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Abstract 56 
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) and is primarily transmitted by Aedes species 57 
mosquitoes; however, ZIKV can also be sexually transmitted. During the initial epidemic and in places 58 
where ZIKV is now considered endemic, it is difficult to disentangle the risks and contributions of sexual 59 
versus vector-borne transmission to adverse pregnancy outcomes. To examine the potential impact of 60 
sexual transmission of ZIKV on pregnancy outcome, we challenged three rhesus macaques (Macaca 61 
mulatta) three times intravaginally with 1 x 107 PFU of a low passage, African lineage ZIKV isolate (ZIKV-62 
DAK) in the first trimester (~30 days gestational age). Samples were collected from all animals initially on 63 
days 3 through 10 post challenge, followed by twice, and then once weekly sample collection; ultrasound 64 
examinations were performed every 3-4 days then weekly as pregnancies progressed. All three dams had 65 
ZIKV RNA detectable in plasma on day 3 post-ZIKV challenge. At approximately 45 days gestation (17-18 66 
days post-challenge), two of the three dams were found to have nonviable embryos by ultrasound. Viral 67 
RNA was detected in recovered tissues and at the maternal-fetal interface (MFI) in both cases. The 68 
remaining viable pregnancy proceeded to near term (~155 days gestational age) and ZIKV RNA was 69 
detected at the MFI but not in fetal tissues. These results suggest that sexual transmission of ZIKV may 70 
represent an underappreciated risk of pregnancy loss during early gestation.  71 
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 111 
Introduction 112 
Zika virus (ZIKV) emerged from relative obscurity five years ago to sweep through tropical and subtropical 113 
regions of the Western hemisphere. More than a million cases between 2015 and 2018 were reported in 114 
Pan American Health Organization (PAHO) regions alone (1). While ZIKV primarily causes mild febrile 115 
illness or asymptomatic infections in a majority of individuals, infection during pregnancy can result in a 116 
range of adverse outcomes including fetal loss and a constellation of birth defects now known as congenital 117 
Zika syndrome (CZS) (2–4). Human infection with ZIKV can occur following mosquito-borne, vertical, and 118 
sexual transmission (5–7). While mosquito-borne transmission from infected Aedes species mosquitoes is 119 
thought to be the most common route of infection in endemic areas, the contribution of sexual transmission 120 
in epidemics remains poorly understood, in part because during an outbreak, both transmission routes 121 
occur simultaneously and can be challenging to disentangle (8).  122 
 123 
Sexual transmission of ZIKV was first documented in 2008 when a scientist working in Senegal became 124 
infected and, upon his return to the United States, infected his wife (9). Throughout the ZIKV outbreak in 125 
2015 and 2016, additional sexually-transmitted infections were documented (10–14). The majority of 126 
sexually-transmitted cases in non-endemic areas are likely the result of infection of the primary cases 127 
during travel, followed by inadvertent transmission to the secondary cases upon returning home (7). As 128 
previously mentioned, sexually-transmitted ZIKV infections in endemic areas or areas experiencing active 129 
outbreaks are difficult to differentiate from mosquito-transmitted infections because there may be an 130 
individual risk of exposure by either route. Epidemiological data suggest that sexual transmission occurs 131 
primarily male-to-female through vaginal contact, even weeks after clinical symptom resolution, which 132 
suggests that sexual transmission of ZIKV does pose at least a theoretical risk to pregnant women (15). 133 
Furthermore, the ZIKV viral RNA (vRNA) load in human semen has been reported to range from the 134 
hundreds to tens of millions of copies per milliliter, with values as high as 3.98x108 copies/ml reported (16–135 
18). The testes in particular, were found to be a ZIKV reservoir in animal models (19,20). In addition, 136 
studies have recently shown that intimate partners of household index cases are more likely to also be 137 
positive or show serologic evidence of ZIKV infection relative to other members of the same household 138 
(21).  139 
 140 
Overall, we have limited information regarding the risk of ZIKV sexual transmission to pregnant women 141 
and their developing fetuses (14). Sexual transmission may be especially relevant during early pregnancy, 142 
since pregnancy can be inherently linked to unprotected sex. Likewise, studies have shown that other 143 
sexually transmitted ascending vaginal infections are associated with an increased risk of pre-term labor 144 
and other poor outcomes (22). Whether an ascending intravaginal ZIKV infection poses a higher risk to 145 
pregnancy than mosquito-borne infection is currently unknown. Pregnant women or women trying to 146 
become pregnant may be less likely to utilize condoms, a recommended strategy for the prevention of 147 
sexual transmission of ZIKV (23,24). Furthermore, a woman might not be aware of a pregnancy during 148 
early gestation and unfortunately, existing data suggest that the highest risk for developmental anomalies 149 
associated with ZIKV infection is during the first trimester, a critical developmental window (25–27). 150 
Additionally, ZIKV infection during pregnancy has also been associated with an increased risk for 151 
spontaneous abortion in both humans and nonhuman primates (28,29).  152 
 153 
Animal models have played a critical role in improving our understanding of the natural history and 154 
pathogenesis of ZIKV. To-date, both murine and nonhuman primate (NHP) models have been utilized to 155 
examine aspects of sexual transmission of ZIKV (19,20,30,31). Studies in these models have shown 156 
persistent shedding of vRNA from the reproductive tract, infection of the female reproductive tract via a 157 
vaginal exposure route, and fetal effects as a result of vaginal exposure or sexual transmission in mice 158 
(20,30–39). Although studies in pregnant olive baboons have shown that intravaginal challenge with 159 
infected baboon semen during mid-gestation can result in productive maternal infection and vRNA 160 
detection in some maternal tissues and placentas, to date, studies in NHP have not shown clear evidence 161 
of vertical transmission associated with maternal ZIKV infection by the intravaginal route (33).  162 
 163 
Because infection during the first trimester is associated with the highest risk for adverse pregnancy 164 
outcomes, and because unprotected sexual contact may be more likely during the first trimester, we 165 
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designed a proof-of-concept study in which we challenged three gravid rhesus macaques (Macaca 166 
mulatta) intravaginally with ZIKV. Our goal was to investigate the potential impact of intravaginal ZIKV 167 
challenge during the first trimester on fetal and pregnancy outcomes and to develop a model for sexual 168 
transmission during early pregnancy.  169 
 170 
Methods 171 
 172 
Ethics Statement 173 
 174 
All animal procedures conformed to the requirements of the Animal Welfare Act and protocols were 175 
approved prior to implementation by the Institutional Animal Care and Use Committee (IACUC) at the 176 
University of California, Davis. Activities related to animal care, housing, and diet were performed 177 
according to California National Primate Research Center (CNPRC) standard operating procedures 178 
(SOPs). SOPs for colony management and related procedures are reviewed and approved by the UC 179 
Davis IACUC.  180 
  181 
Study design 182 
 183 
Female rhesus macaques (Macaca mulatta, N=3) were time-mated and identified as pregnant by 184 
ultrasound according to established methods (40). Prior to study assignment normal embryonic growth 185 
and development were confirmed by ultrasound. Females were challenged in the first trimester at 186 
approximately 30 days gestational age (trimesters divided by 55-day increments; term 165±10 days) with 187 
1x107 PFU ZIKV-DAK three times intravaginally at approximately two-hour intervals (Table 1, Figure 1). 188 
Pregnancies were monitored by ultrasound every 3-4 days post-challenge and then weekly from day 50 189 
onward throughout the study period. Standardized parameters were assessed including fetal growth 190 
(greatest length then biparietal and occipitofrontal diameters, abdominal circumference, humerus and 191 
femur lengths) and structural development, amniotic fluid volumes and placental parameters, and 192 
compared to normal growth and developmental trajectories for the species (40). Dams were weighed at 193 
each sedation and blood samples were collected daily from day 3 through day 10 post-challenge, followed 194 
by bi-weekly until maternal plasma vRNA loads were undetectable, and then weekly until hysterotomy. 195 
Plasma and peripheral blood mononuclear cells (PBMCs) were isolated at all time points, and serum was 196 
collected on days 0, 14, and 24 post-challenge (dams 049-102 and 049-103), and on days 0, 14, 27, and 197 
122 post-challenge for dam 049-101. Urine was collected by ultrasound-guided cystocentesis (~1 ml) on 198 
days 7, 10, 14, 21, and 24 post-challenge (dams 049-102 and 049-103) and on days 7, 10, 14, 27, and 199 
122 post-challenge for dam 049-101. Hysterotomies were performed for dam 049-102 and 049-103 at the 200 
end of the first trimester (post-detection of nonviable embryos by ultrasound) and near term (~155 days 201 
gestational age) for dam 049-101.  202 
  203 
Virus challenge preparation and infection 204 
 205 
ZIKV strain Zika virus/A.africanus-tc/Senegal/1984/DAK AR 41524 (ZIKV-DAK; GenBank: KX601166) was 206 
originally isolated from Aedes luteocephalus mosquitoes in Senegal in 1984. One  round of amplification 207 
on Aedes pseudocutellaris cells, followed by amplification on C6/36 cells and two rounds of amplification 208 
on Vero cells, were used to prepare a master stock obtained from BEI Resources (Manassas, VA). 209 
Challenge stocks were prepared from this master stock by inoculation onto a confluent monolayer of C6/36 210 
mosquito cells as described previously (41). Prior to administration, the ZIKV-DAK stock was diluted to 211 
1x107 PFU in 1 ml sterile saline and delivered via a 1 ml tuberculin syringe (37). Animals were inoculated 212 
three times intravaginally under ketamine sedation at approximately two-hour intervals using a previously 213 
described method (37).  214 
  215 
Blood processing and plasma vRNA loads 216 
 217 
Plasma and PBMCs were isolated from blood placed in EDTA vacutainers and processed at 1500 RPM 218 
for 15 minutes according to standard protocols. Serum was isolated from whole blood collected into glass 219 
vacutainers without additives. Viral RNA was extracted from 300 µl plasma as previously described with a 220 
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Maxwell 16 MDx instrument (Promega, Madison, WI) and evaluated using qRT-PCR (42). RNA 221 
concentration was determined by interpolation onto an internal standard curve of seven ten-fold serial 222 
dilutions of a synthetic ZIKV RNA segment based on Zika virus/Human/French Polynesia/10087PF/2013 223 
(ZIKV-FP). The limit of quantification of the ZIKV qRT-PCR assay is estimated to be 100 copies vRNA/ml 224 
plasma or serum.  225 
  226 
Hysterotomy and tissue collection 227 
 228 
Dams 049-102 and 049-103 were scheduled for hysterotomies in the late first trimester (nonviable embryos 229 
detected 3 days prior to hysterotomy). The hysterotomy for dam 049-101 was performed at approximately 230 
155 days gestational age according to the original study design (Figure 1) and following established 231 
protocols (43). The gestational sac was removed for fetal tissue assessments, with a modified collection 232 
protocol for nonviable specimens (see below). For the fetus from dam 049-101 amniotic fluid, fetal blood, 233 
and fetal cerebrospinal fluid were collected, then fetal body weights and measures (biparietal and 234 
occipitofrontal diameters, abdominal and arm circumferences, hand and foot lengths, humerus and femur 235 
lengths, crown-rump length) were assessed. The left cerebral hemisphere and left eye were collected 236 
under aseptic conditions and shipped with cold packs to Wisconsin by overnight delivery for additional 237 
assessments (see below). Specimens collected for qRT-PCR for vRNA analysis included dura mater; right 238 
cerebral hemisphere (frontal, parietal, temporal, occipital lobes); cerebellum (right and left) and midbrain; 239 
right optic nerve; right eye (cornea, retina, sclera); spinal cord (cervical, thoracic, lumbar); right and left 240 
parotid glands, submandibular, and salivary glands; omentum; thymus; spleen; liver (right, left, quadrate, 241 
caudate lobes); pancreas; right and left adrenal glands and kidneys; right and left axillary and inguinal 242 
lymph nodes; diaphragm; tracheobronchial and mesenteric lymph nodes; right and left thyroids; trachea; 243 
esophagus; pericardium; aorta; right and left atria and ventricles; lung lobes (right and left; all lobes); 244 
reproductive tract including right and left gonads; urinary bladder; gastrointestinal tract (stomach, 245 
duodenum, jejunum, ileum, colon; meconium), skin, skeletal muscle, and bone marrow (Table 2). The 246 
placenta was weighed and assessed including disk measurements (primary and secondary for bidiscoid 247 
placentas; primary disk only for monodiscoid), umbilical cord and membrane insertion sites, blood vessel 248 
distribution, cut surfaces, and examined for the presence of infarcts. Decidua, membranes, umbilical cord, 249 
and multiple sections of the placental disks were collected. All specimens were quick frozen in triplicate 250 
over liquid nitrogen for qRT-PCR analysis or collected into RNAlater (cat# R0901, Sigma-Aldrich, St. Louis, 251 
MO). Multiple blocks of tissues were collected in histology cassettes fixed in 10% buffered formalin, 252 
embedded, sectioned (5-6 µm) and stained with hematoxylin and eosin (H&E) or used for in situ 253 
hybridization (ISH). 254 
  255 
For dams 049-102 and 049-103 a modified collection was performed, consistent with the early 256 
developmental stage of the conceptus (Table 2). Decidua, membranes, umbilical cord, and multiple 257 
sections of the placental disks were collected as noted above. 258 
  259 
Fresh samples collected from the 049-101 fetus (left cerebral hemisphere and left eye) were shipped with 260 
cold packs for additional assessments as noted above; the eye was analyzed by the Comparative Ocular 261 
Pathology Laboratory of Wisconsin (COPLOW). Placental tissues from all dams and tissues for the fetus 262 
from dam 049-101 were assessed as described previously in Koenig et al. (44).  263 
  264 
Tissue, urine, and amniotic fluid vRNA loads 265 
 266 
Maternal-fetal interface (MFI) and fetal tissue vRNA loads were determined from approximately 20 mg of 267 
each tissue. ZIKV RNA was isolated from tissues using the Qiagen AllPrep DNA/RNA Mini Kit (cat# 80284, 268 
Qiagen, Germantown MD) using the QIAcube following the manufacturer's protocol. Viral RNA was 269 
isolated from 140 µl maternal urine or amniotic fluid using the QIAmp Viral RNA minikit (cat# 52904, 270 
Qiagen, Germantown MD) following the manufacturer’s protocol. Following isolation, cDNA synthesis was 271 
performed using the Qiagen Sensiscript RT kit (cat# 205213, Qiagen, Germantown MD) according to the 272 
manufacturer's protocol. Quantification of vRNA load was performed by real-time PCR using the Taqman 273 
amplification system and the QuantStudio 12 K Flex Real-Time PCR System (ThermoFisher Scientific, 274 
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Grand Island, NY) as described previously (43). The estimated limit of quantification of the assay is 50-275 
100 ZIKV RNA copies/mg tissue (average = 75 copies/mg).  276 
 277 
In situ hybridization (ISH) 278 
 279 
ISH probes against the ZIKV genome were commercially purchased (cat# 468361, Advanced Cell 280 
Diagnostics, Newark, CA). ISH was performed using the RNAscope® Red 2.5 kit (cat# 322350, Advanced 281 
Cell Diagnostics, Newark, CA) according to the manufacturer’s protocol. After deparaffinization with xylene, 282 
a series of ethanol washes, and peroxidase blocking, sections were heated with the antigen retrieval buffer 283 
and then digested by proteinase. Sections were then exposed to the ISH target probe and incubated at 284 
40°C in a hybridization oven for two-hours. After rinsing, ISH signal was amplified using the provided pre-285 
amplifier followed by the amplifier-containing labelled probe binding sites, and developed with a Fast Red 286 
chromogenic substrate for 10 minutes at room temperature. Sections were then stained with hematoxylin, 287 
air-dried, and mounted.  288 
 289 
Plaque reduction neutralization tests (PRNT) 290 
 291 
Titers of ZIKV neutralizing antibodies were determined using plaque reduction neutralization tests (PRNT) 292 
on Vero cells (ATCC #CCL-81) with a cutoff value of 90% (PRNT90) (45). Neutralization curves were 293 
generated in GraphPad Prism (San Diego, CA) and the resulting data were analyzed by nonlinear 294 
regression to estimate the dilution of serum required to inhibit 90% Vero cell culture infection (45,46). 295 
 296 
Results 297 
 298 
Repeated intravaginal ZIKV challenge results in infection in pregnant macaques 299 
 300 
All three dams had detectable ZIKV RNA in plasma by 3 days post intravaginal ZIKV challenge (Figure 2). 301 
ZIKV RNA loads peaked on day 5 for dams 049-101 and 049-102, and on day 6 for dam 049-103. Peak 302 
vRNA loads ranged from 1.57x104 copies/ml for 049-101 to 1.30x105 copies/ml for 049-103 (Figure 2). 303 
The latest detectable plasma vRNA load for animal 049-101 was on day 24 post-challenge (1.56x102 304 
copies/ml). Dam 049-103 had a detectable plasma vRNA load until day 14 (2.46x103 copies/ml) but was 305 
negative on day 17 (the next time point samples were collected). Dam 049-102 was consistently positive 306 
for ZIKV vRNA until day 14, was negative on day 17, and then positive again on days 21 and 24 post 307 
challenge. Dam 049-102 was positive for ZIKV RNA in blood plasma collected at hysterotomy, the last 308 
time point sampled for the study. Overall, maternal plasma vRNA loads for dams 049-101, 049-102, and 309 
049-103 were somewhat delayed compared to animals subcutaneously inoculated with French Polynesian 310 
or Puerto Rican ZIKV isolates in our previous studies, but were consistent in magnitude with previous 311 
observations (42,47,48). In addition, maternal plasma vRNA loads peaked within a time period similar to 312 
subcutaneously inoculated animals infected with the same ZIKV isolate (ZIKV-DAK) (49) (Figure 2).  313 
 314 
Embryonic demise following intravaginal ZIKV infection during early pregnancy 315 
 316 
Ultrasound examinations indicated that the embryos of dams 049-102 and 049-103 were nonviable at 317 
approximately 17-18 days post-challenge. Hysterotomies were subsequently scheduled and performed 318 
and each dam’s final blood and urine samples were collected (Figure 3A). Embryo and placental tissues 319 
from dams 049-102 and 049-103 were collected for vRNA analysis, histopathological assessment, and 320 
ISH. Dam 049-101’s pregnancy progressed normally and sampling continued until the study endpoint and 321 
near-term hysterotomy at approximately 155 days gestational age (Figure 3A). All fetal and placental 322 
measurements for 049-101 were recorded and were considered within normal limits for gestational age 323 
(Table 3) (40).  324 
 325 
MFI, fetal tissues, and amniotic fluid are ZIKV RNA positive in early embryos 326 
 327 
ZIKV RNA was detected in the amniotic fluid from the conceptus of both dams 049-102 and 049-103 at 328 
3.87x103 and 7.38x103 copies/ml respectively at the time of hysterotomy (subsequent to embryonic death). 329 
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In addition, ZIKV RNA was detected in the brain and liver of both non-viable embryos, as well as in MFI 330 
tissues including the primary and secondary placental disks and membranes (amnion and chorion) (Figure 331 
3B). The highest tissue vRNA burden was detected in the brain of the embryo from dam 049-102 (1.74x105 332 
copies/mg). ZIKV RNA was not detected in amniotic fluid collected from the fetus of dam 049-101 at 333 
hysterotomy. Although a large number of fetal and MFI tissues were assessed following hysterotomy, the 334 
presence of ZIKV RNA was only detected in a subset of sections of MFI tissues from 049-101 (Table 2, 335 
Figure 3C). The decidua from all three dams were negative for ZIKV RNA by qRT-PCR. Similarly, ZIKV 336 
RNA was not detected in the urine for any of the dams at any of the time points sampled. Overall, these 337 
results highlight the focal nature of ZIKV RNA detection in fetal and MFI tissues following infection during 338 
pregnancy. For a number of tissues, multiple samples were collected for vRNA analysis but ZIKV was only 339 
detected in a subset of those samples (Table 2).   340 
 341 
Pathological changes in placental tissues following intravaginal ZIKV infection are non-specific 342 
 343 
Histopathological assessments of the placentas of dams 049-102 and 049-103 following embryonic demise 344 
showed generalized, non-specific mild necrosis (Table 4). In particular, the secondary placental disk from 345 
dam 049-102 showed significant necrosis for gestational age (tissues removed ~50 days gestation) which 346 
was estimated to be approximately a week after embryonic death occurred. Placentas from both dam 049-347 
102 and dam 049-103 had minimal to mild multifocal villous mineralization. The primary placental disk of 348 
dam 049-102 showed moderate to marked intervillous hemorrhage and parenchymal ischemia. The 349 
placenta of dam 049-103 showed acute neutrophilic intervillositis and mild focal ischemia. In addition, the 350 
decidua from dam 049-102 showed some evidence of early decidual vasculitis. Similar to the placentas 351 
from the other two dams, the placenta of dam 049-101 showed mild, multifocal villous mineralization, 352 
findings which have previously been observed in control placentas. In addition, decidual tissue from dam 353 
049-101 showed mild, multifocal muscularization of the decidual arteries. Overall, changes in the placental 354 
tissues were mild and not associated with any specific pathological processes. Assessment of fetal tissues 355 
from dam 049-101 showed normal brain and eye morphology with no identified lesions.   356 
 357 
ZIKV genomic RNA is detected in MFI tissues from demise cases 358 
 359 
Tissue sections from decidua, primary placental disks, and secondary placental disks (bidiscoid placentas) 360 
were assessed by ZIKV ISH using RNAscope (see methods). ZIKV genomic RNA was detected in both 361 
the primary and secondary placental disks from dams 049-102 and 049-103 (Figure 4), but not from the 362 
primary placental disk from 049-101, nor any of the decidua sections from any of the pregnancies. The 363 
lack of ZIKV RNA in the decidua sections by ISH was consistent with the tissue vRNA assessment by qRT-364 
PCR.  365 
 366 
Animals infected intravaginally with ZIKV during pregnancy develop neutralizing antibodies 367 
 368 
Serum neutralizing antibody titers (nAbs) against ZIKV were evaluated for dams 049-102 and 049-103 on 369 
days 0, 14, and 24 post-challenge by 90% plaque reduction neutralization tests (PRNT90). Serum samples 370 
from 0, 14, 27, and 122 days post-challenge collected from dam 049-101 were similarly assessed. Samples 371 
collected on day 0 (pre-challenge) from all animals were negative for ZIKV nAbs. Neutralizing Ab titers 372 
above 1:10 are indicative of immunity against ZIKV. Serum collected on day 14 post challenge from all 373 
animals neutralized ZIKV-DAK at levels considered protective by PRNT90 (between 1:100 and 1:1000 for 374 
each animal). Serum collected on day 24 post-challenge from dams 049-102 and 049-103, and on day 27 375 
post-challenge from dam 049-101 showed an increased neutralization response relative to baseline (day 376 
0) and day 14 for each individual animal (Figure 5). By day 122 post-challenge, the ZIKV nAb response 377 
for animal 049-101 was lower than at days 14 or 27, but still demonstrated a strong protective response 378 
(PRNT90 titer approximately 1:300) (Figure 5). These results suggest that all animals developed a nAb 379 
response against ZIKV following intravaginal ZIKV challenge consistent with that previously noted for 380 
rhesus dams infected subcutaneously (42,47,48).  381 
 382 
Discussion 383 
 384 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.03.437254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.03.437254
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

Here we describe a proof-of-concept study that indicates intravaginal challenge with ZIKV during early 385 
pregnancy results in productive maternal infection and suggests that infection by this route can also result 386 
in embryonic demise. ZIKV RNA was detected at the MFI and in fetal tissues, as well as in the amniotic 387 
fluid from the pregnancies of dams 049-102 and 049-103, supporting a role for ZIKV in the adverse 388 
pregnancy outcomes for these animals. Although ZIKV was detected by qRT-PCR in the MFI tissues from 389 
dam 049-101, no vRNA was detected in fetal tissues directly. Interestingly, although vRNA was detectable 390 
in the placenta of dam 049-101 by qRT-PCR, it was not detected by ISH. Given the focal nature of ZIKV 391 
RNA detected in the placental tissue samples collected from dam 049-101, it is likely that the samples 392 
evaluated by ISH were simply from areas without vRNA present (Table 2). In order to assess transmission 393 
in these studies we intentionally avoided any intrauterine sampling to ensure no confounding variables. 394 
Because vRNA was not detected in any fetal tissues, our results may suggest that vertical transmission 395 
did not occur between dam 049-101 and the developing fetus. Alternatively, the results may suggest 396 
immunologic elimination of virus at later gestational ages as previously suggested by a study using direct 397 
fetal ZIKV inoculation (43). Our decision to challenge the animals in this study early in pregnancy (~30 398 
days gestation) was based on findings in humans suggesting that during the first trimester, ZIKV infection 399 
is associated with a higher risk of adverse fetal and pregnancy outcomes (27,50–53)(43)(27,50–53). In 400 
addition, we hypothesized that early pregnancy, possibly before a woman knows she is pregnant, may be 401 
a period of especially high risk for sexual transmission of ZIKV because precautions against this 402 
transmission route, such as condoms, may not be utilized (23,24). Overall, our results suggest that sexual 403 
transmission of ZIKV during early pregnancy may represent a significant risk for adverse outcomes.  404 
 405 
Our results indicating early demise as a result of ZIKV infection are consistent with those described 406 
previously in a cross-center, cross-NHP species study (29). Interestingly, our finding that 2 of 3 (~66%) 407 
pregnancies ended in nonviable embryos following intravaginal ZIKV infection during early pregnancy 408 
represents a higher rate of loss than the ~26% previously reported for NHP (29). We acknowledge this 409 
loss rate is based on small animal numbers and could change as more animals are infected. Despite this 410 
higher rate compared to other NHP models reported to date, both near term and early gestation reflect 411 
periods of higher rates of spontaneous loss for macaques (54). While the loss rate reported in our study 412 
may be higher than the background rate of early loss in humans during the first trimester, data are very 413 
limited regarding the rate at which ZIKV-associated loss occurs in humans during the first trimester. A rate 414 
of around 11% was recently reported in a study during a period of epidemic transmission in Manaus, Brazil 415 
(55–58), although as noted, in many cases women may not be aware of an early pregnancy, thus the rate 416 
of loss could actually be higher. Additional studies with larger animal numbers will be necessary to 417 
determine the impact of the challenge dose, virus isolate, gestational age, and route of infection on 418 
pregnancy loss and how this relates to rates of spontaneous loss in early gestation.   419 
  420 
Some limitations of this study include the use of a relatively high dose of ZIKV to inoculate the dams, the 421 
inclusion of multiple challenges over a short timeframe, and the small number of animals included in the 422 
study. The dose of inoculum chosen for this study is representative of the high end of the ZIKV vRNA 423 
range reportedly detected in human semen, which can be up to 100,000 times higher than that in blood 424 
(16–18). In part, this dose was also chosen due to the small number of animals included, our interest in 425 
the impact of intravaginal ZIKV exposure early in pregnancy, and the need to maximize chances of 426 
successful infection during early gestation. Previous studies in nonpregnant NHP have shown that 427 
intravaginal ZIKV inoculation results in successful infection after a single challenge approximately 33-75 428 
percent of the time (31,37,59). In pregnant olive baboons, a single intravaginal inoculation mid-gestation 429 
with semen containing ZIKV (originating from French Polynesia or Puerto Rico) resulted in 4 of 6 animals 430 
developing detectable vRNA in blood, with an additional animal having detectable vRNA in blood after a 431 
second inoculation (33). This was the rationale for the choice to perform repeat challenges at two-hour 432 
intervals in this study: in order to maximize the likelihood of establishing a productive infection in our small 433 
cohort within a single day. We acknowledge that it is difficult to determine whether the inoculation route 434 
played a significant role in our observed outcomes or whether the cumulative inoculum dose, virus isolate, 435 
timing of infection, or some combination of these factors played a role in the observed outcomes. Future 436 
studies modeling sexual transmission should aim to determine which of these factors significantly impact 437 
pregnancy outcome.  438 
 439 
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We chose to utilize a low passage African ZIKV isolate (ZIKV-DAK) rather than a more contemporary 440 
isolate such as the commonly utilized PRVABC59 because, although it is also low passage, recent studies 441 
have suggested that this virus may have an attenuated phenotype and is not as pathogenic as ZIKV-DAK 442 
in mice (41,60). In addition, ZIKV was first isolated from a febrile rhesus macaque in the Zika Forest near 443 
Entebbe, Uganda in 1947 (61,62). Since that time, serologic and molecular (RNA or virus isolation) 444 
evidence of continued circulation in Africa has been intermittently reported in humans, animals, and 445 
mosquitoes (63–67). Prior to a report from Guinea-Bissau from 2016, during which an outbreak and 446 
subsequent identification of infant microcephaly cases was attributed to an African lineage virus, there 447 
were no reports of ZIKV impacting pregnancies and infant development in Africa (63,68). This has led to a 448 
number of hypotheses as to why, which includes, but is not limited to the following: widespread immunity 449 
in populations of childbearing age due to infection earlier in life; masking of ZIKV-associated adverse 450 
outcomes due to a high number of other, co-circulating pathogens in many populations, such as malaria; 451 
or embryonic loss during very early pregnancy simply unrecognized due to unknown status or inconsistent 452 
access to prenatal care (63,64,69). The data generated in this work supports the latter hypothesis of early 453 
loss. In reality, depending on the region, many of these factors could be playing an additive role in low 454 
and/or underreporting of ZIKV-associated pregnancy outcomes in Africa. Whether the early pregnancy 455 
losses observed in our study were due to increased pathogenicity of the African ZIKV isolate utilized 456 
relative to other isolates, the intravaginal route of infection, or both will require additional studies.  457 
 458 
Many key questions remain with regard to understanding how different ZIKV geographic isolates may 459 
differentially impact pregnancy and fetal developmental outcomes. This study suggests that NHP models 460 
may be able to differentiate pregnancy outcomes between different isolates. Route of maternal infection 461 
may also play a role in pregnancy outcomes, at least in the case of NHP, as intravenous and intra-amniotic 462 
ZIKV infections during pregnancy have been associated with lower fetal survival rates across multiple 463 
studies compared to subcutaneous inoculation (29). As shown here, intravaginal infection may also lower 464 
survival rates in early pregnancy. Ultimately, our study was designed to balance all of the potentially 465 
influential factors previously mentioned within the constraints of a proof-of-concept study and the 466 
requirement for challenge and infection to occur during early pregnancy in order to evaluate this question.  467 
 468 
Our results suggest that low passage, African lineage virus (ZIKV-DAK) has the potential to result in 469 
embryonic demise in rhesus macaques when infection occurs intravaginally and early in pregnancy. To 470 
our knowledge, this is the first NHP study to show clear evidence of vertical transmission of ZIKV following 471 
intravaginal infection, which has only previously been observed in mice (20,30,36). NHP, due to 472 
susceptibility without immune modulation, as well as having significant similarities to human pregnancy, 473 
may provide better approximations for human infections than other animal models (70). Furthermore, this 474 
is the first NHP study to show that African lineage ZIKV infection during pregnancy has the potential to 475 
result in severe fetal outcomes. Taken together, our results suggest that additional attention should be 476 
given to ongoing perinatal surveillance in African communities and to promoting awareness regarding the 477 
risks of sexual transmission of ZIKV in endemic areas. 478 
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Table 1. Dam information on day 0 of study. 761 
 762 

Dam ID Weight (kg) Age (y) Gestational 
Age (days) 

Scheduled 
hysterotomy 

(days) 

Virus Dose 
(PFU) 

Challenge # 

049-101 5.55 6.93 29 155 ZIKV-DAK 1x107 3 

049-102 7.40 11.83 32 155 ZIKV-DAK 1x107 3 

049-103 8.43 12.83 31 155 ZIKV-DAK 1x107 3 

 763 
 764 
 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 
 788 
 789 
 790 
 791 
 792 
 793 
 794 
 795 
 796 
 797 
 798 
 799 
 800 
 801 
 802 
 803 
 804 
 805 
 806 
 807 
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Table 2. Fetal and maternal-fetal interface tissues collected at hysterotomy. 808 
 809 

Dam ID Organ System/Tissue Tissue samples tested 
(N) 

Tissue samples qRT-PCR  
positive (N) 

Positive tissue vRNA 
copies/mg 

049-101 integumentary 3 0 0.0 

 musculoskeletal 2 0 0.0 

 nervous 14 0 0.0 

 endocrine 7 0 0.0 

 lymphatic 8 0 0.0 

 cardiovascular 4 0 0.0 

 respiratory 10 0 0.0 

 digestive 12 0 0.0 

 urinary 3 0 0.0 

 reproductive 3 0 0.0 

 other 8 0 0.0 

 primary placental disk 3 2 0.66x102a 

 primary placental disk 3 3 1.59x103a 

 placenta with decidua 18 3 8.13x102a 

 placenta without decidua 18 6 6.45x102a 

 decidua 18 3 0.0 

049-102 nervous (brain) 1 1 2.06x103 

 digestive (liver) 1 1 1.23x104 

 umbilical cord 1 1 8.37x103 

 fetal membranes 1 1 4.87x103 

 primary placental disk 3 3 4.96x103a 

 secondary placental disk 3 3 3.61x103a 

 decidua 1 0 0.0 

049-103 nervous (brain) 1 1 1.74x105 

 digestive (liver) 1 1 7.42x104 

 umbilical cord 1 1 7.13x104 

 amnion 1 1 7.08x102 

 chorionic jelly 1 1 3.54x103 

 membranes (amnion and chorion) 1 1 4.74x103 

 primary placental disk 3 3 1.98x103a 

 secondary placental disk 3 3 3.40x103a 

 decidua 1 0 0.0 

amean vRNA load of multiple positive tissue samples 810 
 811 
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Table 3. 049-101 fetal and placental measurements (~155 days gestation, 122 days post challenge). 812 
Measurements were considered to be within normal limits by ultrasound and gross assessment (40). R = 813 
right, L = left.  814 
 815 

Tissue Measure (mm) Weight (g) 

whole body 180.0 405.75 

biparietal diameter 52.3 - 

head circumference 186.0 - 

brain - 54.42 

cerebrum - 50.2 

cerebellum with midbrain - 3.31 

cerebellum without midbrain - 2.47 

r./l. eye 13.6/13.8 1.34/1.35 

r./l. thyroid - 0.07/0.07 

thymus - 1.42 

spleen - 0.58 

liver - 12.08 

r./l. adrenal - 0.12/0.17 

r./l. kidney - 1.00/0.99 

lung lobes - 8.76 

r./l. testis - 0.06/0.06 

placenta 145.0 x 85.0 159.19 

r./l. femur 52.8/53.0 - 

 816 
 817 
 818 
 819 
 820 
 821 
 822 
 823 
 824 
 825 
 826 
 827 
 828 
 829 

 830 
 831 
 832 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.03.437254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.03.437254
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Table 4. Histopathological assessment of placental tissues from all animals and fetal tissues from 049-833 
101.  834 
 835 

Dam ID Tissue Findings 

049-101 primary placental disk focally extensive hemorrhage within 
the basal plate; mild multifocal villous 

mineralization 

 decidua mild multifocal persistent 
muscularization of decidual arteries 

 fetal brain no pathological changes 

 fetal eye no pathological changes 

 fetal lung mild bilateral diffuse intra-alveolar 
squamous cells, similar to control 

049-102 primary placental disk moderate to marked intervillous 
hemorrhage and parenchymal 
ischemia with acute intervillous 
inflammation; minimal multifocal 

villous mineralization  

 secondary placental disk significant necrosis for gestational 
age, nonviable embryo; not 

associated with specific pathologic 
process 

 decidua early decidual vasculitis 

049-103 primary placental disk mild focal ischemia with coagulative 
necrosis and acute neutrophilic 

intervillositis; mild multifocal villous 
mineralization 

 secondary placental disk changes in placental disks are mild 
and non-specific 

 decidua minimal multifocal decidual necrosis 
with acute inflammation and two non-

occlusive thrombi 

 836 
 837 
 838 
 839 
 840 
 841 
 842 
 843 
 844 
 845 
 846 
 847 
 848 
 849 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2021. ; https://doi.org/10.1101/2021.04.03.437254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.03.437254
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 850 
Figure legends 851 
 852 
Figure 1. Study design. Three female rhesus macaques were time-mated, confirmed pregnant by 853 
ultrasound, and challenged intravaginally at ~30 days gestational age with 1x107 PFU ZIKV-DAK three 854 
times at two-hour intervals. Blood collection* denotes plasma and PBMC isolation at every sampling time 855 
point while serum collection was planned only on days 0, 14, 27, and 122 post-ZIKV challenge. Ultrasound# 856 
denotes ultrasound imaging was performed every 3-4 days during early gestation, then weekly thereafter. 857 
Hysterotomies were originally planned for each animal at approximately 122 days post-ZIKV challenge. 858 
 859 
Figure 2. Intravaginal ZIKV challenge resulted in detection of vRNA in plasma for all three dams. The x-860 
axis shows days post-ZIKV challenge. The y-axis starts at the estimated limit of quantification of the qRT-861 
PCR assay (1x102 copies/ml) and is shown as copies/ml plasma on the log scale. Plasma vRNA loads are 862 
displayed for dam 049-101 as orange triangles, for dam 049-102 as blue circles, and for dam 049-103 as 863 
magenta squares. For comparison, ZIKV plasma vRNA loads are also shown for three pregnant macaques 864 
subcutaneously (SC) inoculated with 1x104 PFU ZIKV-DAK and are displayed as gray dashed lines and 865 
noted as 104 PFU SC in the legend (49).  866 
 867 
Figure 3. Pregnancy outcomes and maternal-fetal interface (MFI) and fetal tissue vRNA loads. (A) 868 
Pregnancy outcomes for three dams intravaginally inoculated 3x with ZIKV at approximately 30 days 869 
gestation. Two dams (049-102 and 049-103) were determined by ultrasound to have non-viable embryos 870 
at approximately 17-18 days post-ZIKV challenge. Hysterotomies and embryo and MFI tissue collections 871 
were performed 3 days after detection. Dam 049-101’s pregnancy continued until scheduled hysterotomy 872 
and extensive tissue collection at approximately 155 days gestational age. (B) Average ZIKV vRNA loads 873 
for positive embryo and MFI tissues collected at hysterotomy from dams 049-102 (blue) and 049-103 874 
(magenta) following embryonic death at approximately 17-18 days post-ZIKV challenge. The dashed line 875 
represents the average of the estimated limit of detection (50-100 copies/mg, average: 75 copies/mg 876 
tissue) for the qRT-PCR assay. (C) Average ZIKV vRNA loads for positive MFI tissues collected at 877 
hysterotomy from dam 049-101 (orange) at approximately 122 days post-ZIKV infection. Fetal tissues were 878 
negative for ZIKV RNA by qRT-PCR. The dashed line represents the average of the estimated limit of 879 
detection (50-100 copies/mg, average: 75 copies/mg tissue) for the qRT-PCR assay. 880 
 881 
Figure 4. ZIKV genomic RNA was detected by in situ hybridization (ISH) in placental tissues collected from 882 
dams 049-102 and 049-103, but not from dam 049-101. For all images, red coloration is indicative of 883 
positive staining for ZIKV genomic RNA. Overall, positive staining is focal but visible in multiple areas. 884 
Insets show close-ups of the areas denoted by the black arrows in each larger panel. Representative 885 
images are shown of (A) primary placental disk from 049-103, (B) secondary placental disk from 049-103, 886 
(C) primary placental disk from 049-102, and (D) secondary placental disk from 049-102.  887 
 888 
Figure 5. All three dams developed neutralizing antibodies (nAbs) against ZIKV as detected by PRNT90 889 
following intravaginal ZIKV infection. The x-axis is the log10 reciprocal serum dilution and the y-axis is the 890 
percent plaque reduction for ZIKV-DAK. Day 0 for all animals is shown as symbols with 049-101 891 
represented by orange triangles, 049-102 represented by blue circles, and 049-103 represented by 892 
magenta squares. Dashed gray horizontal lines indicate the PRNT90 and PRNT50 cut-offs respectively. 893 
Neutralization curves were generated using non-linear regression to estimate the dilution of serum required 894 
to inhibit 90% of Vero cell culture infection. Neutralization curves are shown for days 14 (dashed lines) and 895 
24 (dotted lines) for dams 049-102 (blue) and 049-103 (magenta), and for days 14, 27, and 122 (dashed 896 
and dotted line) for dam 049-101 (orange).  897 
 898 
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