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Abstract: Tandem mass spectrometry (MS2) data is an effective resource for the identification of 
known molecules and the putative identification of novel, previously uncharacterized molecules 
(unknowns). Yet, MS2 data alone is limited in characterizing structurally closely related molecules 
with different masses. Neutral loss data is key in retrieving this structural similarity. To facilitate 
unknown identification and complement METLIN’s MS2 fragment ion data for characterizing 
structurally related molecules, we have created the METLIN neutral loss database (https://metlin-
nl.scripps.edu). 

 

 

Similarity analysis1-4 and molecular networking5,6 using tandem mass spectrometry (MS2) data have 
become valuable approaches for identifying previously uncharacterized molecules (unknowns).1 Yet 
key structural information can be lost when relying solely on this fragment ion data, for example, 
the loss of a sulfate ion from two similar molecules of different masses will not result in fragment 
ion overlap.7 This is of significant practical relevance. A user who would try to identify an unknown 
based on a database similarity search would not succeed in obtaining structurally useful matches. 
However, retrieving this structurally useful information is possible by analyzing the differences 
between the molecular ion and the fragment ion, or better known as the neutral loss (Dm/z). 
Neutral losses1,2 constitute a rich resource, and have already been widely used in proteomics, 
pharmacology, and metabolomics for over three decades.1,2,8-12 Yet, even though mass 
spectrometry-based neutral loss (NL) analysis has been extensively applied, with hundreds to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2021. ; https://doi.org/10.1101/2021.04.02.438066doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.02.438066
http://creativecommons.org/licenses/by-nc-nd/4.0/


thousands of papers on the topic, no comprehensive small molecule library of neutral loss data 
exists.  

The new METLIN neutral loss database (METLIN-NL) has been created from METLIN’s 850,000 MS2 
small molecule molecular standards database to facilitate neutral loss searching. The neutral loss 
data was derived across a broad range of standards representing hundreds of different chemical 
classes.3,13 METLIN’s MS2 data was converted to METLIN-NL spectra (e.g. Figure 1 asymmetric 
dimethylarginine (ADMA)) by calculating the differences between the precursor molecular ion and 
the fragment ions in the experimental MS2 mass spectra (Figure 1a). The neutral loss spectra 
(NLintensity vs Dm/z) were created (e.g. ADMA Figure 1b) with the neutral loss intensity (NLintensity) 
using the fragment ion intensities from each precursor/fragment generated neutral loss (Dm/z). It 
should be noted that not all precursor to fragment peaks represent a true neutral loss between the 
precursor and fragment ions, and therefore some of the peaks in the NL spectra can also be 
considered (as recently described) hypothetical neutral losses.  

METLIN-NL is a compilation NLintensity vs Dm/z spectra generated from METLIN’s eight distinct MS2 
data sets3 created from 850,000 standards. This compilation is represented within METLIN-NL at 
four different collision energies and in both positive and negative ionization modes. The rationale 
behind providing multiple conditions is that MS2 collision energies have not been standardized and 
such broad acquisition parameters are required to represent the output across different instrument 
types. An additional rationale for the array of conditions is that different molecules can fragment 
differently depending on the collision energies thus METLIN provides a broad range of empirical 
data across its 850,000 standards.  It is worth noting that all of METLIN’s MS2 data is empirical data 
and has not been generated using predictive in silico-based approaches. 

 

 

Figure 1. The METLIN-NL mass 
spectral database was derived 
from the METLIN MS2 data on 
over 850,000 molecular 
standards, and their 
respective fragment ions. (A) 
Asymmetric dimethylarginine 
(ADMA) and its representative 
METLIN tandem mass spectra 
at four different collision 
energies. (B) METLIN-NL 
spectra (NLintensity vs. Dm/z) of 
ADMA was generated by 
calculating the difference 
between the precursor and 
fragment ions with NLintensity 
based on the original 
fragment ion intensities. “P” 
refers to precursor ion and “F” 
refers to fragment ion. 
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A secondary set of METLIN-NL data has also been accumulated based on precursor minus fragment 
ion transitions as well as all possible fragment to fragment ion transitions to provide a more 
comprehensive set of experimentally derived structural data. Unlike the original METLIN MS2 

database, METLIN-NL represents a translation that more effectively enables the molecular 
annotation of unknown molecular entities since NL data is inherently corrected for molecular 
weight differences (Figures 2).  

To test the utility of METLIN-NL we examined two different types of molecular structures, oxylipins 
and a pharmaceutical (statin) drug and its demethylated metabolite. Oxylipins14 represent a class of 
highly active lipid metabolites ubiquitous in humans and plants, and specifically, the phytoprostanes 
(PhytoPs) class of oxylipins resemble prostaglandin-like compounds that are found in seeds and 
vegetable oils derived from oxidative cyclization of α-linolenic acid. Since PhytoPs are a class of 
highly structurally related oxylipins and are suspected to have additional unidentified analogs,14-16 
we chose them to demonstrate the utility of METLIN-NL. Tandem MS and neutral loss data were 
recently generated on a set of PhytoPs, including the structural analogs 16-B1-PhytoP and 16-keto 
16-B1-PhytoP (Figure 2).  When trying to extrapolate/correlate the observed tandem MS spectra of 
the two PhytoPs, classic similarity searching was of very limited value providing only one 
overlapping ion, even though some fragments presented an expected two Dalton difference (Figure 
2a). This exemplifies that two structurally very similar molecules can yield highly different MS2 
spectra limiting similarity searching possibilities and thereby severely impacting the usefulness of 
this approach for the identification of chemically closely related substances. However neutral loss 
similarity analysis yielded multiple overlapping neutral losses (Figure 2b). Further analysis of the 
tandem MS data as well as the molecular weight difference between the two molecules being 2 
Daltons, were consistent with 16-keto 16-B1-PhytoP. This neutral loss data (unlike the MS2 data) 
helped to easily correlate the two molecules, and the distinguishing neutral losses and fragment 
ions exclusive to 16-keto 16-B1-PhytoP and 16-B1-Phyto provides significant structural information. 

The purpose of having a large database is to help reduce the need for speculation, and allow for the 
rapid identification of molecules. However, since many molecular structures are not represented in 
any database, similarity analyses offer an alternative in the preliminary characterization process. 
This process extends beyond naturally occurring molecules and can be applied just as readily to 
xenobiotics and other chemical entities. The second example in applying METLIN-NL is shown here 
for a non endogenous drug molecule and its metabolite. 

The well known cholesterol-lowering statin drug rosuvastatin17 (trade name Crestor) and its active 
metabolite desmethyl rosuvastatin18 differ in mass by 14 Daltons (demethylation reaction) and the 
MS2 and neutral loss data (Figure 2c & 2d) of these two molecules have recently been acquired and 
populated within METLIN and METLIN-NL.  As was observed with the oxylipins, tandem MS data was 
of limited utility when searching METLIN (Figure 2c), where 3 fragment ions were overlapping 
between the two molecules. However neutral loss matching/detection showed near complete 
overlap (Figure 2d). Further analysis of the tandem MS data as well as the molecular weight 
difference between the two molecules being 14 Daltons, were consistent with loss of a methyl 
group. For the rosuvastatin NL data, the overlap in the neutral loss data clearly dominated the 
comparative analyses, making similarity searching much more effective using neutral loss while the 
MS2 data provided complementary information that was informative for structural determination. 
Overall, the neutral loss data which was completely derived from the MS2 data, is more effective 
(than MS2) at showing similarity. 
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Figure 2. MS2 and neutral loss data on two related oxylipins (16 keto 16-B1-PhytoP and 16-B1-PhytoP) and 
the statin drugs rosuvastatin and desmethyl rosuvastatin. (A) Oxylipin MS2 data show little overlap (in red) 
in contrast to the (B) neutral loss spectra with the high resolution neutral loss data facilitating similarity 
analysis with both providing complementary structural information. (C) MS2 and (D) neutral loss data on 
rosuvastatin and desmethyl rosuvastatin. MS2 data show few overlapping peaks (in red) while the neutral 
loss spectra provide near complete overlap. Interestingly, while the neutral losses help facilitate similarity, 
the MS2 data provides more structural information on their structurally distinguishing features.  

 

METLIN’s molecular standards with systematically acquired experimental MS2 data across multiple 
collision energies, allows for the comprehensive generation and graphical user interface (beta) 
visualization (Figure 3) of neutral loss data. Fragment ion and neutral loss similarity analysis1 was 
originally developed to aid in the identification of novel molecules (unknowns)1 by using fragment 
ion and neutral loss data to help align an unknown molecule to compounds with similar 
fragmentation data within a database. However now, with a neutral loss database of small 
molecules via METLIN-NL, neutral loss similarity analysis can be more readily applied to a host of 
biological and chemical challenges. 

Overall, METLIN-NL empirically derived data will enable new types of analyses facilitating more 
rapid identification of unknown compounds via both fragment ion and neutral loss similarity 
searching.2 Both biologists and chemists will be able applying METLIN-NL to the structure 
elucidation of unknowns derived from animals,19 plants,14,20 or microbiota21; and METLIN-NL can 
also be used as a resource for identifying unexpected synthetic chemical or enzymatically modified 
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drug products (e.g. pharmaceuticals22) as it is populated with both biological and chemical entities. 
Given METLIN’s extensive userbase,3 and the ubiquitous application of mass spectrometry-based 
neutral loss analysis (dating back three decades), METLIN-NL promises to have wide-ranging utility. 

 

 

 
Figure 3. METLIN-NL is built on a Linux platform with this beta version of the graphical user interface (GUI) 
created using Highcharts, HTML, JQuery and PHP. The beta GUI allows for comparative analyses between 
different compounds including neutral loss data  (NLint vs Dm/z) as well as MS/MS data (Fragint vs m/z) in both 
positive and negative ionization modes and either at each individual collision energy, or a composite of 
multiple collision energies, as shown here for psychosine and gal dimethyl sphingosine. The Neutral Loss and 
MS/MS spectra are a composite of all the collision energies in positive ionization mode.  
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