1 Non-invasive human skin transcriptome analysis using mRNA in skin

2 surface lipids

3	
4	Takayoshi Inoue*, Tetsuya Kuwano, Yuya Uehara, Michiko Yano, Naoki Oya, Akira
5	Hachiya, Yoshito Takahashi, Noriyasu Ota, Takatoshi Murase*
6	
7	Biological Science Research, Kao Corporation, Tochigi, Japan
8	2606, Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
9	
10	*Corresponding authors
11	Takayoshi Inoue, PhD; E-mail: inoue.takayoshi@kao.com
12	ORCID ID: 0000-0003-1038-4127
13	Takatoshi Murase, PhD; E-mail: murase.takatoshi@kao.com
14	ORCID ID: 0000-0002-5496-0133
15	
16	

17 Abstract

18	Non-invasive acquisition of mRNA data from the skin would be extremely useful for
19	understanding skin physiology and diseases. Inspired by the holocrine process, in which the
20	sebaceous glands secrete cell contents into the sebum, we focused on the possible presence of
21	mRNAs in skin surface lipids (SSLs). We found that measurable human mRNAs exist in SSLs,
22	where sebum protects them from degradation by RNases. The AmpliSeq transcriptome analysis
23	was modified to measure SSL-RNAs, and our results revealed that SSL-RNAs predominantly
24	contained mRNAs derived from sebaceous glands, epidermis, and hair follicles. Analysis of
25	SSL-RNAs non-invasively collected from patients with atopic dermatitis revealed significantly
26	increased expression of inflammation-related genes and decreased expression of terminal
27	differentiation-related genes, consistent with the results of previous reports. Further, we found
28	that lipid synthesis-related genes were downregulated in the sebaceous glands of patients with
29	atopic dermatitis. These results indicate that the analysis of SSL-RNAs is promising to
30	understand the pathophysiology of skin diseases.

32 Introduction

33	Intra- and inter-organ communication mediated via various hormones, growth factors,
34	cytokines, metabolites, and miRNAs play important roles in maintaining homeostasis in the
35	human body (1). Several efforts have been made to establish comprehensive analytical methods
36	for these mediators to monitor the physiological conditions of the body and explore predictive
37	biomarkers for various diseases (2-5). Especially, the use of serum, urine, and saliva samples,
38	which can be obtained in a non- or low-invasive manner, has been widely investigated.
39	The skin is often referred to as "the window to body's health" since the skin phenotypes, such
40	as the cutaneous pathology, appearance, and its secretions reflect not only the skin condition but
41	also the condition inside the body (6). Moreover, the skin forms the body surface and
42	biomolecules can be easily collected from the sweat, hair, and stratum corneum samples, and
43	thus, skin is a useful source of samples to monitor the skin and body conditions. For instance,
44	the cortisol content in the scalp hair correlates with long-term cumulative cortisol exposure (7).
45	The sweat can also be used as an indicator of internal physiological changes (8), and attempts
46	have been made to monitor patients' conditions, for instance, tracking blood glucose levels by
47	measuring glucose in sweat samples of patients with diabetes (9). Although metabolites,
48	proteins, and DNA are relatively easy to collect from the sweat and hair samples (10, 11), it is
49	difficult to collect measurable mRNAs from skin in a non- or low-invasive manner. So far, tape-

50	stripped stratum corneum has been used to collect mRNAs in a minimally invasive manner (12),
51	however, the mRNA content is very low and highly degraded due to the RNase activity on the
52	skin surface. Therefore, a skin biopsy is practically required to analyze mRNA expression;
53	however, this method is invasive, which limits its application. More recently, a minimally
54	invasive method for mRNA analysis via RNA-seq using AmpliSeq technology with 16-20
55	consecutive tape strips was reported (13–15). However, tape stripping of the stratum corneum is
56	known to induce skin damage, including disruption of the skin barrier (16), epidermal
57	hyperproliferation, and infiltration of CD3-positive T cells into the dermis (17), indicating that
58	the problems related to the invasiveness of this technique remain to be fully resolved.
59	The sebaceous glands synthesize and accumulate lipids to produce sebum. The lipids
60	accumulated in the cytosol of sebocytes are secreted into the sebaceous ducts following rupture
61	of the plasma membrane; this mode of secretion is called holocrine secretion (18) and is unique
62	among the exocrine glands such as lipid-secreting sebaceous and meibomian glands. The
63	holocrine secretion of the cell contents led us to the idea that sebum may contain various
64	biomolecules, including mRNAs, which may be useful for analyzing biological information.
65	Therefore, in this study, we first investigated the presence of mRNAs in human sebum and
66	established a non-invasive, comprehensive method of analyzing human mRNAs using skin
67	surface lipids (SSLs) as samples. Further, the applicability of this method in skin

68 characterization was verified in healthy subjects and patients with atopic dermatitis (AD).

70 Methods

71	Subject recruitment and collection of SSLs
72	Thirty-two healthy male individuals (mean age: 34.6 years, range: $20-49$ years, SD = 9.24)
73	were recruited for the study that was conducted in October 2016. The individuals were
74	evaluated by dermatologists prior to the commencement of the study to confirm no obvious skin
75	disease or condition on their faces. Thirty male patients (mean age: 31.0 years, range: 20-48
76	years, SD = 8.82) diagnosed with mild or moderate facial AD were recruited during June-
77	October 2017. All subjects were required not to remove facial sebum by washing or using wipes
78	or shaving their face on the test day until the end of the test. Patients with AD were also
79	restricted to use steroidal anti-inflammatory and immunosuppressive drugs on the facial skin 24
80	h prior to the study. The study was approved by the Human Research Ethics Committee, Kao
81	Corporation (approval numbers: 792-2016082 and T003-170413), Japan Aesthetic Dermatology
82	Symposium (approval number: KU-2017-05-003), and the Shinjukuminamiguchi Dermatologic
83	Clinic (approval number: KU-2016-10-005).
84	SSLs were collected by wiping the whole face (forehead, cheek, face line, nose, and chin)
85	using an oil blotting film (8.0 cm x 5.0 cm, 3M Japan, Tokyo, Japan) and samples were stored in
86	glass vials at -80 °C until use.

87

88 Skin tissue

89	Surgically removed adult forehead skin from three Caucasian males, aged 62, 66, and 67
90	years, and nose skin from one adult (Caucasian female, 66-years-old) were provided by the
91	Colorado Dermatology Institute (Colorado Springs, CO, USA) for laser microdissection and
92	immunostaining, respectively. The procurement of skin tissues was approved by the Institutional
93	Review Board of IntegReview Ltd. (Austin, TX, USA; approval number: T046a-170829) and
94	was conducted according to the Declaration of Helsinki Principles. Informed consents were
95	obtained from the volunteers prior to surgery. After surgery, the skin tissues were stored in
96	William's E medium (Life Technologies, Carlsbad, CA, USA) at 4 °C until embedding. All skin
97	tissues were embedded using the Tissue-Tek optimal cutting temperature compound (Sakura
98	Finetek, Tokyo, Japan) and kept frozen until sectioning.
99	
100	mRNA extraction and qPCR
101	Human saliva, sweat, urine, and serum samples collected from two donors were purchased
102	from Cosmo Bio (Tokyo, Japan). Total RNA was extracted from 1 mL of each sample using the
103	TRIzol LS reagent (Thermo Fisher Scientific, Waltham, MA, USA). Total RNA was extracted
104	from the stratum corneum of the cheek of two healthy males according to a previous report (12).
105	Collected RNA was dissolved with 10 μ L of nuclease-free water. RNAs in SSLs (SSL-RNAs)

106	was extracted using the TRIzol reagent (Thermo Fisher Scientific) as follows: 2.85 mL of
107	TRIzol was added to a finely cut oil blotting film containing sebum samples. Next, the solution
108	was divided equally into two tubes and 260 μL of chloroform was added to each tube and mixed
109	by vortexing. The tubes were centrifuged at $12,000 \times g$ for 15 min at 4 °C. The upper layer was
110	transferred to a fresh tube and precipitated with ethanol. The precipitates were washed with
111	70 % ethanol (v/v) and dissolved in 10 μL of nuclease-free water.
112	Reverse transcription was performed using the SuperScript IV First-Strand Synthesis
113	System and Oligo-dT primers (Thermo Fisher Scientific). The qPCR was performed using the
114	TaqMan Fast Universal PCR Master Mix (Thermo Fisher Scientific) and TaqMan probes for
115	each gene (Thermo Fisher Scientific).
116	
117	Evaluation of mRNA degradation in SSLs
118	To prepare standard samples with different levels of degraded mRNAs, total RNA (1 μ g)
119	extracted from normal human epidermal keratinocytes (NHEK) (Cascade Biologics, Portland,
120	OR, USA) was incubated with 30–1000 ng/mL of recombinant human RNase 7 (Novus

- 121 Biologicals, Littleton, CO, USA) in 10 mM Tris-HCl buffer (pH 8.0) (Nippon Gene, Tokyo,
- 122 Japan) for 30 min. QIAzol lysis reagent (Qiagen, Hilden, Germany) and chloroform were added
- 123 to the samples treated with RNase 7 or SSLs collected from six healthy males as described

124	above. After the solutions were vortexed and centrifuged, RNA in the supernatant was purified
125	using the miRNeasy Mini Kit (Qiagen). The level of RNA degradation in the samples was
126	determined using the High Sensitivity RNA ScreenTape (Agilent Technologies, Palo Alto, CA,
127	USA) on an Agilent 4200 TapeStation system (Agilent Technologies). The level of degradation
128	of human mRNAs in SSLs was estimated using the following calculated DV200 value, which
129	evaluates the percentage of fragments containing > 200 nucleotides. mRNA was reverse-
130	transcribed using the SuperScript IV First-Strand Synthesis System and Oligo-dT primers
131	(Thermo Fisher Scientific) and was amplified in a thermal cycler using the PowerUP SYBR
132	Green Master Mix (Thermo Fisher Scientific) and the following primers:
133	ACTB (forward primer 57 bp): 5'-GCTTTTGGTCTCCCTGGGAG-3'
134	ACTB (forward primer 363 bp): 5'-ACAATGTGGCCGAGGACTTT-3'
135	ACTB (reverse primer): 5'-AGTCAGTGTACAGGTAAGCCC-3'
136	Abundance of each amplicon was determined from the RNA standard curve. Further,
137	DV200 values of the SSL-RNA samples were calculated from the standard curve of DV200
138	plotted against abundance ratio of the amplicons (363 bp/57 bp).
139	
140	Immunostaining
141	Skin sections obtained from the nose of a Caucasian female were fixed in acetone at -20 °C

142	for 10 min and treated with 0.1 % Triton X-100/PBS for 5 min. The skin sections were
143	incubated with Protein Block serum-free (Agilent Technologies) for 30 min, then with the
144	primary antibodies against keratin/cytokeratin (mouse mono-clonal (AE-1/AE-3), original
145	solution, Nichirei, Tokyo, Japan) or RNase 7 (rabbit poly-clonal, 1:50, Cloud-Clone Corp.,
146	Houston, TX, USA) for 1 h at 20–25 °C, and finally with anti-rabbit IgG (donkey poly-clonal,
147	Alexa Fluor 555, 1:1000, Thermo Fisher Scientific) or anti-mouse IgG (goat poly-clonal, Alexa
148	Fluor 647, 1:1000, Thermo Fisher Scientific) for 30 min. Samples were mounted on a glass slide
149	and imaged using fluorescence microscopy (BZ-X710, Keyence, Osaka, Japan).
150	

Western blotting 151

152 Total protein was extracted from SSLs using 350 μL of RIPA buffer and	was purified using
---	--------------------

the Ready Prep 2-D cleanup kit (Bio-Rad, Hercules, CA, USA); the protein concentration was 153

measured using the BCA protein assay kit (Thermo Fisher Scientific). Afterwards, 70 µL of 154

155trichloroacetic acid was added and the samples were incubated on ice for 30 min, followed by

centrifugation at 13,000 \times g for 5 min at 4 °C. Chilled acetone (500 µL) was added to the 156

157pellets, the tubes were centrifuged at $13,000 \times g$ for 5 min at 4 °C, and the supernatant was

158removed. The pellets were dissolved in SDS sample buffer (Novagen, Darmstadt, Germany) and

boiled at 95 °C for 5 min. Proteins (5 µg) were separated on a 4–15 % polyacrylamide gradient 159

 soaked in Tris-Glycine Buffer (25 mM Tris, 192 mM glycine; pH 8.2) containing 20 9 methanol. The PVDF membrane blocked with PVDF Blocking Reagent for Can Get S (Toyobo, Tokyo, Japan) was incubated with anti-RNase 7 antibody (rabbit polyclonal, Cloud-Clone Corp, Katy, TX, USA) for 60 min followed by incubation with anti-rabb horseradish peroxidase-linked secondary antibody (donkey monoclonal, 1:2000, GE F Bucks, UK) for 45 min. The bands were visualized using ECL prime western blotting reagents (GE Healthcare). 	io-Rad)
 methanol. The PVDF membrane blocked with PVDF Blocking Reagent for Can Get S (Toyobo, Tokyo, Japan) was incubated with anti-RNase 7 antibody (rabbit polyclonal, Cloud-Clone Corp, Katy, TX, USA) for 60 min followed by incubation with anti-rabb horseradish peroxidase-linked secondary antibody (donkey monoclonal, 1:2000, GE F Bucks, UK) for 45 min. The bands were visualized using ECL prime western blotting reagents (GE Healthcare). 	% (v/v)
 (Toyobo, Tokyo, Japan) was incubated with anti-RNase 7 antibody (rabbit polyclonal, Cloud-Clone Corp, Katy, TX, USA) for 60 min followed by incubation with anti-rabb horseradish peroxidase-linked secondary antibody (donkey monoclonal, 1:2000, GE I Bucks, UK) for 45 min. The bands were visualized using ECL prime western blotting reagents (GE Healthcare). 	bignal
 164 Cloud-Clone Corp, Katy, TX, USA) for 60 min followed by incubation with anti-rabb 165 horseradish peroxidase-linked secondary antibody (donkey monoclonal, 1:2000, GE F 166 Bucks, UK) for 45 min. The bands were visualized using ECL prime western blotting 167 reagents (GE Healthcare). 168 	1:200,
 horseradish peroxidase-linked secondary antibody (donkey monoclonal, 1:2000, GE I Bucks, UK) for 45 min. The bands were visualized using ECL prime western blotting reagents (GE Healthcare). 	it IgG,
 Bucks, UK) for 45 min. The bands were visualized using ECL prime western blotting reagents (GE Healthcare). 	Iealthcare,
 167 reagents (GE Healthcare). 168 169 Eff. 4. f. d. e. E. i.d. E. D. e. di it 	detection
169 Effect of sebum lipids on RNase activity	

170 The oil blotting film used to collect SSLs from the face was finely cut and 1 mL distilled

water and 4 mL tert-butyl methyl ether were added to the cut film. The solution was transferred 171

- to a new glass vial, and centrifuged at $2,050 \times g$ at 4 °C for 10 min. The upper layer was 172
- 173transferred to a new glass vial, and the organic solvent was dried by blowing nitrogen over it.
- 174The remaining sebum lipids were dissolved in 100 µL dimethyl sulfoxide (DMSO) and used for

175analysis.

- 176Cholesterol ester (cholesteryl palmitate, Sigma-Aldrich, St. Louis, MO, USA, C6072), wax
- ester (lauryl palmitoleate, Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-280908), 177

178	triacylglycerol (glyceryl trioleate, Sigma-Aldrich, T7140), free fatty acid (palmitoleic acid,
179	Sigma-Aldrich, P9417), squalene (Sigma-Aldrich, S3626), and cholesterol (Sigma-Aldrich,
180	C8667) were used as authentic samples to identify the lipid molecular species. The sebum lipids
181	extracted from the oil blotting films were dissolved in chloroform/methanol (2:1, v/v). The
182	authentic lipids and 5 mg sebum lipid samples were separated on a thin-layer chromatography
183	(TLC) plate using hexane: diethyl ether: acetic acid (70:30:1, v/v/v). After chromatography, the
184	plate was divided using a glass cutter into portions containing the authentic lipids and sebum
185	lipid samples, and the portion containing the authentic lipids was sprayed with a solution
186	containing 10 % (w/v) copper sulfate and 8 % (w/v) phosphoric acid, and then heated at 180 $^{\circ}$ C
187	for 3 min to visualize the location of each lipid. Based on the mobility of the authentic lipids,
188	the silica corresponding to portions of sebum lipids was scraped off. The silica was sonicated in
189	the chloroform/methanol (2:1, v/v) mixture to extract the lipids and centrifuged at 2,050 × g for
190	5 min. The supernatant was dried and dissolved in 15 μ L DMSO; the solution was further
191	diluted 3- and 9-fold using DMSO.
192	Cholesterol ester (cholesteryl palmitoleate, Olbracht Serdary Research Laboratories,
193	Toronto, Canada, D-161), wax ester (behenyl palmitoleate, Nu Chek Prep, Elysian, MN, USA,
194	WE-1368), triacylglycerol (glyceryl tripalmitoleate, Sigma-Aldrich, T5888; glyceryl trioleate,
195	Sigma-Aldrich, T7140), free fatty acids (myristoleic acid, Sigma-Aldrich, M3525; palmitoleic

196	acid, Sigma-Aldrich, P9417; oleic acid, Sigma-Aldrich, O1008), squalene (Sigma-Aldrich,
197	S3626), and cholesterol (Sigma-Aldrich, C8667) were used to determine the active ingredients
198	in the sebum. NHEK RNA (20 μ g/mL final concentration) was mixed with RNase 7 (final
199	concentration: 1 μ g/mL) in 10 mM Tris-HCl buffer (pH 8.0) with or without sebum or the lipid
200	reagent (total 50 μ L), and sonicated, followed by incubation at 20–25 °C for 30 min.
201	Subsequently, RNA was extracted using TRIzol LS reagent and the quality of the RNA was
202	determined using the High Sensitivity RNA ScreenTape on Agilent 4200 TapeStation System.
203	
204	Library preparation for Ion AmpliSeq
205	Following the addition of 2.85 mL of QIAzol reagent (Qiagen) to a finely cut oil blotting
206	film containing sebum samples, QIAzol solution was divided equally into two tubes.
207	Chloroform (260 μ L) was added to each tube and vortexed, and the tubes were centrifuged at
208	12,000 × g for 15 min at 4 °C. The upper layer was transferred to a fresh tube. RNA was purified
209	using the RNeasy mini kit (performing DNase treatment in the purification step) (Qiagen) and
210	eluted from the resin twice using 50 μ L of nuclease-free water followed by ethanol
211	precipitation, and then dissolved in 10 μ L of nuclease-free water.
919	
212	To improve the success rate of the library preparation by AmpliSeq protocol, we modified

214	Fisher Scientific). Briefly, 1.75 μL RNA solution was mixed with 0.5 μL VILO Reaction Mix
215	and 0.25 μL SuperScript III Enzyme. Reverse transcription was performed at 25 °C for 10 min,
216	42 °C for 90 min, and finally 85 °C for 5 min. The target DNA amplification was performed by
217	mixing 2.5 μL cDNA solution, 1.5 μL nuclease-free water, 2.0 μL Ion AmpliSeq HiFi Mix, and
218	$4.0 \ \mu L$ Ion AmpliSeq Transcriptome Human Gene Expression Core Panel under the following
219	conditions: 99 °C for 15 sec and 62 °C for 16 min for 20 cycles. The amplified DNA library was
220	purified by mixing 10 μ L AMPure XP beads (Beckman Coulter, Miami, FL, USA) according to
221	the manufacturer's protocol and eluted using 10 μ L nuclease-free water. The quality check of the
222	DNA library was conducted using the High Sensitivity D1000 ScreenTape on Agilent 4200
223	TapeStation. If the DNA library had amplified, a band of approximately 170 bp was observed.
224	After checking the DNA library quality, the reaction solution was prepared by mixing 3.5 μ L
225	purified library solution, 2.0 μ L Ion AmpliSeq HiFi Mix, 4.0 μ L Ion AmpliSeq Transcriptome
226	Human Gene Expression Core Panel, and 0.5 μL VILO Reaction Mix. After adding 1.0 μL FuPa
227	reagent to 10 μ L reconstituted reaction solution, the primer sequence was partially digested
228	under the following conditions: 50 °C for 10 min, 55 °C for 10 min, and 60 °C for 20 min. To
229	ligate the adaptor sequence, 2 μL Switch solution, 1 μL Ion Xpress Barcode adapters, and 1 μL
230	DNA ligase were added to 11 μL reaction solution, followed by incubation at 22 °C for 60 min
231	and 72 °C for 5 min. The library (15 $\mu L)$ ligated with the adaptor sequence was purified via

232	mixing with 18 µL AMPure XP beads according to the manufacturer's protocol. Libraries were
233	eluted using 50 μ L Library Amp Mix (Thermo Fisher Scientific) to which, 2 μ L Library Amp
234	Primers were added. The library amplification was conducted using following steps: 98 °C for
235	15 seconds and 64 °C for 1 min for five cycles. Next, 50 μL PCR product was mixed with 25 μL
236	AMPure XP beads and the supernatant was transferred to fresh PCR tubes. The supernatants
237	were mixed with 60 μ L AMPure XP beads and purified; target fragments were eluted from the
238	beads using 10 μ L TE buffer. The quality check of the library was performed using the High
239	Sensitivity D1000 ScreenTape on Agilent 4200 TapeStation.
240	
241	Sequencing
242	The library was quantified using the Ion Library TaqManTM Quantitation Kit (Thermo
243	Fisher Scientific). After an input of 50 pM DNA library in the Ion Chef System (Thermo Fisher
244	Scientific), template preparation and chip loading were performed, and RNA-seq was conducted
245	on the Ion S5 XL System (Thermo Fisher Scientific).
246	
247	Verification of the correlation coefficient between AmpliSeq and aPCR results

- 248 For identifying *RPLP0*, *CDSN*, and *CCL17* expression in SSL-RNAs, cDNA was pre-
- 249 amplified in 14 cycles using the TaqMan PreAmp Master Mix (Thermo Fisher Scientific) and

250	pooled TaqMan probe (<i>RPLP0, CDSN</i> , and <i>CCL17</i>) (Thermo Fisher Scientific) and then diluted
251	5-fold with nuclease-free water. The qPCR was performed according to the aforementioned
252	"mRNA extraction and qPCR" method. Expression value of RPLP0 was used as an internal
253	control. Correlation between the value of reads per million mapped reads (RPM) of AmpliSeq
254	and the relative expression value of qPCR in healthy subjects and patients with AD was
255	analyzed.
256	
257	Laser microdissection (LMD) and AmpliSeq transcriptome analysis
258	Frozen skin sections (thickness: $10 \mu m$) from three Caucasian males were mounted on
259	membrane slides (PEN-Membrane 2.0 μ m, Leica Microsystems, Wetzlar, Germany) treated
260	with 0.1 % (w/v) poly-L-lysine (Fujifilm Wako Pure Chemical, Osaka, Japan). In addition, two
261	frozen sections were directly collected into 750 μ L RLT buffer (Qiagen) containing 40 mM
262	dithiothreitol (Sigma-Aldrich) to analyze the transcriptome of the whole tissue. The LMD
263	sections were fixed with acetone at -20 °C for 10 min, stained with 0.05 % (v/v) toluidine blue,
264	and finally dried. Epidermis, sebaceous glands, sweat glands, hair follicles, and dermis were
265	carefully microdissected from the skin sections using LMD7000 (Leica Microsystems). Fifteen
266	target regions from three skin tissues were dissected and dissolved in 50 μ L RLT buffer
267	containing 40 mM dithiothreitol. Total RNA was extracted and purified using the RNeasy mini

268	kit (performing DNase treatment in the purification step) (Qiagen). The RNA was concentrated
269	via ethanol precipitation and dissolved in 10 μ L nuclease-free water. The RNA quality was
270	checked on the 4200 TapeStation System and cDNA library was prepared for AmpliSeq
271	transcriptome sequencing using 75 pg total RNA according to the method described in "Library
272	preparation for Ion AmpliSeq". The number of target amplification was changed from 20 to 18
273	cycles except for dermis samples.
274	
275	Statistics, normalization, and differential expression analysis of the AmpliSeq whole
276	transcriptome
277	All statistical analyses and normalization of the RNA-seq transcriptome data were performed
278	using the R statistical language. Read counts were generated using the AmpliSeq RNA plugin in
279	Ion Torrent Suite Software (Thermo Fisher Scientific) and normalized with the DESeq2 R
280	package (Bioconductor). For differential expression analysis between healthy subjects and
281	patients with AD, a likelihood ratio test was performed with DESeq2 using normalized counts.
282	Heat maps were generated using the heatmap3 package. Dimensionality reduction using t-
283	distributed stochastic neighbor embedding (t-SNE) was performed using the Rtsne function of
284	the Rtsne package. All plots were generated using the tidyverse package in combination with the
285	reshape2, gplots, ggplot2, grid, and cowplot packages.

286 <u>Results</u>

287 N	Aeasurable	human	mRNA i	is present	in	SSL	S
-------	------------	-------	--------	------------	----	-----	---

- 288 qPCR was conducted to evaluate the mRNA abundance in SSL samples, stratum corneum,
- urine, serum, saliva, and sweat samples. The expression of ACTB and GAPDH mRNA in SSLs
- was comparable to their expression in 100 ng–500 pg and 1 ng–100 ng total RNA in NHEK,
- 291 respectively, whereas these transcripts were largely undetectable in the other body fluid samples
- 292 (Fig. 1a). The level of human mRNA degradation in SSLs could not be measured directly due to
- the presence of bacterial mRNA. Therefore, we established an assay to verify the quality of
- human mRNA in SSLs. The reverse primer was designed near the 3' end and was used with the
- forward primers to amplify 363 bp and 57 bp long human *ACTB* mRNA. After reverse
- transcription using oligo-dT primers, ACTB levels were quantified by performing qPCR using
- primers generating 363 bp and 57 bp human *ACTB* mRNA. In the case of *ACTB* mRNA of
- longer than 363 bp, both 363 and 57 bp fragments were amplified, whereas in case of ACTB
- 299 mRNA of 57–363 bp, only the 57 bp fragment was amplified (Fig. 1b). This assay was validated
- 300 using RNA subjected to artificial and gradual degradation using RNase. The gradually degraded
- 301 RNA was analyzed to calculate the percentage of fragments containing > 200 nucleotides
- 302 (DV200 value) (Fig. 1c, d). The DV200 values of gradually degraded RNAs negatively
- 303 correlated with the abundance ratio of the 363 bp and 57 bp amplicons (Fig. 1e). The level of

304	human mRNA	degradation in	SSLs co	llected fron	n six males	was calcula	ated using a	standard

305 curve (Fig. 1e) and showed a mean DV200 value of 56.5 % (Fig. 1f).

306

307 Sebum lipids inhibit RNase activity

308 Consistent with the results of a study reporting RNase 7 expression in human skin (19), we confirmed that RNase 7 was expressed in the sebaceous glands and epidermis and also detected 309 310 in SSLs (Fig. 2a, b). Because there is high abundance of RNase on the surface of human skin, it 311was surprising to detect human mRNA in SSLs. This finding led us to hypothesize that sebum 312lipids inhibit RNase activity. Based on these results, we evaluated the influence of sebum lipids 313on recombinant RNase 7 activity. Intact cellular RNA and RNase 7 were incubated with or 314 without sebum lipids from four subjects at 37 °C for 30 min. Interestingly, the 28S and 18S 315ribosomal RNAs were completely degraded after incubation with RNase 7 in the absence of 316 sebum lipids; on the other hand, ribosomal RNAs were stable in the presence of lipids (Fig. 2c). 317Next, we aimed to identify the key lipids that inhibit RNase 7 activity. The sebum lipids were separated into fractions A–D on a TLC plate (Fig. 2d), and the lipids were recovered from each 318 319 fraction and subjected to the RNase 7 inhibition assay. We observed that while fractions A, B, 320and C decreased RNase 7 activity, the inhibitory effect of the fraction D was weak (Fig. 2e). 321Triglycerides and esters in the sebum are hydrolyzed by the skin microbiome to generate free

322	fatty acids (FFAs). The FFAs in human sebum are predominantly composed of 16 carbon atoms
323	(palmitic acid, 16:0; sapienic acid, 16:1 Δ 6; and palmitoleic acid, C16:1 Δ 9) (14). Therefore, we
324	evaluated the inhibitory effects of free palmitoleic acids and various lipids with palmitoleic acid
325	as their main fatty acid, on RNase activity. The free palmitoleic acids and other lipids was
326	dissolved in the reaction buffer at 1 mg/mL or 100 mg/mL concentration, except cholesterol and
327	wax esters, and cholesterol, which could not be dissolved at 100 mg/mL. Our results showed
328	that FFAs strongly suppressed RNase activity at 1 mg/mL compared to other lipids (Fig. 2f).
329	Moreover, FFAs of different chain lengths (myristoleic acid (C14:1) and oleic acid (C18:1)) also
330	suppressed RNase 7 activity (Fig. 2g).
331	
331 332	Global expression analysis of SSL-RNAs
331 332 333	Global expression analysis of SSL-RNAs For specific and comprehensive quantification of human mRNAs in SSLs, we performed the
331 332 333 334	Global expression analysis of SSL-RNAs For specific and comprehensive quantification of human mRNAs in SSLs, we performed the AmpliSeq transcriptome analysis that can perform multiplexed amplification of cDNA
 331 332 333 334 335 	Global expression analysis of SSL-RNAs For specific and comprehensive quantification of human mRNAs in SSLs, we performed the AmpliSeq transcriptome analysis that can perform multiplexed amplification of cDNA amplicons for more than 20,000 genes. Moreover, this method can analyze even small amounts
 331 332 333 334 335 336 	Global expression analysis of SSL-RNAs For specific and comprehensive quantification of human mRNAs in SSLs, we performed the AmpliSeq transcriptome analysis that can perform multiplexed amplification of cDNA amplicons for more than 20,000 genes. Moreover, this method can analyze even small amounts of RNAs as well as degraded RNAs (20, 21). Although we attempted to prepare sequence
 331 332 333 334 335 336 337 	Global expression analysis of SSL-RNAs For specific and comprehensive quantification of human mRNAs in SSLs, we performed the AmpliSeq transcriptome analysis that can perform multiplexed amplification of cDNA amplicons for more than 20,000 genes. Moreover, this method can analyze even small amounts of RNAs as well as degraded RNAs (20, 21). Although we attempted to prepare sequence libraries from SSL-RNAs based on the default protocol, our success rate was low. Since the data
 331 332 333 334 335 336 337 338 	Global expression analysis of SSL-RNAs For specific and comprehensive quantification of human mRNAs in SSLs, we performed the AmpliSeq transcriptome analysis that can perform multiplexed amplification of cDNA amplicons for more than 20,000 genes. Moreover, this method can analyze even small amounts of RNAs as well as degraded RNAs (20, 21). Although we attempted to prepare sequence libraries from SSL-RNAs based on the default protocol, our success rate was low. Since the data quality can be improved via optimization of the AmpliSeq protocol (22), we modified the

340	the volume of reagents, standardized the conditions for reverse transcription and target
341	amplification, and added a purification step after the target amplification to remove the primer
342	dimers (Supplementary Method 1). With the new protocol, the success rate of the library
343	preparation improved significantly and the AmpliSeq library was prepared with samples
344	obtained from healthy subjects (91 %, 29/32) and patients with AD (100 %, 30/30). To analyze
345	the experimental bias of our protocol, we verified the correlation between the expression results
346	of AmpliSeq and qPCR of thymus and activation-regulated chemokine (TARC/CCL17) and
347	corneodesmosin (<i>CDSN</i>), and observed a high correlation (<i>CCL17</i> , $R = 0.81$, <i>CDSN</i> , $R = 0.87$)
348	(Fig. 3a). Furthermore, the correlation coefficients for the technical replicate of the reverse
349	transcription (0.94 and 0.90) confirmed that our protocol had low experimental bias (Fig. 3b).
350	
351	The SSL-RNA expression profile predominantly reflects mRNA expression in sebaceous
352	glands, epidermis, and hair follicles
353	The regions of the sebaceous glands, epidermis, sweat glands, hair follicles, and dermis
354	were isolated from the human skin sections using LMD followed by AmpliSeq transcriptome
355	analysis (Supplementary Fig. 1a). Each region generated distinct clusters when
356	multidimensional scaling (MDS) was performed to analyze the similarity of the transcriptome
357	profile in different regions (Supplementary Fig. 1b). Next, we focused on the genes highly

358	expressed in each region (Supplementary Fig. 1c) (23-38). Genes encoding ELOVL fatty acid
359	elongase 3 and 5 (ELOVL3 and ELOVL5), perilipin 2 and 5 (PLIN2 and PLIN5), and
360	microsomal glutathione S-transferase 1 (MGST1) are highly expressed in sebaceous glands (23-
361	26). In our study, these genes were highly expressed in sebaceous glands isolated via LMD than
362	in other regions (Supplementary Fig. 1c). Other regions isolated by LMD also expressed region-
363	characteristic genes, indicating that the LMD was performed successfully.
364	To gain further insight into the characteristics and origin of SSL-RNAs, we explored genes
365	highly expressed in each region isolated by LMD. In each region, genes with a mean of log ₂
366	(normalized counts $+1$) > 10, and with more than 1.5-fold differential expression compared to
367	other region(s), were selected (Fig. 4). However, using these criteria, we did not find any gene
368	selectively expressed in epidermis, due to its similarity with the hair follicles. Therefore, we
369	listed epidermal genes with more than 1.5-fold differential expression than in sebaceous glands,
370	sweat glands, and dermis. To obtain information regarding the origin of SSL-RNAs, the SSL-
371	RNA profile of 29 healthy subjects was analyzed using the genes expressed characteristically at
372	each region. The results presented in the heat map indicate that SSL-RNAs predominantly
373	comprise mRNAs characteristic for sebaceous glands, epidermis, and hair follicles (Fig. 4).
374	The filaggrin (FLG), filaggrin 2 (FLG2) and aspartic peptidase retroviral like 1 (ASPRV1)
375	that were expressed in the granular layer of epidermis (27-29), were abundantly expressed in

376	SSL-RNAs (Fig. 4). The genes encoding keratin 25, 27, and 71 (KRT25, KRT27, and KRT71,
377	respectively) that are expressed in the inner root sheath of hair follicles (33, 34) were highly
378	expressed in SSL-RNAs (Fig. 4). These results suggest that SSL-RNAs provide significant
379	information regarding the granular layer of the epidermis and the inner root sheath of hair
380	follicles.
381	
382	Comparison of SSL-RNAs expression between healthy subjects and patients with AD
383	We analyzed SSL-RNAs from 29 healthy subjects and 30 patients with AD. The major
384	output of the AmpliSeq data obtained with our modified method was as follows: i) the average
385	number of reads was 11,456,318 in healthy subjects and 11,137,677 in patients with AD; ii) the
386	average mapping ratio was 84.0 % in healthy subjects and 92.4 % in patients with AD; and iii)
387	the average of the ratio of target detected genes was 44.8 $\%$ in healthy subjects and 50.2 $\%$ in
388	patients with AD. First, we verified the expression of genes with significant differential
389	expression in AD. Consistent with previous reports (39-42), our results in SSL-RNAs analysis
390	showed that the expression of CCL17, interleukin 1β (IL1B), interleukin 13 (IL13), and S100
391	calcium binding protein A9 (S100A9) significantly increased in patients with AD, but the
392	expression of FLG and involucrin (IVL) was significantly decreased in the patients with AD
393	compared to healthy subjects (Fig. 5a). In a previous study reporting a global gene expression

394	analysis in skin biopsy samples, genes related to the terminal differentiation of keratinocytes
395	were significantly downregulated and those related to immune-mediated inflammation were
396	upregulated in patients with AD compared with their expression levels in healthy subjects (39).
397	Based on this report, we selected 12 genes related to terminal differentiation and 22 genes
398	related to immune-mediated inflammation that were detected in SSL-RNAs and compared their
399	expression patterns. Our results showed that the expression patterns of these genes in SSL-
400	RNAs of patients with AD and healthy subjects were largely consistent with the previous report
401	(Fig. 5b).
402	Moreover, the analysis of the dimensionality reduction using t-distributed stochastic
403	neighbor embedding (t-SNE) and variance stabilizing transformation (VST) values in all genes
404	showed that the healthy subjects and patients with AD could be distinctly classified into two
405	groups (Fig. 6a). To identify the differential biological functions between healthy subjects and
406	patients with AD, we extracted 918 upregulated and 1,033 downregulated genes in patients with
407	AD (Fig. 6b). In the 833 upregulated genes, GO terms of "mRNA splicing" and "stimulatory C-
408	type lectin receptor signaling pathway" were significantly enriched, while GO term "detection
409	of chemical stimulus involved in sensory perception of smell and keratinocyte differentiation"
410	was enriched in the 951 downregulated genes (Fig. 6c).
411	The sebum secretion is reduced in patients with AD than in healthy individuals (43);

412	however, the molecular mechanism underlying this reduction remains unknown. GO analysis
413	was performed on 46 genes highly expressed in the sebaceous glands selected from the results
414	of the LMD experiment (Fig. 4), which resulted in the enrichment of genes involved in lipid
415	metabolism (Fig. 7a). The expression of 25 genes involved in lipid metabolism (GO:0006629)
416	was downregulated in patients with AD compared to healthy individuals (Fig. 7b). Furthermore,
417	genes encoding peroxisome proliferator-activated receptor alpha (PPARA), peroxisome
418	proliferator-activated receptor gamma (PPARG), MYC proto-oncogene, bHLH transcription
419	factor (MYC), transforming growth factor beta 1 (TGFB1), tumor protein p53 (TP53), and
420	PR/SET domain 1 (BLIMP1) regulate sebocyte differentiation and sebum production in vivo and
421	ex vivo (44-47). Among these gene, the expression of TGFB1 was significantly upregulated in
422	patients with AD than in healthy subjects (Fig. 7c).

Discussion

425	In this study, we found that mRNAs of measurable quantity and quality were present in skin
426	surface lipids. Further, for the first time, we established a non-invasive and comprehensive
427	method to profile skin mRNAs using SSLs conveniently collected from the skin surface with an
428	oil blotting film.
429	A significant quantity of RNases is present on the skin surface, and extreme caution should
430	be taken when handling mRNAs. However, unexpectedly, we found that mRNAs in SSLs
431	escape RNase degradation due to the lipid components of the sebum and can be analyzed by
432	AmpliSeq transcriptome sequencing. We analyzed the lipid components responsible for
433	inhibiting the RNase activity and our results suggested that FFAs, triacylglycerol, and squalene
434	contributed significantly to the RNase inhibitory activity of sebum. Due to inhibitory effects of
435	lipids on RNases, we speculate that mRNAs may be less susceptible to RNases-mediated
436	degradation in the lipid-rich/low-water environment of SSLs. In addition, the optimal pH for
437	RNase activity is 6.5-8.0 (48), whereas the skin surface is generally weakly acidic (pH 4.1 to
438	5.8) due to the presence of organic acids such as lactic acid (49); hence, these factors may
439	collectively reduce the RNase activity in SSLs. It is known that sebum is secreted by sebaceous
440	glands in the form of fine granules (4–5 nm) (50); however, there is no knowledge on the spatial
441	arrangement of lipids, organic acids, and mRNAs in SSLs. Identifying the distribution of these

442 components, as well as the molecular interactions between them, is necessary to understand the

precise stabilization mechanism of mRNA on the skin.

443

444	We established the method for comprehensive analysis of SSL-RNAs. Recent advances in
445	sequence technology have made it possible to analyze even degraded mRNA. To prepare RNA-
446	seq libraries, a minimum DV200 value of 30 % is generally recommended. Using our modified
447	method, the DV200 of human mRNAs in SSLs was approximately 56.5 %, making it suitable
448	for transcriptome analysis. However, when the sequence libraries were prepared according to
449	the standard protocol of Ion AmpliSeq Transcriptome Human Gene Expression Kit, the success
450	rate was very low. Use of the optimized protocol (by standardizing conditions of reverse
451	transcription and target amplification, and adding a purification step after target amplification)
452	led to significant improvement in library production efficiency, and the transcriptome
453	sequencing resulted in a success rate of 95 %. Further, the analytical error of this method was
454	low and the results showed high correlation with qPCR results. Thus, our SSL-RNA analysis
455	method using the improved AmpliSeq protocol enables profiling of the mRNA expression in
456	SSLs in a reliable manner.
457	We investigated the origin of the SSL-RNAs by comparing their mRNA expression profile
458	with those of different regions of the skin. Holocrine secretion of sebum made us speculate that

459 the expression pattern of SSL-RNAs should be similar to that of the sebaceous glands. Indeed,

460	analysis of different regions of the skin obtained by LMD showed that the mRNAs derived from
461	the sebaceous glands were highly expressed in SSL-RNAs. However, SSL-RNAs were rich not
462	only in mRNAs derived from sebaceous glands but also in those derived from the epidermis and
463	hair follicles, the tissues in close contact with the sebum. In contrast, the mRNAs characteristic
464	of sweat glands and dermis, which are not in close contact with sebum, were absent in SSLs.
465	The mechanism underlying transfer of epidermal mRNAs into SSLs remain unclear, and
466	there could be several possible mechanisms. The mRNAs characteristic of the granular layer of
467	the epidermis (transcribed from FLG, FLG2 and ASPRV1) were highly expressed in SSL-RNAs.
468	In addition, stratum corneum is reported to contain detectable amounts of mRNA (13–15). We
469	speculate that the epidermal mRNAs transferred to the surface of the stratum corneum due to
470	keratinization are mixed with the sebum on the skin surface, leading to their presence in SSLs.
471	The SSLs also contained hair follicle-derived RNAs, which may be related to the anatomical
472	features of the hair follicle. SSL-RNAs were rich in mRNAs of KRT25, KRT27, and KRT71, the
473	marker genes for the inner root sheath (33, 34). The inner root sheath detaches from the hair
474	shaft and degrades during hair growth, and the process occurs at the orifice of the sebaceous
475	duct (51). These observations indicate that the epithelial cells of the inner root sheath may get
476	mixed with sebum at the orifice and skin surface, and as a result, information pertaining to the
477	hair follicles may be reflected in the SSL-RNAs. In addition, since extracellular vesicles

478	released from various cells contain several biomolecules including mRNAs (52, 53), it is
479	possible that extracellular vesicles-derived mRNAs are also included in the SSL-RNAs.
480	Collectively, our results indicate that SSL-RNAs predominantly contains mRNAs derived from
481	the sebaceous glands, epidermis, and hair follicles, and are therefore, a useful resource for
482	analyzing the biological information related to the relevant regions of the skin.
483	Finally, we verified the applicability of this method by performing a comparative analysis of
484	the SSL-RNAs profiles of healthy subjects and patients with AD. We observed that the
485	transcriptome profile was markedly different between healthy subjects and patients with AD,
486	with differential expression of immune-mediated inflammation and terminal differentiation-
487	related genes, as shown in a previous skin biopsy report (39). Moreover, the GO term "detection
488	of chemical stimulus involved in sensory perception of smell" identified in our study was
489	consistent with a previous report based on patients with AD (13) indicating that the analysis of
490	SSL-RNAs successfully captured the characteristics of AD. Atrophy of the sebaceous glands
491	and reduction in sebum secretion have been reported in patients with AD (54). However, little is
492	known about the underlying mechanism, including the gene expression profile of sebaceous
493	glands, in patients with AD due to difficulty in obtaining facial skin tissue samples containing
494	sebaceous glands. Here, we showed that the expressions of 25 lipid metabolism-related genes
495	highly expressed in sebaceous glands were lower in AD patients than in healthy subjects.

496	Moreover, the expression of TGFB1, which suppresses sebocyte differentiation and lipid
497	accumulation (47), was significantly increased in patients with AD, suggesting that the
498	suppression of lipid synthesis via TGFB1 may be one of the mechanisms responsible for
499	dysregulated sebum synthesis in these patients. Thus, the transcriptome analysis of SSL-RNAs
500	can evaluate the molecular profile of AD in a non-invasive manner, and is a promising method
501	for comprehensive understanding of AD pathology.
502	In summary, we established a non-invasive method for SSL-RNA analysis that utilizes SSL
503	samples collected by simply wiping the skin surface for less than a minute. This non-invasive
504	method has potential application in unraveling the molecular profile of skin diseases, such as
505	AD, which will be helpful for clinical management of these diseases in future. Understanding
506	the status and course of AD at the molecular level is essential not only to assess the
507	pathophysiology of AD but also to design its effective therapeutic treatments. The clinical
508	phenotypes of AD are extremely complex, warranting the need for identifying biomarkers that
509	can classify invisible endophenotypes (55). Further, since the skin is called "the disease-sensor
510	organ" (56) and is believed to reflect the conditions inside the body, the SSL-RNA analysis may
511	have wide applicability to understand various pathologies of human body.
512	

513 Data availability

- 514 The datasets generated and analyzed in the current study are available from the
- 515 corresponding author on reasonable request.
- 516

517 **References**

- 518 1) Droujinine, I. A. & Perrimon, N. Interorgan communication pathways in physiology: focus
- 519 on Drosophila. Annu. Rev. Genet. 50, 539-570 (2016).
- 520 2) Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical
- 521 monitoring. *Nat. Biotechnol.* **37**, 407-419 (2019).
- 522 3) Yokoi, A. et al. Integrated extracellular microRNA profiling for ovarian cancer
- 523 screening. *Nat. Commun.* 9, 4319 (2018).
- 524 4) Sudo, K. et al. Development and validation of an esophageal squamous cell carcinoma
- detection model by large-scale microRNA profiling. JAMA Netw. Open 2, e194573 (2019).
- 526 5) Yasui, T. et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates
- 527 via nanowires. *Sci. Adv.* **3**, e1701133 (2017).
- 528 6) Paliwal, S., Hwang, B. H., Tsai, K. Y. & Mitragotri, S. Diagnostic opportunities based on
- 529 skin biomarkers. *Eur. J. Pharm. Sci.* **50**, 546-556 (2013).
- 530 7) Wester, V. L. & van Rossum, E. F. C. Clinical applications of cortisol measurements in

- 531 hair. Eur. J. Endocrinol. 173, M1-10 (2015).
- 532 8) Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration
- 533 analysis. *Nature* **529**, 509-514 (2016).
- 534 9) Moyer, J., Wilson, D., Finkelshtein, I., Wong, B. & Potts, R. Correlation between sweat
- glucose and blood glucose in subjects with diabetes. *Diabetes Technol. Ther.* 14, 398-402
- 536 (2012).
- 537 10) Park, J. H. P. et al. An antimicrobial protein, lactoferrin exists in the sweat: proteomic
- 538 analysis of sweat. *Exp. Dermatol.* **20**, 369-371 (2011).
- 539 11) Bengtsson, C. F. et al. DNA from keratinous tissue. Part I: hair and nail. Ann. Anat. 194, 17-
- 540 25 (2012).
- 541 12) Wong, R. et al. Use of RT-PCR and DNA microarrays to characterize RNA recovered by
- non-invasive tape harvesting of normal and inflamed skin. J. Invest. Dermatol. 123, 159-
- 543 167 (2004).
- 544 13) Dyjack, N. et al. Minimally invasive skin tape strip RNA sequencing identifies novel
- 545 characteristics of the type 2–high atopic dermatitis disease endotype. J. Allergy Clin.
- 546 *Immunol.* **141**, 1298-1309 (2018).
- 547 14) He, H. et al. Tape strips detect distinct immune and barrier profiles in atopic dermatitis and
- 548 psoriasis. J. Allergy Clin. Immunol. 147, 199-212 (2021).

- 549 15) Pavel, A. B. et al. Tape strips from early-onset pediatric atopic dermatitis highlight disease
- abnormalities in nonlesional skin. *Allergy.* **76**, 314-325 (2021).
- 16) Leung, D. Y. M. et al. The nonlesional skin surface distinguishes atopic dermatitis with food
- allergy as a unique endotype. *Sci. Transl. Med.* **11**, eaav2685 (2019).
- 17) Peppelman, M., van den Eijnde, W. A. J., Jaspers, E. J., Gerritsen, M-J. P. & van Erp, P. E. J.
- 554 Combining tape stripping and non-invasive reflectance confocal microscopy : an *in vivo*
- model to study skin damage. *Skin Res. Technol.* **21**, 474-484 (2015).
- 556 18) Schneider, M. R. & Paus, R. Sebocytes, multifaceted epithelial cells: lipid production and
- bolocrine secretion. Int. J. Biochem. Cell Biol. 42, 181-185 (2010).
- 558 19) Köten, B. et al. RNase 7 contributes to the cutaneous defense against Enterococcus
- 559 faecium. *PLoS One* **4**, e6424 (2009).
- 560 20) Li, W. et al. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole
- 561 transcriptome RNA sequencing methodology for global gene expression analysis. *BMC*
- 562 *Genomics* **16**, 1069 (2015).
- 563 21) Wang, Z., Lyu, Z., Pan, L., Zeng, G. & Randhawa, P. Defining housekeeping genes suitable
- for RNA-seq analysis of the human allograft kidney biopsy tissue. *BMC Med. Genomics* **12**,
- 565 86 (2019).
- 566 22) Fitzgerald, L. M. et al. Obtaining high quality transcriptome data from formalin-fixed,

- 567 paraffin-embedded diagnostic prostate tumor specimens. *Lab. Invest.* **98**, 537-550 (2018).
- 568 23) Westerberg, R. et al. Role for ELOVL3 and fatty acid chain length in development of hair
- and skin function. J. Biol. Chem. 279, 5621-5629 (2004).
- 570 24) Kitago, M. et al. Localization of the candidate genes ELOVL5 and SCD1 for 'male effect'
- 571 pheromone synthesis in goats (*Capra hircus*). J. Reprod. Dev. 53, 1329-1333 (2007).
- 572 25) Dahlhoff, M. et al. PLIN2, the major perilipin regulated during sebocyte differentiation,
- 573 controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo. *Biochim*.
- 574 *Biophys. Acta* **1830**, 4642-4649 (2013).
- 575 26) Joost, S. et al. Single-cell transcriptomics reveals that differentiation and spatial signatures
- shape epidermal and hair follicle heterogeneity. *Cell Syst* **3**, 221-237.e9 (2016).
- 577 27) Zhang, Y. et al. Activation of beta-catenin signaling programs embryonic epidermis to hair
- 578 follicle fate. *Development* **135**, 2161-2172 (2008).
- 579 28) Makino, T., Mizawa, M., Yamakoshi, T., Takaishi, M. & Shimizu, T. Expression of
- 580 filaggrin-2 protein in the epidermis of human skin diseases: a comparative analysis with
- 581 filaggrin. Biochem. Biophys. Res. Commun. 449, 100-106 (2014).
- 582 29) Donovan, M. et al. Filaggrin and filaggrin 2 processing are linked together through skin
- aspartic acid protease activation. *PLoS One* **15**, e0232679 (2020).
- 584 30) Gao, Y. et al. Isolation, culture and phenotypic characterization of human sweat gland

- 585 epithelial cells. Int. J. Mol. Med. 34, 997-1003 (2014).
- 586 31) Rieg, S., Garbe, C., Sauer, B., Kalbacher, H. & Schittek, B. Dermcidin is constitutively
- 587 produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory
- 588 skin conditions. Br. J. Dermatol. 151, 534-539 (2004).
- 589 32) Miura, K. et al. Homeobox transcriptional factor engrailed homeobox 1 is expressed
- specifically in normal and neoplastic sweat gland cells. *Histopathology* **72**, 1199-1208
- 591 (2018).
- 592 33) Langbein, L. et al. K25 (K25irs1), K26 (K25irs2), K27 (K25irs3), and K28 (K25irs4)
- 593 represent the type I inner root sheath keratins of the human hair follicle. J. Invest.
- 594 *Dermatol.* **126**, 2377-2386 (2006).
- 595 34) Langbein, L., Yoshida, H., Praetzel-Wunder, S., Parry, D. A. & Schweizer, J. The keratins of
- the human beard hair medulla: the riddle in the middle. J. Invest. Dermatol. 130, 55-73
- 597 (2010).
- 598 35) Kutz, W. E. et al. ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition
- in extracellular matrix of cultured fibroblasts. J. Biol. Chem. 286, 17156-17167 (2011).
- 600 36) Le Goff, C. et al. Regulation of procollagen amino-propeptide processing during mouse
- 601 embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen
- biosynthesis and dermatosparaxis. *Development* **133**, 1587-1596 (2006).

603	37) Warrick, E. et al. Morphological and molecular characterization of actinic lentigos reveals
604	alterations of the dermal extracellular matrix. Br. J. Dermatol. 177, 1619-1632 (2017).
605	38) Moustou, A. E. et al. Expression of lymphatic markers and lymphatic growth factors in
606	psoriasis before and after anti-TNF treatment. An. Bras. Dermatol. 89, 891-897 (2014).
607	39) Suárez-Fariñas, M. et al. Nonlesional atopic dermatitis skin is characterized by broad
608	terminal differentiation defects and variable immune abnormalities. J. Allergy Clin.
609	Immunol. 127, 954-64.e1-4 (2011).
610	40) Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin
611	prevents induction of innate immune response genes. J. Immunol. 171, 3262-3269 (2003).
612	41) Bianchi, P. et al. Analysis of gene expression in atopic dermatitis using a microabrasive
613	method. J. Invest. Dermatol. 132, 469-472 (2012).
614	42) Gittler, J. K. et al. Progressive activation of T(H)2/T(H)22 cytokines and selective
615	epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin.
616	Immunol. 130, 1344-1354 (2012).
617	43) Furuichi, M. et al. The usefulness of sebum check film for measuring the secretion of
618	sebum. Arch. Dermatol. Res. 302, 657-660 (2010).
619	44) Trivedi, N. R. et al. Peroxisome proliferator-activated receptors increase human sebum
620	production. J. Invest. Dermatol. 126, 2002-2009 (2006).

- 45) Cottle, D. L. et al. c-MYC-induced sebaceous gland differentiation is controlled by an
- 622 androgen receptor/p53 axis. *Cell Rep.* **3**, 427-441 (2013).
- 46) Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the
- 624 sebaceous gland. *Cell* **126**, 597-609 (2006).
- 625 47) McNairn, A. J. et al. TGF β signaling regulates lipogenesis in human sebaceous glands cells.
- 626 *BMC Dermatol.* **13**, 2 (2013).
- 48) Sorrentino, S. The eight human "canonical" ribonucleases: molecular diversity, catalytic
- 628 properties, and special biological actions of the enzyme proteins. *FEBS Lett.* 584, 2194-
- 629 2200 (2010).
- 49) Lambers, H., Piessens, S., Bloem, A., Pronk, H. & Finkel, P. Natural skin surface pH is on
- average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 28, 359-370
- 632 (2006).
- 50) Sheu, H. M., Chao, S. C., Wong, T. W., Yu-Yun Lee, J. & Tsai, J. C. Human skin surface
- 634 lipid film: an ultrastructural study and interaction with corneocytes and intercellular lipid
- lamellae of the stratum corneum. *Br. J. Dermatol.* **140**, 385-391 (1999).
- 636 51) Sundberg, J. P. et al. Asebia-2J (Scd1ab2J): A new allele and a model for scarring
- 637 alopecia. Am. J. Pathol. 156, 2067-2075 (2000).
- 638 52) Xiao, D. et al. Identifying mRNA, microRNA and protein profiles of melanoma

- 639 exosomes. *PLoS One* **7**, e46874 (2012).
- 640 53) Wu, C.-X. & Liu, Z.-F. Proteomic profiling of sweat exosome suggests its involvement in
- 641 skin immunity. J. Invest. Dermatol. 138, 89-97 (2018).
- 642 54) Shi, V. Y. et al. Role of sebaceous glands in inflammatory dermatoses. J. Am. Acad.
- 643 *Dermatol.* **73**, 856-863 (2015).
- 644 55) Muraro, A. et al. Precision medicine in patients with allergic diseases: airway diseases and
- atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical
- 646 Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy
- 647 *Clin. Immunol.* **137**, 1347-1358 (2016).
- 648 56) Kozawa, S. et al. The body-wide transcriptome landscape of disease models. *iScience* 2,
- 649 238-268 (2018).

651 <u>Author Contributions</u>

652	T.I	conceived	the study	. T.I	A.H.,	Y.T.,	and T.M.	. planned	the stud	v. T.I	T.K.,	Y.U.,	M.Y.
			2	,	, ,	,				, ,	,	,	

- and N.Oy. performed the experiments and analyzed the data. T.M., Y.T., and N.Ot. supervised
- the research. T.I. and T.M. wrote the manuscript. All authors reviewed the manuscript.

655

656 Competing Interests statement

- A patent application related to this work has been filed (No. PCT/JP2017/021040,: "Method
- 658 for preparing nucleic acid sample." Status: patent granted (DE, FR, GB, KR, JP), patent pending
- 659 (CN, US). Inventors: T.I. and A.H. Patent applicant: Kao Corporation). All other co-authors
- 660 declare that they have no competing interests.

Figure 1. Evaluation of mRNA expression and RNA degradation in skin surface lipids (SSLs) (a) Expression of *ACTB* and *GAPDH* mRNA in SSLs, stratum corneum, urine, serum, saliva, and sweat samples analyzed by qPCR. Gene expression is shown as the relative expression for 100 pg of RNA derived from normal human epidermal keratinocytes (NHEK). NHEK total RNA (10 pg to 100 ng) is the standard used. (b) Outline for assaying the degradation of human mRNA in SSLs. The extent of mRNA degradation was determined using the long (363 bp)/short (57 bp) amplicon ratio calculated from qPCR results. (c) Preparation of RNA samples with different levels of degradation. A series of standards (S1 to S10) are presented with known level of RNA degradation. (d) DV200 value indicating the percentage of fragments containing > 200 nucleotides, of 1c. (e) The relationship between the DV200 of 1d and the value of 363 bp/57 bp (abundance of 363 bp amplicon/abundance of 57 bp amplicon measured by qPCR). (f) The indirect assessment of the human mRNA degradation in SSLs, n = 6. DV200 of each SSL-RNA sample was calculated using the standard curve of 1e.

Figure 2

20

10

0

Ctrl

+RNase 7

C16:1

C18:1

C14:1

Ctrl

Figure 2. Effect of sebum lipids on RNase activity

(a) The localization of RNase 7 in the human skin. Green, RNase 7; red, keratin/cytokeratin. Bar: 100 μ m. (b) The detection of RNase 7 in SSLs collected from healthy males by western blotting. (c) Determination of the effect of sebum lipids collected from four healthy males on RNase activity using NHEK total RNA. (d) Fractionation of sebum lipids collected from four healthy males by performing thin-layer chromatography (TLC). The standard lane (Std) includes authentic samples: SQ, squalene; CE, cholesterol ester (cholesteryl palmitate); WE, wax ester (lauryl palmitoleate); TAG, triacylglycerol (glyceryl trioleate); FA, free fatty acid (palmitoleic acid); and Chol, cholesterol. A to D sebum samples were collected, and lipids were extracted from the silica gel for the subsequent assays. (e) Effect of pooled sebum lipids collected from A to D on RNase activity using NHEK RNA. (f) Effect of each lipid on RNase activity using NHEK RNA. The DV200 values are shown as mean \pm SE, n = 3. WE, wax ester (behenyl palmitoleate); TAG, triacylglycerol (glyceryl tripalmitoleate); Ctrl; EtOH. (g) Relationship between RNase activity and chain length of fatty acids. The DV200 values are shown as the mean \pm SE, n = 6. C14:1, myristoleic acid; C16:1, palmitoleic acid; C18:1, oleic acid; Ctrl; EtOH.

Figure 3

Figure 3. Accuracy of the AmpliSeq data output using the modified protocol

(a) The correlation between AmpliSeq and qPCR results for *CCL17* and *CDSN* expression in healthy subjects (n = 29, blue) and patients with AD (n = 30, red). (b) The correlation of the transcriptome profile when preparing libraries in duplicate from each SSL-RNA obtained from two healthy male subjects.

Figure 4. mRNA expression characteristic of different skin regions and its comparison with the expression profile of SSL-RNAs Heatmap showing the expression profiles for each region (sebaceous glands, epidermis, sweat glands,

hair follicles, and dermis) isolated using LMD, whole skin from three healthy male subjects, and SSL-

RNAs obtained from 29 healthy male subjects.

Figure 5

а

b

Terminal differentiation-related genes

Genes related to immune-mediated inflammation

Figure 5. Comparison of AD marker genes in healthy subjects (HL) and patients with AD (a) The differential expression of *CCL17*, *IL13*, *IL1B*, *S100A9*, *FLG*, and *IVL* in HL and AD. Boxes represent mean \pm interquartile range (IQR), and whiskers represent 1st and 3rd quartile 1.5 * IQR. Benjamini-Hochberg adjusted *p*-values are shown from the likelihood ratio test between HL and AD. HL (n = 29), AD (n = 30). (b) Heatmaps using z-transformed log₂ (normalized counts + 1) in 12 terminal differentiation-related genes (upper) and 22 genes related to immune-mediated inflammation (lower).

innate immune response in mucosa (GO:0002227) antibacterial humoral response (GO:0019731) -0 10 20 30 40 50

FDR (-log10)

Figure 6. Characterization of SSL-RNAs profiles in healthy subjects (HL) and patients with AD (a) t-SNE analysis using variance stabilizing transformation (VST) values for all genes (green, HL; red, AD). (b) Volcano plot of differentially expressed genes (DEGs) (red, upregulated; blue, downregulated) in patients with AD compared to HL subjects (Benjamini-Hochberg adjusted *p*-value < 10^{-5} and fold change > 2.0). (c) Gene ontology analysis of DEGs. The upper panel shows significant biological process (BP) of upregulated DEGs and the lower panel shows BP of downregulated DEGs in patients with AD (FDR < 0.05).

HL

AD

HL

AD

HL

AD

HL

AD

HL

AD

HL AD

Figure 7. Comparison of SSL-RNAs profile representing highly expressed genes in sebaceous glands in healthy subjects (HL) and patients with AD

(a) Gene ontology analysis of 25 genes highly expressed in sebaceous glands (selected in Fig. 4). (b)

Heatmaps using z-transformed log_2 (normalized counts + 1) of 25 genes highly expressed in sebaceous

glands. (c) The differential expression of PPARA, PPARG, MYC, TGFB1, TP53, and BLIMP1 in HL and

patients with AD. Boxes represent mean \pm interquartile range (IQR), and whiskers represent 1st and 3rd

quartile 1.5 * IQR. Benjamini-Hochberg adjusted p-values are shown from the likelihood ratio test

between HL and AD. HL (n = 29), patients with AD (n = 30).