme, 
T. & Gray, J. J. The Rosetta all-atom energy function for macromolecular modeling and 
design. J. Chem. Theory Comput. 13, 1–35 (2017). 

36. Alford, R. F. & Gray, J. J. Diverse scientific benchmarks for implicit membrane energy 
functions. bioRxiv [Preprint] 2020.06.23.168021 (2020). doi:10.1101/2020.06.23.168021 

37. Renfrew, P. D., Campbell, G., Strauss, C. E. M. & Bonneau, R. The 2010 Rosetta 
Developers Meeting: Macromolecular Prediction and Design Meets Reproducible 
Publishing. PLoS One 6, e22431 (2011). 

38. Bender, B. J., Cisneros, A., Duran, A. M., Finn, J. A., Fu, D., Lokits, A. D., Mueller, B. K., 
Sangha, A. K., Sauer, M. F., Sevy, A. M., Sliwoski, G., Sheehan, J. H., Dimaio, F., Meiler, 
J. & Moretti, R. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. 
Biochemistry acs.biochem.6b00444 (2016). doi:10.1021/acs.biochem.6b00444 

39. Fleishman, S. J., Leaver-Fay, A., Corn, J. E., Strauch, E.-M. M., Khare, S. D., Koga, N., 
Ashworth, J., Murphy, P., Richter, F., Lemmon, G., Meiler, J. & Baker, D. RosettaScripts: 
A scripting language interface to the Rosetta Macromolecular modeling suite. PLoS One 
6, 1–10 (2011). 

40. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for 
implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 
(2010). 

41. Gray, J. J., Chaudhury, S., Lyskov, S., and Labonte, J. W. The PyRosetta Interactive 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Platform for Protein Structure Prediction and Design: A Set of Educational Modules. (2014). 
at <http://www.amazon.com/PyRosetta-Interactive-Platform-Structure-
Prediction/dp/1500968277> 

42. RosettaCommons. Rosetta documentation - Scientific Benchmarks. at 
<http://new.rosettacommons.org/docs/latest/development_documentation/test/Scientific-
Benchmarks> 

43. Weitzner, B. D., Jeliazkov, J. R., Lyskov, S., Marze, N., Kuroda, D., Frick, R., Adolf-
Bryfogle, J., Biswas, N., Dunbrack, R. L. & Gray, J. J. Modeling and docking of antibody 
structures with Rosetta. Nat. Protoc. 12, 401–416 (2017). 

44. Weitzner, B. D. & Gray, J. J. Accurate Structure Prediction of CDR H3 Loops Enabled by 
a Novel Structure-Based C-Terminal Constraint. J. Immunol. 198, 505–515 (2017). 

45. Sircar, A. & Gray, J. J. SnugDock: paratope structural optimization during antibody-antigen 
docking compensates for errors in antibody homology models. PLoS Comput. Biol. 6, 
e1000644 (2010). 

46. Labonte, J. W., Adolf-Bryfogle, J., Schief, W. R. & Gray, J. J. Residue-centric modeling and 
design of saccharide and glycoconjugate structures. J. Comput. Chem. 38, 276–287 
(2017). 

47. Adolf-Bryfogle, J., Labonte, J. W., Kraft, J., Shapovalov, M. V, Raemisch, S., Luettke, T., 
DiMaio, F., Bahl, C. D., Palleson, J., King, N. P., Gray, J. J., Kulp, D. W. & Schief, W. R. 
Growing Glycans in Rosetta: Accurate de-novo glycan modeling, density fitting, and 
rational sequon design. Prep. (2021). 

48. Song, Y., Dimaio, F., Wang, R. Y.-R. R., Kim, D. E., Miles, C., Brunette, T., Thompson, J. 
& Baker, D. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–
1742 (2013). 

49. Kortemme, T., Kim, D. E. & Baker, D. Computational alanine scanning of protein-protein 
interfaces. Sci. STKE 2004, pl2 (2004). 

50. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for Requirement-Driven 
Protein Design in the Rosetta Modeling Program. J. Chem. Inf. Model. 58, 895–901 (2018). 

51. Nivón, L. G., Bjelic, S., King, C. & Baker, D. Automating human intuition for protein design. 
Proteins 82, 858–66 (2014). 

52. Maguire, J. B., Haddox, H. K., Strickland, D., Halabiya, S. F., Coventry, B., Griffin, J. R., 
Pulavarti, S. V. S. R. K., Cummins, M., Thieker, D. F., Klavins, E., Szyperski, T., DiMaio, 
F., Baker, D. & Kuhlman, B. Perturbing the energy landscape for improved packing during 
computational protein design. Proteins Struct. Funct. Bioinforma. 89, 436–449 (2021). 

53. Yachnin, B. J., Mulligan, V. K., Khare, S. D. & Bailey-Kellogg, C. MHCEpitopeEnergy, a 
flexible Rosetta-based biotherapeutic deimmunization platform. J. Chem. Inf. Model. in 
revision, (2021). 

54. Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A. & 
Baker, D. Protein–Protein Docking with Simultaneous Optimization of Rigid-body 
Displacement and Side-chain Conformations. J. Mol. Biol. 331, 281–99 (2003). 

55. Marze, N. A., Roy Burman, S. S., Sheffler, W. & Gray, J. J. Efficient flexible backbone 
protein–protein docking for challenging targets. Bioinformatics 34, 3461–3469 (2018). 

56. Alam, N. & Schueler-Furman, O. in Methods Mol. Biol. 1561, 139–169 (Humana Press Inc., 
2017). 

57. Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E. M. & Baker, D. Generalized Fragment 
Picking in Rosetta : Design , Protocols and Applications. 6, (2011). 

58. Loshbaugh, A. L. & Kortemme, T. Comparison of Rosetta flexible-backbone computational 
protein design methods on binding interactions. Proteins Struct. Funct. Bioinforma. 88, 
206–226 (2020). 

59. Smith, S. T. & Meiler, J. Assessing multiple score functions in Rosetta for drug discovery. 
PLoS One 15, e0240450 (2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

60. Canutescu, A. A. & Dunbrack, R. L. Cyclic coordinate descent: A robotics algorithm for 
protein loop closure. Protein Sci. 12, 963–72 (2003). 

61. Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop 
reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–2 
(2009). 

62. Fernandez, A. J., Daniel, E. J. P., Mahajan, S. P., Gray, J. J., Gerken, T. A., Tabak, L. A. 
& Samara, N. L. The structure of the colorectal cancer-associated enzyme GalNAc-T12 
reveals how nonconserved residues dictate its function. Proc. Natl. Acad. Sci. U. S. A. 116, 
20404–20410 (2019). 

63. Stein, A. & Kortemme, T. Improvements to robotics-inspired conformational sampling in 
rosetta. PLoS One 8, e63090 (2013). 

64. Alford, R. F., Fleming, P. J., Fleming, K. G. & Gray, J. J. Protein Structure Prediction and 
Design in a Biologically Realistic Implicit Membrane. Biophys. J. 118, 2042–2055 (2020). 

65. Alford, R. F., Koehler Leman, J., Weitzner, B. D., Duran, A. M., Tilley, D. C., Elazar, A. & 
Gray, J. J. An Integrated Framework Advancing Membrane Protein Modeling and Design. 
PLoS Comput. Biol. 11, e1004398 (2015). 

66. Koehler Leman, J. & Bonneau, R. A Novel Domain Assembly Routine for Creating Full-
Length Models of Membrane Proteins from Known Domain Structures. Biochemistry 57, 
1939–1944 (2018). 

67. Koehler Leman, J., Lyskov, S. & Bonneau, R. Computing structure-based lipid accessibility 
of membrane proteins with mp_lipid_acc in RosettaMP. BMC Bioinformatics 18, 115 
(2017). 

68. Bhardwaj, G., Mulligan, V. K., Bahl, C. D., Gilmore, J. M., Harvey, P. J., Cheneval, O., 
Buchko, G. W., Pulavarti, S. V. S. R. K., Kaas, Q., Eletsky, A., Huang, P.-S., Johnsen, W. 
A., Greisen, P. J., Rocklin, G. J., Song, Y., Linsky, T. W., Watkins, A., Rettie, S. A., Xu, X., 
Carter, L. P., Bonneau, R., Olson, J. M., Coutsias, E., Correnti, C. E., Szyperski, T., Craik, 
D. J. & Baker, D. Accurate de novo design of hyperstable constrained peptides. Nature 
538, 329–335 (2016). 

69. Mulligan, V. K., Workman, S., Sun, T., Rettie, S., Li, X., Worrall, L. J., Craven, T. W., King, 
D. T., Hosseinzadeh, P., Watkins, A. M., Douglas Renfrew, P., Guffy, S., Labonte, J. W., 
Moretti, R., Bonneau, R., Strynadka, N. C. J. & Baker, D. Computationally designed peptide 
macrocycle inhibitors of New Delhi metallo-β-lactamase 1. Proc. Natl. Acad. Sci. U. S. A. 
118, (2021). 

70. Tyka, M. D., Keedy, D. A., André, I., DiMaio, F., Song, Y., Richardson, D. C., Richardson, 
J. S. & Baker, D. Alternate States of Proteins Revealed by Detailed Energy Landscape 
Mapping. J. Mol. Biol. 405, 607–618 (2011). 

71. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: Improved De Novo Rosetta Prediction of 
Complex Global RNA Folds. Structure 28, 963-976.e6 (2020). 

72. Watkins, A. M., Geniesse, C., Kladwang, W., Zakrevsky, P., Jaeger, L. & Das, R. Blind 
prediction of noncanonical RNA structure at atomic accuracy. Sci. Adv. 4, eaar5316 (2018). 

73. Hosseinzadeh, P., Bhardwaj, G., Mulligan, V. K., Shortridge, M. D., Craven, T. W., Pardo-
Avila, F., Rettie, S. A., Kim, D. E., Silva, D.-A., Ibrahim, Y. M., Webb, I. K., Cort, J. R., 
Adkins, J. N., Varani, G. & Baker, D. Comprehensive computational design of ordered 
peptide macrocycles. Science (80-. ). 358, 1461–1466 (2017). 

74. Travis CI - continuous integration. https://travis-ci.org/ 
75. Jenkins. https://jenkins.io/ 
76. Lyskov, S., Chou, F.-C., Conchúir, S. Ó., Der, B. S., Drew, K., Kuroda, D., Xu, J., Weitzner, 

B. D., Renfrew, P. D., Sripakdeevong, P., Borgo, B., Havranek, J. J., Kuhlman, B., 
Kortemme, T., Bonneau, R., Gray, J. J. & Das, R. Serverification of molecular modeling 
applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One 8, 
e63906 (2013). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

77. GitHub. https://github.com/ 
78. Matplotlib: Python plotting — Matplotlib 3.4.1 documentation. at <https://matplotlib.org/> 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.04.438423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438423
http://creativecommons.org/licenses/by-nc-nd/4.0/

