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ABSTRACT 
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various 
developmental systems provides the opportunity to infer gene regulatory networks 
(GRNs) directly from data. Herein we describe IQCELL , a platform to infer, simulate, and 
study executable logical GRNs directly from scRNA-seq data. Such executable GRNs 
provide an opportunity to inform fundamental hypotheses in developmental programs and 
help accelerate the design of stem cell-based technologies. We first describe the 
architecture of IQCELL. Next, we apply IQCELL to a scRNA-seq dataset of early mouse 
T-cell development and show that it can infer a priori over 75% of causal gene interactions 
previously reported via decades of research. We will also show that dynamic simulations 
of the derived GRN qualitatively recapitulate the effects of the known gene perturbations 
on the T-cell developmental trajectory. IQCELL is applicable to many developmental 
systems and offers a versatile tool to infer, simulate, and study GRNs in biological 
systems. (https://gitlab.com/stemcellbioengineering/iqcell) 
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INTRODUCTION     
   Stem cell fate decisions are made via dense arrays of interacting transcription factors 
(TFs) forming gene regulatory networks (GRNs) (Semrau & van Oudenaarden, 2015). 
Information gleaned from GRNs in stem cell differentiation can lead to more effective 
design-based cell cultures, applicable to cell therapies (Lipsitz et al., 2016; Prochazka et 
al., 2017). As a prominent example, the effect of transcription factors on GRNs has been 
widely utilized in the reprogramming of embryonic and adult somatic cell GRNs for the 
establishment of a pluripotent state via induction of driver TFs (Takahashi & Yamanaka, 
2006). Stem cell reprogramming and differentiation can be modeled as executable and 
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logical (Boolean) GRNs undergoing state transition (Sara-Jane Dunn et al., 2019; Peter 
et al., 2012; Yachie-Kinoshita et al., 2018). Executable GRNs provide information about 
both the topology and the regulatory rules of gene interactions that can be simulated as 
time-evolving (dynamical) systems. However, deriving informative, executable, and 
predictive GRNs for stem cell differentiation has proven to be a challenging task. 
Specifically, developing executable GRNs by piecing together evidence from gene 
perturbation experiments has shown to be an effective strategy (Peter et al., 2012) but is 
extremely time-consuming, labor intensive, and expensive. In a notable advancement, 
automated formal reasoning successfully identified a set of minimal GRNs underlying 
naive pluripotency in mice. Gene expression observations across multiple culture 
conditions were used to logically constrain possible GRN configurations, and the resulting 
set was able to accurately predict the outcome of 70% of new experiments(S.- J. Dunn et 
al., 2014; Yordanov et al., 2016). Yet, these methods are not based on high-throughput 
data. 
    More recently, the emergence of single-cell profiling technologies has provided an 
unprecedented archive of information regarding cells undergoing fate determination and 
maturation. . Deriving more accurate GRNs based on sc data is at the center of many 
recent efforts (Babtie et al., 2017; Fiers et al., 2018; Pratapa et al., 2020). Formal 
reasoning has been used to infer executable GRNs directly from high throughput single-
cell quantitative PCR (sc qPCR) data (Hamey et al., 2017; Moignard et al., 2015). 
However, using single-cell RNA-sequencing (scRNA-seq) data has many advantages in 
terms of coverage, availability, flexibility in gene selection, and accuracy in clustering and 
pseudo-time inference compared to sc qPCR. These benefits exist alongside the 
disadvantage of dropout effects and low sensitivity in profiling TFs. Despite the availability 
of this data resource, this emerging field is still missing an integrated platform to infer, 
study, and simulate executable GRNs directly from scRNA-seq. 
    Herein we report an effective strategy implemented in a Python software package 
(IQCELL) for reconstructing GRNs directly from scRNA-seq data, called IQCELL. Our 
method includes steps for correcting dropout effects, selecting desired genes, building 
logical GRNs directly from pseudo-time with respect to interaction hierarchy and mutual 
information between gene pairs, and simulating developmental trajectories under normal 
and perturbed conditions. We demonstrate the utility of IQCELL by reconstructing a GRN 
for early mouse T-cell development, a well-characterized mammalian developmental 
system (Longabaugh et al., 2017), using published scRNA-seq data (Zhou et al., 2019). 
Our resulting GRN recovers over 75% of experimentally validated causal gene-gene 
interactions spanning years of research. Dynamic simulations of the inferred GRN 
resemble experimentally observed gene expression dynamics and capture the effects of  
knocking out or forcibly expressing various genes during early T-cell development. Our 
method is generally applicable to scRNA-seq data of differentiating cells and should serve 
as a useful resource for the community. 
 
RESULTS 
Integrative Method for Predicting the Qualitative Effect of Gene Perturbations on 
Developmental Trajectories of Cells (IQCELL) 
    IQCELL infers logical regulatory networks directly from existing information in the 
scRNA-seq data of cells during development and uses these regulatory networks to 
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simulate and predict the behavior of developing cells under perturbed conditions (Figure 
1). IQCELL works with quality controlled and pre-processed scRNA-seq gene expression 
data (Butler et al., 2018; Wolf et al., 2018). The second input of the IQCELL platform is 
the inferred pseudo-time ordering of cells based on scRNA-seq data (Figure 1). The 
temporal dynamics of genes helps with the inference of causal gene interactions. Pseudo-
time ordering of cells using scRNA-seq data has been shown to be informative for 
capturing temporal and developmental dynamics (Haghverdi et al., 2016; Qiu et al., 
2017).  
    Since gene dropout is common among many scRNA-seq datasets, particularly for 
transcription factors with low mRNAs copy numbers, IQCELL employs a recently 
developed graph-based algorithm (MAGIC) to recover gene expression (van Dijk et al., 
2018) (Figure S1A). After selecting genes of interest based on literature curation (see 
Figure S1B for more details), we generate a set of possible interactions between genes. 
Information-based metrics such as mutual information are well-suited for quantifying 
relationships between genes (Song et al., 2012). IQCELL scores gene-gene interactions 
according to the mutual information between gene pairs (Krishnaswamy et al., 2014) and 
assigns a regulatory sign (activation or repression) to each interaction based on the 
significance and sign of their correlation (Figure S1C). These steps result in a dense 
weighted network of gene-gene interactions that needs to be filtered into a functional 
GRN. In a functional GRN, interactions are not necessarily biophysically direct but capture 
the consequence of regulatory relations. 
    To reduce the number of possible gene interactions, IQCELL forms a gene interaction 
hierarchy in which higher ranked genes influence lower ranked ones. To form this 
hierarchy, IQCELL binarizes the gene expression counts by clustering them into 
expressed and non-expressed states (Macqueen, 1967). The binarization process 
divides the pseudo-time axis into regions with compact and sparse expression densities 
for the genes, reflecting the pseudo-time domains where a gene is expressed at a higher 
or lower level (Figure S1D).  Next, the platform identifies the transition points between 
expression regions for all genes and uses the order of transitions to form a gene 
interaction hierarchy, with highly ranked genes (with earlier transition points) having 
greater potential to influence those downstream. This acts as an additional filter on gene-
gene interactions along with the mutual information (Figure S1E). The resulting 
directional network serves as the foundation for inferring executable GRNs. 
    To obtain an executable GRN model, IQCELL models interactions between genes as 
Boolean logic functions (Yachie-Kinoshita et al., 2018). IQCELL uses a satisfiability 
modulo theory engine (Z3) (Figure S1F), (de Moura & Bjørner, 2008) to identify logic 
functions that are compatible with the pseudo-time dynamics of binarized gene 
expression states.(Hamey et al., 2017). Finally, it selects the GRN with the highest 
average mutual information as the most probable constrained model. The result is a 
functional and executable GRN that optimally fits the input scRNA-seq data. IQCELL has 
built-in capabilities to simulate GRN dynamics via random asynchronous Boolean 
simulation (Yachie-Kinoshita et al., 2018) and compare the results with experimental data 
under normal and perturbed conditions. In summary, IQCELL processes  scRNA-seq data 
inputs to infer an executable logical GRN that best fits the data. 
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IQCELL sorts genes based on transition points and places them in a biologically 
relevant order 
    To assess the functional capabilities of IQCELL, we evaluated its performance using a 
well characterized mammalian developmental system, mouse early T-cell development 
(Hosokawa & Rothenberg, 2020; Yui & Rothenberg, 2014). The T-cell developmental 
program takes place in the thymus. It drives pre-thymic progenitors differentiated within 
the bone marrow toward T lineage commitment , and involves dense network of genes 
(Kueh & Rothenberg, 2012). Sustained exposure to Notch signaling drives early thymic 
progenitors (ETP) to the CD4/8 double-negative 2A (DN2A) and DN2B stages, where 
upregulation of T-cell lineage-specific genes and progressive loss of potential for other 
blood cell fates occurs. Once committed to the T-cell fate, the double-negative 3 (DN3) 
T-cell progenitors begin recombining the β-chain of the pre-T-cell receptor (TCR). Cells 
are selected for functional β-chain rearrangements through pre-TCR signaling and 
proceed toward CD4/8 double-positive state (DP) (Figure 2A). We used a publicly 
available scRNA-seq dataset (Zhou et al., 2019), where the authors used fluorescence-
activated cell sorting to capture mouse thymocytes at ETP-DN2 and DN3 stages based 
on cell surface markers. After processing the data in a manner consistent with the original 
publication (Figure S4 and Table S2), the gene expression profiles and the pseudo-time 
orders were used as inputs to IQCELL. 
    After expression recovery, selecting genes of interest based on expression variation 
and biological relevance (Table S1 and Figure 2B), and finding possible gene-gene 
interactions, IQCELL binarized gene expression values and calculated the expression 
density over pseudo-time (Figure 2C) (see STAR Methods). Sorting the genes based on 
their transition points placed Notch1 and Hes1 at the top of the gene interaction hierarchy 
(since their expression level stayed relatively high consistently) followed by Lmo2, Tcf7, 
Myb, and Runx1 which agrees with their position in the regulatory hierarchy during T-cell 
lineage establishment  (Yui & Rothenberg, 2014); whereas DN3 associated genes such 
as Cd3e, Lef1, and Ptcra (Masuda et al., 2007; Yui et al., 2010) appeared at the bottom 
of the hierarchy (Figure 2C). 
    Next, IQCELL used this order of genes (Figure 2C) as a hierarchical filter of possible 
interactions, with the genes at the top having the most regulatory potential in terms of 
number of genes they can regulate. The combination of the regulatory potential of 
individual genes, the mutual information between gene pairs, and interaction signs, led to 
a directed gene interaction network comprising the set of possible interactions (Figure 
2D). This network then constitutes a foundation for further constraints and analyses at 
next steps. 
 
IQCELL is highly predictive for functionally regulatory interactions  
    Following our in silico analysis, we compared predictions from our initial inferred 
interaction network to validated regulatory interactions in mouse T-cell development. The 
initial interaction network (Figure 2D) was simplified with additional constraints. These 
constraints enforce the gene interactions to follow the expression patterns throughout the 
pseudo-time axis (Figure 2B) when executed as a logical network. This resulted in a set 
of possible update logical rules for each gene, selecting the most probable interactions 
as scored by mutual information leading to a provisional executable GRN for early T-cell 
development (Figure 3A and Table S1). 
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    To benchmark this GRN, we compared our predicted directional interactions with a 
recent comprehensive GRN model of mouse T cell development based on experimentally 
validated gene interactions (Longabaugh et al., 2017). This network consists of 38 
reported interactions between the genes of interest, of which 29 (over 75%) are de novo 
captured directly by our simulated functional regulatory network (Figure 3B and Figure 
3C). For example, it is well known that Bcl11b, the gene that marks T lineage commitment, 
is activated by Notch signaling, Gata3, Tcf7, and Runx1 (Kueh et al., 2016). Our model 
predicted four activators for Bcl11b, Notch1 (as a Notch signaling mediator (Radtke et al., 
1999) and target gene (Weerkamp et al., 2006) functionally represents the presence of 
Notch signaling), Gata3, Tcf7, and Runx1. The presence of Runx1 in our model is a 
notable result. Runx1 is present in developing cells, however it only gains access to the 
Bcl11b locus after chromatin restructuring during the DN2a stage (Ng et al., 2018). 
Notably, more than half of the interactions that were not captured by our model are related 
to the Spi1 gene which is a T-cell lineage suppressor (Yui & Rothenberg, 2014).  
    To test the IQCELL performance with another source of data of T-cell development 
under  different condition, we performed scRNA-seq analysis of in-vitro differentiation of 
fetal liver hematopoietic progenitor cells toward the T-cell lineage. Application of IQCELL 
to this second scRNA-seq data set provided further validation of its ability to predict gene-
gene interactions (Figure S3). 
    One advantage of logical GRN models is that they can not only provide information 
about gene interactions, but can also be simulated to predict how the system evolves in 
time. To demonstrate this capability, we simulated our inferred logical GRN model and 
compared its output to experimental observations of mouse T cell development. The 
scRNA-seq expression data (Zhou et al., 2019) was binarized by grouping the gene 
expression count into on and off states. This data was then used in principle component 
analysis (Figure 3D) and the simulated trajectories overlaid on top of the binarized 
scRNA-seq gene expression data (Figure 3F). As the initial states of the simulations 
(representing the starting expression state of simulations), we used the binarized 
representation of cells at the beginning of the pseudo-time trajectory. These cells 
resemble the known expression state of ETP cells (Yui & Rothenberg, 2014). However, 
given the noisy expression of Notch1 and Hes1 at the earlier pseudo-time points (Figure 
2C), we considered the expression states of these two genes to be random which results 
in four distinct initial states in total (Figure 3E). Two steady states have been obtained 
for the given initial cell states (Figure 3F), with one of them matching the DN3a cell profile 
(noted by star * in Fig 3). The simulated gene expression dynamics from ETP state 
towards this steady state shows a similar trajectory compared to the one observed from 
scRNA-seq data (Figure 3G, compare with Figure 2C). The other steady state shares 
similarities with common lymphoid progenitors (CLP) and ETP cells (Figure 3H and I). 
Overall, this analysis demonstrates that our GRN model is informative about both gene 
interactions and the behavior of genes at the system level. Such a model has the potential 
to predict the effect on gene perturbations at the system level as well. 
 
IQCELL predicts the effect of gene perturbations on developmental trajectories 
    Next, we tested the effect of gene perturbations on simulated developmental 
trajectories (Figure 4A). In particular, we tested the effect of gene perturbations known 
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to result in halting or promoting T-cell development during the ETP-DN3 stages (reviewed 
in (Yui & Rothenberg, 2014)). 
    Notch1, a cell surface receptor that mediates Notch signaling, is known to play an 
essential role in early T-cell development. Notch1 deficiency leads to blocked T-cell 
development and accumulation of other hematopoietic lineages (Radtke et al., 1999). 
Using our inferred executable network, we simulated the developmental trajectory of ETP 
cells in the absence of Notch1. Simulations predicted the presence of two possible steady 
state attractors, localized near the earlier section of the pseudo-time domain (Figure 4B). 
Comparing the expression states of the simulation attractors (Figure 4C) with the 
binarized expression of known cell states extracted from microarray data (Jojic et al., 
2013), we found that the attractor states are more similar to ETP or CLP, and none show 
significant similarities to later stages of T-cell development (Figure 4D). This agrees with 
previous reports (Radtke et al., 1999) that lack of Notch1 blocks T-cell development.  
    Tcf7 is a crucial transcription factor for T-cell specification and differentiation that is 
upregulated by Notch signaling. Lack of Tcf7 results in premature arrest of T-cell 
development before the DN2 stage (Weber et al., 2011). Our model predicts a single 
attractor state in the absence of Tcf7 (Figure 4B). This attractor precedes the DN2 stage 
and does not express Gata3, Bcl11b, Ets1, Cd3e, or Cd3g (Figure 4C), in agreement 
with experimentally reported analysis of Tcf7-/- lymphoid-primed multipotent progenitors 
cultured in vitro (on OP9-DL4) at day 4 (Weber et al., 2011). The simulated Tcf7 knockout 
steady state attractor also show more similarity to microarray profiles for ETP cells than 
either DN2 and DN3 cells (Figure 4D), which is in agreement with previous reports 
(Weber et al., 2011). 
    Next, we investigated the effect of simulated knock-out of Bcl11b, a crucial gene for T-
cell commitment (Hosokawa et al., 2018). It has been shown experimentally that Bcl11b 
deficient cells cannot proceed beyond the DN2 stage (L. Li et al., 2010). Our in silico 
results predict one attractor in the absence of Bcl11b (Figure 4B). This attractor 
resembles the DN2A cell state (Figure 4D) which recapitulates the aforementioned 
experimental result of Bcl11b knockout (L. Li et al., 2010). 
    We also simulated the effects of perturbing Runx1, Tcf12 and Myb. Knock-out of Runx1 
stops T-cell development before the DN3 stage (Egawa et al., 2007); knock-out of Tcf12 
results in developmental blockage before DP stage (Wojciechowski et al., 2007), whereas 
Tcf12 overexpression enhances T-cell development(Braunstein & Anderson, 2012); 
knock-out of Myb causes multiple blocks during T-cell development (Bender et al., 2004). 
We have simulated these gene perturbations, and found qualitative agreement with the 
experimentally reported results (Figure 4B, Figure 4C and Figure 4D). 
    Next, we tested our model for a simultaneous perturbation of two genes. Interestingly, 
while the absence of Notch signaling results in loss of T-cell development, forced 
expression of Tcf7 is able to partially rescue T-cell development in the absence of Notch 
(Weber et al., 2011). To test our model against this observation, we simulated shutting 
off the expression of Notch1 (the mediator of Notch signaling) and forcing expression of 
Tcf7 to the ‘on’ state simultaneously. This resulted in two attractors (Figure 4B), one of 
them localized at earlier stages, and one of them close to the DN2 stage, which reflects 
the limited but not complete development of T-cells when compared with the knock-out 
of Notch1 (Figure 4C and Figure 4D). 
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    In addition to these perturbations, we have performed full systematic GRN 
perturbations for one and two gene perturbations (Figure S2A and Table S3 and Table 
S4) and sensitivity analysis of gene interactions (Figure S2B, Table S3, and Table S4). 
Taken together, we showed that our model can predict the effect of single and double 
gene perturbations on the developmental trajectory of early T-cell development.  
 
DISCUSSION 
    There is increasing availability of scRNA-seq datasets for different developmental 
systems. To date, the inference, analysis, and simulation of logical GRNs directly from 
scRNA-seq data have not been integrated together. Here we present IQCELL, an 
integrated strategy implemented as a Python package to infer, analyze, and simulate 
GRNs directly from scRNA-seq data and pseudo-time order of the cells. 
    IQCELL is able to capture, directly from scRNA-seq data, over 75% of the reported 
gene interactions in early T-cell development (Longabaugh et al., 2017). These 
interactions were obtained and characterized by decades of research and experiments 
(Yui & Rothenberg, 2014). For example, regulators of Bcl11b, an essential gene for T 
lineage commitment, were successfully identified by IQCELL. More than half of the 
interactions that have not been captured were Spi1 effector genes, which is a Notch 
signaling antagonist (Rothenberg et al., 2019). However, Notch signaling contains Spi1 
inhibitory effect on T-cell regulators (Rothenberg et al., 2019) and potentially masks some 
of Spi1 negative regulatory roles in early T-cell development. 
    We also tested the dynamics of the obtained GRN. We showed that when this logical 
GRN is simulated from ETP cell state, its dynamics evolves to the cell state associated 
with the DN3 stage, in agreement with experimental observations. Importantly, we 
showed that our platform can produce GRN models with high predictive power for the 
effect of genetic perturbations. For example, simulated knock-out of Bcl11b caused the 
developmental trajectory to halt at the DN2 stage, in agreement with experimental 
studies. We identified eight gene perturbations that halt T-cell development at different 
points between the ETP and DN3 stages, and IQCELL showed satisfactory agreement 
for all perturbations with experimental studies (Figure 4C). 
    These results show that the multi-step strategy implemented in IQCELL is effective for 
reconstructing functional GRNs from existing information in scRNA-seq data. Because its 
methodology is not specific to a single developmental system, IQCELL may be broadly 
useful in understanding how GRNs contribute to cell development in a variety of 
developmental contexts. IQCELL results may help uncover functional relations between 
genes and thereby help design more effective gene manipulation strategies to drive stem 
cell cultures toward fates of interest. Synthetic gene interactions can be added to the 
GRNs outputted by IQCELL to predict the effect of novel synthetic gene circuits on native 
cell GRNs. A major goal in systems biology is the creation of multi-scale models that 
connect the decisions of individual cells within a multicellular system to emergent 
properties of the whole tissue (Qu et al., 2011; Swat et al., 2012). IQCELL can fill an 
important layer in such multi-scale models. By exposing the intracellular decision-making 
machinery of single cells, IQCELL could interface with other methods that connects these 
cellular decisions to tissue-level dynamics. 
    To date, there have been many methods introduced for reconstructing GRNs from 
single-cell data (Pratapa et al., 2020) and many of them focus on finding some type of 
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correlation between genes. In one case, binarized sc qPCR data was used to decode 
logical GRNs for embryonic blood development (Moignard et al., 2015). In another recent 
study, sc qPCR data and its pseudo-time order was used to decode GRNs of blood stem 
cells (Hamey et al., 2017). However, to the best of our knowledge, prior to IQCELL there 
has not been any existing method or platform to infer executable and logical GRNs from 
scRNA-seq data, nor have previous methods dealt with the associated challenges of 
lower sensitivity and dropout effects. 
   Although the IQCELL framework allowed us to effectively model regulatory modules as 
logical (Boolean) gates where no extra parameters are required, logical models are 
limited in some respects. Firstly, logical modeling cannot effectively capture dose-
dependency in gene interactions; for example, it is known that the downstream responses 
to Gata3 are dose-dependent (Rothenberg, 2019). We suggest in future that this aspect 
be captured by multilevel models (Collombet et al., 2017). Multilevel modeling requires 
more sensitive measurements of TF expression levels, which may become feasible with 
emerging TF profiling methods (Moffitt et al., 2016). Secondly, capturing biophysical 
timescales in the logical framework is not trivial; one solution would be assigning a 
weighted time scale (Sun et al., 2017) to each simulation update step of the logical model. 
This can potentially help to include some time-scale sensitive events in cell GRN 
dynamics, such as stochastic chromatin restructuring events (Ng et al., 2018). 

Since IQCELL provides users with a flexible framework, future studies could integrate 
other sources of information such as binding of TFs to DNA via ChIP-seq (Johnson et al., 
2007) and CRISPR screening on the effect of gene perturbations on developmental 
trajectories (Gilbert et al., 2014) to potentially improve GRN reconstruction. In a recent 
study, the combination of scATAC-seq and scRNA-seq with machine learning methods 
have been used to infer a set of informative transcription factors during differentiation 
(Kamimoto et al., 2020). In addition, new opportunities are arising to investigate the 
decision-making machinery of the cells in their native environment (via in-situ cell 
profiling) (Lee et al., 2015). The combination of these methods, prior knowledge of cell-
cell interactions (Browaeys et al., 2019; Kirouac et al., 2009), and emerging theoretical 
knowledge and computational technologies for capturing and quantifying spatio-temporal 
information content of cell signaling (Cepeda-Humerez et al., 2019; Dubuis et al., 2013; 
Maity & Wollman, 2020; Ostblom et al., 2019) can be used as invaluable resources for 
the next generation of GRN inference methods. These next-generation methods would 
ideally integrate cell signaling (P. Li & Elowitz, 2019) with GRNs directly from multi-omics 
sc data. In conclusion, the results presented here suggest that IQCELL will be a broadly 
useful tool to study cellular decision making in a variety of developmental systems.  
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MAIN FIGURES 
 

 
 
Figure 1. Overview of IQCELL. 
IQCELL infers logical GRNs directly from sc-RNA seq data and allows the simulation and 
analysis of insilico developmental trajectories in normal and perturbed conditions. The 
typical inputs of IQCELL are sc-RNA seq expression data along with the pseudo-time 
ordering of the cells. After correction of dropout effects and gene selection steps, gene-
gene interactions are calculated and weighted based on mutual information. Binarized 
gene expression values are used to constrain possible gene-gene interactions and  obtain 
a functional GRN for the data. IQCELL can be used to analyze the GRN and simulate 
possible developmental trajectories under normal and perturbed conditions. 
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Figure 2. IQCELL initial processing of early T-cell development scRNA-seq data.  
(A) Summary of the scope of the scRNA-seq data used as an input to IQCELL (Zhou et 
al., 2019). ETPs originated from pre-thymic progenitors progress toward DN2A, DN2B 
(coincides with upregulation of Bcl11b and lineage commitment), DN3 stages and 
eventually lead to DP cells (not covered here). 
(B) Log transformed expression matrix for selected genes from scRNA-seq data along 
the pseudo-time axis. Gene expression is corrected for dropout effects using MAGIC (van 
Dijk et al., 2018)..  Red indicates high expression, blue indicates low expression. 
(C) Smoothed binarized gene expression matrix (expression density). Gene expression 
values were binarized by clustering, averaged over a pseudo-time window, then sorted 
based on transition points from early to late. Red indicates high expression, blue indicates 
low expression. 
(D) The set of all possible gene-gene interactions, filtered by interaction hierarchy and 
mutual information ( and signed by correlation. Positive and negative interactions are 
represented by blue and red edges, respectively. Edge width represents the relative 
amount of mutual information of the interaction. Nodes colored red have higher out-
degrees.  
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Figure 3. The provisional GRN for mouse early T-cell development inferred by 
IQCELL captures essential gene interactions and accurately simulates T-cell 
developmental trajectories. 
(A) The provisional GRN for early mouse T-cell development. The GRN is obtained by 
constraining the possible interactions to both follow the in vitro data progression when 
executed as a logical network and maximize mutual information between gene pairs. 
Positive and negative interactions are represented by blue and red edges, respectively. 
Nodes colored red have higher out-degrees.  
(B) Out of 38 experimentally reported gene interactions of early mouse T-cell 
development (Longabaugh et al., 2017), 29 of them are captured by the functional GRN 
model proposed by IQCELL. 
(C) Detailed representation of the proposed interactions by IQCELL and  experimentally 
reported ones. Rows and columns represent regulators and effector genes, respectively. 
Blue indicates that the interaction is captured by the model directly (dark blue) or indirectly 
(light blue); in the latter case, the numbers indicate the number of intermediate genes. 
Dark gray indicates that the interaction is only proposed by IQCELL. The red color 
indicates the experimentally validated interaction is not present in the model. Light gray 
cells indicate no interaction. Genes downstream of Spi1 comprise 50% of the 
experimentally-reported interactions not captured by IQCELL.  
(D) The PCA plot of the binarized scRNA-seq data color-coded with the pseudo-time 
values attributed to each cell. The binarization is performed by clustering the scRNA-seq 
expressions into expressed or not expressed levels. On top of that, the binarized 
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expressions of CLP, ETP, DN2A, DN2B, and DN3A cells have been calculated from the 
immgen microarray data (Jojic et al., 2013) and overlaid on RNA-seq data. 
(E) The four initial states that have been used in simulations. Three variations of the state 
representing ETP are due to the noisy expressions of Notch1 and Hes1 genes in 
recovered sc-RNA seq data with early pseudo-time. Genes that are expressed (1) and 
not expressed (0) are represented with blue and grey circles, respectively. 
(F) The PCA plot of the simulated developmental trajectories are overlaid on the binarized 
scRNA-seq. The two detected attractors are colored red, and the attractor that matches 
the DN3A state is marked by star (*). 
(G) Average gene expression at each simulation step. All simulations started from the 
same initial condition (ETP) and move toward the same attractor (*). 
(H) Expression states of the GRN model steady state attractors. Genes that are 
expressed (1) and not expressed (0) are represented with blue and grey squares, 
respectively. 
(I) Percentage of similarity between the two attractors (vertical axis) and binarized 
microarray expression profiles of CLP, ETP, DN2A, DN2B, and DN3A cells (horizontal 
axis) (Jojic et al., 2013). The average agreement between two random states is 50%.  
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Figure 4. Testing the known effect of eight gene perturbations on in-silico 
developmental trajectories. 
(A) Schematic of performed gene perturbations. In overexpression (OE), the gene is 
always expressed (represented with 1) and in knockout(KO), the gene is always silent 
(represented with 0). 
(B) PCA plot of the simulated developmental trajectories under perturbed conditions are 
overlaid on the binarized scRNA-seq. The perturbations include knock-out of Notch1, 
knock-out of Tcf7, knock-out of Bcl11b, knock-out of Runx1, knock-out of Tcf12, knock-
out of Myb, overexpression of Tcf12 and the double perturbation, overexpression of Tcf7 
and knock-out of Notch1 at the same time. 
(C) Expression states of the model attractors under perturbations. Genes that are 
expressed (1) and not expressed (0) are represented with blue and grey squares, 
respectively. 
(D) Percentage of similarity between the model attractors under perturbations (vertical 
axis) and the binarized expressions of CLP, ETP, DN2A, DN2B, and DN3A cells 
(horizontal axis) (Jojic et al., 2013) (left). Description of known effect of the gene 
perturbation on T-cell development (right). 
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METHODS 
RESOURCES 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Software and Algorithms 
IQCELL This paper https://gitlab.com/stemcellbioe

ngineering/iqcell 
MAGIC (van Dijk et al., 2018) https://github.com/Krishnaswa

myLab/MAGIC 
DREMI (Krishnaswamy et al., 2014) https://dpeerlab.github.io/dpee

rlab-website/dremi.html 
Z3 (de Moura & Bjørner, 2008) https://github.com/Z3Prover/z

3 
Garuda-Boolean (Yachie-Kinoshita et al., 2018) https://gitlab.com/stemcellbioe

ngineering/garuda-boolean 
Scanpy (Wolf et al., 2018) https://github.com/theislab/sca

npy 
Monocole2 (Qiu et al., 2017) http://cole-trapnell-

lab.github.io/monocle-release/ 
Deposited Data 
 will be available to reviewers 
upon request 

  

Experimental Models: Organisms/Strains 
8-week old adult male CD1 mice Charles River Laboratories Crl:CD1(ICR) 
Biological Samples 
Fetal thymocytes This paper N/A 
Other 
scRNA-seq of mouse thymic 
ETP populations 

(Zhou et al., 2019) Gene Expression Omnibus 
GSE137165 

 
RESOURCE AVAILABILITY 
Lead Contact 
Further information and requests for resources and reagents should be directed to the 
Lead Contact, Peter Zandstra (peter.zandstra@ubc.ca). 
 
Data and Code Availability 
The source code of IQCELL python package generated during this study is available on 
Gitlab: (https://gitlab.com/stemcellbioengineering/iqcell) 
 
METHOD DETAILS 
Gene expression recovery 
    scRNA-seq data is usually affected by dropouts, which is a technical term that is used 
to describe the false-negative reads of messenger RNAs. Dropout effects cause the 
expression profile of genes to be underrepresented. Usually, genes with low copy 
numbers (e.g transcription factors) are more affected by this effect. IQCELL applies a 
recent method (MAGIC) that uses a graph-based imputation method to infer the 
expression of dropouts (van Dijk et al., 2018) (Figure S1A). This imputation is important 
as dropouts can affect the inference of gene relations (Figure S1A). 
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Gene selection 
    Selecting a small subset of genes to include in a functional GRN from the entire set of 
genes detected by scRNA-seq is, in general, a challenging task. Fortunately in mouse T-
cell development, many  relevant genes are known (Longabaugh et al., 2017). Here we 
describe a possible general approach for a selecting smaller subset of genes from a large 
set. 
    Selecting relevant genes for a functional/causal GRNs is generally a multilayered 
process (Figure S1B) which ideally combines multiple sources of information. One 
possible source is prior knowledge of important genes in the process, which can be 
obtained through literature review or systematic gene perturbation experiments (such as 
genome-wide CRISPR screening). . Alternatively, genes of interest can be selected 
directly from scRNA-seq data via various information theory metrics (Ang et al., 2016). 
Many scRNA-seq data analysis packages set an initial filter to only select highly variable 
genes (HVGs) for downstream analysis. HVGs are genes whose mean-scaled variance 
exceeds an automatic threshold. Although this is generally a useful filter, it does not 
necessarily select for genes whose expression levels vary significantly across pseudo-
time. Therefore, IQCELL has a built-in function to visualize expression dynamics along 
pseudo-time and calculate the degree of variation, which can be used as an additional 
input for gene selection. 
    Beside these, there are other network-based approaches to select informative genes. 
These methods typically prioritize genes with connections to many other genes (high 
degree). Finally, enrichment analysis and ChIP-seq data can be another source of gene 
selection; however, these methods are generally low-throughput, noisy, and prone to 
false positives/negatives. For this study, we manually curated a list of genes based on 
biological significance (Longabaugh et al., 2017) and dynamics along the pseudo-time 
(Figure S1B and Table S1). 
 
Establishing the initial gene-gene interaction network 
    To form the initial gene-gene interactions network from scRNA-seq data (Figure S1C), 
IQCELL first forms a list of all possible pairwise gene-gene interactions. This list does not 
include autoregulation by default (optional). Next, it uses a recent method (DREMI) to 
calculate the resampled and conditional mutual information between gene pairs 
(Krishnaswamy et al., 2014) (Figure S1C). In general, the mutual information (I) between 
a pair of variables X and Y (where X and Y represent two genes) is calculated as below: 
 

I(X; Y) = H(Y) − H(Y|X) 
 
where H(X) is called the entropy of distribution X and P(X) is the probability density of the 
variable X: 

H(X) =,P(X)log	 P(X) 
 
The mutual information score is symmetric and unsigned. Next, IQCELL applies the 
Pearson correlation coefficient to assign a sign (+/- which represents 
activation/repression) to the interactions, based on the sign of the correlation between 
two genes (Figure S1C): 
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c(X, Y) ≥ 0		 → + 
c(X, Y) < 0		 → − 

 
Where c(X,Y) is the Pearson correlation coefficient of the pair of gene X and Y: 
 

c(X, Y) =
E(XY) − E(X)E(Y) 

σ!	σ"
 

 
E(X) is the expected value and	σ!	is the standard deviation of X. Finally, IQCELL 
eliminates interactions with mutual information values smaller than a pre-defined 
threshold (with the default value of one standard deviation below the mean). The result is 
an undirected and signed interaction network. 
 
Binarization of gene expressions 
    IQCELL binarizes the expression for each gene individually. To do this, it can apply 
two possible methods that can be chosen by the user (Figure S1D). The first method 
finds the mean of expression and assigns ‘off’ (0) to the genes (for each cells) with the 
expressed numbers of mRNAs that are smaller than the prefixed threshold and ‘on’ (1) if 
they are larger. The second method (the default method) binarizes the expression based 
on the cut-off identified by k-means clustering (k=2) method (Figure S1D)(Macqueen, 
1967). In general, we group the expression of each gene in each cell g# (i ∈ N$%&&' ) into 
two possible groups S# = {S()), S(*} by finding: 
 

arg	min+ , ,||g − µ#||
,∈+!#∈()),(*

 

 
In which µ# (centroids) is the mean of expression values in ‘on’ or ‘off’ cluster. The 
threshold (τ) is obtained as the average of two centroids: 
 

τ = (µ()) + µ(*)/2 
 
The binarized gene expression value (G#) is obtained similar to the mean method: 
 

if(g# ≤ τ) → G# = 0 
if(g# > τ) → G# = 1 

 
Establishing the gene hierarchy via pseudo-time 
    After binarization of expression levels,  IQCELL calculates an interaction hierarchy to 
further filter gene-gene interactions, thereby eliminating interactions that are less likely to 
be causal. First, it averages the binarized expression values in a sliding window over 
pseudo-time (Figure S1E). To do this, IQCELL first sorts the cells based on their pseudo-
time values c# (i ∈ N$%&&' ). Next, it averages the values of binarized gene expressions over 
an averaging window (with the default length of L = N$%&&'/N,%*%'). This results in a density 
representation of the binarized gene expression values along pseudo-time (t) (Figure 
S1E): 
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D(t) = , G#/L

#∈(012/4,052/4)

 

 
Next, it calculates transition points between low-to-high or high-to-low density regions for 
all genes (Figure S1E) and sorts genes based on their transition points (Figure S1E). 
Finally, IQCELL includes autoregulation (autoactivation) as a possible self-interaction for 
genes with less than two possible activators. This step is optional and is used in the 
current study, leading to inclusion of autoactivation interactions for Hes1, Notch1, Lmo2, 
and Spi1 in the final interaction network. 
 
Implementing the Z3 reasoning engine to infer logical GRNs 
    To generate functional GRNs, IQCELL implements a modified network inference 
strategy in the Z3 engine (Hamey et al., 2017). This method effectively finds optional 
logical rules for each gene based on the possible list of interactions obtained from 
previous steps. The optimal rules are those that when executed as logical gates for each 
gene (given the state updates of other genes along the pseudo-time as an input), follow 
the experimental data. This is quantified with the percentage of similarity (based on 
Hamming distance) between the two (Figure S1F). Similar to (Hamey et al., 2017), we 
allow up to four possible activators and up to two repressors for each gene. In contrast to 
(Hamey et al., 2017) and similar to (S.- J. Dunn et al., 2014), for gene activation, we 
assume that all the activators are necessary (which is implemented with the ‘and’ logic 
gate), but only one repressor is enough for repression (which is implemented with the ‘or’ 
logic gate). In summary, the most general logical rule for the regulation of a gene (g7) by 
(the maximum number of) six regulators including (maximum) four activators 
(A8,	A4, A9, A:) and (maximum) two repressors (R8,	R4) is: 
 

g7 = (A8	and	A4	and	A9	and	A:)	and	not	(R8or	R4)	 
 
Which indicates that all activators and none of the repressor should be expressed for the 
gene to be expressed. Next, for each gene, the rule with the highest average mutual 
information for interactions is selected by IQCELL for the final GRN (Table S1).  
 
Asynchronous simulator of GRN under normal and perturbed condition 
    To analyze the system-level behavior of the obtained GRN models and predict the 
effect of gene perturbations on developmental trajectories, IQCELL uses (asynchronous) 
Boolean simulations. Boolean GRNs contain a set of genes 𝐆 = {G8, G4, … G;"#$#%} and 
their update function which encodes the gene regulatory details (one update function per 
gene). The update function of a gene (F<!) implies what will be the activity state of that 
gene (on or off) at the next discrete time point G#(t + 1) given the state of all the genes at 
the current discrete time point {G8(t), G4(t), …G;"#$#%(t)}: 
 

G#(t + 1) = F<!(G8(t), G4(t), …G;"#$#%(t)) 
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IQCELL, uses the asynchronous update strategy (Yachie-Kinoshita et al., 2018). In this 
strategy, at each discrete time step, only one random gene is selected and updated. This 
results in stochastic dynamics. This lets us average the expression states (average_exp) 
at each discrete time point (j) over the ensemble of stochastic states that started from the 
same initial point and are now at that particular time point (𝐄𝐗(j)) (Figure 3G): 
 

average_exp7 = , S
+∈=!(7)

/||EX(j)|| 

Where S = {0,1} therefore:  
	
0 ≤ avrage_exp7 ≤ 1 

 
IQCELL also has a built-in function to perturb the GRNs in two ways. It has the capability 
to perform KO (setting the gene to be always ‘off’) and OE (setting the gene to be always 
‘on’) experiments simultaneously for one or multiple genes systematically. Also it can 
perturb the gene-gene interactions systematically (Figure S2). 
 
Software architecture of IQCELL 
    IQCELL is implemented as a Python package. It is modular and scalable, to help 
researchers to expand, optimize, and customize it for their future studies. Also, it has a 
minimal Python interface, which allows the users to use it with minimal computational 
skills, and implement it to their system of interest. 
 
Pre-processing the scRNA-seq data 
    To dissect the developmental trajectory of T-cell development (from ETP to DN3 
stages), we used a scRNA-seq dataset from the Rothenberg Lab (Zhou et al., 2019). We 
used the analysis pipeline provided by the Theis Lab (Luecken & Theis, 2019). After the 
quality control and normalizing expression values, single-cell transcriptional states were 
visualized in reduced dimensional space using UMAP (Figure S4A). To understand the 
underlying structure of data we perform clustering based on the Louvain method (Figure 
S4B) which yields 14 sub-clusters. Next, we evaluate the expression pattern of 
developmentally important genes in blood and particularly T-cell development. ETP 
associated genes (Flt3, Lmo2, Mef2c) are all expressed in the cell clusters in the left side 
(Figure S4C). DN2-a stage is marked by Il2ra, this gene along with the gene associated 
with committed DN2 cells (Bcl11b) and DN3 associated genes (Cd3e and Rag1) 
expressions are localized on the right side (Figure S4C). Granulocyte lineage marker 
(Elane) and macrophage lineage marker (Mpo) expression are high at cluster 13 (not 
shown) and we excluded this cluster for future analysis. This can be due to alternative 
lineage decisions in development or contamination. Altogether we conclude that cluster 
0 includes many of the cells at the ETP stage and the developmental progression is 
toward clusters 9 and 11 as the endpoints (Figure S4C). 
    As previously reported (Zhou et al., 2019), we use a supervised approach in pseudo-
time ordering on the subset of genes that are known to be developmentally important in 
T-cell development or are alternate lineage markers. The selected genes were similar to 
(Zhou et al., 2019) and DDRtree pseudo-time ordering is performed on the data (Qiu et 
al., 2017). As established in the cluster analysis, step cluster number 0 is the best 
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candidate as the cluster with the earliest developmental stage and is used as the root for 
the algorithm. The result shows a single trajectory starting at cluster 0 and progressing 
toward later stages (Figure S4D). Pseudo-time ordering shows the dynamics of genes 
as a function of differentiation (Figure S4E). 
  
Relationship between the quality of single cell data and the GRN inference 
    As a short note, there is a direct relationship between the quality of the scRNA-seq 
data and inferred pseudo-time with the quality of the inferred GRN. A suitable scRNA-seq 
data has high resolution with regard to the underlying expression dynamics during the 
developmental process of interest, sufficient read depth, and yields a pseudo-time 
trajectory that qualitatively resembles the known gene expression state progression of 
the developmental system to be modeled (Zhou et al., 2019).  
 
Sample preparation and Single-cell RNA-sequencing of in vitro T-cell 
differentiation 
    Isolated fetal liver cells from decapitated E13.5 CD1 mouse embryos were subjected 
to TER-119 depletion by EasySep magnetic sorting (STEMCELL Technologies). Next, 
sorted HSPCs (Sca-1+ cKit+) cultured at 3.1 x103 HSPCs/cm2 (corresponding to 1000 
cells/well) in DL4 (10 μg/mL) and VCAM-1 (2.32 μg/mL) coated 96-well plates (Shukla et 
al., 2017).10X Chromium was used to prepare single-cell cDNA libraries, and Illumina 
Nextseq was used to 3’ sequence the samples. Gene-barcode expression matrices were 
calculated from the raw data via CellRanger (10X Genomics).  
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SUPPLEMENTAL FIGURES 

 
Supplementary Figure S1. Overview of IQCELL parts and algorithms (related to Fig. 
1).  

Figure S1
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(A) Overview of gene expression recovery step. The scRNA-seq data is corrected for 
dropout effect via a borrowed library ‘MAGIC’ from literature (left). Raw (grey) and 
recovered (blue) expression of Bcl11b vs. Gata3 (right). 
(B) Overview of gene selection step. The most important criteria for gene selection is 
biological relevance and literature curation. However, the user can benefit from observing 
the dynamics along the variability pseudo-time and variability of genes. Other network-
based methods and chip-seq evidence can be used as supplementary methods for gene 
selection (left). To visualize the dynamics of genes along the pseudo-time (right), IQCELL 
has a built-in function to visualize and fit linear and non-linear functions to the gene. vs 
time function. Users can use this information to select genes as well. 
(C) Overview of generating the initial interaction network. The steps toward obtaining the 
directional and signed interaction network from an initial list of genes (left column). The 
histogram of mutual information between gene pairs, the histogram of Pearson correlation 
between gene pairs (the correlation value of 1 is for the correlation of genes with 
themselves, marked by red), and mutual information vs. Correlation values (right 
column).  
(D) Overview of expression binarization step. There are two implemented binarization 
methods in IQCELL. K-means clustering (default) and binarization based on the mean 
value of expression of the gene between all the cells (left). Example of binarization of 
genes and their expression along the pseudo time (right).  
(E) Overview of generating the gene hierarchy step from the binarized gene expressions. 
First, the expression levels are averaged with a sliding window along the pseudo-time. 
This results in the density profile of binarized genes along the pseudo-time (left). Next, 
based on clustering the density, the transition point (from high to low or low to high) are 
captured (center). Finally, genes are sorted based on transition points. Genes can interact 
with genes with a lower rank (right). 
(F) Overview of implementing the Z3 reasoning engine.  At this step, the filtered set of 
interactions are used to make provisional update rules for each gene.  
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Supplementary Figure S2. GRN perturbations via IQCELL(related to Fig. 4). 
(A) Systematic gene perturbations. The expression states of the model attractor (left). 
The percentage of similarity between the attractors (vertical axis) and the binarized 
expressions of CLP, ETP, DN2A, DN2B, and DN3A cells (horizontal axis) (Jojic et al., 
2013) (right) for systematically perturbed GRN with single gene KO and OE. 
(B) Systematic gene-gene interaction perturbations. Overview of GRN link perturbation 
(top). The percentage of similarity between the attractors (vertical axis) and the binarized 

Figure S2
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expressions of CLP, ETP, DN2A, DN2B, and DN3A cells (horizontal axis) (Jojic et al., 
2013) (bottom) for systematically perturbed GRNs. 
 
 
 
 
 
 

 
 
Supplementary Figure S3. Implementation of IQCELL with another early T-cell 
development scRNA-seq data set. (related to Fig. 3)  
(A) To demonstrate the universality of IQCELL, we have tested this planform with 
another in-house scRNA-seq data. The IQCELL tutorial in the IQCELL website is based 
on this dataset. We used 10X scRNAseq by performing whole-genome transcriptional 
analysis. These experiments are performed with the mouse T-cell progenitor 
populations from fetal liver (FL) hematopoietic stem and progenitor cells (HSPCs) 
differentiated in vitro using the DL4+VCAM platform(Shukla et al., 2017). FL HSPCs 
were seeded on DL4+VCAM coated plates and cultured for 4 or 7 days prior to analysis, 
or immediately sorted and captured for library preparation. Pooling cells from multiple 
differentiation time points enabled sampling of cells from the entire T-cell lineage 
progression, rather than just endpoint transcriptional states. Here we have selected a 
small set of 6 genes that are important in the early T-cell development (from ETP to 
DN2 stages). The heat map shows the expression matrix of smoothed binarized 
expressions along the pseudo-time.  

Figure S3
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(B) The set of all possible gene-gene interactions, filtered by interaction hierarchy and 
mutual information cut-off (the thickness of lines represents the mutual information 
between genes), and signed by correlation. 
(C) Provisional GRN for early mouse T-cell development obtained by Z3 step with 
additional maximize mutual information criteria.  
(D) Detailed representation of the proposed interactions provided by IQCELL and  
experimentally reported ones. 
(E) PCA plot of the binarized scRNA-seq data color-coded with the pseudo-time values 
attributed to each cell. The binarization is performed by clustering the cs RNA-seq 
expressions into expressed or not expressed levels. On top of that, the binarized 
expressions of CLP, ETP, DN2A, DN2B, cells have been calculated from the immgen 
microarray data (Jojic et al., 2013) and overlaid on RNA-seq data. 
(F) PCA plot of the simulated developmental trajectories are overlaid on the binarized 
scRNA-seq.  
(G) Expression states of the model attractors (top). The percentage of similarity between 
attractor and known cell states (Jojic et al., 2013). 
(H) Averaged gene expression of the simulated data at each simulation step. All 
simulations started from the same initial condition. 
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Supplementary Figure S4. The overall workflow of preprocessing the scRNA-seq 
data (related to Fig. 3).  
(A) UMAP representation of Data overlaid with sample id, number of genes per cell, and 
density plot. (B) Clustering of scRNA-seq data. (C) Gene expression of stage-specific 
gene overlaid on top of UMAP. (D) The pseudo-time trajectory of the data inferred by 
Monocle platform. (E) Example expression of genes along the pseudo-time trajectory. 
 

Figure S4
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SUPPLEMENTAL TABLES 

 
Supplementary Table S1 (related to Fig. 2 and 3). The final gene list and provisional 
logical GRN for early T-cell development. The rules are picked from possible rules in Z3 
step based on maximizing the average mutual information per gene. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Update Rule 

Bcl11b ((Gata3 and Notch1) and (Runx1 and Tcf7)) and not (Hhex or Spi1) 

Cd3e ((Bcl11b and Tcf12) and (Hes1 and Notch1)) and not Lyl1 

Ets1 ((Bcl11b and Gata3) and (Tcf12 and Runx1)) and not (Hhex or Spi1) 

Cd3g ((Bcl11b and Notch1) and (Tcf12 and Hes1)) and not Lyl1 

Gata3 ((Myb and Tcf7) and Runx1) and not (Hhex or Lmo2) 

Hes1 Notch1 

Hhex (Lmo2 and Spi1) and not (Myb and Runx1) 

Il7r ((Runx1 and Tcf7) and Myb) and not (Lmo2 and Spi1) 

Lef1 (Ets1 and Tcf12) and not Lyl1 

Lyl1 (Hhex and Spi1) and not (Bcl11b and Ets1) 

Lmo2 Lmo2 and not Notch1 

Myb Tcf7 and not Lmo2 

Notch1 Notch1 

Ptcra ((Ets1 and Hes1) and (Tcf12 and Notch1)) and not Lyl1 

Rag1 ((Ets1 and Notch1) and (Tcf12 and Hes1)) and not Lyl1 
Runx1 (Myb and Tcf7) 

Spi1 Spi1 and not (Runx1 and Tcf7) 

Tcf7 Notch1 and not Lmo2 

Tcf12 ((Notch1 and Runx1) and Bcl11b) and not Hhex 
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Supplementary Table S2 (related to Fig. 2). Genes used for supervised trajectory 
inference. 

Table S.2 
 
 

Gene 
Bcl11a Itgax 
Bcl11b Kit 
Ccr9 Lef1 
Cd34 Lmo2 
Cd3e Ly6d 
Cd3g Lyl1 
Cd44 Mef2c 
Cd82 Meis1 
Cebpa Mpo 
Cxcr4 Myc 
Dtx1 Mycn 
Erg Nfil3 
Ets1 Notch1 
Ets2 Nrarp 
Flt3 Nt5e 
Gata1 Pdgfrb 
Gata2 Pgk1 
Gata3 Pim1 
Gfi1 Ptcra 
Gfi1b Rag1 
Hes1 Rag2 
Hhex Runx1 
Hoxa9 Runx2 
Id2 Runx3 
Id3 Sox13 
Ikzf1 Spi1 
Ikzf2 Spib 
Il2ra Tcf12 
Il4ra Tcf7 
Il7r Tlr7 
Irf8 Zbtb16 
Itga2b Zfpm1 
Itgam  
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Supplementary Table S3 (related to Fig. 4).  Comparison of attractors of perturbed GRN 
with the known cell states from microarray data. (Online) 
 
Supplementary Table S4 (related to Fig. 4). The attractor states of perturbed GRN. 
(Online) 
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