1 Submitted to *mBio* on: 31 March 2021

Sex differences in lung imaging and SARS-CoV-2 antibody responses in a COVID-19 golden Syrian hamster model

4

2

- 5 Santosh Dhakal^{a,*}, Camilo A. Ruiz-Bedoya^{b,*}, Ruifeng Zhou^a, Patrick S. Creisher^a, Jason S.
- 6 Villano^c, Kirsten Littlefield^a, Jennie Ruelas Castillo^d, Paula Marinho^a, Anne Jedlicka^a, Alvaro A.
- 7 Ordonez^b, Natalia Majewski^e, Michael J. Betenbaugh^e, Kelly Flavahan^b, Alice L. Mueller^a,
- 8 Monika M. Looney^d, Darla Quijada^d, Filipa Mota^b, Sarah E. Beck^c, Jacqueline Brockhurst^c,
- 9 Alicia Braxton^c, Natalie Castell^c, Franco R. D'Alessio^d, Kelly A. Metcalf Pate^c, Petros C.
- 10 Karakousis^d, Joseph L. Mankowski^{c,†}, Andrew Pekosz^{a,†}, Sanjay K. Jain^{b,†}, and Sabra L. Klein^{a,†}
- 11 for the Johns Hopkins COVID-19 Hamster Study Group[‡]
- ^aW. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns
- 13 Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- ^bDepartment of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore,
- 15 Maryland, USA
- 16 ^cDepartment of Molecular and Comparative Pathobiology, The Johns Hopkins School of
- 17 Medicine, Baltimore, Maryland, USA
- ^dDepartment of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- 19 ^eAdvanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and
- 20 Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
- ^fDepartment of Epidemiology, The Johns Hopkins Bloomberg School of Public Health,
 Baltimore, Maryland, USA
- 23 ^gDepartment of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel
- 24 Comprehensive Cancer Center, Baltimore, MD, USA
- 25 *co-first authors
- 26 [†]To whom correspondence should be addressed: Sabra Klein, <u>sklein2@jhu.edu</u>
- 27 Sanjay Jain, <u>sjain5@jhmi.edu</u>, Andrew Pekosz, <u>apekosz1@jhu.edu</u>, Joseph Mankowski,
- 28 jmankows@jhmi.edu
- 29 ‡additional Johns Hopkins COVID-19 Hamster Study Group members: Cory F. Brayton^c, Lisa
- 30 Pieterse^a, Bess Carlson^c, Selena Guerrero-Martin^c, Eric K. Hutchinson^c, Andrew L. Johanson^c,
- 31 Maggie Lowman^c, Amanda Maxwell^c, Megan E. McCarron^c, Kathleen R. Mulka^c, Suzanne E.
- 32 Queen^c, Erin N. Shirk^c, Clarisse V. Solis^c, Mitchel Stover^c, Patrick M. Tarwater^f, Rebecca T.
- 33 Veenhuis^c, Rachel Vistein^c, and Cynthia A. Zahnow^g
- Key words: animal model, COVID-19, sex differences, SARS-CoV-2 variants, receptor binding
 domain
- 36 Running title: Sex differences in SARS-CoV-2 in golden Syrian hamsters
- 37 **One Sentence Summary:** Following SARS-CoV-2 infection, male hamsters experience worse
- 38 clinical disease and have lower antiviral antibody responses than females.

Dhakal and Ruiz-Bedoya et al. 2

39 Abstract:

40 In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe 41 acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in 42 males compared with females, including hospitalizations and deaths. Animal models can provide 43 an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of 44 SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were 45 inoculated intranasally with 10⁵ TCID₅₀ of SARS-CoV-2/USA-WA1/2020 and euthanized at 46 several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the 47 infectious virus has been cleared) phases of infection. There was no mortality, but infected male 48 hamsters experienced greater morbidity, losing a greater percentage of body mass, developing 49 more extensive pneumonia as noted on chest computed tomography, and recovering more slowly 50 than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus 51 titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary 52 cytokine concentrations, including IFN β and TNF α , were comparable between the sexes. 53 However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, 54 and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both 55 plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies 56 against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing 57 antibodies in plasma. The development of an animal model to study COVID-19 sex differences 58 will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex 59 differences seen in the human population.

60

Dhakal and Ruiz-Bedoya et al. 3

62 **Importance:**

63	Men experience more severe outcomes from COVID-19 than women. Golden Syrian hamsters
64	were used to explore sex differences in the pathogenesis of a human clinical isolate of SARS-
65	CoV-2. After inoculation, male hamsters experienced greater sickness, developed more severe
66	lung pathology, and recovered more slowly than females. Sex differences in disease could not be
67	reversed by estradiol treatment in males and were not explained by either virus replication
68	kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery
69	period, antiviral antibody responses in the respiratory tract and plasma, including to newly
70	emerging SARS-CoV-2 variants, were greater in females than male hamsters. Greater lung
71	pathology during the acute phase combined with reduced antiviral antibody responses during the
72	recovery phase of infection in males than females illustrate the utility of golden Syrian hamsters
73	as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced
74	immunity and protection.

Dhakal and Ruiz-Bedoya et al. 4

75 Introduction

76 At the start of the coronavirus disease 2019 (COVID-19) pandemic, early publications 77 from Wuhan, China (1, 2) and European countries (3) began reporting male biases in 78 hospitalization, intensive care unit (ICU) admissions, and mortality rates. Ongoing real-time 79 surveillance (4) and meta-analyses of over 3 million cases of COVID-19 (5) continue to show 80 that while the incidence of COVID-19 cases are similar between the sexes, adult males are 81 almost 3-times more likely to be admitted into ICUs and twice as likely to die as females. 82 Differential exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 83 likely associated with behaviors, occupations, comorbidities and societal and cultural norms (i.e., 84 gender differences) that impact the probability of exposure, access to testing, utilization of 85 healthcare, and risk of disease (6-8). This is distinct but also complementary to biological sex 86 differences (i.e., sex chromosome complement, reproductive tissues, and sex steroid hormone 87 concentrations) that can also impact susceptibility and outcomes from COVID-19 (9, 10). While 88 exposure to SARS-CoV-2 may differ based on gender, the increased mortality rate among males 89 in diverse countries and at diverse ages likely reflect biological sex. Studies have shown that in 90 males, mutations in X-linked genes (e.g., TLR7) resulting in reduced interferon signaling (11), 91 elevated proinflammatory cytokine production (e.g., IL-6 and CRP) (2, 12), reduced CD8+ T cell 92 activity (e.g., IFN- γ) (13), and greater antibody responses (i.e., anti-SARS-CoV-2 antigen-93 specific IgM, IgG, and IgA, and neutralizing antibodies) (14) are associated with more severe 94 COVID-19 outcomes as compared with females. Because COVID-19 outcomes can be impacted 95 by both gender and biological sex, consideration of the intersection of these contributors is 96 necessary in human studies (15).

97	Animal models can mechanistically explore sex differences in the pathogenesis of SARS-
98	CoV-2 independent of confounding gender-associated factors that impact exposure, testing, and
99	use of healthcare globally. Transgenic mice expressing human ACE2 (K18-hACE2) are
100	susceptible to SARS-CoV-2 and in this model, males experience greater morbidity than females,
101	despite having similar viral loads in respiratory tissues (e.g., nasal turbinates, trachea, and lungs)
102	(16, 17). Transcriptional analyses of lung tissue revealed that inflammatory cytokine and
103	chemokine gene expression is greater in males than females early during infection, and these
104	transcriptional patterns show a stronger correlation with disease outcomes among males than
105	females (16, 17). In addition to utilizing hACE2 mice, mouse-adapted strains of SARS-CoV-2
106	have been developed and can productively infect wild-type mice but have not yet been used to
107	evaluate sex-specific differences in the pathogenesis of disease (18-20).
108	Golden Syrian hamsters are also being used as an animal model of SARS-CoV-2
109	pathogenesis because they are susceptible to human clinical strains of viruses, without the need
110	for genetic modifications in either the host or virus. While studies have included males and
111	females in analyses of age-associated differences in the pathogenesis of SARS-CoV-2 (21), few
112	studies have specifically evaluated males vs. females to better understand sex differences in
113	disease. There are studies of golden Syrian hamsters that have included male and female
114	hamsters but did not have sufficient numbers of animals to accurately compare the sexes (22).
115	Sex differences are not reported in either viral RNA, infectious virus, or cytokine mRNA
116	expression at a single time point (i.e., 4 days post-infection) in the lungs of golden Syrian
117	hamsters (23). There is a gap in the literature of studies designed to rigorously test the hypothesis
118	that biological sex alters disease severity and immune responses after SARS-CoV-2 infection.
119	

Dhakal and Ruiz-Bedoya et al. 6

120 Results

121 Males experience greater morbidity than females following SARS-CoV-2 infection, which

122 cannot be reversed by estradiol (E2) treatment.

123 Intranasal inoculation of human clinical isolates of SARS-CoV-2 causes productive 124 infection in golden Syrian hamsters (24-26). To test the hypothesis that SARS-CoV-2 infection 125 results in sex differences in disease outcomes, adult male and female golden Syrian hamsters were infected with 10^5 TCID₅₀ of virus and changes in body mass were monitored for 28 days 126 127 post-inoculation (dpi). Mortality was not observed in either sex, but infected hamsters 128 progressively lost body mass during the first week before starting to recover (Figure 1A). The 129 peak body mass loss in female hamsters was observed at 6 dpi ($-12.3\pm1.8\%$), whereas peak mass 130 loss in male hamsters was observed at 7 dpi (-17.3±1.9%). The percentage of body mass loss was 131 significantly greater in male than female hamsters at 8 to 10 dpi and throughout the recovery 132 period (p<0.05; Figure 1A). Recovery to baseline body mass after SARS-CoV-2 infection 133 occurred within 2 weeks for female and at 3 weeks for male hamsters (Figure 1A). 134 To evaluate pulmonary disease in SARS-CoV-2-infected males and females, chest 135 computed tomography (CT) was performed at the peak of lung disease (7 dpi). As previously 136 reported by others (26), multiple and bilateral mixed ground-glass opacities (GGO) and 137 consolidations were detected in both females and males (Figure 1B and Supplementary Figure 138 1). In order to reduce bias in the visual assessment, we developed an unbiased approach to 139 quantify lung disease by chest CT. Volumes of interest (VOIs) were drawn to capture total and 140 diseased (pneumonic) lung volumes (Figure 1C). As reported in COVID-19 patients who 141 underwent CT (27, 28), there was significantly more disease in the lung of male versus female

Dhakal and Ruiz-Bedoya et al. 7

142	hamsters ($p < 0.05$) (Figure 1D). These results indicate that infected male hamsters developed
143	more severe disease, including more extensive lung injury, than females.
144	Previous studies show that estrogens, including but not limited to estradiol (E2), are anti-
145	inflammatory and can reduce pulmonary tissue damage following respiratory infections,
146	including with influenza A viruses or Streptococcus pneumoniae (29-31). To test the hypothesis
147	that E2 could dampen inflammation and pulmonary tissue damage to improve outcomes in male
148	hamsters, males received either exogenous E2 capsules or placebo capsules prior to SARS-CoV-
149	2 infection. Plasma concentrations of E2 were significantly elevated in E2-treated males
150	compared with placebo-treated males (p <0.05; Figure 2A) and were well within the normal
151	range of plasma concentrations of E2 in cyclic female hamsters (30-700pg/mL) (32). Animals
152	were followed for 7 dpi and changes in body mass and chest CT score were quantified. There
153	was no effect of E2-treatment on morbidity as placebo- and E2-treated males had equivalent
154	percentages of body mass loss (Figure 2B). CT findings noted in E2-treated males were similar
155	to those noted in placebo-treated males (Supplementary Figure 1) and chest CT scans revealed
156	in CT score between groups (Figure 2C). Moreover, histopathology demonstrated similar cell
157	infiltration and pneumonic areas between groups (Figure 2D). From these data, we conclude that
158	the treatment of gonadally-intact males with E2 did not improve morbidity or pulmonary
159	outcomes from SARS-CoV-2 infection.
100	

160

161 SARS-CoV-2 replication kinetics are similar between the sexes

To test the hypothesis that male-biased disease outcomes were caused by increased virus load or faster replication kinetics, subsets of infected male and female hamsters were euthanized at 2, 4, or 7 dpi and infectious virus titers were measured in the respiratory tissue homogenates.

165	The peak infectious virus titers in the nasal turbinates (Figure 3A), trachea (Figure 3B), and
166	lungs (Figure 3C) were detected at 2 dpi, decreased at 4 dpi, and was cleared at 7 dpi. There
167	were no sex differences in either peak virus titers or clearance of SARS-CoV-2 from any of the
168	respiratory tissues tested (Figure 3A-C). Although the infectious virus was cleared from the
169	respiratory tract of most of the hamsters by 7 dpi (Figure 3A-C), viral RNA was still detectable
170	in the lungs at 14 dpi in all of the SARS-CoV-2 infected hamsters, with no differences between
171	the sexes (Figure 3D). These data illustrate that sex differences in the disease phenotype are not
172	due to differences in infectious virus loads or persistence of viral RNA.
173	
174	Cytokine concentrations in the lungs are comparable between the sexes
175	To test whether local or systemic cytokine activity differed between the sexes,
176	concentrations of cytokines were measured in lung and spleen homogenates at 2, 4, or 7 dpi. Sex
177	differences were not observed 2-7 dpi in the concentrations of IL-1 β , TNF- α , , IL-6, IFN- α , IFN
178	β , IFN- γ , or IL-10 in either lung (Figure 4A-F) or spleen (Supplementary Table 1)
179	homogenates. In both male and female hamsters, lung concentrations of IL-1 β (Supplementary
180	Figure 2A), TNF-α (Supplementary Figure 2B), IFN-α (Supplementary Figure 2D), and IFN-
181	β (Supplementary Figure 2E), but not IL-6 (Supplementary Figure 2C), IFN- γ
182	(Supplementary Figure 2F), or IL-10 (Supplementary Table 1), were greater in samples from
183	infected as compared with sex-matched mock-infected hamsters (p <0.05 in each case). In
184	contrast, there was no effect of infection on the concentration of cytokines in the spleen
185	(Supplementary Table 1). To determine if cytokine concentrations correlated with virus titers
186	from the same lung homogenates, Spearman correlational analyses were performed and revealed
187	that concentrations of TNF α were positively associated with virus titers at 2 dpi ((p <0.05;

188	Supplementary Figure 3B) and concentrations of IFN β were negatively associated with virus
189	titers at 4 dpi (<i>p</i> <0.05; Supplementary Figure 4E). The concentrations of other cytokines
190	measured at either 2 or 4 dpi were not associated with virus titers in the lungs (Supplementary
191	Figures 3-4) Taken together, these data provide no evidence that male-biased disease outcomes
192	are caused by differential production of cytokines in response to SARS-CoV-2 during acute
193	infection.
194	
195	Female hamsters develop greater antibody responses than males during SARS-CoV-2
196	infection
197	To evaluate whether females developed greater antiviral antibody responses than males,
198	as is observed in response to influenza A viruses (33), we measured virus-specific
199	immunoglobulins as well as neutralizing antibody (nAb) titers in plasma and respiratory samples
200	collected throughout the course of infection. To begin our evaluation, we inactivated SARS-
201	CoV-2 virions to analyze plasma IgG that recognize diverse virus antigens. Anti-SARS-CoV-2
202	IgG titers were detected within a week post-infection, with females developing greater antibody
203	titers than males at 21 and 28 dpi (p <0.05; Figure 5A). Using live SARS-CoV-2, we measured
204	nAb titers in plasma, which were detectable 7-28 dpi, with females having or trending towards
205	significantly greater titers than males at 14-28 dpi (p<0.05; Figure 5B).
206	SARS-CoV-2 infection induces robust antibody responses against the spike or receptor-
207	binding domain of the spike protein (S-RBD) in humans and in animal models (14, 34, 35). S-
208	RBD-specific IgM (Figure 5C), IgA (Figure 5D), and IgG (Figure 5E) antibodies were
209	detected in plasma within a week post-infection. In plasma, anti-S-RBD IgM antibody titers were
210	significantly greater in females than males at 21 dpi (<i>p</i> <0.05; Figure 5C), and anti-S-RBD IgA

211	and IgG antibody titers were significantly greater in females than males at 21 and 28 dpi
212	(p <0.05; Figure 5D-E). Variants of SARS-CoV-2 due to mutations in the RBD of spike protein,
213	including the N501Y variant, were first reported in the United Kingdom and subsequently
214	circulated worldwide (36). The mink variant (Y453F), European variant (N439K), and South
215	African/Brazilian variants (E484K) have raised concerns over increased transmissibility and
216	escape from host immune responses (37, 38). Considering the emergence of novel variants, we
217	tested the hypothesis that females would have greater cross-reactive antibody responses to
218	SARS-CoV-2 variants. Similar to wild type S-RDB (Figure 5E), IgG antibody titers against the
219	S-RBD mutants N501Y, Y453F, N439K, and E484K were significantly greater in female than
220	male hamsters ($p < 0.05$ in each case; Figure 5F). Overall, IgG responses to the E484K, but not
221	the N501Y variant, were significantly lower in both sexes as compared with responses to the
222	wild-type S-RBD (<i>p</i> <0.05 for main effect of variant; Figure 5F).
223	Local antibody responses at the site of infection are critical for SARS-CoV-2 control and
224	recovery (39, 40). Anti-S-RBD-IgM titers were greatest in the lungs at 7 dpi, being significantly
225	greater in female than male hamsters ($p < 0.05$; Figure 6A). A cornerstone of mucosal humoral
226	immunity is IgA and anti-S-RBD IgA titers peaked at 7 dpi, with a trend for higher titers in
227	females than males (<i>p</i> =0.07; Figure 6B). By 28 dpi, females still had detectable anti-S-RBD IgA
228	titers in their lungs, whereas males did not ($p < 0.05$; Figure 6B). Anti-S-RBD IgG titers in the
229	lungs were elevated 7-28 dpi with a higher trend observed at 28dpi in females than males
230	($p=0.09$; Figure 6C). In the trachea, but not in nasal turbinate or lung homogenates, females had
231	significantly greater anti-S-RBD IgG titers than males (<i>p</i> <0.05; Figure 6D). In summary, these
232	data demonstrate that female hamsters develop greater systemic and local antiviral antibody
233	responses compared with male hamsters during SARS-CoV-2 infection.

Dhakal and Ruiz-Bedoya et al. 11

234

235 Discussion

236 Sex differences in COVID-19 outcomes are well documented (9, 13). There is a critical 237 need to develop accurate animal models that reflect the male-bias in disease outcomes to better 238 understand the underlying mechanisms. We show that male hamsters suffer more systemic (body 239 mass loss) and local (pulmonary pathology) symptoms of SARS-CoV-2 infection than females. 240 We tested several potential mechanisms that could mediate male-biased outcomes from 241 infection, including: 1) lack of estrogenic protection, 2) greater virus replication, 3) exacerbated 242 cytokine responses, and 4) reduced humoral immunity. Our data reveal that females produce 243 greater antibody responses, both locally in the respiratory tract as well as systemically in plasma, 244 but if this causes female hamsters to suffer less severe outcomes from SARS-CoV-2 infection 245 remains to be determined.

246 Clinical manifestations of SARS-CoV-2 infection in hamsters are typically mild, with 247 reduced body mass after infection consistently observed (21, 24-26). Previous studies have 248 shown that hamsters lose body mass after infection, reaching peak loss at 5 to 7 dpi, followed by 249 recovery (24-26). Body mass loss in hamsters, regardless of age, has been associated with the 250 dose of virus inoculum, with higher dose resulting in greater body mass loss (26, 41). Body mass 251 loss also is influenced by age; older hamsters (i.e., 7 to 9 months old) had greater mass loss than 252 younger animals (i.e., 4-6 weeks old) (21, 26). Sex is another factor impacting body mass loss, as 253 a reliable clinical sign of disease in hamsters following SARS-CoV-2 infection. As reported in 254 humans, older age and male sex are clinical variables associated with greater clinical 255 manifestations of disease in hamsters.

Dhakal and Ruiz-Bedoya et al. 12

256	A novel determinant of clinical disease that was utilized in the current study was
257	unbiased, quantitative chest CT-imaging analysis. Previous reports describe chest CT findings in
258	female SARS-CoV-2 infected hamsters only and show lung abnormalities, including
259	multilobular ground-glass opacities (GGO) and consolidation (26), as observed in patients with
260	COVID-19 (42). In the current study, CT-imaging revealed that multilobular GGO and
261	consolidations were observed to a greater extent in male than female SARS-CoV-2-infected
262	hamsters at 7 dpi. Whether the sexes differ in the recovery of pulmonary damage following
263	infection requires greater consideration. There are a number of registered clinical trials of
264	therapeutic E2 administration (NCT04359329 and NCT04539626) in COVID-19, which raised
265	the question as to whether disease outcomes in male hamsters could be improved through
266	administration of E2. In this study, pre-treatment of male hamsters with E2 prior to SARS-CoV-
267	2 infection did not reduce either weight loss, observed histological damage to lung tissue or the
268	observed multilobular GGO and consolidations.
269	SARS-CoV-2 replicates in the nasal turbinates, trachea, and lungs of infected golden
270	Syrian hamsters (24, 25). Virus replication peaks in respiratory tissue within 2-4 dpi, with virus
271	clearance typically occurring within one week (21, 24, 25). Viral RNA, however, is present in
272	the lungs of infected hamsters beyond 7 dpi (21, 22, 25). We observed peak infectious virus load
273	in nasal turbinates, trachea, and lungs at 2 dpi, with clearance by 7 dpi. After infectious virus had
274	been cleared, viral RNA still remained detectable in the lungs up to 14 dpi. Previous studies have
275	reported that while aged hamsters experience worse disease outcomes than young hamsters, virus
276	titers in respiratory tissues are similar (21, 26). We further show that although young adult male
277	hamsters experience worse disease outcomes than female hamsters, sex differences in virus titers
278	in respiratory tissues are not observed.

Dhakal and Ruiz-Bedoya et al. 13

279	During SARS-CoV-2 infection of hamsters, cytokine gene expression, including $Tnf\alpha$,
280	If $n\alpha$, and If $n\gamma$ in the nasal turbinates and lungs, is triggered at 2 dpi, peaks at 4 dpi, and returns to
281	baseline by 7 dpi, but comparisons between males and females have not performed (24, 41, 43).
282	Analyses of protein concentrations of cytokines in lung and spleen homogenates revealed no
283	differences between males and females during the first week of infection. Although sex
284	differences were not observed, concentrations of TNF α and IFN β were positively and
285	negatively, respectively, associated with virus replication in lungs, regardless of sex. Our
286	findings suggest that cytokine production, either locally in the lungs or systemically in the spleen
287	does not underlie sex differences in clinical manifestations of disease in hamsters and adds to the
288	growing list of questions about the role of cytokines in the pathogenesis of SARS-CoV-2 in
289	human populations. The possibility of differences in cellular infiltration into pulmonary tissue
290	requires greater consideration, which will be feasible only when better reagents, including
291	antibodies, become available for hamsters.

292 Studies have reported that both IgG and virus neutralizing antibodies are detected in 293 serum from SARS-CoV-2-infected golden Syrian hamsters as early as 7 dpi and persist through 294 43 dpi (24, 35, 44). In the present study, females developed greater IgG responses against both 295 SARS-CoV-2 wild type and variant S-RBD as well as antiviral nAb titers in both plasma and 296 respiratory tissue homogenates than males. We also showed that mucosal IgA titers are greater 297 in the lungs of female than male hamsters and are detectable as early as 7 dpi. Passive transfer of 298 convalescent sera from infected to naïve hamsters as well as reinfection of previously infected 299 hamsters carrying high antibody titers, have both been shown to provide protection by reducing 300 virus titers in the respiratory tissues (24, 26). Likewise, hamster models of SARS-CoV-2 301 immunization have shown an inverse correlation between antibody responses and either virus

302	titers in the respiratory tissues or body mass loss (45). These studies highlight the possible
303	protective role of antibodies during SARS-CoV-2 infection, which may contribute to faster
304	recovery in female than male hamsters.
305	Golden Syrian hamsters have already been successfully used in SARS-CoV-2
306	transmission studies (24, 25, 46), to compare routes of SARS-CoV-2 infection (41, 47), to
307	evaluate convalescent plasma and monoclonal antibody therapy (24, 26, 48-50), and to test
308	therapeutics and vaccines (23, 45). This model provides a unique opportunity to understand the
309	kinetics of SARS-CoV-2 immunopathology not only systemically but also at the site of infection,
310	the respiratory system. Sex as a biological variable should be considered in all studies utilizing
311	golden Syrian hamsters for prophylactic and therapeutic treatments against SARS-CoV-2.
312 313	Materials and Methods
314	Viruses, cells, and viral proteins: Vero-E6-TMPRSS2 cells were cultured in complete cell
315	growth medium (CM) comprising Dulbecco's Modified Eagle Medium (DMEM) supplemented
316	with 10% fetal bovine serum, 1mM glutamine, 1mM sodium pyruvate, and penicillin (100
317	U/mL) and streptomycin (100 μ g/mL) antibiotics (51). The SARS-CoV-2 strain (SARS-C0V-
318	2/USA-WA1/2020) was obtained from Biodefense and Emerging Infections Research Resources
319	Repository (NR#52281, BEI Resources, VA, USA). SARS-CoV-2 stocks were generated by
320	infecting VeroTMPRSS2 cells at a multiplicity of infection (MOI) of 0.01 TCID50s per cell and
321	the infected cell culture supernatant was collected at 72 hours post infection clarified by
322	centrifugation at 400 g for 10 minutes and then stored at -70C (51). SARS-CoV-2 recombinant
323	spike receptor-binding domain (S-RBD) protein used for enzyme-linked immunosorbent assay
324	(ELISA) was expressed and purified using methods described previously (14) or purchased from
325	SinoBiologicals. To obtain whole inactivated SARS-CoV-2, VeroTMPRSS2 cells were infected

326	at a MOI of 0.01 and the infected cell culture supernatant was collected at 72 hours post
327	infection. Virus was inactivated by the addition of 0.05% beta-propiolactone (51) followed by
328	incubation at 4C for 18 hours. The beta-propiolactone was inactivated by incubation at 37C for 2
329	hours and the inactivated virions were pelleted by ultracentrifugation at $25000g$ for 1h at $4^{\circ}C$ and
330	protein concentration was determined by BCA assay (Thermo Fisher Scientific).
331	
332	Animal experiments: Male and female golden Syrian hamsters (7-8 weeks of age) were
333	purchased from Envigo (Haslett, MI). Animals were housed under standard housing conditions
334	(68-76°F, 30-70% relative humidity, 12-12 light-dark cycle) in PNC cages (Allentown, NJ) with
335	paper bedding (Teklad 7099 TEK-Fresh, Envigo, Indianapolis, IN) in an animal biological safety
336	level 3 (ABSL-3) facility at the Johns Hopkins University-Koch Cancer Research Building.
337	Animals were given nesting material (Enviropak, Lab Supply, Fort Worth, TX) and ad libitum
338	RO water and feed (2018 SX Teklad, Envigo, Madison, WI). After 1-2 weeks of acclimation,
339	animals (8-10 weeks of age) were inoculated with 10^5 TCID_{50} (50% tissue culture infectious
340	dose) of SARS-CoV-2 USA-WA1/2020) in 100µL DMEM (50µl/naris) through intranasal route
341	under ketamine (60-80mg/kg) and xylazine (4-5mg/kg) anesthesia administered
342	intraperitoneally. Control animals received equivalent volume of DMEM. Animals were
343	randomly assigned to be euthanized at 2, 4, 7, 14, or 28-days post infection (dpi). Body mass was
344	measured at the day of inoculation (baseline) and endpoint, with daily measurements up to 10 dpi
345	and on 14, 21, and 28 dpi, when applicable per group. Blood samples were collected pre-
346	inoculation (baseline) and at days 7, 14, 21, and 28 dpi, when applicable per group. Survival
347	blood collection was performed on the sublingual vein, whereas terminal bleeding was done by
348	cardiac puncture under isoflurane (500µl drop jar; Fluriso [™] , VetOne [®] , Boise, ID) anesthesia.

Dhakal and Ruiz-Bedoya et al. 16

349	Blood was collected into EDTA (survival and terminal) and/or sodium citrate tubes (terminal).
350	Plasma was separated by blood centrifugation at 3500rpm, 15min at 4 ^o C. After cardiac puncture,
351	animals were humanely euthanized using a euthanasia solution (Euthasol®, Virbac, Fort Worth,
352	TX). Nasal turbinates, trachea, and lung samples for antibody/cytokine assays and virus titration
353	were snap frozen in liquid nitrogen and stored at -80° C.
354	
355	Determination of infectious virus titers and viral genome copies in tissue homogenates: To
356	obtain tissue homogenates, DMEM with 100unit/mL penicillin and 100 μ g/mL streptomycin was
357	added (10% w/v) to tubes containing hamster nasal turbinate, lungs, and tracheal tissue samples.
358	Lysing Matrix D beads were added to each tube and the samples were homogenized in a
359	FastPrep-24 bench top bead beating system (MPBio) for 40sec at 6.0m/s, followed by
360	centrifugation for 5min at 10,000g at room temperature. Samples were returned to ice and the
361	supernatant was distributed equally into 2 tubes. To inactivate SARS-CoV-2, TritonX100 was
362	added to one of the tubes to a final concentration of 0.5% and incubated at room temperature for
363	30 minutes. The homogenates were stored at -70° C.
364	Infectious virus titers in respiratory tissue homogenates were determined by $TCID_{50}$
365	assay (14, 51). Briefly, tissue homogenates were 10-fold serially diluted in infection media (CM
366	with 2.5% instead of 10% FBS), transferred in sextuplicate into the 96-well plates confluent with
367	Vero-E6-TMPRSS2 cells, incubated at 37 [°] C for 4 days, and stained with naphthol blue-black
368	solution for visualization. The infectious virus titers in TCID ₅₀ /mL were determined by Reed and
369	Muench method. For detection of SARS-CoV-2 genome copies, RNA was extracted from lungs
370	using the Qiagen viral RNA extraction kit (Qiagen) and reverse transcriptase PCR (qPCR) was
371	performed as described (52).

Dhakal and Ruiz-Bedoya et al. 17

372

373	Computed tomography (CT) and image analysis: Live animals were imaged inside in-house
374	developed; sealed biocontainment devices compliant with BSL-3, as previously reported (53).
375	Seven days post-infection, SARS-CoV-2-infected males (n=13), females (n=14) and E2 treated
376	(n=13) hamsters underwent chest CT using the nanoScan PET/CT (Mediso USA, MA, USA)
377	small animal imager. CT images were visualized and analyzed using VivoQuant 2020 lung
378	segmentation tool (Invicro, MA, USA) (54). Briefly, an entire lung volume (LV) was created,
379	and volumes of interests (VOIs) were shaped around the pulmonary lesions using global
380	thresholding for Hounsfield Units (HU) ≥ 0 and disease severity (CT score) was quantified as the
381	percentage of diseased lung in each animal. The investigators were blinded to the group
382	assignments.
383	
384	Hormone replacement and quantification: Estradiol (E2) capsules were prepared of Silastic
384 385	<i>Hormone replacement and quantification:</i> Estradiol (E2) capsules were prepared of Silastic Brand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with Factor
384 385 386	 <i>Hormone replacement and quantification:</i> Estradiol (E2) capsules were prepared of Silastic Brand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with Factor II 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules were
384 385 386 387	 Hormone replacement and quantification: Estradiol (E2) capsules were prepared of Silastic Brand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with Factor II 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules were incubated overnight in sterile saline at 37°C prior to implantation. The E2 dosage was chosen
384 385 386 387 388	Hormone replacement and quantification: Estradiol (E2) capsules were prepared of Silastic Brand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with Factor II 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules were incubated overnight in sterile saline at 37°C prior to implantation. The E2 dosage was chosen because this size capsule has previously been shown to produce blood levels within the
384 385 386 387 388 388	Hormone replacement and quantification:Estradiol (E2) capsules were prepared of SilasticBrand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with FactorII 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules wereincubated overnight in sterile saline at 37°C prior to implantation. The E2 dosage was chosenbecause this size capsule has previously been shown to produce blood levels within thephysiological range of E2 measured in intact female hamsters during early proestrus (when E2
384 385 386 387 388 389 390	Hormone replacement and quantification:Estradiol (E2) capsules were prepared of SilasticBrand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with FactorII 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules wereincubated overnight in sterile saline at 37°C prior to implantation. The E2 dosage was chosenbecause this size capsule has previously been shown to produce blood levels within thephysiological range of E2 measured in intact female hamsters during early proestrus (when E2levels are at their peak) (56, 57). Circulating concentrations of E2 were measured by a rodent
384 385 386 387 388 389 390 391	Hormone replacement and quantification:Estradiol (E2) capsules were prepared of SilasticBrand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with FactorII 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules wereincubated overnight in sterile saline at 37°C prior to implantation. The E2 dosage was chosenbecause this size capsule has previously been shown to produce blood levels within thephysiological range of E2 measured in intact female hamsters during early proestrus (when E2levels are at their peak) (56, 57). Circulating concentrations of E2 were measured by a rodentestradiol ELISA kit as per manufacturer's instructions (Calbiotech, CA).
384 385 386 387 388 389 390 391 392	<i>Hormone replacement and quantification:</i> Estradiol (E2) capsules were prepared of Silastic Brand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with Factor II 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β -estradiol (55). Capsules were incubated overnight in sterile saline at 37° C prior to implantation. The E2 dosage was chosen because this size capsule has previously been shown to produce blood levels within the physiological range of E2 measured in intact female hamsters during early proestrus (when E2 levels are at their peak) (56, 57). Circulating concentrations of E2 were measured by a rodent estradiol ELISA kit as per manufacturer's instructions (Calbiotech, CA) .
384 385 386 387 388 389 390 391 392 393	Hormone replacement and quantification: Estradiol (E2) capsules were prepared of Silastic Brand medical grade tubing (0.062 in. i.d. x 0.125 in. o.d.), 10 mm in length, sealed with Factor II 6382 RTV Silicone and Elastomer, and filled 5 mm with 17β-estradiol (55). Capsules were incubated overnight in sterile saline at 37°C prior to implantation. The E2 dosage was chosen because this size capsule has previously been shown to produce blood levels within the physiological range of E2 measured in intact female hamsters during early proestrus (when E2 levels are at their peak) (56, 57). Circulating concentrations of E2 were measured by a rodent estradiol ELISA kit as per manufacturer's instructions (Calbiotech, CA) .

Dhakal and Ruiz-Bedoya et al. 18

395	4HBX, Thermo Fisher Scientific) were coated with either spike receptor binding domain (S-
396	RBD) or whole inactivated SARS-CoV-2 proteins (2 μ g/mL, 50 μ l/well) in 1X PBS and
397	incubated at 4^{0} C overnight. Coated plates were washed thrice with wash buffer (1X PBS + 0.1%
398	Tween-20), blocked with 3% nonfat milk solution in wash buffer and incubated at room
399	temperature for 1 hour. After incubation, blocking buffer was discarded and two-fold serially
400	diluted plasma (starting at 1:100 dilution) or tissue homogenates (starting at 1:10 dilution) were
401	added and plates were incubated at room temperature for 2 hours. After washing plates 3 times,
402	HRP-conjugated secondary IgG (1:10000, Abcam, MA, USA), IgA (1:250, Brookwood
403	Biomedical, AL, USA) or IgM (1:250, Brookwood Biomedical, AL, USA) antibodies were
404	added. After addition of secondary IgG antibody plates were incubated in room temperature for 1
405	hour while for IgA and IgM antibodies, plates were incubated at 4 ^o C overnight. Sample and
406	antibody dilution were done in 1% nonfat milk solution in wash buffer. Following washing,
407	reactions were developed by adding 100 μ l/well of SIGMAFAST OPD (o-phenylenediamine
408	dihydrochloride) (MilliporeSigma) solution for 10 min, stopped using 3M hydrochloric acid
409	(HCL) solution and plates were read at 490nm wavelength using ELISA plate reader (BioTek
410	Instruments). The endpoint antibody titer was determined by using a cut-off value which is three-
411	times the absorbance of first dilution of mock (uninfected) animal samples.

412

Microneutralization assay: Heat inactivated (56^oC, 35min) plasma samples were two-fold
serially diluted in infection media (starting at 1:20 dilution) and incubated with 100 TCID₅₀ of
SARS-CoV-2. After 1-hour incubation at room temperature, plasma-virus mix was transferred
into 96-well plate confluent with Vero-E6-TMPRSS2 cells in sextuplet. After 6 hours, inocula
were removed, fresh infection media was added, and plates were incubated at 37^oC for 2 days.

Dhakal and Ruiz-Bedoya et al. 19

418	Cells were	fixed	with 4%	formaldehyde,	stained	with Na	pthol	blue	black	solution	and
-----	------------	-------	---------	---------------	---------	---------	-------	------	-------	----------	-----

419 neutralizing antibody titer was calculated as described (14).

420

- 421 *Cytokine ELISAs:* Cytokine concentrations in TritonX100 inactivated lung and spleen
- 422 homogenates were determined by individual ELISA kits for hamster IFN- α (mybiosource.com;

423 MBS010919) IFN-β (mybiosource.com; MBS014227), TNF-α (mybiosource.com;

424 MBS046042), IL-1β (mybiosource.com; MBS283040), IFNγ (ARP; EHA0005), IL-10 (ARP;

425 EHA0008), and IL-6 (ARP; EHA0006) as per the manufacturer's instructions. Samples were

426 pre-diluted 1:5 to 1:10 as necessary in the appropriate kit sample dilution buffer. Total protein in

427 the homogenates were measured by BCA assay (Thermo Fisher Scientific).

428

429 *Statistical Analyses:* Statistical analyses were done in GraphPad Prism 9. Changes in body mass

430 were compared using two-way repeated measures ANOVA followed by Bonferroni's multiple

431 comparison test. Chest CT scores were compared by unpaired Mann-Whitney test. E2

432 concentration were compared by two-tailed unpaired t-test. Virus titers and antibody responses

433 were log transformed and compared using two-way ANOVA or mixed-effects analysis followed

- 434 by Bonferroni's multiple comparison test. Cytokine concentrations were normalized to total
- 435 protein content in lung homogenates and compared using two-Way ANOVA. Associations

436 between cytokines and virus titers in lungs were conducted using Spearman correlational

437 analyses. Differences were considered to be significant at p < 0.05.

438

439 *Data availability:* All data will be made publicly available upon publication and upon request for
440 peer review.

Dhakal and Ruiz-Bedoya et al. 20

441 Acknowledgements

442	We are grateful to the Johns Hopkins School of Medicine Vice Dean of Research, Dr.
443	Antony Rosen, for providing research funds to develop this model and conduct this research. We
444	also thank the Johns Hopkins COVID-19 Hamster Study Group members for weekly discussions
445	and participation in these studies, particularly the veterinarians and animal care staff who
446	ensured proper care of all animals in this study. AP would like to dedicate this manuscript to the
447	memory of R. Mark Buller, whose collaborations on the golden Syrian hamster model for SARS-
448	CoV infection formed the basis for this study.
449	
450	Funding. These studies were supported through the generosity of the collective community of
451	donors to the Johns Hopkins University School of Medicine for COVID research with
452	supplemental funds from The Johns Hopkins Center of Excellence in Influenza Research and
453	Surveillance (CEIRS; HHSN272201400007C; AP, SLK), the NIH/NCI COVID-19 Serology
454	Center of Excellence U54CA260492 (SLK), the NIH/ORWH/NIA Specialized Center of
455	Research Excellence in Sex Differences U54AG062333 (SLK), R01AI153349 (SKJ), support
456	from the Center for Infection and Inflammation Imaging Research (Johns Hopkins University),
457	and NIH T32OD011089 (JLM).
458	
459	Conflicts of interest. The authors report none.

460

461 Contributions. P.C.K., J.L.M., A.P., S.K.J., and S.L.K. conceptualized and designed the study.

462 S.D., C.A.R-B., P.S.C., J.S.V., A.A.O., K.F., A.L.M., F.M., M.W., F.R.D., K.A.M-P and S.K.J

463 designed and performed animal experiments. C.A.R-B, K.F, F.M., and M.W performed chest CT

Dhakai and Ruiz-Bedoya et al. 2	Dhakal	and	Ruiz-Bedoya et al.	21
---------------------------------	--------	-----	--------------------	----

464	scans.	A.P., R.Z., P.M., A.J., N.M, and M.J.B. grew virus, did virus quantification, and produced
465	antige	ns required to run ELISAs. S.D., K.L., P.S.C., A.L.M., and A.P. performed antibody
466	assays	s. S.D., P.S.C., J.R.C., M.M.L., D.Q., and P.C.K. performed cytokine assays. S.D. and
467	C.A.R	-B ran statistical analyses on data. The Study Group Members performed animal
468	experi	ments, tissue processing, and data management. S.D. and S.L.K. wrote the manuscript with
469	input	from all authors. All authors read and provided edits to drafts and approved the final
470	submi	ssion.
471 472 473 474	Refer	ences
475 476	1.	Jin J-M, Bai P, He W, Wu F, Liu X-F, Han D-M, Liu S, Yang J-K. 2020. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Frontiers in Public Health 8.
477 478 479 480	2.	Meng Y, Wu P, Lu W, Liu K, Ma K, Huang L, Cai J, Zhang H, Qin Y, Sun H, Ding W, Gui L, Wu P. 2020. Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients. PLoS Pathog 16:o1008520
480 481 482 483 484	3.	Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, Andronico A, Hoze N, Richet J, Dubost CL, Le Strat Y, Lessler J, Levy-Bruhl D, Fontanet A, Opatowski L, Boelle PY, Cauchemez S. 2020. Estimating the burden of SARS-CoV-2 in France. Science 369:208-211.
485 486 487	4.	GlobalHealth5050. November 30, 2020 2020. The Sex, Gender and COVID-19 Project. https://globalhealth5050.org/the-sex-gender-and-covid-19-project/. Accessed December 28.
488 489 490	5.	Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 11:6317.
491 492	6.	Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. 2020. Biological sex impacts COVID-19 outcomes. PLoS pathogens 16:e1008570.
493 494 495	7.	Galasso V, Pons V, Profeta P, Becher M, Brouard S, Foucault M. 2020. Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. Proc Natl Acad Sci U S A 117:27285-27291.
496 497 498 499	8.	Scully EP, Schumock G, Fu M, Massaccesi G, Muschelli J, Betz J, Klein EY, West NE, Garibaldi BT, Bandeen-Roche K, Zeger S, Klein SL, Gupta A, team J-Cr. 2021. Sex and gender differences in COVID testing, hospital admission, presentation, and drivers of severe outcomes in the DC/Maryland region. medRxiv.

500 9. Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. 2020. Considering how 501 biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol 502 doi:10.1038/s41577-020-0348-8. 503 10. Bunders MJ, Altfeld M. 2020. Implications of Sex Differences in Immunity for SARS-CoV-504 2 Pathogenesis and Design of Therapeutic Interventions. Immunity 53:487-495. 505 van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Mantere T, 11. 506 Kersten S, van Deuren RC, Steehouwer M, van Reijmersdal SV, Jaeger M, Hofste T, Astuti 507 G, Corominas Galbany J, van der Schoot V, van der Hoeven H, Hagmolen Of Ten Have W, 508 Klijn E, van den Meer C, Fiddelaers J, de Mast Q, Bleeker-Rovers CP, Joosten LAB, 509 Yntema HG, Gilissen C, Nelen M, van der Meer JWM, Brunner HG, Netea MG, van de 510 Veerdonk FL, Hoischen A. 2020. Presence of Genetic Variants Among Young Men With 511 Severe COVID-19. JAMA doi:10.1001/jama.2020.13719. 512 12. Vahidy FS, Pan AP, Ahnstedt H, Munshi Y, Choi HA, Tiruneh Y, Nasir K, Kash BA, Andrieni 513 JD. McCullough LD. 2021. Sex differences in susceptibility, severity, and outcomes of 514 coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. 515 PLoS One 16:e0245556. 516 13. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, Silva J, Mao T, Oh JE, 517 Tokuyama M, Lu P, Venkataraman A, Park A, Liu F, Meir A, Sun J, Wang EY, Casanovas-518 Massana A, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Yale IRT, Shaw 519 A, Fournier JB, Odio CD, Farhadian S, Dela Cruz C, Grubaugh ND, Schulz WL, Ring AM, Ko 520 AI, Omer SB, Iwasaki A. 2020. Sex differences in immune responses that underlie COVID-521 19 disease outcomes. Nature 588:315-320. 522 14. Klein SL, Pekosz A, Park HS, Ursin RL, Shapiro JR, Benner SE, Littlefield K, Kumar S, Naik 523 HM, Betenbaugh MJ, Shrestha R, Wu AA, Hughes RM, Burgess I, Caturegli P, 524 Laeyendecker O, Quinn TC, Sullivan D, Shoham S, Redd AD, Bloch EM, Casadevall A, 525 Tobian AA. 2020. Sex, age, and hospitalization drive antibody responses in a COVID-19 526 convalescent plasma donor population. J Clin Invest 130:6141-6150. 527 15. Shapiro JR, Klein SL, Morgan R. 2021. COVID-19: use intersectional analyses to close gaps in outcomes and vaccination. Nature 591:202. 528 529 16. Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, White LE, Shamblin JD, 530 Brocato RL, Liu J, Babka AM, Rauch HB, Smith JM, Hollidge BS, Fitzpatrick C, Badger CV, 531 Hooper JW. 2020. Human angiotensin-converting enzyme 2 transgenic mice infected 532 with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 5. 533 17. Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allue-Guardia A, Olmo-Fontanez A, 534 Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, 535 Staples HM, Schami A, Garcia JI, Whigham A, Platt RN, 2nd, Gazi M, Martinez J, Chuba C, 536 Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, 537 Patterson JL, Anderson TJC, Carrion R, Jr., Dick EJ, Jr., Hall-Ursone S, Schlesinger LS, 538 Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. 2020. 539 Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 540 transgenic mice. Nat Commun 11:6122. 541 Dinnon KH, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, West A, 18. 542 Yount BL, Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E, Bryant MD, Choong IC, Glenn

543		JS, Gralinski LE, Sheahan TP, Baric RS. 2020. A mouse-adapted model of SARS-CoV-2 to
544		test COVID-19 countermeasures. Nature 586:560-566.
545	19.	Jiang R-D, Liu M-Q, Chen Y, Shan C, Zhou Y-W, Shen X-R, Li Q, Zhang L, Zhu Y, Si H-R,
546		Wang Q, Min J, Wang X, Zhang W, Li B, Zhang H-J, Baric RS, Zhou P, Yang X-L, Shi Z-L.
547		2020. Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-
548		Converting Enzyme 2. Cell 182:50-58.e8.
549	20.	Leist SR, Dinnon KH, 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ, West A, Edwards CE,
550		Sanders W, Fritch EJ, Gully KL, Scobey T, Brown AJ, Sheahan TP, Moorman NJ, Boucher
551		RC, Gralinski LE, Montgomery SA, Baric RS. 2020. A Mouse-Adapted SARS-CoV-2 Induces
552		Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 183:1070-1085.e12.
553	21.	Osterrieder N, Bertzbach LD, Dietert K, Abdelgawad A, Vladimirova D, Kunec D,
554		Hoffmann D. Beer M. Gruber AD. Trimpert J. 2020. Age-Dependent Progression of SARS-
555		CoV-2 Infection in Svrian Hamsters. Viruses 12.
556	22.	Rosenke K. Meade-White K. Letko M. Clancy C. Hansen F. Liu Y. Okumura A. Tang-Huau
557		T-L. Li R. Saturday G. Feldmann F. Scott D. Wang Z. Munster V. Jarvis MA. Feldmann H.
558		2020. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-
559		CoV-2 infection. Emerging Microbes & Infections 9:2673-2684.
560	23.	de Melo GD. Lazarini F. Larrous F. Feige L. Kergoat L. Marchio A. Pineau P. Lecuit M.
561		Lledo P-M. Changeux J-P. Bourhy H. 2020. Anti-COVID-19 efficacy of ivermectin in the
562		golden hamster, bioRxiv doi:10.1101/2020.11.21.392639:2020.11.21.392639.
563	24.	Chan JF. Zhang AJ. Yuan S. Poon VK. Chan CC. Lee AC. Chan WM. Fan Z. Tsoi HW. Wen L.
564		Liang R. Cao J. Chen Y. Tang K. Luo C. Cai JP. Kok KH. Chu H. Chan KH. Sridhar S. Chen Z.
565		Chen H. To KK. Yuen KY. 2020. Simulation of the Clinical and Pathological Manifestations
566		of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications
567		for Disease Pathogenesis and Transmissibility. Clin Infect Dis 71:2428-2446.
568	25.	Sia SF. Yan LM. Chin AWH. Fung K. Chov KT. Wong AYL. Kaewpreedee P. Perera R. Poon
569		LLM. Nicholls JM. Peiris M. Yen HL. 2020. Pathogenesis and transmission of SARS-CoV-2
570		in golden hamsters. Nature 583:834-838.
571	26.	Imai M. Iwatsuki-Horimoto K. Hatta M. Loeber S. Halfmann PJ. Nakajima N. Watanabe T.
572		Uije M. Takahashi K. Ito M. Yamada S. Fan S. Chiba S. Kuroda M. Guan L. Takada K.
573		Armbrust T. Balogh A. Furusawa Y. Okuda M. Ueki H. Yasuhara A. Sakai-Tagawa Y. Lopes
574		TJS. Kiso M. Yamavoshi S. Kinoshita N. Ohmagari N. Hattori SI. Takeda M. Mitsuva H.
575		Krammer F. Suzuki T. Kawaoka Y. 2020. Svrjan hamsters as a small animal model for
576		SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A
577		117:16587-16595.
578	27.	Moradi B. Ghanaati H. Kazemi MA. Gity M. Hashemi H. Davari-Tanha F. Chavoshi M.
579	_/.	Rouzrokh P. Kolahdouzan K. 2020. Implications of sex difference in CT scan findings and
580		outcome of patients with COVID-19 pneumonia. Radiology: Cardiothoracic Imaging
581		2:e200248.
582	28.	Dangis A. De Brucker N. Heremans A. Gillis M. Frans J. Demevere A. Symons R. 2020.
583		Impact of gender on extent of lung injury in COVID-19. Clinical Radiology 75:554-556.
584	29.	Xiong Y. Zhong O. Palmer T. Benner A. Wang L. Suresh K. Damico R. D'Alessio FR. 2021
585	- 1	Estradiol resolves pneumonia via ER β in regulatory T cells. JCI insight 6.

586	30.	Vermillion MS, Ursin RL, Attreed SE, Klein SL. 2018. Estriol reduces pulmonary immune
587		cell recruitment and inflammation to protect female mice from severe influenza.
588		Endocrinology 159:3306-3320.
589	31.	Robinson DP, Lorenzo ME, Jian W, Klein SL. 2011. Elevated 17β-estradiol protects
590		females from influenza A virus pathogenesis by suppressing inflammatory responses.
591		PLoS Pathog 7:e1002149.
592	32.	Li SA, Xue Y, Xie Q, Li CI, Li JJ. 1994. Serum and tissue levels of estradiol during estrogen-
593		induced renal tumorigenesis in the Syrian hamster. The Journal of steroid biochemistry
594		and molecular biology 48:283-286.
595	33.	Fink AL, Engle K, Ursin RL, Tang W-Y, Klein SL. 2018. Biological sex affects vaccine
596		efficacy and protection against influenza in mice. Proceedings of the National Academy
597		of Sciences 115:12477-12482.
598	34.	Ogega CO, Skinner NE, Blair PW, Park HS, Littlefield K, Ganesan A, Dhakal S, Ladiwala P,
599		Antar AA, Ray SC, Betenbaugh MJ, Pekosz A, Klein SL, Manabe YC, Cox AL, Bailey JR.
600		2021. Durable SARS-CoV-2 B cell immunity after mild or severe disease. J Clin Invest
601		doi:10.1172/JCl145516.
602	35.	Hoagland DA, Moller R, Uhl SA, Oishi K, Frere J, Golynker I, Horiuchi S, Panis M, Blanco-
603		Melo D, Sachs D, Arkun K, Lim JK, tenOever BR. 2021. Leveraging the antiviral type I
604		interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity
605		doi:10.1016/j.immuni.2021.01.017.
606	36.	Leung K, Shum MH, Leung GM, Lam TT, Wu JT. 2021. Early transmissibility assessment of
607		the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November
608		2020. Euro Surveill 26.
609	37.	Hayashi T, Yaegashi N, Konishi I. 2020. Effect of RBD mutation (Y453F) in spike
610		glycoprotein of SARS-CoV-2 on neutralizing antibody affinity. bioRxiv
611		doi:10.1101/2020.11.27.401893:2020.11.27.401893.
612	38.	Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA,
613		Davis C, Piccoli L, Pascall DJ, Dillen J, Lytras S, Czudnochowski N, Shah R, Meury M,
614		Jesudason N, De Marco A, Li K, Bassi J, O'Toole A, Pinto D, Colquhoun RM, Culap K,
615		Jackson B, Zatta F, Rambaut A, Jaconi S, Sreenu VB, Nix J, Zhang I, Jarrett RF, Glass WG,
616		Beltramello M, Nomikou K, Pizzuto M, Tong L, Cameroni E, Croll TI, Johnson N, Di Iulio J,
617		Wickenhagen A, Ceschi A, Harbison AM, Mair D, Ferrari P, Smollett K, Sallusto F,
618		Carmichael S, Garzoni C, Nichols J, Galli M, et al. 2021. Circulating SARS-CoV-2 spike
619		N439K variants maintain fitness while evading antibody-mediated immunity. Cell
620		doi: <u>https://doi.org/10.1016/j.cell.2021.01.037</u> .
621	39.	Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claer L, Quentric P, Fadlallah J,
622		Devilliers H, Ghillani P, Gunn C, Hockett R, Mudumba S, Guihot A, Luyt CE, Mayaux J,
623		Beurton A, Fourati S, Bruel T, Schwartz O, Lacorte JM, Yssel H, Parizot C, Dorgham K,
624		Charneau P, Amoura Z, Gorochov G. 2021. IgA dominates the early neutralizing antibody
625		response to SARS-CoV-2. Sci Transl Med 13.
626	40.	Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. 2020. Mucosal Immunity in COVID-19:
627		A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol 11:611337.
628	41.	Lee AC, Zhang AJ, Chan JF, Li C, Fan Z, Liu F, Chen Y, Liang R, Sridhar S, Cai JP, Poon VK,
629		Chan CC, To KK, Yuan S, Zhou J, Chu H, Yuen KY. 2020. Oral SARS-CoV-2 Inoculation

630		Establishes Subclinical Respiratory Infection with Virus Shedding in Golden Syrian
631		Hamsters. Cell Rep Med 1:100121.
632	42.	Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, Henry TS, Kanne JP,
633		Kligerman S, Ko JP, Litt H. 2020. Radiological Society of North America Expert Consensus
634		Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society
635		of Thoracic Radiology, the American College of Radiology, and RSNA - Secondary
636		Publication. J Thorac Imaging 35:219-227.
637	43.	Zhang AJ, Lee AC, Chu H, Chan JF, Fan Z, Li C, Liu F, Chen Y, Yuan S, Poon VK, Chan CC,
638		Cai JP, Wu KL, Sridhar S, Chan YS, Yuen KY. 2020. SARS-CoV-2 infects and damages the
639		mature and immature olfactory sensory neurons of hamsters. Clin Infect Dis
640		doi:10.1093/cid/ciaa995.
641	44.	Brocato RL, Principe LM, Kim RK, Zeng X, Williams JA, Liu Y, Li R, Smith JM, Golden JW,
642		Gangemi D, Youssef S, Wang Z, Glanville J, Hooper JW. 2020. Disruption of Adaptive
643		Immunity Enhances Disease in SARS-CoV-2-Infected Syrian Hamsters. J Virol 94.
644	45.	Tostanoski LH, Wegmann F, Martinot AJ, Loos C, McMahan K, Mercado NB, Yu J, Chan
645		CN, Bondoc S, Starke CE, Nekorchuk M, Busman-Sahay K, Piedra-Mora C, Wrijil LM,
646		Ducat S, Custers J, Atyeo C, Fischinger S, Burke JS, Feldman J, Hauser BM, Caradonna
647		TM, Bondzie EA, Dagotto G, Gebre MS, Jacob-Dolan C, Lin Z, Mahrokhian SH, Nampanya
648		F, Nityanandam R, Pessaint L, Porto M, Ali V, Benetiene D, Tevi K, Andersen H, Lewis
649		MG, Schmidt AG, Lauffenburger DA, Alter G, Estes JD, Schuitemaker H, Zahn R, Barouch
650		DH. 2020. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters.
651		Nat Med 26:1694-1700.
652	46.	Chan JF, Yuan S, Zhang AJ, Poon VK, Chan CC, Lee AC, Fan Z, Li C, Liang R, Cao J, Tang K,
653		Luo C, Cheng VC, Cai JP, Chu H, Chan KH, To KK, Sridhar S, Yuen KY. 2020. Surgical Mask
654		Partition Reduces the Risk of Noncontact Transmission in a Golden Syrian Hamster
655		Model for Coronavirus Disease 2019 (COVID-19). Clin Infect Dis 71:2139-2149.
656	47.	Port JR, Yinda CK, Owusu IO, Holbrook M, Fischer R, Bushmaker T, Avanzato VA, Schulz
657		JE, van Doremalen N, Clancy CS, Munster VJ. 2020. SARS-CoV-2 disease severity and
658		transmission efficiency is increased for airborne but not fomite exposure in Syrian
659		hamsters. bioRxiv doi:10.1101/2020.12.28.424565.
660	48.	Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K,
661		Musser B, Atwal GS, Oyejide A, Goez-Gazi Y, Dutton J, Clemmons E, Staples HM, Bartley
662		C, Klaffke B, Alfson K, Gazi M, Gonzalez O, Dick E, Jr., Carrion R, Jr., Pessaint L, Porto M,
663		Cook A, Brown R, Ali V, Greenhouse J, Taylor T, Andersen H, Lewis MG, Stahl N, Murphy
664		AJ, Yancopoulos GD, Kyratsous CA. 2020. REGN-COV2 antibodies prevent and treat
665		SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370:1110-1115.
666	49.	Kreye J, Reincke SM, Kornau HC, Sanchez-Sendin E, Corman VM, Liu H, Yuan M, Wu NC,
667		Zhu X, Lee CD, Trimpert J, Holtje M, Dietert K, Stoffler L, von Wardenburg N, van Hoof S,
668		Homeyer MA, Hoffmann J, Abdelgawad A, Gruber AD, Bertzbach LD, Vladimirova D, Li
669		LY, Barthel PC, Skriner K, Hocke AC, Hippenstiel S, Witzenrath M, Suttorp N, Kurth F,
670		Franke C, Endres M, Schmitz D, Jeworowski LM, Richter A, Schmidt ML, Schwarz T,
671		Muller MA, Drosten C, Wendisch D, Sander LE, Osterrieder N, Wilson IA, Pruss H. 2020.
672		A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a
673		COVID-19 Hamster Model. Cell 183:1058-1069 e19.

674	50.	Schafer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S, Schmidt F, Maison
675		RM, Gazumyan A, Martinez DR, Baric RS, Robbiani DF, Hatziioannou T, Ravetch JV,
676		Bieniasz PD, Bowen RA, Nussenzweig MC, Sheahan TP. 2021. Antibody potency, effector
677		function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J
678		Exp Med 218.
679	51.	Schaecher SR, Mackenzie JM, Pekosz A. 2007. The ORF7b protein of severe acute
680		respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and
681		incorporated into SARS-CoV particles. J Virol 81:718-31.
682	52.	Gniazdowski V, Morris CP, Wohl S, Mehoke T, Ramakrishnan S, Thielen P, Powell H,
683		Smith B, Armstrong DT, Herrera M, Reifsnyder C, Sevdali M, Carroll KC, Pekosz A,
684		Mostafa HH. 2020. Repeat COVID-19 Molecular Testing: Correlation of SARS-CoV-2
685		Culture with Molecular Assays and Cycle Thresholds. Clin Infect Dis
686		doi:10.1093/cid/ciaa1616.
687	53.	Ordonez AA, Wintaco LM, Mota F, Restrepo AF, Ruiz-Bedoya CA, Reyes CF, Uribe LG,
688		Abhishek S, D'Alessio FR, Holt DP, Dannals RF, Rowe SP, Castillo VR, Pomper MG,
689		Granados U, Jain S. 2021. Imaging Enterobacterales Infections in Patients using
690		Pathogen-specific Positron Emission Tomography. Science Translational Medicine In
691		press.
692	54.	Hesterman J, Ghayoor A, Novick A, Wang X, Cadornet Y, Becerra L, Gunn R, Avants B.
693		2019. Multi-atlas approaches for image segmentation across modality, species and
694		application area. future 6:7.
695	55.	Potluri T, Fink AL, Sylvia KE, Dhakal S, Vermillion MS, Vom Steeg L, Deshpande S,
696		Narasimhan H, Klein SL. 2019. Age-associated changes in the impact of sex steroids on
697		influenza vaccine responses in males and females. NPJ Vaccines 4:29.
698	56.	Faruzzi AN, Solomon MB, Demas GE, Huhman KL. 2005. Gonadal hormones modulate
699		the display of submissive behavior in socially defeated female Syrian hamsters.
700		Hormones and behavior 47:569-575.
701	57.	Albers HE. Prishkolnik J. 1992. Sex differences in odor-stimulated flank marking in the
702		golden hamster (Mesocricetus auratus). Hormones and behavior 26:229-239.
703		
704		
705	Figur	re legends:
706	Figur	re 1: SARS-CoV-2 infected male hamsters experience greater disease than females. To
707	evalua	ate morbidity, the percent change in body mass from pre-inoculation was measured up to
708	28 dp	i (A). Representative coronal, transverse, and sagittal chest CT from SARS-CoV-2-infected
709	male	and female animals are shown (B). Lung lesions (GGO, consolidation and air
710	hrone	hogram) are marked by the dashed vellow lines. Maximum intensity projections (MIP)
110	orone	nogram, are marked by the dashed yenow miles. Maximum mensity projections (MIP)
711	marki	ng total (red) and diseased lung (yellow) for both males and females are shown (C). The

712	CT score is higher in male versus female hamsters at 7 dpi (D). Weights are represented as
713	mean \pm standard error of the mean from two independent replications (n = 9-10/group), and
714	significant differences between groups are denoted by asterisks (*p<0.05) based on two-way
715	repeated measures ANOVA followed by Bonferroni's multiple comparison (A). Chest CT data is
716	represented as median \pm interquartile range from two independent replication (13-14/group) and
717	significant differences between groups are denoted in asterisk (*p<0.05) based on unpaired two-
718	tailed Mann-Whitney test (D).
719	
720	Figure 2: SARS-CoV-2 infected male hamsters treated with estradiol (E2) developed
721	similar lung pathology as placebo-treated males. Male hamsters were treated with E2 capsules
722	or placebo capsules prior to SARS-CoV-2 infection. Estrogen levels were quantified in plasma at
723	7 dpi (A). Change in body mass for E2- and placebo-treated males were quantified (B). CT score
724	shows no difference between E2-treated males and placebo-treated males (C). Histopathology
725	(H&E) in a representative SARS-CoV-2-infected placebo-treated male and E2-treated male
726	hamster lungs at 4X magnification are shown (D). The dashed yellow lines indicate lung lesions
727	(GGO, consolidations and air bronchogram). E2 concentrations represented as mean \pm standard
728	error of the mean of two independent experiments (n=11-12/group) and significant differences
729	between groups are denoted in asterisk (*p<0.05) based on two-tailed unpaired t-test (A). Weight
730	represented as mean \pm standard error of the mean of two independent experiments (n=13/group)
731	(B). Chest CT data represented as median \pm interquartile range (IQ) from two independent
732	experiments ($n = 13$ /group) (C).
733	

734	Figure 3: Virus titers were comparable in the respiratory system of SARS-CoV-2 infected
735	male and female hamsters. Adult (8-10 weeks) male and female golden Syrian hamsters were
736	infected with 10^5 TCID ₅₀ of SARS-CoV-2. Infectious virus titers in the homogenates of nasal
737	turbinates (A), trachea (B), and lungs (C), were determined by TCID ₅₀ assay on 2, 4, and 7 dpi.
738	Likewise, virus RNA copies in 100ng of total RNA were tested in the lungs of infected hamsters
739	at 2, 4, 7, 14 and 28 dpi (D). Data represent mean \pm standard error of the mean from one or two
740	experiment(s) (n = 3-5/group) and were analyzed by two-way ANOVA (mixed-effects analysis)
741	followed by Bonferroni's multiple comparison test.
742	
743	Figure 4: Cytokine responses in the lungs of SARS-CoV-2 infected male and female
744	hamsters were comparable. Adult (8-10 weeks) male and female golden Syrian hamsters were
745	infected with 10^5 TCID ₅₀ of SARS-CoV-2. Subsets of animals were euthanized at different dpi
746	and IL-1 β (A), TNF- α (B), IL-6 (C), IFN- α (D), IFN- β (E), and IFN- γ (F) cytokine
747	concentrations (pg/mg total protein) were determined in the lungs by ELISA. Mock-infected
748	animal samples from different dpi were presented together as 0 dpi. Data represent
749	mean \pm standard error of the mean from one or two independent experiments (n = 2-6/group/sex)
750	and were analyzed by two-way ANOVA (mixed-effects analysis) followed by Bonferroni's
751	multiple comparison test.
752	
753	Figure 5: Antibody responses in the plasma of SARS-CoV-2 infected female hamsters were
754	greater than males. Plasma samples were collected at different dpi and IgG antibody responses
755	against whole inactivated SARS-CoV-2 virions (A); virus neutralizing antibody responses (B);
756	and S-RBD-specific IgM (C), IgA (D), and IgG (E) antibodies were determined. Likewise, cross-

Dhakal and Ruiz-Bedoya et al. 29

757	reactive IgG antibodies against mutant S-RBDs (viz. N501Y, Y453F, N439K, and E484K) were
758	evaluated in plasma at 28 dpi (F). Considering similar antibody responses at 6 and 7 dpi, values
759	were presented together as 7 dpi. Data represent mean \pm standard error of the mean from two
760	independent experiments ($n = 4-14/group/sex$) and significant differences between groups are
761	denoted by asterisks (*p<0.05) based on two-way ANOVA (mixed-effects analysis) followed by
762	Bonferroni's multiple comparison test.
763	
764	Figure 6: Antibody responses in the respiratory system of SARS-CoV-2 infected female
765	hamsters were greater than males. Lung homogenates were prepared at different dpi and S-
766	RBD-specific IgM (A), IgA (B), and IgG (C) antibodies were determined. Likewise, S-RBD-
767	specific IgG antibodies were tested in the homogenates of nasal turbinates, trachea, and lungs at
768	28 dpi (D). Data represent mean \pm standard error of the mean from one or two independent
769	experiment(s) ($n = 3-10/\text{group}$) and significant differences between groups are denoted by
770	asterisks (*p<0.05) based on two-way ANOVA (mixed-effects analysis) followed by
771	Bonferroni's multiple comparison test.
772	
773	Supplementary Figure 1: Representative transverse chest CT of five females, placebo-treated
774	males, and E2-treated male hamsters at 7 dpi. Multiple bilateral and peripheric ground-glass
775	opacities (GGO) and mixed GGO with consolidations are the hallmarks findings at the peak of
776	lung disease.
777	
778	Supplementary Figure 2: Kinetics of cytokine concentrations (pg/mg total protein)in the lungs

of SARS-CoV-2 infected hamsters. Male and female golden Syrian hamsters were infected with

780	10^5 TCID ₅₀ of SARS-CoV-2. Subsets of animals were euthanized at different dpi and IL-1 β (A),
781	TNF- α (B), IL-6 (C), IFN- α (D), IFN- β (E), and IFN- γ (F) concentrations were determined in the
782	lungs by ELISA. Mock-infected animal samples from 2-, 4-, or 7-days post infection (dpi) were
783	not statistically different and were combined and presented together as 0 dpi. Data represent
784	mean \pm standard error of the mean from one or two independent experiments (n = 6-12/group)
785	with significant differences between groups denoted by asterisks (* p <0.05) based on one-way
786	ANOVA followed by Dunnett's multiple comparisons test.
787	
788	Supplementary Figure 3: Associations between concentrations (pg/mg total protein) of IL-1 β
789	(A), TNF- α (B), IL-6 (C), IFN- α (D), IFN- β (E), and IFN- γ (F) and virus titers in lungs collected
790	2 days post infection (dpi). Data were analyzed with Spearman correlation analyses with
791	significant associations represented with the R statistic and associated p-value.
792	
793	Supplementary Figure 4: Associations between concentrations (pg/mg total protein) of IL-1 β
794	(A), TNF- α (B), IL-6 (C), IFN- α (D), IFN- β (E), and IFN- γ (F) and virus titers in lungs collected
795	4 days post infection (dpi). Data were analyzed with Spearman correlation analyses with
796	significant associations represented with the R statistic and associated p-value.
797	
798	Supplementary Table 1: Concentrations (pg/mg total protein) of cytokines in the lungs and
799	spleen of male and female hamsters at different days post infection (dpi). Mock-infected animal
800	samples from different dpi were pooled and used as 0 dpi. Data are presented as the
801	mean \pm standard error of the mean from one or two independent experiments (n = 6-12/group)

- 802 with no significant differences observed between the groups based on two-way ANOVA (mixed-
- 803 effects analysis) followed by Bonferroni's multiple comparison test.

D

7 days post infection

Sagittal

С

С

D

PlaceboE2

