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Abstract

Background: The changing landscape of genomics research and clinical practice have created a
need for computational pipelines capable of efficiently orchestrating complex analysis stages while
handling large volumes of data across heterogeneous computational environments. Workflow
Management Systems (WfMSs) are the software components employed to fill this gap.

Results: This work provides an approach and systematic evaluation of key features of pop-
ular bioinformatics WfMSs in use today: Nextflow, CWL and WDL and some of their executors,
along with Swift/T, a workflow manager commonly used in high-scale physics applications. We
employed two use cases: a variant-calling genomic pipeline and a scalability-testing framework,
where both were run locally, on an HPC cluster and in the cloud. This allowed for evaluation
of those four WfMSs in terms of language expressiveness, modularity, scalability, robustness,
reproducibility, interoperability, ease of development, along with adoption and usage in research
labs and healthcare settings. This article is trying to answer, “which WfMS should be chosen for
a given bioinformatics application regardless of analysis type?”.

Conclusions: The choice of a given WfMS is a function of both its intrinsic language and
engine features. Within bioinformatics, where analysts are a mix of dry and wet lab scientists,
the choice is also governed by collaborations and adoption within large consortia and technical
support provided by the WfMS team/community. As the community and its needs continue to
evolve along with computational infrastructure, WfMSs will also evolve, especially those with
permissive licenses that allow commercial use. In much the same way as the dataflow paradigm
and containerization are now well understood to be very useful in bioinformatics applications, we
will continue to see innovations of tools and utilities for other purposes, like big data technologies,
interoperability and provenance.
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1 Introduction

Today’s era of data intensive science is introducing drastic changes to the scientific method
(Bell et al., 2009; Deelman et al., 2017). Genomics has turned into a large-scale data generation
science on par with astronomy and physics (Stephens et al., 2015; Hines, 2018). With this
comes a shift in computational environments from local High Performance Computing (HPC)
facilities, to distributed grids, and more recently cloud resources, especially within large-scale
multi-center collaborative projects (Langmead and Nellore, 2018). Likewise, the pressure to
process the ever-increasing amount of data at an ever-increasing pace is driving the evolution of
software to automate and parallelize analyses in these HPC environments (da Silva et al., 2017).

Scientific Workflow Management Systems (WfMSs) automate computational analyses by
stringing together individual data processing tasks into cohesive pipelines (Liu et al., 2015;
Leipzig, 2016). They abstract away the issues of orchestrating data movement and processing,
managing task dependencies, and allocating resources within the compute infrastructure (Fjuk-
stad and Bongo, 2017). Additionally, some WfMSs provide mechanisms to track data prove-
nance, execution errors, user authentication, and data security (Figure 1). The rise of WfMSs in
modern science has prompted the creation of new standards in the form of Findable, Accessible,
Interoperable and Reproducible (FAIR) principles for tools, workflows, and dataset sharing pro-
tocols (Wilkinson et al., 2016). These criteria now drive the evolution of containerized software
(Tommaso et al., 2015; Schulz et al., 2016) and standard Application Programming Interface
(API)s for defining, sharing, and executing code across a range of computational environments
(Birney et al., 2017).

Figure 1: A WfMS is middleware between the analyst and the computational environment. It
encompasses the workflow language specifications to interconnect the analysis executables, and
the execution engine to dispatch tasks and manage dependencies on the compute infrastructure.

Given that so many groups are implementing and using WfMSs (Tommaso, 2019; CDAWS,
2019), we present a systematic, quantitative evaluation and comparison of their capabilities,
focusing on deployment and management of analyses that require complex workflow architecture
involving loops, conditional execution, and nestedness. Unlike prior reviews (e.g., (Larsonneur
et al., 2018)), we will focus on the management of very large analyses across dozens to hundreds
of nodes, under circumstances where human interaction would be a significant interruption.
These kinds of analyses are performed in large sequencing facilities, major research hospitals,
and the agricultural sector.

We identified the following aspects of WfMSs relevant to bioinformatics: (1) modularity of
the pipeline to enable checkpointing; (2) scalability with respect to the number of tasks in the
pipeline and the number of nodes utilized per run; (3) robustness against failures due to data
issues, resource unavailability, or aborted execution; (4) reproducibility via logs recording data
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provenance and task execution; (5) portability across compute environments; (6) interoperability
of metadata and representation enabling workflow registration in common repositories, language
standardization, and ability to translate the same workflow into several programming languages;
and (7) ease of development by users with a range of experience and computational knowledge.
We evaluate these aspects both for the purposes of research analyses and their use in clinical
settings, requiring data privacy, governance and strict validation of correctness. The results
drive our recommendations for using different WfMSs in those settings, and ideas for the future
of workflows in biological computing.

2 Methods

2.1 Nomenclature

We use the terms workflow and pipeline interchangeably to describe the steps of a given anal-
ysis or its implementation. An analysis step, or stage, of a workflow, means a self-contained
computational unit, including serial invocation of multiple command line tools. In some WfMS
nomenclatures this is called a process (in Nextflow), task (in WDL), or leaf app (in Swift/T). A
workflow is therefore a collection of these steps strung together according to some logic, though a
workflow script may consist of sub-workflows, a group of steps that are themselves a workflow. It
is the execution engine, runner, or executor that handles the execution details of running these
stages. Finally, we use the word job for whatever computation is submitted to the resource
manager in an HPC setting.

2.2 Use case I: variant calling pipeline

Genome Analysis Toolkit (GATK)’s variant calling pipeline (McKenna et al., 2010; Van der
Auwera et al., 2013) is a typical bioinformatics pipeline that is ideal for testing the expressiveness
of a workflow language and the capabilities of a workflow execution engine (Figure Supp.1). To
curtail lengthy run times, proper implementation of this pipeline requires packaging calls to the
bioinformatics tools and interleaving the phases of serial and parallel processing over multiple
samples. Care must be taken to avoid overwhelming the HPC cluster with a large number of jobs
or overusing the compute resources. Additionally, upholding the maintenance, portability, and
reproducibility of this pipeline can be taxing on the developer, due to its many steps and large
number of configurable parameters (supplementary note 1). We used a synthetic dataset, based
on the hg19 human genome assembly and using Illumina TrueSeq v1.2 targeted regions (Whole
Exome Sequencing) to 30X sequencing depth, generated by the NEAT simulator (Stephens et al.,
2016). Simulation code is linked to in section 6.

2.3 Use case II: scalability evaluation

Scalability is an important feature of a WfMS that reflects its ability to parallelize across an
increasing number of tasks without slowing down processing. To test the scalability of WfMSs
without biasing the results with the intricacies of variant calling, we built a simplified workflow:
Each task was simply a hostname command, scattered as an array of n parallel processes across
n cores (i.e., a 1-step workflow). Additionally, we tested how task dependency chains affected
scalability by building a cascade of two identical tasks, also scattered n times across n cores
(i.e., a 2-step workflow, Figure 2). We performed multiple runs while varying the scalability
parameter n from 1 to the maximum number of cores in the cluster, and tracked which node
every task was deployed on and when. This allowed examination of how well the tasks were
distributed among the nodes, the overhead to initiate the WfMS, and the maximum possible
throughput.
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Figure 2: DAGs corresponding to a simple workflow of 2 processes (besides output aggregation)
used to assess the scalability of the executors of section 3.10, as generated by the most recent
version of each executor or utility visualizer of each language in Jan 2020

2.4 WfMSs under consideration

We chose WfMSs (Table 1) that support the widely adopted Global Alliance for Genomics and
Health (GA4GH) APIs: the Workflow Execution Service Schema (WES) for describing how
a user submits a workflow to an execution engine in a standardized way, the Task Execution
Schema (TES) for describing batch execution tasks (implemented primarily as Funnel: https://
github.com/ohsu-comp-bio/funnel), and the Tool Registry Service (TRS) for sharing code
(implemented primarily as dockstore: https://dockstore.org). These WfMS languages are
Common Workflow Languagen (CWL) (Amstutz et al., 2016), Workflow Description Language
(WDL) (Voss et al., 2017) and Nextflow (Di Tommaso et al., 2017). For contrast, we included
Swift/T (Wozniak et al., 2015; Armstrong et al., 2014), a WfMS developed and used primarily
in peta- and exascale physics applications (Wilde et al., 2014). We evaluated the language
properties of Swift/T, but did not test its scalability as it has been thoroughly examined earlier
(e.g., (Wozniak et al., 2015, 2016)). All four of these WfMSs use the dataflow paradigm to provide
implicit parallelism in running computations based on the availability of data and compute
resources (Ackerman, 1979), making them suitable for our use case of massively high-throughput
production environments.

2.5 Computational systems

The above pipelines were developed on personal computers, then ported to an HPC machine
(Biocluster) (CNRG, 2020) and to Amazon cloud AWS (Table 2). Biocluster utilizes Slurm for
job scheduling and includes five Supermicro SYS-2049U-TR4 nodes of 72 Intel Xeon Gold 6150
2.7 GHz cores, 1.2 TB RAM each. In AWS we tested three different environments: (1) Batch,
provided by AWS, for optimal provisioning of compute resources during batch processing; (2)
Cloud cluster, which is built by Nextflow at run time and uses Apache Ignite for resource
management; and (3) a dedicated, fixed-size Slurm Parallel cluster that we constructed out
of 100 worker nodes and a head node, all m5a.24xlarge instances with 96 cores and ∼412 GB
RAM each, configured using default AWS settings.
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Table 1: The WfMSs examined in this study.

WfMS Use case I: Variant calling pipeline Use case II:
Scalability evaluation

Language Engine

Swift/T GATK3; multi-sample; single-step if needed (Ahmed et al.,
2019); https:

//swift-t-variant-calling.readthedocs.io/en/latest/
-

Nextflow GATK 4; multi-sample; https://github.com/ncsa/
Genomics_MGC_VariantCalling_Nextflow/tree/dev-gatk‡ Same repository for

these three WfMSs
(https:
//github.com/azzaea/
scalability-tst)

CWLa Cromwell† -

WDLa Cromwell† GATK4; single sample;
https://github.com/ncsa/MayomicsVC/tree/dev-gatk‡

† Other engines were limited in portability, conformance to language specification, or setup (Table 4).
‡ Repositories with identical code structure, which facilitated comparison of results (Supplementary note 1 ).
a
Abbreviations: Common Workflow Languagen (CWL); Workflow Description Language (WDL).

Table 2: Computational testing environments. I and II are the use cases of sections 2.2 and 2.3.

WfMS Biocluster AWS

Language Engine Batch mode Cloud cluster Parallel Cluster

Swift/T I, II - - -

Nextflow I, II - I II

CWL Cromwell I, II - - -

WDL Cromwell I, II I - II

3 Results

3.1 Philosophy and main purpose of the chosen WfMSs

The usability, features and performance of a WfMS are driven by the purpose for which it
has been developed.CWL is a language specification designed by the bioinformatics community
to unify the style, principles and standards of coding pipelines, in a way that is agnostic of
the hardware. It prioritizes reproducibility and portability of workflows and hence requires
explicit/pedantic parameters definitions, making it very verbose (figure 4.3). In contrast, WDL
is a language specification that emphasizes human readability of the code and an easy learning
curve, at the cost of being restrictive in its expressiveness. Nextflow is a complete system that
combines the workflow language and execution engine, and is perhaps one of the most mature
WfMSs to-date. Desirable features, such as readability, compactness, portability and provenance
tracking are available, yet coding is very straightforward, even for a relative beginner in biological
computing. Similarly, Swift/T is a complete system: Swift, the parallel scripting language,
is powered by turbine, the execution engine. It was written by physicists and engineers to
emphasize scalable deployment of short, rapid-fire tasks at exascale. It is thus a fairly low-level
language (similar to C) and extremely powerful, but has a steep learning curve (Ahmed et al.,
2019). Below we explore the impact of these different philosophies on the practicalities of using
the four WfMSs in production bioinformatics.

3.2 Language expressiveness

Workflow languages are Domain Specific Languages (DSLs)s designed to express the architec-
tures of workflows. A complete DSL provides the ability to express any workflow pattern (van
Der Aalst et al., 2003) via a rich library of functions, or the means to write custom functions.
These abilities, as well as the look and feel of a workflow language, is a function of its par-
ent language (Table 3). Swift/T inherits the flexibility and versatility of C, incorporating all
the familiar functions and ability to write custom functions, and drawing from a wide array of
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pre-existing libraries, including those written in Tcl, the parent language of turbine. Swift/T
reads like a low-level language, which can be difficult for a novice programmer, but provides
unparalleled ability to express any complicated workflow logic and embed any advanced algo-
rithm or operation. The Groovy-based Nextflow is similarly powerful, though easier to work
with, providing the object-oriented look and feel of Java and access to any library written for
JVM. Example implementations of complex patterns, such as upstream process synchronization,
exclusive choice among downstream processes, and feedback loops, are available in the docu-
mentation (Tommaso et al., 2019). Like Swift/T, Nextflow treats functions as first class objects
(Scott, 2009) that can be used in the same ways as variables, enabling the programmer to cre-
ate easily extensible pipelines, which is a very important feature in the world of ever-changing
bioinformatics analyses.

CWL and WDL are qualitatively different. They are better viewed as language specifications
with strictly defined grammar. Parsers built in other languages, such as Java or Python, interpret
this grammar. Thus, CWL and WDL are more restrictive in their expressiveness, but more
readable and easier to use. CWL has no functions, but supports Javascript code blocks to
express complex code patterns, provided the InlineJavascriptRequirement is specified in the
script document. However, the CWL team does not consider these code blocks a good coding
practice and advises against overusing them (Hodges and Crusoe, 2020; Robinson et al., 2020;
Arvados team, 2020). Worse yet, conditionals were not directly supported in CWL until version
1.2.0 released in August 2020, after much discussion in the community (CWL group, 2020a).
Likewise, WDL does not permit programmers to define custom functions and has a very limited
library of basic operations. Furthermore, both languages evolve independently of execution
engines, which sometimes fail to provide support for certain features. For example, until March
2020, nesting conditionals within loops was not supported with toil-wdl-runner (Vivian et al.,
2017), nor are the nested loops in WDL draft-2 code executable by Cromwell (Voss et al., 2017)
(see table 4), even though WDL specification does not forbid these patterns. Counterintuitively,
this makes CWL and WDL particularly well suited for describing biological analysis workflows,
by focusing on declarative syntax where each step of the workflow appears clearly in the script.
Their expressiveness limitations have been purposefully imposed to enforce good coding practices
and prevent unnecessarily complex workflows that cannot be unambiguously resolved. Despite
these advantages, experienced coders may find CWL and WDL somewhat claustrophobic.

Table 3: Summary of language-level differences among Swift/T, Nextflow, CWL and WDL.

Aspect Swift/T Nextflow CWL WDL

Parent
language C, tcl Ruby and Groovy N/A N/A

Compilation Compiled Interpreted Compiled Compiled

GUIs -

NextflowWorkbench
(Kurs et al., 2016),

DolphinNext
(Yukselen et al., 2020)

Rabix composer
Pipeline Builder
(EPAM systems,

2019)

DSL
features

complete,
extensible in tcl

complete, extensible
in Groovy and Java

limited standard library,
extensible via javascript

limited standard
library

Variables typed, unique
within scope

qualified, unique
within scope typed, unique identifiers typed, fully qualified

names

Loops sequential for and
parallel foreach

parallel queue
channels

parallel scatter via
ScatterFeatureRequirement parallel scatter

Conditionals
if-else and no-fall
through switch

statements

via when declaration
within a process

when and pickValue fields
proposed in CWLv1.2

if blocks producing
optional output

types

Enforcing
good

practices
- nf-core (Ewels et al.,

2019)
CWL guide (Hodges and

Crusoe, 2020) -
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3.3 Support for modularity

Modularity is a very important design principle for production bioinformatics workflows. The
core idea is to build a library of reusable modules (tasks or subworkflows) and assemble them
into various master workflows (Figure 3). This enables (1) performing different analyses without
having to refactor the entire workflow; (2) check-pointing and restart of a workflow run from a
task in the middle of analysis if needed; and (3) customizing runtime environments and compute
resources which may vary between analysis stages.

Figure 3: Bioinformatics workflows with multiple levels of complexity warrant a modular construc-
tion. It is easiest to program the workflow when its logic is abstracted away (in Tasks, red) from
the command line invocations (in Bash scripts, pink) of the bioinformatics tools (light pink). Indi-
vidual workflows can be further used as subworkflows of a larger Master workflow (e.g., Supp.1).
This architecture facilitates expression of additional complexity due to optional modules (dashed
line), nested levels of parallelism (groups of arrows connecting red rectangles) and scatter-gather
patterns (task 2 scattered across samples being merged into task 3).

The superior expressiveness and extensibility of Swift/T make it trivial to implement mod-
ularity via user functions, library imports, or leaf functions wrapping scripts written in other
languages. Out of the four WfMSs we are comparing, Swift/T is the most permissive, at the cost
of not having an explicit notion of a workflow. Nextflow is similar, but not quite as permissive as
Swift/T, where it defines processes to wrap user’s scripts written in other languages and consid-
ers a workflow to be a series of those process definitions. Nextflow lacked the ability to import
and reuse processes, until recently with Nextflow DSL-2. WDL has the most intuitive modu-
lar workflow scripting, as it explicitly defines tasks wraping Bash commands or Python code,
and workflows composed of calls to those tasks. This mechanism makes implementing modular
workflows matching to the everyday logic of a bioinformatics analyst. The resultant WDL master
workflows contain subworkflows, which consist of tasks, that in turn call Bash code and third-
party executables (Mainzer et al., 2020). They are very easy to write and read, and are there-
fore highly extensible and maintainable. In contrast, this readability aspect cannot be said of
CWL. It defines CommandLineTool and Workflow classes to distinguish individual command-line
invocations from the workflow logic calling them. Workflows can be nested by treating subwork-
flows similarly to CommandLineTools, so long as the ‘SubworkflowFeatureRequirement: {}’
is added into the header. Thus, in principle, a CWL workflow is extensible and modular by
the design of the language. Unfortunately, the code ends up being extremely verbose (Figure
Supp.4), and takes a lot longer to develop than the other three WfMSs.

We conclude that all four evaluated languages deliver satisfactory support for modularity at
the code level, though ease of use remains in the eyes of the programmer. Use of modularity
for custom resource allocation, check-pointing and auto-restart from the point of failure, is the
executor’s job, and (sections 3.7 and 3.11).
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3.4 Data dependencies and parallelism

In the dataflow paradigm (Ackerman, 1979), data dependency and parallelism go hand in hand.
Blocks of code that do not have data dependencies among them are executed in parallel (implicit
parallelism), e.g., quality checks on a BAM file. A different mechanism is usually implemented
for code blocks meant to run in parallel (explicit parallelism), e.g., read alignment across multiple
lanes (Figure Supp.1). The four languages studied differ in handling the switching between the
implicitly parallel and the explicitly serial phases of an analysis (Figure Supp.4).

Swift/T employs foreach and for statements for parallel and sequential iteration over array
elements, respectively. The => or wait statements enforce serial execution of tasks where explicit
data dependency is missing, as Turbine will otherwise attempt to parallelize such statements.
Yet, with its low-level language style, the vigilance in writing complex Swift/T workflows can
be taxing, and the resultant code difficult to debug for parallelism issues.

In contrast, WDL and Nextflow stylistically separate the areas where sequential execution of
multiple commands is permitted. command blocks inside WDL tasks are equivalent to the script
blocks inside Nextflow processes. Parallel execution is assumed among WDL tasks, unless
data dependency exists between inputs and outputs of different tasks. Explicit scatter state-
ments parallelize execution over array elements, while results are implicitly gathered. Uniquely,
Nextflow defines both process dependencies and parallelization via input/output variables, where
a multi-valued queue channel signals parallelization over its elements. This elegant approach
yields compact code, at the expense of readability. First, it requires careful pipeline design,
because a process is executed as many times as the size of its shortest queue channel, and their
types and sizes matter. Second, gathering results after parallelization needs to be coded explic-
itly. On the plus side, channels make it trivial to expand pipelines. For example, expanding
from single sample to multi-sample joint calling is achieved by merely adding the downstream
JointGenotyping process, without the addition of a nested loop across the samples.

CWL is fundamentally different: its CommandLineTool is an invocation of a single shell com-
mand, not a series of sequential commands or even a string of piped commands. Because many
tools are common among bioinformatics pipelines (e.g., samtools), this restriction encourages
reuse of the corresponding CommandLineTool modules, facilitating standardization and there-
fore reproducibility. It is easy to think of a CWL CommandLineTool as a very restricted version
of a WDL task: they both have inputs, outputs, metadata, resources options and a script,
but in CWL only a single command is allowed. Parallelization in CWL is accomplished via
ScatterFeatureRequirement {}, similar to scatter blocks in WDL.

3.5 Executor-level differences

The workflow executor is the WfMS component resolving the workflow syntax into a graph of
dependencies between tasks, typically expressed as a Directed Acyclic Graph (DAG) (Figure
1). Then it deploys those tasks in the correct order on the given infrastructure by scheduling
the jobs, provisioning compute resources, and tracking the jobs to completion. Executors may
have other functionalities for data staging, monitoring, and error recovery. These aspects are
explored in subsequent sections for key executors of each WfMS (Table 4).

In Swift/T and Nextflow, the workflow language and its executor are packaged together, and
therefore co-evolve without compatibility issues. Conversely, CWL and WDL only specify the
language syntax, which may be supported by a variety of execution engines. This results in a
healthy competition among the engines, but also raises compatibility issues.

In addition to standalone executors, there are API libraries for interpreting workflow lan-
guages. For example, miniWDL (Lin et al., 2020) is a local runner for WDL and a Python
API - a developer toolkit enabling WDL workflows to run from within Python scripts. This
opens up possibilities of building a richer workflow ecosystem through embedded data parsers,
job visualization, and other useful features.
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Table 4: Summary of executor-level differences among Swift/T, Nextflow, CWL and WDL. Any
given feature of a workflow language can be assumed supported by the executor, unless we note
otherwise. Supported language versions are in parentheses for each executor. Italics indicates

engines we thoroughly examined.

WfMS RemarksLanguage Execution engine

Swift/T Complete WfMS, supporting conditionals, loops and nested logic.
Nextflow (DSL-1, DSL-2)

CWL

cwltool
The official reference implementation of an execution engine for the
complete CWL standard (CWL group, 2020b); no cluster or cloud

support.

Cromwell (1.0) Supports CWL workflows via WOM.
toil-cwl-runner (1.0.1) Optimized for cloud environments.

rabix executor
(sbg:draft-2, 1.0)

This single node local executor is no longer supported by the original
developer team at Seven Bridges.

arvados, cwl-tes, airflow Tedious setup.

WDL

Cromwell (draft-2, 1.0) De facto standard for executing WDL workflows. Support for nested
loops is version-dependent.

toil-wdl-runner (draft-2) No support for modularity or nesting of loops and conditionals.
miniWDL (draft-2, 1.0) No cluster or cloud support. Includes Cromwell wrapper.

3.6 Workflow dependency graph resolution and visualization

The dataflow paradigm requires the executor to deterministically resolve the supported workflow
patterns (van Der Aalst et al., 2003) into unambiguous DAGs while controlling for environmen-
tal variables and random seeds (Bocchino Jr et al., 2009). This determinism ensures that all
processes using independent inputs are scheduled to run in parallel; whereas processes linked via
data dependencies are scheduled to run in the appropriate order. Due to these requirements,
some features, e.g., conditionals (CWL group, 2020a) and workflow dry runs (Di Tommaso and
Hancock, 2020), are difficult to implement in dataflow programming. Each execution engine
we studied negotiates its own semantics with the corresponding workflow language to ensure
correct DAG construction, succeeding in its own way. Workflow DAG resolution requires han-
dling many small details and careful development and co-evolution between the executor and
the workflow language. Conformance of the executor to the language specification is critical to
avoid unresolvable patterns when programming complex workflows or when migrating from one
executor to another (Eddy, 2018).

Among the four WfMSs we considered, all but Swift/T have built-in engine functionality
or auxiliary tools to visualize DAGs for debugging and documentation. Nextflow produces
the DAG upon completion of a workflow execution, in static or interactive format, using Cy-
toscape.js (Franz et al., 2015) and Dagre graph visualization libraries (Figure 2a). Alternatively,
NextflowWorkbench (Kurs et al., 2016) and DolphinNext (Yukselen et al., 2020) provide con-
venient graphical and web interfaces developed outside the Nextflow core team for visualizing,
creating, deploying and executing Nextflow pipelines. For CWL, CWLViewer (Robinson et al.,
2018) conveniently produces the DAG of a workflow script from its GitHub repository (Figure
2e), if the code is public and complies with CWL best practices. The Rabix suite, by Seven
Bridges, provides powerful CWL interactive visualization library (CWL-SVG), GUI (Composer),
and language server (benten) (Figure 2d), which are used in other sophisticated projects like
VueCWL (Milton, 2019). For WDL, besides the de facto womtool utility and its graph visu-
alization option (Figure 2c), EPAM systems have developed Pipeline Builder (EPAM systems,
2019), a Javascript library for interactively constructing and visualizing WDL scripts (Figure
2b).
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3.7 Job execution: resources provision

Bioinformatics workflows are often heterogeneous in terms of the computational resources re-
quired for each task. For example, genome assembly can begin with read alignment (a core-
intensive process), followed by a deBruijn graph construction (a RAM-intensive process). For ef-
ficiency, the executor must decipher which tasks can be run as individual computational units on
hardware (i.e. node) with RAM and cores appropriate to needs. Within the dataflow paradigm,
these independent units are, by definition, the vertices on the DAG. Upstream and downstream
nodes on the DAG (i.e. prerequisites and dependents, respectively) can be placed on other
hardware with adequate resources.

The actual provisioning of the computational resources is achieved by interacting with a
cluster resource manager (CRM), such as PBS Torque, Open Grid Engine, or Slurm. The CRM
tracks the available queues, the available nodes, and how long nodes will remain occupied. If
the workflow language has the ability to specify resources necessary for different tasks, then
the execution engine may be able to negotiate these requirements with the CRM. This is com-
monly achieved via executor backends, which provide a mechanism to specify the computational
requirements as part of command line workflow invocation or via configuration files.

Particularly useful is the support for dynamic job scheduling, present in all four WfMSs under
consideration. During workflow execution a job may pass runtime parameters to another job
or schedule other jobs. Customization of runtime parameters per workflow stage (section 2.1),
including docker images specifications, memory, queue and/or cloud resources is readily possible
in Nextflow, CWL and WDL. In Swift/T however, these details are specified once at beginning
of the workflow; thus, customization can only be achieved by breaking up the main workflow
into independent pieces and running those smaller workflows independently. Tables 3 and 4 in
(Ahmed et al., 2019) show backends supported by select executors, and Figure Supp.3 shows
typical command line invocations.

3.8 Job execution: data staging

Bioinformatics data processing frequently involves movement of private and very large datasets
(TBs or more) across infrastructure that is set up on a shared filesystem. The resulting security
and performance concerns create a need to isolate the workflow execution environment and
provide a means for checking the integrity and permission settings on files used and produced
within a workflow run. Data isolation is commonly accomplished by enabling special treatment
of the file type variable by the engine, e.g., file integrity checking and hashing. Additionally,
localization (staging) of inputs into a working directory unique to each computational unit (1)
assures that raw input data remain intact; (2) prevents race conditions if a file needs to be
accessed by multiple computational units simultaneously; (3) serves as a record of provenance
for each input, output, intermediate file, script and log, enabling easy monitoring and debugging;
and (4) enables workflow restart from the failed stage without repeating prior computations.

Nextflow and executors of CWL and WDL all provide this staging capability via a canonical
hierarchy of execution folders. The working directories of subworkflows, tasks and Scattered
blocks are nested within a parent directory of the run. Unique folder naming is ensured by
using long hexadecimals, names of the workflow stages, and/or execution timestamps. The exact
structure of the working directory and the subfolder names within vary by engine (Supplementary
note 4), and the user has no control over these parameters, which may seem constraining.
However, it pays off in permitting the engine to automatically follow the task dependency string
and prevent filename clashes for subsequent tasks. Conversely, in Swift/T, the programmer must
manually create a directory tree and name files, which is error prone in complex workflows.

In addition to the enforced separation of files in the output folder tree, further data staging
can be achieved by placing them on different filesystems, such as a cloud bucket for inputs vs.
local folder for outputs. Nextflow supports this out of the box: the analyst need only specify
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a URL to enable reading of inputs from AWS S3 storage or Google cloud buckets. Cromwell
and Toil similarly support this ability, though in Cromwell the programmer needs to be specific
about the filesystem being pointed to. Unfortunately, in Swift/T the support is more limited:
documentation stipulates the means of specifying remote filesystems, but our experiments with
that have not been successful.

3.9 Portability across HPC environments and the cloud

Modern biomedical research increasingly benefits from multi-site collaborations. Support for
portability, the ability to run a pipeline in computing environments besides the one on which it
was developed, has become one of the deciding factors in adopting a particular WfMS. One of the
most important aspects impacting portability is hardcoding any system-specific parameters or
paths. Separating the pipeline code from the input specification helps detect and eliminate this
problem, usually via configuration files. Nextflow, CWL, and WDL made this a requirement.
CWL and WDL imposed further constraints by using structured YAML and/or JSON files and
enforcing variable checks on identifiers or fully qualified names at compile time. Swift/T is the
least restrictive, putting the onus on the programmer to ensure that variables are defined in a
way that does not impede portability (Figure Supp.3).

All executors we examined have ample support for running in a variety of compute envi-
ronments (Tables 3 and 4 in (Ahmed et al., 2019)), except that support for AWS and Google
Cloud Platform (GCP) is insufficient in Swift’s turbine. Cloud deployment in general comes
with different considerations than HPC. First, the executor needs to communicate with cloud
APIs to provision and administer the resources specified in the configurations options. Second,
the provisioned cloud resources are typically clean machine instances, providing only the basic
operating system and minimal libraries. Thus, executors rely on containerization of software
used by the workflow and expect container images of those tools and their dependencies as part
of the workflow runtime options. Third, significant cost savings can be achieved when executors
support automatic sizing of cloud resources, enabling instances to be spun up when needed and
shut down when idle; AWS batch is a good example. Finally, workflows intended to run in the
cloud also expect data to be stored in the cloud. Thus, some level of security is expected from
the cloud provider. These are important considerations when evaluating the capabilities of a
WfMS for a project intended to run in the cloud.

While executors in the cloud may be affected by a variety of other factors, such as provider,
zone, availability of resources or type of machine instance, this is an actively developing area of
technology and providing a detailed review is beyond the scope of this work. We did, nonetheless,
perform a cursory evaluation of portability by deploying the variant calling pipeline in both AWS
Batch and Cloud cluster (Table 2), which was successful.

3.10 Scalability

When running a workflow on a substantial number of samples in a shared environment, one
must weigh the trade-offs between total run time and computational cost, which is a product of
both the run time and number of nodes utilized. Two performance metrics are important: (1)
How well the execution engine scales with the number of parallel tasks: The task management
overhead may increase out of proportion with the total number of tasks, if the engine is not
programmed efficiently. (2) How well the engine packs tasks on a node: It must weigh the core
and RAM availability on a node against requirements of the tasks, and pack tasks optimally
onto nodes, without many gaps or unused resources.

We compared the performance of Nextflow and Cromwell (running WDL and CWL code)
against these criteria by designing very simple one-step and two-step workflows. A task was just
to echo the hostname (i.e. node ID) of the node where the task was placed during execution.
The command requires a negligible amount of RAM, only 1 core, and takes a minuscule amount
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Figure 4: Scaling a one-step (solid line) and two-step (dashed line) workflow in Cromwell+WDL
(black) and Nextflow (yellow). The thick green line in the right panel is the theoretical optimum of
the number of nodes that should be occupied by the tasks, computed as the ceiling of tasks/cores-
per-node. Empty circles denote failed runs.

of time. Thus any overhead on task management is readily apparent from the total time of the
workflow. We ran the same workflow with varying number of tasks meant to be computed in
parallel, always on the same dedicated, fixed-size AWS Slurm Parallel cluster of 9600 cores,
in an attempt to control for any extraneous performance variation.

Nextflow and Cromwell both showed excellent performance up to about 100 tasks: the
elapsed workflow run time did not increase significantly with the number of tasks, suggesting
that they were properly parallelized with minimal management overhead (Figure 4, left panel).
Nextflow performed particularly well, finishing the runs about 4 times faster than Cromwell.
Two-step workflows predictably ran longer, but not twice as long, which indicates a substantial
amount of time is spent at startup for both engines. Performance began to break down at higher
task counts, intermittently resulting in failure to start jobs. Nextflow could not be used at all
on more than 512 tasks: it quickly stopped the run and cleaned-up. In contrast, Cromwell
became unusable beyond 1024 tasks, but the clean-up for the failed job took a very long time
(hours in some cases) before finally reporting an exit code. Cromwell+CWL performed similar
to Cromwell+WDL (Supplementary note 5.2). To understand what caused the scaling issues,
we looked into process context switches, both voluntary (where processes yield CPU access to
another) and involuntary (where the kernel suspends process access) and found both types to
increase with the task count (Figure Supp.5). CPU utilization was measured as well, as the
user+system time divided by the total run time of the task (from the Linux time command),
however no easily interpretable pattern emerged (Figure Supp.6).

We measured the quality of node packing by using the outputs from our mini workflows,
the hostnames where tasks were run. These records were deduplicated, giving the count of
individual nodes used by the workflow. We expected no re-use of nodes, because the total core
count was always larger than the task count, and all tasks should be immediately parallelized.
Indeed, the two engines correctly placed all tasks onto the same 96-core node in runs up to 32
tasks (Figure 4, right panel). However, Nextlow unnecessarily distributed 64 tasks on two nodes,
while also constraining 265 tasks to 2 nodes, instead of spreading them to 3 nodes, as would
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have been optimal. We suspect this happened because while we were controlling the maxForks
directive, we used the default value of the queueSize parameter, which defines "the number of
tasks the executor will handle in a parallel manner". This is something to keep in mind when
working with large data batches. Admittedly, this inefficiency did not prevent Nextflow from
outperforming Cromwell in terms of run time, despite Cromwell spreading the processes across
nodes in near-perfect alliance with theoretical expectation (the thick green line in Figure 4,
right panel). In this figure, executor values below the green line suggest unnecessary queuing of
processes; while values above it suggest the executor is using more nodes than necessary.

3.11 Robustness

When running large scale analyses, especially in medical production settings, where a workflow
failure can lead to delay in diagnosis and treatment of patients, it is extremely important to
have a WfMS that facilitates the development of easy to debug and maintain error-free code,
and which results in robust execution against variations in the nature of the data, load on
the compute system, and hardware failures. Beyond traditional provisions for code robustness,
WfMSs have the potential to facilitate recovery and restart after failure of an individual analysis
step. Ideally, the need to rerun costly analyses from the very beginning could be obviated via
"safe crash" : by moving the completely processed files to their destination, deleting partially
processed files, and saving execution logs and status (check-pointing) for all parallel processes.
A number of approaches have been developed in this field to facilitate these traditional and
non-traditional robustness aspects.

Variable typing facilitates earlier discovery of bugs before the workflow is run, especially
in compiled languages (Table 3). While Swift/T, CWL, and WDL provide the typical String,
Integer, Float, and Boolean types, Nextflow does not distinguish between these but rather uses
qualifiers to indicate how variables are to be handled. For example, variables local to a process
have a val qualifier, whereas environment variables should be declared as env. Workflows in
bioinformatics usually operate on files, thus WfMSs must also define a file variable, ideally with
a mechanism to check whether the file exists and has the right permissions, to avoid data access
failures in the middle of analysis (cf. data staging, section 3.8)). While the four WfMSs studied
provide this, Nextflow goes above and beyond generic functions for reading and writing. Nextflow
provides refinements to handle especially large, binary and compressed files. Additional domain
functions include counting the number of records in FASTQ/FASTA files, splitting file entries
based on chunk size, memory limit, etc. Such well-vetted, built-in functionality significantly
reduces the likelihood of programmer error, thus conferring robustness.

Provisions to ease parsing and validating the code can greatly contribute to the robustness
of the final software. Unsurprisingly, most WfMSs make use of such tools. Nextflow workflows
can use of nf-core schema commands (Alneberg et al., 2019). Similarly, WOMtool, miniWDL and
Oliver ease validating, parsing and generating WDL scripts and inputs. CWL takes advantage
of standard editor plugins for vim, emacs, VScode and atom, and code generators for R, Go,
Scala, and Python. Swift/T can only be accessed via the command line. No helper library is
mentioned in the documentation either.

Data streaming is an alternative to data staging, and is very popular in bioinformatics. Here,
instead of saving output of an upstream task to a file that is read by the downstream task, data
are streamed, usually via a Linux pipe, from one process to the next. Such streaming requires
synchronization of the two processes and could lead to complicated logic. Additionally, it can
make it harder to record and debug execution logs. Perhaps for these reasons, data streaming
is only directly possible with Nextflow DSL-2 syntax, as of the time of writing (March 2021).
For CWL, the language specification defines a "streamable: true" field for output files, but
direct support for this property is not yet part of the reference cwltool or other CWL runners.
Neither Cromwell, Toil, nor Swift/T support piping either.
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Job retries is an approach to retry a failed workflow step, and can be appropriate if the fail-
ure happened for an intermittent reason, such as service time-out, node unavailability or node
failure. Swift/T allows retrying a failed job a number of times that can be set by the user, on
the same MPI rank or on a randomly selected rank from those allocated to the workflow, pos-
sibly in other cluster nodes. Nextflow couples the maxRetries, maxErrors, and errorStrategy
process directives to allow the user to retry a failed process, ignore the error, finish the run,
or totally terminate the workflow effectively killing submitted processes. Similarly, Cromwell
allows maxRetries as part of the runtime or workflow options, and also allows to either
ContinueWhilePossible or resume but with NoNewCalls to quickly exit when a failure is de-
tected.

Caching or automatic check-pointing, i.e., the ability to resume partial execution of a run,
saves time and computational resources, especially when a large chunk of analysis has completed
successfully. Swift/T is poor in this regard, as it always starts execution from the beginning,
unless the programmer manually codes subworkflows separated at the anticipated checkpoints,
and implements options to manually rerun subworkflows individually (Ahmed et al., 2019).
Nextflow is on the opposite end of the spectrum, permitting very granular access to workflow
stages for restart purposes. This is accomplished by keeping all staged and intermediate files
in a work directory with a cache directive enabled by default to index both scripts and input
metadata (name, size, path, etc.). The granularity of restart can be controlled via deep and
lenient modes. In contrast, call caching is by default disabled in Cromwell. It can be enabled
by configuring a MySQL database instead of its default HSQL in-memory database and enabling the
options for finer metadata checking, such as file hash caching, path prefix, and docker images’
tags.

3.12 Debugging workflows

There are many reasons a workflow can fail: the nature of the data, a malfunction in the
bioinformatics tool itself, improper setup or call of the bioinformatics tool, a bug in the execution
engine, a hardware problem, an operating system issue, or something else entirely. Ideally, the
log files for all these aspects would be cleanly separated, so that the workflow operator could
easily trace the problem by hypothesizing the source and going through these logs one at a time.
However, due to the asynchronous execution of independent workflow steps, messages can be
echoed into the logs out of logical order, resulting in difficulty interpreting them. Each WfMS
resolves this issue in its own way.

Swift/T provides a simple MPE-based model to track execution at the level of Swift and
turbine operators. Messages are printed into a single log file in order of occurrence, not the order
of the pipeline DAG, making it hard to discern invocations of individual bioinformatics tools.
This makes it very difficult to determine the first step that failed and what data it was running
on. Tool-level logs must be custom made, and even these logs can be difficult to interpret.

In contrast, as we mentioned before (section 3.8), Nextflow and the runners of CWL and
WDL produce a canonical hierarchy of execution folders, with logs capturing the status of each
workflow step saved into the same subfolder as the actual bash script being executed, along with
the corresponding input and output data. Therefore, all the information about that particular
stepis in one place. In addition, the standard output from the executor is normally enough to
establish which subfolder to inspect for signs of trouble.

3.13 Monitoring the progress of workflow execution

The ability to monitor the progress of a workflow becomes critical with more tasks and increased
workflow complexity. This monitoring facilitates scheduling, helps prepare the output data stag-
ing area, allows early detection of lag in a step, and yields information necessary for reporting,
subsequent or retrospective analysis, and billing.
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Nextflow supports several levels of detailed monitoring upon executing a workflow: (1) a
crude trace report, (2) an html timeline, and (3) a complete execution report, including
information about resources usage and processes runtime metrics (e.g., status, hash, command).
Additionally, Nextflow is adding the Research Object (RO) model (Belhajjame et al., 2015), and
thus adding greater transparency by uniquely identifying, collecting, and linking all provenance
metadata of workflow runs (Garriga Nogales et al., 2018). Additionally, Nextflow has support for
email notifications of workflow events like onComplete and onError, independent of the usual
notifications from the CRM.

For WDL workflows, Cromwell only supports a timeline visualization, but only if run in
server mode. The CWL community has developed CWLProv (Soiland-Reyes et al., 2018), an
informal profile standard defining how to record provenance of a workflow run as an RO using
Linked Data standards (Khan et al., 2019). This is implemented in the reference cwltool, and
is planned for implementation in toil-cwl-runner too.

There are efforts to improve monitoring capabilities of these WfMS. Nextflow has the Tower
platform (Tommaso et al., 2020) for efficient monitoring and deployment; whereas WDL work-
flows can be submitted to a Cromwell server and examined via cromshell (Smith et al., 2020)
and Oliver (St. Jude Cloud Team, 2020).

3.14 Reproducibility and standardization

Reproducibility in biomedical analyses has become important recently (Grüning et al., 2018;
Strozzi et al., 2019). For workflows, this means that anyone should be able to reconstruct the
exact workflow run, including the correct sequence of steps, the actual commands, the runtime
parameters and options, and the handling of data, e.g., chunking for parallelization, to reach
the exact same conclusions despite differences in hardware, operating systems, and software
dependencies. All this information must therefore be recorded in a way that is shareable and
easy to understand, usually via code design documentation and the logs and RO described above.

Package managers, e.g., Conda and Bioconda (Grüning et al., 2018), provide means for clean
shipping and installation of tools. Containerization technologies, e.g., docker and singularity,
and their repositories (e.g Dockstore (O’Connor et al., 2017) and quay.io) facilitate the repro-
ducibility of computational pipelines. Both these advancements are increasingly integrated in
recent releases of WfMSs. Nextflow utilizes a conda directive to specify packages needed by a
given process and supports a container directive that allows processes to specify the docker
or singularity images in which execution occurs. While lacking conda support, Cromwell can
run tasks within a docker image specified in a WDL task or CWL CommandLineTool runtime
options. Singularity images require special handling in the backend configuration file, but are
supported too. Toil has similar features, but neither is supported in Swift/T.

Furthermore, the high complexity of biological workflows has driven the community to de-
velop extra requirements for code documentation (Alneberg et al., 2019; Hodges and Crusoe,
2020; Yuen et al., 2019). Users expect code annotation via extensive metadata including de-
tailed workflow description, author information, and labels for stages, inputs, and outputs. Such
metadata facilitate debugging, enhance overall project documentation via annotations on the
DAG, help with maintaining and using a workflow written by someone else, and make code
more searchable and citable. CWL and WDL each provide the code annotation capability via
metadata blocks, and Nextflow via both the manifest scope of the configuration file and the
directives of processes. CWL also includes support of EDAM ontology and SciCrunch identifiers
for dependencies. Swift/T lacks this special workflow annotation feature, and only supports
in-line comments.

Pragmatically, CWL recommended practices (Hodges and Crusoe, 2020) include shipping
pipelines with permissive licenses and an SPDX identifier and using SoftwareRequirement to
indicate dependencies and tool versions but warn against reliance on InlineJavaRequirement
where possible. Adhering to these practices is a precursor to pipeline visualization and sharing
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via CWLViewer (Robinson et al., 2018). Likewise, curating Nextflow pipelines in nf-core (Al-
neberg et al., 2019) requires using an MIT license, docker bundled software, stable release tags,
a common pipeline structure, and continuous integration testing, in addition to passing their
nf-core lint tests. They also recommend bundling the software via bioconda, using recent
reference genome drafts and optimized output formats, and including a DOI, along with support
and benchmarks from running in cloud environments (Ewels et al., 2020).

Taken together, the above efforts to enforce reproducibility of analyses also have resulted in
a certain standardization of workflow implementation and distribution, which supports wider
adoption of the WfMS.

3.15 Adoption and support

Nextflow, CWL and WDL all are fruits of practicing bioinformaticians and computer scientists
collaborating with biologists, who needed practical solutions to the problem of reliably perform-
ing their own large-scale analyses. Consequently, they enjoy greater adoption than Swift/T
(table 5), albeit relying on comparably very permissive open source licenses. As a result, their
evolution is rapid and highly community-driven, and user support is easy to find via mailing
lists, gitter channels, Twitter, GitHub issues, etc. The community aspect is particularly impor-
tant here, with numerous conferences, codefests, hackathons, and even GA4GH itself serving to
develop, refine and cross-pollinate among the WfMSs (Harris et al., 2016, 2017, 2018, 2019).

Adoption and support are further facilitated by commercial providers of genomics software-
as-a-service. DNANexus provide dxWDL (https://github.com/dnanexus/dxWDL) and dx-cwl
(https://github.com/dnanexus/dx-cwl). Seven Bridges developed rabix and many sup-
porting utilities for CWL workflows, as they adopt CWL on their Cancer Genomics Cloud
(Lau et al., 2017). AWS provides the iGenomes database (https://registry.opendata.aws/
aws-igenomes/) with the ability to directly use Nextflow and Cromwell on AWS Batch.

With this much collaborative cross-talk activity in the community, it is unsurprising that
sometimes the boundaries between the WfMSs gets blurred. The ability to translate a workflow
language into intermediate representation, e.g., the WOM representation of CWL and WDL
code in Cromwell, enables stitching meta-workflows written in more than one language. It is
quite possible that in the future some kind of a hybrid workflow coding paradigm might emerge,
adopting the best from each of the current WfMSs and discarding the differences. Yet, a tricky
aspect to this community-driven movement is that the evolution of a workflow language and its
engine might sometimes outpace the development of a given pipeline. Therefore, conformance
tests and backwards compatibility between a workflow language and an execution engine are
critical.

Table 5: GitHub activities from each WfMS (March 4th, 2021). Contributors is the number of
contributors in each repo, Open and Closed refer to the count of open and closed issues and pull
requests in the repo.

WfMS First commit Contributors Closed Open License
Swift-t 2011-05-11 16 109 81 apache-2.0
Nextflow 2013-03-22 81 1770 159 apache-2.0
CWL 2014-09-25 62 667 249 apache-2.0
WDL 2012-08-01 44 376 50 bsd-3-clause

3.16 Cross-compatibility and conformance to standards

For a workflow language and an executor engine to work well together, they would ideally
conform to the language specification and provide backwards compatibility to one another. This
has not yet been widely the case, which is exactly what made this need apparent. For example,
among WDL executors, both Toil and Cromwell can generate an abstract syntax tree from
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the same WDL code, except Toil’s Hermes parser generator (Frazer, 2020) translates tasks
to Python functions, while Cromwell translates them into Bash. The supported code logic
by each executor is also different: Cromwell does not allow nesting loops in version draft-2
code, while Toil does not allow nesting a conditional within a loop or cascading tasks within
a scatter body. In practice this leads to a lot of refactoring when switching from Cromwell to
Toil. Similarly, different CWL runners support differing subsets of the possible requirements
in the language specification or may even have different interpretations due to ambiguity in
the language specification itself (Eddy, 2018). We believe the field would benefit from a wider
conversation on this topic.

Highlights: Which WfMS to use day-to-day

In light of this, a pragmatic approach to workflow choice could be the following:

1. Assess: is there a need to build a new pipeline, or there is an existing reasonable
pipeline in the Nextflow, CWL, or WDL repos?

(a) If a workflow exists that follows good coding practices, it should be adopted
and modified as per specific needs.

(b) If starting fresh, without any restrictions by collaborator preferences or existing
code-base:

i. If a quick development cycle is important, Nextflow is optimal.
ii. If code readability is important, WDL is optimal.
iii. If execution environment is variable, or there is a need to work across

heterogeneous hardware environments, CWL is optimal.

4 Discussion

The choice of a WfMS for a specific use case is dependent on the immediate needs and resources
of the application. Within the bioinformatics community, Nextflow, CWL, and WDL seem to
be among the most adopted. The communities using and developing these three systems have
been interacting closely since their introduction to the field, resulting in a very comparable set
of semantic and engine features, though the nomenclature differs at times. Two other popular
systems not examined in this study are Snakemake Köster and Rahmann (2012) and Galaxy
Afgan et al. (2018). GA4GH TES support was only added to Snakemake in their November
2020 release, and Galaxy follows a rather different philosophy focusing on graphical user interface
(while having its own CLI) and hence were excluded.

Another category is engines built as libraries in general-purpose programming languages,
like Parsl (Babuji et al., 2019) (Python) and SciPipe (Lampa et al., 2019)(Go). These engines
give convenient access to the full expressiveness power and flexibility of the underlying language.
Arguably, they are easier to learn, and hence, more attractive to adopt by a broader community
than DSL workflow languages. At present, engines in this category seem less popular in the
community though.

4.1 Scientific and Business WfMSs

The emphasis on Scientific in this manuscript is to distinguish those WfMSs typically used in
modeling and other scientific experiments, from those employed in business applications or other
organizational contexts where human participants make decisions (Liu et al., 2015). Accordingly,
scientific workflows orchestrate tools (or services) based on data dependencies and often involve

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.03.437906doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.03.437906
http://creativecommons.org/licenses/by/4.0/


many data types. Business workflows on the other hand have a richer set of control flow con-
structs to support hierarchical dependencies (Fernando et al., 2007).

Additionally, the need to reuse and port workflows within the sciences is contrasted with re-
strictions on data and process access in business. Yet, the business community is more strict in
developing and following standards (Fernando et al., 2007), with frequent evaluations and frame-
works for benchmarking conformance with those standards (Ferme et al., 2016; Geiger et al.,
2018). The drive for standardization - despite early interoperability efforts, eg IWR (Fernando
et al., 2007) and SHIWA (Rogers et al., 2013), has not surged in the sciences until recently,
with ever larger scale collaborative and consortia projects (Edwards et al., 2011; Jagadish et al.,
2014), and the push towards computational reproducibility (Waller and Miller, 2016). Among
others, this resulted in a heritage of bespoke systems, inconsistent terminology and inoperable
formats, as a consequence of different WfMSs design requirements. Standardization, confor-
mance evaluation and interoperability will continue to be an active area of research in scientific
WfMSs.

4.2 WfMSs in clinical and molecular diagnostic settings

Similar to research laboratories, clinical and diagnostic labs are concerned with the WfMSs as-
pects we examined above (also see supplementary note 1). However, there is focus towards prop-
erly developed, validated and operated pipelines that ensure the security of patient-identifying
information, and the integrity and regulated access to data throughout each pipeline stage as
per applicable laws and regulations (Gargis et al., 2015; Roy et al., 2018).

End-to-end validation using human samples, supplemented by in-silico validation, is both
necessary and challenging given the constantly evolving and/or proprietary nature of compu-
tational tools, assay types and technology platforms. In fact, Roy et al. (2018) validation
guidelines treat the bioinformatics pipeline as an integral part of the test procedure, and there-
fore require all its components to be validated, along with any filtering method applied to input
data, and within an environment similar to the real-world lab where the pipeline will be used.
Robust validation methods can involve the use of a “golden” set of workflow output files like
bams and vcfs based on human samples with known laboratory-validated variants. This way,
concordance with known variants can be tested, and additions or modifications to the workflow
made safely. This validation should be overseen by a qualified medical professional with NGS
training, only after the complete pipeline has been designed, developed and optimized.

To allow for ongoing development without interfering with production-tested pipelines, it
is beneficial to have separate stages in a clinical computing environment such as development,
testing, and production. Code is developed and bugs are resolved in the development and testing
stages, so by the time code gets to production, it has been robustly tested in the prior stages.
Existing usable code in the production stage will not be changed or updated until all tests are
passed. This allows the clinical labs to use the production code, and developers to push new
code out simultaneously that will eventually be tested and deployed in production.

4.3 Infrastructure as a predicate of WfMS design

A WfMS design is based on the infrastructure where it is intended to run. By employing an MPI
library for parallel data communication, Swift/K (Wilde et al., 2011) for example, was made
for large-scale computations on HPC environments extending to extreme scale supercomputing
applications, and so are its successors - Swift/T (Armstrong et al., 2014; Wozniak et al., 2013) and
Parsal (Babuji et al., 2019)- though Parsal has a wider bank of configurable executors including
different cloud providers. On the other hand, other WfMSs like Toil (Vivian et al., 2017) and
CWLairflow (Kotliar et al., 2019) were developed for data analysis in the cloud, and hence
supported containerization. Standard languages, CWL and WDL, aimed to enhance portability
by obviating the need for intermediate data representation while allowing different groups to
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design and use executors that most fit their needs. This direct interplay between infrastructure
and WfMSs will continue to play a key role in the design and composition of WfMSs well into
the future with extreme scale systems and deep memory architectures (Deelman et al., 2017).

For example, while both in situ (i.e HPC) and distributed (i.e clouds and grids) workflows
are challenged by analysis concurrency, locality and system topology awareness; more focus in
the latter is paid towards security and crossing administrative domains (Deelman et al., 2017).
Contrary, in situ designs, especially future exascale level, are challenged by power considerations,
robustness, productivity with heterogeneous computing cores, increasingly complex hierarchical
memory systems and small or no growth in bandwidth to external storage (Wozniak et al., 2016;
Deelman et al., 2017). Consequently, Deelman et al. (2017) defines 4 key challenge areas for
WfMS designs at the next scale: efficient task coupling, programming & usability, performance
optimization & robustness, and validation & data integrity (Rynge et al., 2019)- a list to which
da Silva et al. (2017) adds aspects like integrating big data analytics and human in the loop.

4.4 Scalability

In bioinformatics, the community is still rather slow to adopt big data technologies, despite
a few successful use cases (e.g., ADAM (Nothaft et al., 2015), Gesal (Roy et al., 2017), and
most notably, the GATK’s move towards Spark re-implementations of existing trusted tools
(Voss et al., 2017)). This is in part due to a need for rigorous and lengthy approval cycles for
clinical applications (Gargis et al., 2015), and also more incentives and rewards for designing
and building new tools rather than improving existing ones. Collectively, this means that in a
majority of tools commonly used today, scalability has been thought of as an ad hoc- not as
an integral part of software design. This manifests as more reliance on threading than MPI
implementations for example, and an often complicated dependency stack for tools to work.
Therefore, there is a real need for WfMSs that support complex execution patterns (at least
DAGs) and large data volumes.

Yet, fairly benchmarking and reporting the scalability of different WfMSs remains elusive.
For example, Swift/T papers demonstrate scalability in task throughput versus cores to extreme-
and peta- scale computations (Wilde et al., 2014; Wozniak et al., 2015), congruent with the
intent of its developers to use it for large-scale parallel applications. Similarly, Parsal literature
differentiates strong scalability, running the same number of jobs (50,000) vs increased number
of workers (up to 105), from weak scalability, running the same number of tasks per worker (10)
while increasing the number of workers (Babuji et al., 2019). Conversely, more bioinformatics-
oriented WfMSs tend to demonstrate scalability in relation to the number or size of samples
analyzed: Toil reports > 20,000 RNA seq samples analyzed on 1,000 nodes AWS c3.8xlarge
cluster (each node of 32 cores, 60GB RAM, 640 GB SSD) in 4 days, and demonstrates scalability
in terms of time and costs savings (Vivian et al., 2017), GLnexus quotes a 243,953 exome
sequencing samples (33TB of compressed gvcfs) jointly called in 36 hours wall time with 1,600
threads (Lin et al., 2018).

4.5 Other comparative evaluations

Previous comparative manuscripts tend to be largely descriptive (Deelman et al., 2009; Liu
et al., 2015; Leipzig, 2016; Fjukstad and Bongo, 2017; da Silva et al., 2017; Deelman et al.,
2017). The closest to our work is Larsonneur et al. (2018) where testing was limited to a single
node in a cluster, with no information supplied about data size, beyond that the tested workflow
needed 4-6 minutes. While they did use a realistic workflow, it is not clear how comparable the
implementation was in the systems compared: Snakemake (python-based), Pegasus, Nextflow
(java-based), Toil+CWL (python-based), and Cromwell+WDL (java-based). They conclude
performance differences are due to the algorithms used to compute job dependencies, and criticize
java-based engines for consuming the most memory. Their results indicate that Pegasus, despite
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its very limited use in bioinoformatics, is optimal for HPC environments (performing better or
at least similarly to the other top performing executors in most categories: elapsed time, CPU
usage, memory, and number of inodes). Snakemake was best in terms of I/O wait time and
idle time, and Cromwell did the best in terms of number of voluntary and involuntary context
switches, but was the worst in most the other categories (closely followed by Toil). Therefore,
they advocate for MPI-based execution engines.

A recent relevant paper is that of Jackson et al. (2021). By rapid prototyping, they quickly
evaluated Snakemake, CWL+CWL-tool, CWL+Toil, and Nextflow on a subset of RiboVis
(Carja et al., 2017) workflows. Like our approach, this gave them a better perspective than
solely reading the documentation, tutorials or other review papers. Also, their criteria for se-
lecting those WfMSs were adoption and support within the bioinformatics community, maturity,
and licensing. However, the scope of their paper did not go into as great a depth in examining
features as was done here.

5 Trends & future directions

The revolution in the size and complexity of genomic data generation will continue to impact and
be impacted by the progress in technology at the software and hardware levels. This manifests
as a global trend in the community and funding bodies to attend to methods and software
design, and also to plan for data analysis and handling as much as (if not more than) data
generation. Another aspect are global efforts like those of the GA4GH and their designation
of driver projects to refer to technology advancement at the levels of data transfers, security,
storage and other relevant processing and accessibility aspects including ethics.

An optimistic trend for bioinformatics workflows is more attention being paid towards bridg-
ing the divide between user interface friendliness and expressiveness. On one hand, WfMSs
like Galaxy that targeted user-friendliness from the beginning, are continuously expanding their
code base with features to allow finer and more flexible control of execution details (Afgan
et al., 2018). On the other, for the command-line frameworks examined here, many support-
ing tools exist that allow more friendly interfaces to the creation and deployment of workflow:
NextflowWorkbench (Kurs et al., 2016), DolphinNext (Yukselen et al., 2020) for Nextflow; Ra-
bix composer, CWL-Experimental https://github.com/common-workflow-language/cwl-ex
for CWL; and womtool for WDL. Remarkably, away from womtool, all those supporting tools
were contributed by the language’s broad community (and not its core developers’ team).

The growing need for portability of analyses also led to standard languages development
(Fjukstad and Bongo, 2017) - and ultimately decoupling the language specification from its
engine implementation. Immediate benefits include better synergy between what a language
offers and what patterns an analyst actually needs supported, and also more human readable
(WDL) and/or machine interoperable (CWL) languages; while having open communications
between communities supporting the different standards. Equally, executors supporting multiple
backends, leading to GA4GH standards (like TES and WES- minimal APIs describing how a
user submits a tool/workflow to an execution engine in a standardized way), and thereby giving
more portability across platforms. For example, many runners have been developed to execute
CWL code, including Rabix (Kaushik et al., 2017), Avados, cwl-tes, Toil (Vivian et al., 2017),
and AWE (Tang et al., 2013; Gerlach et al., 2014); while WDL code can be run via Cromwell
(Voss et al., 2017) or Toil (Vivian et al., 2017). Additionally, there are runners for both languages
on dedicated cloud platforms like DNAnexus, Seven Bridges, and Consonance. Concurrently,
this encouraged other concerted efforts in areas like workflow provenance (Khan et al., 2018),
and design of more powerful graphical interfaces, like: Rabix Composer (Kaushik et al., 2017)
and CWLviewer (Robinson et al., 2018).

Thus, abiding by the FAIR principles (Wilkinson et al., 2016) for tools and workflows, be-
came a necessity, as we move towards cloud computing (Fjukstad and Bongo, 2017). For these
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purposes, many repositories exist today for sharing tools. Dockstore (O’Connor et al., 2017),
the standard implementation of the GA4GH TRS, is now hosting docker-based tools described
in Nextflow, besides CWL and WDL. Projects like bio.tools (https://bio.tools/), an ELIXIR
Tools & Data Services Registry, support the findability and interoperability of bioinformatics
application software by employing biotoolsSchema and EDAM ontologies (Ison et al., 2013) for
software description and annotation. BioContainers (da Veiga Leprevost et al., 2017) is also
another remarkable project as it hosts both both docker and rkt images, with special focus on
tools in proteomics, genomics, transcriptomics and metabolomics. The ability of a WfMS to
seamlessly fetch images from these repositories or publish workflows will undeniably be a bonus
in today’s market; along with the core features of running in heterogeneous environments, ro-
bustness and scalability. As the field evolves, the need for systematic performance benchmarking
(Ferme et al., 2016) and conformance testing frameworks (Geiger et al., 2018) grows.

6 Data and code availability

The synthetic WES dataset used for the performance analysis of variant calling workflow will
be made available by the authors, without undue reservation, to any qualified researcher. The
commands used to generate this synthetic data are available at https://github.com/ncsa/
MayomicsVC/tree/dev-gatk. Other code and data are provided in the respective repositories
of table 1.
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rected Acyclic Graph. (DOI) Digital Object Identifier.(DSL) Domain Specific Language.(EDAM) EMBRACE
Data And Methods, a bioinformatics (dry) ontology. (FAIR) Findable, Accessible, Interoperable and Repro-
ducible data standards. (GA4GH) Global Alliance for Genomics and Health . (GATK) Genome Analysis Toolkit.
(GCP) Google Cloud Platform.(GUI) Graphical User Interface.(HPC) High Performance Computing. (IWR) In-
termediate Workflow Representation. (JVM) Java Virtual Machine. (MPE) MPI Parallel Environment. (MPI)
Message Passing Interface. (NGS) Next Generation Sequencing. (QA) Quality Assurance. (QC) Quality Control.
(RAM) Random access Memory. (RO) Research Object. (SHIWA) Sharing Interoperable Workflows for large-
scale scientific simulations on Available DCIs. (Tcl) Tool Command Language. (TES) Task Execution Schema.
(TRS) Tool Registry Service. (URI) Uniform Resource Identifier, an internet protocol. (WDL) Workflow Descrip-
tion Language. (WES) Workflow Execution Service Schema. (WfMS) Workflow Management System. (WOM)
Workflow Object Model
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