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ABSTRACT12

Using data on rearing and welfare metrics of multiple commercial broiler flocks from the last ten years, we investigate how

welfare measures such as hock burn, mortality, weight, and pododermatitis, among others, impact the likelihood of a flock

becoming colonized by Campylobacter. Using both logistic regression and Bayesian networks, we show that, while some

welfare metrics were weakly related to Campylobacter colonization, evidence could not be found to suggest that these metrics

actively exacerbated Campylobacter colonization, rather that they were both symptoms of the same underlying cause. Instead,

observed dependency on the management of the flock suggested that yet-undiscovered differences in rearing practise were

the principal cause of both poor bird welfare and increased risk of Campylobacter, suggesting that action can be taken to

improve both these factors simultaneously.
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INTRODUCTION15

For several years campylobacteriosis has been the most frequently observed zoonotic disease in humans throughout the EU16

(Westrell et al., 2009), with poultry meat identified as a leading infection route (EFSA Panel on Biological Hazards (BIOHAZ),17

2011). This acute form of food poisoning, characterised by diarrhea, fever, and abdominal pain, is estimated to affect 450,00018

individuals a year in the UK, approximately ten percent of which result in hospitalisation (Strachan and Forbes, 2010). An19

investigation by Public Health England into the extent of Campylobacter within the poultry industry revealed that seventy-three20

percent of supermarket chicken carcasses were found to contain Campylobacter and seven percent of the outer packaging was21

similarly contaminated (Jorgensen F, Madden RH, Arnold E, Charlett A, Elviss NC, 2015). This considerable public health bur-22

den posed by Campylobacter spp. represents an estimated £50 million annual economic cost to the UK (Tam and O’Brien, 2016).23

24

Given the extent to which Campylobacter dominates commercial chicken flocks, attempting to reduce the proliferation25

of the pathogen at farm level would have significant impacts in reducing disease incidence in humans. Once Campylobacter is26

first identified within a broiler flock (chickens grown specifically for their meat), colonization of all birds occurs very rapidly27

(Evans and Sayers, 2000). In experimental studies, it can take only a single week for an entire flock to become infected28

following the introduction of a single infected bird (Stern et al., 2001). This speed of proliferation makes identifying the initial29

point of entry of Campylobacter into a flock challenging, and has resulted in a focus on preventative measures.30

31

To-date, the poultry industry has largely focused upon on-farm biosecurity measures (Fraser et al., 2010; Gibbens et al.,32

2001), such as boot-dips and improved cleaning of housing. However, little impact in reducing incidence has been achieved with33

these measures (Hermans et al., 2011). As such, research has instead turned to a broad array of preventative measures (Ghareeb34

et al., 2013), such as treatment of food and water (Peh et al., 2020), probiotics (Saint-Cyr et al., 2016), and bacteriophage35

therapy (El-Shibiny et al., 2009). Such measures have thus far had mixed, and at times contradictory, success.36

37

One area of research still greatly overlooked is the role of bird welfare in the emergence of Campylobacter within a flock, both38

as a potential indicator of Campylobacter colonization, and as a driving factor. Campylobacter spp. were long considered to be39

commensal within broiler chickens, but recent studies have begun to suggest they may be pathogenic under some circumstances40

(Humphrey et al., 2014; Wigley, 2015). Some welfare measures in the past have been observed to correlate with changes in41

the gut microbiota and immune response of birds, such as stocking density (Gomes et al., 2014; Guardia et al., 2011), food42

withdrawal, and heat stress (Burkholder et al., 2008). More directly, lesions on the footpad and arthritis have been shown to be43

strong predictors of Campylobacter prevalence (Alpigiani et al., 2017), further supporting findings that flock movement patterns44

and behaviour can also accurately predict Campylobacter prevalence (Colles et al., 2016). Our own previous mathematical45

modelling studies have highlighted the potential for stocking density (Rawson et al., 2019) to impact the population dynamics46

of Campylobacter within a flock, and have also shown that the colonization status of an entire flock is greatly impacted by the47
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most susceptible birds within the flock (Rawson et al., 2020), suggesting that attention to individual birds must not be overlooked.48

49

This study investigates the relationship between multiple welfare indicators on Campylobacter prevalence in flocks using two50

different mathematical modelling approaches. We firstly employ a logistic regression analysis to test for direct relationships51

between Campylobacter colonization and predictor variables, such as weight, mortality, and hock burn incidence. While this52

methodology has long served as a useful tool for highlighting potential relationships between variables, it cannot elucidate53

the exact mechanism of such a relationship, nor how these relationships interact with one another. We combine our logistic54

regression with a Bayesian network analysis to demonstrate the network of conditional dependencies between variables, to55

investigate more precisely how variables affect and impact each other. In combination with the logistic regression analysis, we56

are able to posit where welfare directly increases the likelihood of Campylobacter colonization, or to what extent infection by57

this bacteria is a symptom of the same root cause.58

59

The greatest challenges to welfare-focused studies is ensuring a broad collection of data from varied sources, and using60

easily reproducible metrics. Studies utilising welfare concepts such as the ‘Welfare Quality®’ (De Jong et al., 2016) or the61

‘five freedoms’ (Iannetti et al., 2020) are useful, but can be difficult to recreate due to differences in individual assessment. To62

this end, this study uses data spanning six years from multiple farms, logging reproducible metrics, such as temperature, flock63

parent age, pododermatitis rates, and flock size, amongst others.64

MATERIALS AND METHODS65

Data66

Data was provided across six years (2010 to 2015) from multiple farms throughout the UK. Each data point represents a flock67

of broilers, listing multiple welfare parameters and rearing information, as well as a measure of whether the flock tested positive68

for Campylobacter. All variables measured for flocks are detailed and defined below:69

• Company - A two-factor categorical variable, depicting whether the flock is overseen by company “1" or “2". This70

variable will also therefore capture differences in company-specific rearing methodologies not represented by our current71

list of predictor variables.72

• Farm - A categorical variable, further delineating the Company measure, detailing which farm the flock was located at,73

so as to investigate trends unique to certain locations.74

• Number placed - A numerical variable describing how many broilers made up the flock. While modelling studies have75

primarily implicated stocking density as a high Campylobacter risk factor, the total flock population may also increase76

the likelihood of initial flock inoculation (Rawson et al., 2019).77

• Date placed - The date the flock was first placed into the house. Campylobacter is well reported to show seasonal trends,78
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with the warmer, summer months seeing flocks test positive for Campylobacter more frequently (Djennad et al., 2019;79

Nylen et al., 2002).80

• Breed - A three-factor variable describing the breed of broilers grown. Two commercial breeds of broiler were81

investigated, with flocks comprised of either: Breed A, Breed B, or a mixture of Breed A & B. Both breeds refer to the82

breeding companies, each with many different genetic lines of broiler. Host-bird genetics have been shown to impact83

Campylobacter prevalence (Babacan et al., 2020; Psifidi et al., 2021; Stern et al., 1990), hence the consideration of the84

genetic line of the flock.85

• Number of parent flocks - The number of parent flocks the broiler flock was sourced from. While the possibility of86

vertical transmission of Campylobacter is still debated, the hypothesis is that a greater number of parent flocks could87

increase the number of Campylobacter sequence types (and thus phenotypic specialisations) that a flock is exposed to at88

hatch (Petersen et al., 2001).89

• Mean parent age - The average age (in weeks) of all parent flocks sourced from. Parent age has been shown to impact90

egg weight and embryo weight (Shanawany, 1984), and thus could potentially impact the general health of the chick.91

• 7/14/21/28/35/Total mortality percentage - Six different variables, describing the percentage of the flock that had died92

after x days.93

• Pododermatitis percentage - What percentage of the flock suffered from pododermatitis; inflammation and ulcers on the94

footpad and toes. This was measured post-mortem by abattoir staff.95

• Hock burn percentage - What percentage of the flock suffered from hock burn; areas where ammonia from the waste of96

other birds has burned through the skin of the leg. This was measured post-mortem by abattoir staff.97

• 7/14/21/28/35/Final day weight - Six variables showing the mean weight of the flock, in grams, at weekly intervals.98

• Maximum/minimum temperature - A variable describing the maximum and minimum recorded external temperature,99

in degrees centigrade, for the time the flock was housed, as sourced from historical records for from the Met Office for100

the nearest weather station.101

• Campylobacter 21/28/35 days - A two-factor variable depicting whether a flock was found to be positive or negative for102

Campylobacter after 21/28/35 days. This was sampled via fabric boot swabs in the flock house at 21/28/35 days. In103

addition, fresh faecal samples were collected concurrently on day 28. Campylobacter prevalence was then tested for in104

all samples via culture methods. Full details of this methodology are given in Colles et al. (2016).105

A total of 212 flocks were monitored, however not all variables could be measured for all flocks due to the practical difficulties106

in obtaining all measures from farms. As such there is some degree of missing data across all variables, most notably that only107

149 of these flocks have a final record of Campylobacter infection status. Before incorporating this data into a mathematical108
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model, we must consider the detail of data available given the absence of some variables for some flocks. To ensure the109

maximum number of flocks are able to be used in model fitting, a balance must be found between filtering out variables to110

increase data availability, while not overly limiting the number of variables investigated. We detail these decisions below.111

Data Cleaning112

Before beginning the regression analysis, we clean and simplify our data to aid interpretation. The Campylobacter variables113

across time points 21, 28, and 35 days were simplified to a single variable that reads as positive if a flock was recorded positive114

on any of the three dates recorded, and negative if the flock was reported negative on all of the measured dates provided. This115

was to increase the data availability, as some flocks were only measured on certain dates. There were six instances of a flock116

being recorded as negative after previously testing positive. These six instances were cases where the faecal samples taken on117

day 28 tested positive, but the boot swab on day 35 tested negative. It was considered appropriate to rely on the more targeted118

faecal sample for these six cases.119

120

The Date placed variable was converted to a 4-level factor variable, denoting the season that the flock was reared in. This was121

done as date is known to have a non-linear effect on Campylobacter prevalence (Jorgensen et al., 2011), with incidence in both122

flocks and humans more frequently observed in the UK summer compared to the winter (Louis et al., 2005). It is this effect that123

we wish to investigate as opposed to variation between years. Season classification is partitioned by the dates December 1st,124

March 1st, June 1st, and September 1st, aligning with the meteorological seasons, which more accurately capture temperature125

variation than the astronomical seasons classification.126

127

Regression analysis requires that the explanatory variables be independent of the response variable (and each other) oth-128

erwise predictive power is weakened across all dependent descriptor variables. In some cases, parameters of the linear129

model then become indeterminate due to the high degree of multicollinearity. For example, the 7/14/21/28/35/Total mortality130

percentage variables are, as expected, all highly correlated with one another, hence we use only the 28-day mortality percentage131

measure, as this is the one that most data was available for. We do the same for the average bird weight variables. Likewise, the132

Company variable was removed for the logistic regression, as it is heavily correlated with the Farm variable (companies do not133

share farms), however the Farm variable was also then found to have very strong correlation with the Number placed variable.134

For this reason the Farm variable is also removed, as Number placed is a preferred metric of interest. Similarly, we use only135

the Minimum temperature, and not the Maximum temperature, or the Date placed, as these three are strongly correlated. By136

reducing the number of model predictors, the generalised variance-inflation factors (GVIF) (Fox and Monette, 1992) of all137

variables are less than 3, far less than the commonly-used threshold of 10.138

139

Finally, the data was filtered to remove any flocks with missing values for the explanatory variables under consideration. 84140

data points remained for the final mathematical model. Flocks with missing data were later utilised for the parameter learning141
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Table 1. Factor variable summaries

Variable Factor level Total Campylobacter positive Campylobacter negative

Company 1 49 22 27
2 35 20 15

Farm * C1-F1 49 22 27
C2-F1 15 7 8
C2-F2 11 7 4
C2-F3 9 6 3

Breed A 32 20 12
B 48 21 27

A & B 4 1 3

No. Parents 1 39 23 16
2 25 13 12
3 15 5 10
4 5 1 4

Date placed Spring 24 19 5
Summer 18 17 1
Autumn 16 1 15
Winter 26 5 21

* Company 1 has only one farm ‘C1-F1’. Company 2 has three farms; ‘C2-F1’, ‘C2-F2’,
‘C2-F3’.

Table 2. Continuous variable summaries

Variable Mean Standard Deviation

Number placed 27,639 7,283
Mean parent age 39.13 9.82

28-day mortality percentage 3.87 1.40
Pododermatitis percent 57.62 28.48

Hock burn percent 20.00 18.95
28-day average bird weight 1419.6 83.2

Minimum temperature 6.59 3.70

stage. A summary table of all variables considered in the final model is presented in Tables 1 and 2.142

Logistic Regression143

Multiple logistic regression is an adaptation of multiple linear regression for instances where the response variable of interest is144

a two-factor binary output (Y ∈ {0,1}), in our case where a flock is either Campylobacter negative or positive. A multiple145

linear regression model structures the response variable, Y , as a linear predictor of a set of explanatory variables, Xi, like so;146

Y = β0 +β1X1 +β2X2 + ...+βnXn,

for n variables, and where βi are the coefficients to be determined. A logistic regression instead models p = P(Y = 1), the147
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probability that Y = 1, as:148

logit(p) = β0 +β1X1 +β2X2 + ...+βnXn, (1)

where logit() is the log-odds ratio logit(p) = log
p

1− p
, which ensures that p is bounded between 0 and 1. To model the149

impact of factor variables with m levels, we use treatment contrasts; m−1 distinct descriptor variables within the model. For150

example, consider a simplified model which investigated the impact of breed alone on the probability of a flock being colonized151

by Campylobacter (p). Breed has three factor levels; ‘Breed A’, ‘Breed B’, and ‘Breed A & B’, and therefore the logistic152

regression model would be:153

logit(p) = β0 +β1X1 +β2X2,

where Breed A, is represented by X1 =X2 = 0, Breed B by X1 = 1, X2 = 0, and the mixture of Breed A & B by X2 = 1, X1 = 0.154

155

Nine explanatory variables were used for the final maximal logistic regression fit: Number placed, Breed, Mean parent156

age, Number of parent flocks, 28-day mortality percentage, Pododermatitis percentage, Hock burn percentage, 28-day average157

weight, and Minimum temperature. After initially fitting the maximal model of nine explanatory variables, a step wise158

simplification is then performed, removing the least significant term iteratively to finally reach the minimal adequate model: a159

model composed of only statistically significant explanatory variables. The model was fit using the glm package in R, which160

fits the model via iteratively reweighted least squares (IWLS). All code is made freely available at osf.io/pb62g/.161

Bayesian network162

Bayesian networks are probabilistic graphical models that display the network of conditional dependencies between a collection163

of variables. Each variable in the model is visually represented as a node, with directed edges, called ‘arcs’, between nodes164

representing a directly dependent relationship. A→ B indicates that B depends on A. Since arcs are directed, there is a165

cause-and-effect (from-and-to) relationship between variables. A node with an arc directed towards another node is called a166

‘parent’ node to the respective ‘child’ node. Each node’s output is then explicitly detailed by a probability distribution that is167

dependent on any and all parent variables. This highlights the two greatest strengths of Bayesian networks as tools to investigate168

relationships between variables: firstly, the Markov property imposed by the network of conditional dependencies, means that169

the global probability distribution of the system can be expressed as a far smaller product of dependent probabilities. As such, a170

large and complicated probabilistic system can be simplified by knowledge of how some variables do or do not influence one171

another. Secondly, these types of models provide a straightforward way of visually conveying how certain explanatory variables172

influence (or do not influence) each other, something that would otherwise require the analysis of a large variety of logistic173
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regression models, and could easily overlook certain dependencies. As a result of this architecture, “cycles" are by definition174

not allowed within a Bayesian network, meaning a path cannot be drawn from any node back to itself. Such a structure is called175

a directed acyclic graph (DAG). We provide a short example below to understand how such networks are calculated, but greater176

insight can be found in Nagarajan et al. (2013).177

178

Calculating a Bayesian network model is separated into two tasks. Firstly, structural learning: learning the network model179

of dependencies (i.e. identifying all arcs in the system), followed by parameter learning: finding the specific parameters of180

probability distributions linking parent to child nodes. Consider an example of a dataset of three discrete variables in a broiler181

flock we wish to explore: Mortality (low, average, high), Age (young, adult, old), and Feather condition (good, average, poor).182

We start by learning the structure between these three variables. Many algorithms and approaches exist for finding the structure183

of a Bayesian network (Bouchaala et al., 2010), however within this paper we utilise the hill-climbing algorithm (Bouckaert,184

1995), a score-based structure learning algorithm. The algorithm starts with a randomly chosen graph (though usually the185

empty graph made up of no arcs), and calculates a network score that ascertains how effectively such a graph describes the data.186

It then iteratively adds, removes and reverses one arc at a time, altering the global probability distribution via the introduction187

(or removal) of a dependency, selecting the alteration that increases the network score the most. This process is then repeated188

until no further improvement can be found. Multiple network scores can be used, but we use the Bayesian information criterion189

(BIC) (Bhat and Kumar, 2010), a variation on the traditional likelihood function. After using this algorithm on our example190

data, we discover the “best" network as being the network of two arcs shown in Figure 1.191

Figure 1. Bayesian network for the example problem posed. Two conditionally dependent relationships are found, from Age
to Mortality and from Age to Feather condition. This example relationship was demonstrated by Comin et al. (2019).

192

We see from Figure 1 that Age is a parent variable to both Mortality and Feather condition. This indicates that, from this193

imagined example data, Age directly informs the mortality rate of a bird and the feather condition of the bird (this result was194
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directly demonstrated by Comin et al. (2019)). An important insight gained from this network analysis would be that Mortality195

and Feather condition would likely be found to be correlated via a logistic regression analysis. However, Feather condition196

itself does not affect Mortality, rather they are both impacted by the same direct cause; Age. This illustrative example shows the197

objective of the Bayesian network approach to our particular question; what causes Campylobacter to colonize a flock, rather198

than just what is correlated with Campylobacter colonization. Another advantage of such a model, means that inference can be199

made even with missing data. The network of Figure 1 presents a structure whereby the mortality of a bird can be predicted200

with data on their feather condition, as this gives important indication of what the age of the bird may be. In Bayesian terms,201

this informs our prior belief as to the age of the bird, thus impacting our posterior belief as to the mortality of the bird. In202

contrast, the logistic regression approach would require an assumption on the age of such an individual, usually the mean of the203

training data, but no such requirement exists for Bayesian networks. Note, however, that if the age of a broiler is known, the204

prediction of their relative mortality rate is not improved by further information on their feather condition, as mortality is found205

to be predicted by age alone.206

207

Note also from Figure 1 the mathematical advantage of such a network for expressing the joint probability distribution208

of the system. By definition the arcs indicate that P(Age, Mortality, Feather Condition) can be expressed as209

P(Age, Mortality, Feather Condition) = P(Age)P(Mortality|Age)P(Feather Condition|Age).

Since each variable has three factor levels, this reduces a distribution of 27 (33) parameters, to 21, where each arc indicates210

that the child variable is modeled by a multinomial distribution dependent on the parent variable.211

212

Indeed, for the second step, parameter estimation, we treat each node as being described by a multinomial distribution,213

and fit these using two separate well-known techniques, the maximum likelihood estimator (MLE), and a nested Bayesian214

approach, using uninformative uniform priors. See Appendix 1 for a brief introduction to Bayesian statistical inference.215

216

A further benefit to a Bayesian network model is that we do not need to test for multicollinearity, which required us to217

remove several variables from consideration in the logistic regression, as structure learning specifically investigates these218

inter-variable correlations. As such we are able to include Company, Farm, and Date placed within our Bayesian network219

model. We also include the 7-day bird weight, and 7-day mortality percentage variables, alongside the 28-day measures, to220

serve both as a sanity check (we would expect these two variables to be linked), but also to increase the predictive power of the221

model, so inference could be made on the Campylobacter status of a flock from the 7-day as well as 28-day measures. This222

decision did however reduce the number of available training data from 84 to 81.223

224
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All of these introduced methodologies are implemented using the bnlearn package in R (Scutari, 2009), and all code225

used in the model analysis is provided at osf.io/pb62g.226

Discretisation227

While we have displayed the many inherent strengths of Bayesian network models, one considerable weakness is the implemen-228

tation of models consisting of both discrete and continuous variables. While methodologies exist for the assessment of such229

“hybrid" Bayesian networks (Scutari and Denis, 2014), the approaches are considerably more computationally demanding, and230

require a greater amount of data to give a robust fit to a Bayesian network. Given the comparatively smaller size of our training231

data (n = 84), we instead take the commonly used route of discretisation, whereby our continuous variables are converted232

into discrete bins. Of the many approaches to discretisation, a wide-ranging comparison by Kohavi and Sahami (1996) found233

the best approach to be the supervised, entropy-based Minimal Description Length (MDL) (Fayyad and Irani, 1993) method,234

whereby each variable is discretised based upon its informative potential on a variable of interest. This approach was undertaken235

on our data, in relation to the Campylobacter variable, using the FSelectorRcpp package in R. However, only Minimum236

temperature was found to be able to discretised in such a way (foreshadowing our later results). As such, we instead used a237

quantile binning (equal-frequency) approach, to separate out our continuous variables into three bins of equal frequency, and238

confirming against the histograms for each variable that no obvious separation was missed. These bin intervals are provided in239

Table 3.240

Table 3. Discretisation intervals of continuous variables for the Bayesian network model

Variable Bin 1 Intervals Bin 2 Intervals Bin 3 Intervals

Number placed [11770, 22000] (22000, 33503.3] (33503.3, 34650]
Mean parent age [25, 32] (32, 44.78] (44.78, 58]

7-day mortality percentage [0.65, 1.21] (1.21, 1.81] (1.81, 7.26]
28-day mortality percentage [1.97, 3.06667] (3.06667, 4.05667] (4.05667, 9.61]

Pododermatitis percent [1, 42.6667] (42.6667, 76] (76, 95]
Hock burn percent [0, 10] (10, 20] (20, 90]

7-day average bird weight [144, 170.667] (170.667, 181] (181, 213]
28-day average bird weight [1138, 1388.33] (1388.33, 1475.33] (1475.33, 1565]

Minimum temperature [1.3, 4] (4, 8.7] (8.7, 13.8]

Banned Arcs241

To both aid the structure learning process, and to disallow erroneous network structures, we also introduce a list of banned arcs,242

defining all arcs which are not to be considered by the algorithm, based on logical reasoning. For example, we do not allow any243

arcs directed towards the Company variable, as this is clearly not affected by any other variables. While the company that a244

flock belongs to may in turn affect the mean parent bird age for example, it is illogical to say that the mean parent bird age245

could affect which company the flock is managed by. Company is a variable that is predetermined before the flock even hatches,246

and as such cannot be influenced by factors that occur during the lifespan of the flock. A full list of these banned illogical arcs247

is provided with all associated code in the online repository.248
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Table 4. Logistic regression analysis of the minimal adequate model for 84 broiler flocks using the glm function in
R.

Predictor β (Estimate) SE β Wald-test z-score p eβ (odds ratio)

(Intercept) -1.490 0.621 -2.398 0.0165 NA
Breed (1 = Breed B, 0 = Other) -1.474 0.628 -2.348 0.0189 0.225

Hock burn percentage -0.041 0.0189 -2.165 0.0304 0.960
Minimum temperature 0.469 0.105 4.474 � 0.0001 1.599

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 35.972 7.59×10−8

Likelihood ratio test 2 7.776 0.557

Goodness of fit
McFadden’s R2 0.309

Cox & Snell’s R2 0.348

1 Compared against null model.
2 Compared against maximal model.

RESULTS249

Logistic Regression250

The results of the logistic regression for the minimal adequate model are presented in Table 4, alongside a variety of model251

evaluation metrics. Appendix 2 shows the analysis of the original maximal model comprised of all explanatory variables, and252

describes the reduction steps taken to reach the minimal adequate model.253

254

Three variables were found to be statistically significant in relation to the Campylobacter status of a flock via the Wald-test:255

Breed, Hock burn percentage, and Minimum temperature. Note that for the minimum adequate model, while Breed B flocks256

were found to be statistically significantly different to Breed A birds with relation to Campylobacter incidence, the mixed breed257

flocks were not found to differ from Breed A flocks. As such, the ‘Breed A’ and ‘Breed A & B’ flocks were collapsed into one258

variable for the minimal adequate model. Table 4 shows that flocks of Breed B birds were found to be 0.225 times as likely259

to test positive for Campylobacter than any other flock. Hock burn percentage was, unintuitively, found to have a negative260

correlation with Campylobacter colonization. Minimum temperature was very strongly correlated, with an odds ratio showing261

that an increase of 1 degree to the minimum recorded temperature corresponded with a flock being 1.599 times more likely to262

test positive for Campylobacter. The generalised variance-inflation factors (GVIF) (Fox and Monette, 1992) of all variables in263

the minimal adequate model was less than 2, and all variables of the maximal model (Appendix 2) had a GVIF of less than 3,264

far less than the commonly-used threshold of 10.265
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Bayesian network266

Figure 2 displays the final global network structure, fit using the hill-climbing algorithm, and with networks scored via BIC.267

This was run using the bnlearn package in R. The strength of individual arcs (as measured by BIC) is represented by268

arrow-width in Figure 2. Table 5 also explicitly provides these arc strength scores.269

270

Figure 2. Bayesian network structure showing the interrelationships between multiple welfare and rearing practice factors in
a flock of broilers. Campylobacter colonization is directly impacted by the season the flock is grown in. Structure was learned
using a hill-climbing algorithm, and sampled networks scored using the Bayesian information criterion (BIC). Arrow-width
indicates arc strength as scored by BIC, the values of which are given in Table 5.

To test the significance of the fit structure, structure learning was also performed with a tabu search algorithm, and by271

introducing random network restarts into the hill-climbing algorithm (10, 100, and 1000 random restarts were all performed),272

all of which resulted in the same network structure. We also performed a hill-climbing structure learning algorithm using the273

logarithm of the Bayesian Dirichlet equivalent score (BDE) (Castelo and Siebes, 2000), as opposed to the BIC, a Bayesian-based274

score equivalent to the Dirichlet posterior density (and initialised with uniform priors). This scoring metric resulted in a very275

similar network structure which we present in Appendix 3. The only differences were that, (i) Hock burn percentage no longer276

had Company as a parent node, meaning it was unconnected to any other node. (ii) Minimum temperature had an additional arc277

from itself to Campylobacter colonization, suggesting that Campylobacter could also be impacted by temperature variation278

throughout the season; and finally, (iii) an additional arc was introduced from Breed to Number placed, simply representing that279

flocks of Breed B birds were larger in size than flocks of Breed A birds.280

281
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Table 5. Arc strengths of the Bayesian network shown in Figure 2. Arc strength
is measured by Bayesian information criterion (BIC), where a lower value
indicators a stronger link.

Parent Child Arc Strength

Company Breed -16.656
Company Farm -47.756
Company Number placed -43.069
Company 7-day mortality percentage -11.975
Company Hock burn percentage -0.234
Company 7-day weight -3.644

Breed Pododermatitis percentage -2.236
Number placed Date placed -6.272

7-day mortality percentage 28-day mortality percentage -20.876
7-day weight 28-day weight -6.031
Date placed Minimum temperature -29.040
Date placed Campylobacter colonization -17.246

Other results to be noted from Figure 2 is that neither the number of different parent flocks that a broiler flock was born282

from, nor the mean age of these parent was found to have any correlation to any other variable. Pododermatitis was interestingly283

found to be influenced by the Breed of broiler comprising the flock. We also see that many variables are directly influenced by284

the Company variable, suggesting that many observed differences are due to, yet unobserved, differences between management285

practise.286

287

Figure 2 shows that the season (Date placed) in which a flock is reared is the sole parent node to Campylobacter sta-288

tus. This means that Date placed alone captures the uncertainty and probabilistic distribution of whether or not a flock is likely289

to test positive for Campylobacter. This means that while data on the number of birds in the flock (Number placed) can inform290

whether or not a flock is Campylobacter positive, this data is superfluous when one has knowledge of the Date placed. The291

conditional probability table for Campylobacter colonization is given in Table 6. These model parameters can be fit either292

via maximum likelihood estimators (MLE) or through Bayesian inference. Model parameters via both methods are provided293

in Table 6. Note that one advantage of the Bayesian inference method is that this approach can learn parameters from data294

containing missing values. Hence while the MLE parameters are fit from the 84 data points used in structure learning, the295

Bayesian inference method uses 114 data points, incorporating those that were removed from structure learning due to missing296

values.297

298

Conditional probability tables for Campylobacter dependent on all other variables, assuming the absence of data on any other299

variable, are provided in Appendix 4.300

13/38

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437710doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437710


BROILER WELFARE AND CAMPYLOBACTER

Table 6. Conditional probability table for Campylobacter colonization status. We present values calculated by Bayesian
inference using uniform priors, and an equivalent sample size of 10. Below that we present values calculated via a maximum
likelihood estimator.

Bayesian Inference

Date placed

Campylobacter colonization Spring Summer Autumn Winter

Negative 0.273 0.071 0.878 0.802
Positive 0.727 0.929 0.122 0.198

Maximum Likelihood Estimator

Date placed

Campylobacter colonization Spring Summer Autumn Winter

Negative 0.217 0.063 0.937 0.808
Positive 0.783 0.937 0.063 0.192

DISCUSSION301

Here, through a combination of both logistic regression and Bayesian network analysis, we have investigated the interrela-302

tionships between a selection of welfare and rearing practice explanatory variables for multiple commercial broiler flocks.303

At the inception of this work, our hypothesis was that poor welfare indicators such as low weight and hock burn, among304

others, would result in an increased risk of colonization by Campylobacter due to poor health compromising the immune305

response of birds in the flock (Humphrey, 2006). Social stress (Mohamed and Hanson, 1980), heat stress (Burkholder et al.,306

2008), and overcrowding stress (Gomes et al., 2014), have all been shown to increase susceptibility to disease in chickens by307

compromising the immune response (Heckert et al., 2002; Hirakawa et al., 2020), and in many cases have been correlated with308

increased risk of colonization with Salmonella (Alhenaky et al., 2017; Gomes et al., 2014). As such it was initially assumed309

that similar measures may increase incidence of Campylobacter in broiler flocks. While our work has revealed some level310

of correlation between poor welfare metrics and Campylobacter incidence (see the conditional probabilities of Appendix 4),311

these relationships were not found to be statistically significant via a logistic regression model, and our Bayesian network312

model suggests that poor bird welfare, as judged by the measures used here, is not in fact a cause of increased Campylobacter313

colonization. Despite this, our model reveals many yet-unconsidered relationships between rearing variables, provides evidence314

against multiple existing hypotheses, and highlights multiple promising new lines of enquiry towards identifying the source of315

Campylobacter colonization in commercial poultry flocks.316

317

Our logistic regression analysis, shown in Table 4, identified three statistically significant explanatory variables; Breed,318

Minimum temperature and Hock burn percentage, with p values of 0.0189, 7.69×10−6 and 0.0304 respectively. Seasonal319

variation in Campylobacter incidence has long been observed in broiler flocks (Jorgensen et al., 2011; Louis et al., 2005), with320
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minimum/maximum temperature and sunshine hours significantly correlated with both the incidence and total bacterial load321

found in chicken flocks (Wallace et al., 1997). The warmer summer months see greater Campylobacter prevalence, yet despite322

the large body of research confirming this phenomenon, the precise mechanism for this increase remains unclear. While the323

growth rate of Campylobacter is found to vary in relation to temperature (Doyle and Roman, 1981), the minimum temperature324

required for Campylobacter survival is estimated to be around 30 degrees centigrade, somewhat precluding the impact of UK325

seasonal temperatures. Previous studies have suggested that the seasonal increase of flies (Hald et al., 2004, 2007), rodents326

(Meerburg and Kijlstra, 2007), and wild birds (Colles et al., 2008) as vectors of Campylobacter transmission may be responsible,327

while seasonal patterns in country-wide clonal complex incidence potentially point to genetic adaptation to seasonal trends328

(Jorgensen et al., 2011). Investigating this trend in human incidence of campylobacteriosis, Djennad et al. (2019) conducted a329

rigorous statistical assessment of spatial and weather factors, concluding that the correlation between incidence and temperature330

was “ likely to be indirect". Our above results reach the same conclusion for broiler colonization. While our logistic regression331

shows the strong correlation between temperature and Campylobacter colonization, our Bayesian network analysis shows in332

Figure 2 that the two variables are conditionally independent upon the date placed, i.e. the correlation is indirect.333

334

Footpad dermatitis, commonly referred to as ‘hock burn’, the dark discolouration and ulceration of the lower leg of birds, was335

also found to be statistically significantly correlated with Campylobacter prevalence, however this relationship was curiously336

found to be negatively correlated. These painful lesions are considered a sign of poor bird welfare, usually caused by litter337

unsuitably saturated with chicken waste. As such, the suggestion that more instances of hock burn in a flock are linked with338

less cases of Campylobacter is surprising, considering that the bacteria are transmitted via the faecal-oral route. One hypothesis339

is that the presence of Campylobacter may in turn limit colonisation of the flock by more pathogenic bacteria that could340

more easily trigger diarrhoea within a host-bird, thus impacting the litter quality and the resulting development of hock burn.341

Alternatively this relationship may be an artifact of how the Hock burn percentage variable was defined. Namely it was recorded342

as the cross-sectional prevalence of any signs of hockburn in the flock (Dawkins et al., 2017). In short, it is a measure of how343

many birds showed signs of hock burn, and not a measure of the extremity of these burns. Bull et al. (2008) observed this same344

effect, whereby the flock-wide presence of hock burn was generally higher in Campylobacter negative flocks, however the345

number of birds in the flock rejected from consumption due to extreme cases of hock burn was positively correlated with rates346

of Campylobacter colonization. Figure 2 also concludes that this correlation between Campylobacter colonization and hock347

burn prevalence is conditionally independent upon the managing company.348

349

The Bayesian network structure displayed in Figure 2 reveals a wide variety of insight into the various interrelationships of350

the included variables. Firstly we see that the number of parent flocks a broiler flock is sourced from, and the mean age of351

these parent flocks, had no meaningful impact on association with any other variable. The feasibility of vertical transmission of352

Campylobacter from parent to broiler flock is still frequently discussed in the literature, and the inclusion of this variable was353
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based upon the hypothesis that a greater number of parent flocks may challenge a broiler flock with a greater genotypic variety354

of Campylobacter isolates (Petersen et al., 2001). Parent age has also been shown to influence egg weight and embryo weight355

of chicks (Shanawany, 1984). Given the potential importance of maternal antibodies in suppressing Campylobacter in the first356

few weeks of age (Rawson et al., 2019), parent age could potentially impact the likelihood of Campylobacter colonization. Our357

results however indicate that factors relating to the parent flock have no effect on any of the metrics considered in this study.358

359

The logistic regression analysis of the minimum adequate model found statistical significance in the relationship between360

Breed and Campylobacter colonization, where flocks of Breed A birds were more frequently observed to become colonized361

than Breed B birds. Caffrey et al. (2021) recently identified a correlation between breed and Campylobacter , with flocks362

comprised of Cobb birds, or a mixture of Cobb and Ross birds 4.75 times more likely to test positive for fluoroquinolone363

resistant Campylobacter jejuni than flocks comprised of just Ross birds. Further to this, Cobb birds have been found to be364

more frequently colonized by Campylobacter than Hubbard birds by Babacan et al. (2020), however they were unable to365

separate this association from other rearing factors such as age-of-slaughter. Our Bayesian network analysis, similar to the366

hock burn conclusions, was unable to detect any direct arc of causation between Breed and Campylobacter colonization,367

suggesting that the breed of chicken is indicative of the company managing the flock, and not necessarily an indicator of a368

breed-specific susceptibility. Host-bird genetics have however previously been shown to cause differences in host-resistance369

to Campylobacter challenge (Connell et al., 2013; Li et al., 2008; Stern et al., 1990), with such resistances shown to be370

inheritable under experimental conditions Boyd et al. (2005). Further linking breed and welfare measures, Humphrey et al.371

(2014) found that faster-growing breeds of broiler showed evidence of prolonged inflammation in the intestines in response to372

Campylobacter jejuni, suggesting that the impact of breed is yet a plausible route of further study. An interesting relationship373

observed in Figure 2 was the implication of Breed as a determinant of the prevalence of pododermatitis, with flocks of Breed374

A birds more frequently displaying heavy incidence of pododermatitis. No study to our knowledge has directly investigated375

this supposed relationship in broilers, however one study in turkeys found no correlation between breed and pododermatitis376

(Clark et al., 2002). Pododermatitis has previously been shown to be associated with a poor-nutrient diet (Nagaraj et al.,377

2007), hence the hypothesis that this factor could correlate with general gut health and/or the composition of the gut microbiome.378

379

The primary conclusion of our work, as shown in Figure 2, was that our network of variables was closely related by380

yet-unobserved factors concealed within the Company variable. Company was found to be a parent variable to six factors;381

Breed, Farm, Number placed, 7-day mortality, Hock burn percentage, and 7-day weight. This indicates that these six factors382

significantly vary, due to which of the two companies considered within this study they are managed by. This suggests that383

choices made within the complex decision network relating to the rearing of these flocks, encompassing factors such as384

diet, water provision, housing, thinning protocols, cleaning regimens, antibiotic usage, and stocking density among others385

(Sibanda et al., 2018), will have the significant potential to both decrease incidence of Campylobacter and may simultaneously386
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improve the welfare of the flock. While disappointing to not ascertain the primary root cause of increased Campylobacter387

prevalence from within our considered set of variables, the work has revealed a key network of dependencies within commonly388

recorded and studied metrics. While far from the first study to examine the contributions of multiple health factors towards389

Campylobacter colonization (Babacan et al., 2020; Frosth et al., 2020; Humphery et al., 1993; Rushton et al., 2009), our work390

is the first, to our knowledge, to utilise the powerful methodologies underlying Bayesian network analysis in studying the391

spread of Campylobacter. Such approaches, in combination with more traditional logistic regression analyses, greatly increase392

the descriptive power of gathered datasets, and it is our hope that this work will help expedite their adoption throughout the393

field of Campylobacter risk management. Bayesian networks have had some early success already in specifically implicating394

welfare measures with specific housing variables (Comin et al., 2019), we now further our attempts to identify the variables that395

exacerbate the spread of Campylobacter.396

397

This study illustrates the need to investigate, more thoroughly, management decisions in the broiler industry, so as to re-398

duce Campylobacter incidence whilst improving bird health and welfare, to provide the consumer with a better product whilst399

reducing the impact of campylobacteriosis on human health.400
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A Appendices566

A.1 Appendix 1 - Bayesian Statistics567

This brief section aims to convey the basic principles of Bayesian statistics, and familiarise the reader with the terminology that568

is be used throughout the manuscript. For an in-depth explanation, we recommend the text by Kruschke (2014).569
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570

Bayesian statistics is derived wholly from the relationship defined by Bayes’ theorem,571

P(θ |D) =
P(D|θ)P(θ)

P(D)
. (2)

If we consider θ as some statistical parameter we wish to infer, and D as some data informing the parameter, then equation572

(1) expresses that the probability distribution for our value of θ , given our dataset (P(θ |D)), is proportional to the likelihood of573

such data (P(D|θ)) multiplied by the probability distribution of θ free of any data (P(θ)).574

575

One starts with a prior probabilistic understanding of the values θ , often informed by expert opinion, and by utilising576

relevant data, D, we update our belief in the values θ may take, producing a new posterior distribution. Mnemonically, if577

we wished to calculate the probability that a flipped coin will land heads up, we may have a prior belief that the coin is fair.578

However, upon observing a data set of 5 coin flips, all of which produced heads, we may update our posterior belief to reflect579

that the coin may be biased.580

581

The analytical difficulty in this calculation lies in computing P(D) =
∫

P(D|θ)P(θ)dθ , which is often near impossible582

for realistically complex models. Fortunately modern computing power enables us to efficiently estimate our posterior distribu-583

tions through algorithms such as Gibbs sampling and other Metropolis-Hastings schemes.584

585

Hierarchical systems represent multi-variable models where some parameters depend on other parameters. Returning to586

the example of a coin flip, say the probability of heads (θ ) is dependent on the factory in which the coin was minted. The587

probability that a coin was from a certain factory (ω) will then inform our value of (θ ). Expressed mathematically, equation (1)588

now becomes:589

P(θ ,ω|D) =
P(D|θ ,ω)P(θ ,ω)

P(D)

=
P(D|θ ,ω)P(θ |ω)P(ω)

P(D)
. (3)

This means that a prior distribution is only required for ω , as this distribution will directly inform our conditional prior of590

θ , via our model formulation. As such, when provided with data on coin flips from multiple coins from different factories, we591

obtain a posterior probability distribution of which factory a coin has come from, and the resulting probability of a coin flip592

resulting in heads. This structure of conditional independence means that data relating specifically to one parameter can still593

help inform the posterior of all other dependent variables, a key advantage of Bayesian inference.594
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A.2 Appendix 2 - Logistic Regression maximal model to minimal adequate model595

First we present the logistic regression analysis of the maximal model:596

Table 7. Logistic regression analysis of the maximal model.

Predictor β (Estimate) SE β Wald-test z-score p eβ (odds ratio)

(Intercept) 8.958 7.00 1.28 0.2006 NA
Number placed -5.435 ×10−5 6.928 ×10−5 -0.785 0.433 0.999

Breed (1 = B, 0 = A) -1.510 0.788 -1.916 0.0554 0.221
Breed (1 = A & B, 0 = A) -1.213 1.815 -0.668 0.504 0.297

Mean parent age 0.0255 0.0406 0.629 0.529 1.026
No. parent flocks (1 = 2 flocks, 0 = 1 flock) -0.456 0.755 -0.604 0.546 0.638
No. parent flocks (1 = 3 flocks, 0 = 1 flock) -0.930 0.846 -1.1 0.271 0.394
No. parent flocks (1 = 4 flocks, 0 = 1 flock) -1.372 1.519 -0.903 0.367 0.254

28-day mortality percentage -0.339 0.318 -1.065 0.287 0.713
Pododermatitis percentage -0.016 0.015 -1.142 0.253 0.983

Hock burn percentage -0.0531 0.0240 -2.215 0.0268 0.948
28-day average weight -0.0050 0.0047 -1.070 0.284 0.995
Minimum temperature 0.512 0.135 3.809 0.0001 1.669

Test χ2 p

Overall model evaluation *

Likelihood ratio test 43.748 1.685×10−5

Goodness of fit test
Hosmer-Lemeshow 7.9779 0.436

McFadden’s R2 0.376
Cox & Snell’s R2 0.406

* Compared against null model.
597
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We then iteratively remove the least significant variables, until only significant variables remain. Firstly we remove Mean598

parent age.599

Table 8. Logistic regression analysis of the maximal model with Mean parent age removed.

Predictor β (Estimate) SE β Wald-test z-score p

(Intercept) 8.887 6.863 1.295 0.195
Number placed -7.137 ×10−5 6.412 ×10−5 -1.113 0.195

Breed (1 = B, 0 = A) -1.382 0.755 -1.832 0.067
Breed (1 = A & B, 0 = A) -1.155 1.806 -0.639 0.523

No. parent flocks (1 = 2 flocks, 0 = 1 flock) -0.461 0.749 -0.616 0.538
No. parent flocks (1 = 3 flocks, 0 = 1 flock) -0.973 0.850 -1.144 0.253
No. parent flocks (1 = 4 flocks, 0 = 1 flock) -1.426 1.556 -0.916 0.360

28-day mortality percentage -0.392 0.312 -1.257 0.209
Pododermatitis percentage -0.017 0.015 -1.160 0.246

Hock burn percentage -0.0527 0.0239 -2.201 0.0277
28-day average weight -0.0038 0.0041 -0.917 0.359
Minimum temperature 0.497 0.128 3.883 0.0001

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 47.16 2.014×10−6

Likelihood ratio test 2 0.4033 0.5254

Goodness of fit test
Hosmer-Lemeshow 11.131 0.1944

McFadden’s R2 0.372
Cox & Snell’s R2 0.403

1 Compared against null model.
2 Compared against maximal model.

600
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Next we remove Number of parent flocks.601

Table 9. Logistic regression analysis of the maximal model with Number of parent flocks removed.

Predictor β (Estimate) SE β Wald-test z-score p

(Intercept) 10.63 6.715 1.583 0.113
Number placed -8.973 ×10−5 6.650 ×10−5 -1.349 0.1773

Breed (1 = B, 0 = A) -1.542 0.744 -2.072 0.0382
Breed (1 = A & B, 0 = A) -1.408 1.602 -0.879 0.3794

28-day mortality percentage -0.383 0.289 -1.325 0.185
Pododermatitis percentage -0.017 0.014 -1.248 0.212

Hock burn percentage -0.0477 0.0237 -2.013 0.044
28-day average weight -0.0050 0.0039 -1.265 0.2058
Minimum temperature 0.506 0.130 3.893 0.0001

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 41.44 1.728×10−6

Likelihood ratio test 2 2.314 0.678

Goodness of fit test
Hosmer-Lemeshow 27.57 0.0005

McFadden’s R2 0.356
Cox & Snell’s R2 0.389

1 Compared against null model.
2 Compared against maximal model.

602
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Next we remove Pododermatitis percentage.603

Table 10. Logistic regression analysis of the maximal model with Pododermatitis percentage removed.

Predictor β (Estimate) SE β Wald-test z-score p

(Intercept) 8.086 6.309 1.282 0.200
Number placed -6.77 ×10−5 6.029 ×10−5 -1.123 0.2615

Breed (1 = B, 0 = A) -1.501 0.735 -2.043 0.0410
Breed (1 = A & B, 0 = A) -0.647 1.456 -0.444 0.657

28-day mortality percentage -0.366 0.283 -1.295 0.195
Hock burn percentage -0.0519 0.0228 -2.283 0.0224
28-day average weight -0.0046 0.0038 -1.186 0.2356
Minimum temperature 0.540 0.129 4.192 0.00003

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 39.76 1.398×10−6

Likelihood ratio test 2 3.986 0.551

Goodness of fit test
Hosmer-Lemeshow 25.464 0.00130

McFadden’s R2 0.341
Cox & Snell’s R2 0.377

1 Compared against null model.
2 Compared against maximal model.
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Next we remove Number placed.605

Table 11. Logistic regression analysis of the maximal model with Number placed removed.

Predictor β (Estimate) SE β Wald-test z-score p

(Intercept) 4.983 5.434 0.917 0.359
Breed (1 = B, 0 = A) -1.825 0.697 -2.617 0.0089

Breed (1 = A & B, 0 = A) -1.267 1.358 -0.933 0.351
28-day mortality percentage -0.228 0.238 -0.956 0.339

Hock burn percentage -0.0513 0.0211 -2.435 0.0149
28-day average weight -0.0037 0.0037 -1.016 0.310
Minimum temperature 0.491 0.113 4.341 0.00001

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 38.512 8.921×10−7

Likelihood ratio test 2 5.237 0.514

Goodness of fit test
Hosmer-Lemeshow 22.82 0.0036

McFadden’s R2 0.331
Cox & Snell’s R2 0.368

1 Compared against null model.
2 Compared against maximal model.
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Next we remove 28-day mortality percentage.607

Table 12. Logistic regression analysis of the maximal model with 28-day mortality percentage
removed.

Predictor β (Estimate) SE β Wald-test z-score p

(Intercept) 3.835 5.266 0.728 0.466
Breed (1 = B, 0 = A) -1.639 0.652 -2.513 0.0120

Breed (1 = A & B, 0 = A) -1.133 1.406 -0.806 0.420
Hock burn percentage -0.045 0.019 -2.33 0.0197
28-day average weight -0.0036 0.0037 -0.978 0.328
Minimum temperature 0.471 0.108 4.344 0.00001

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 37.59 4.553×10−7

Likelihood ratio test 2 6.155 0.522

Goodness of fit test
Hosmer-Lemeshow 23.16 0.0032

McFadden’s R2 0.323
Cox & Snell’s R2 0.361

1 Compared against null model.
2 Compared against maximal model.
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Next we remove 28-day average weight.609

Table 13. Logistic regression analysis of the maximal model with 28-day average weight
removed.

Predictor β (Estimate) SE β Wald-test z-score p

(Intercept) -1.29 0.669 -1.935 0.0529
Breed (1 = B, 0 = A) -1.596 0.650 -2.455 0.0141

Breed (1 = A & B, 0 = A) -1.030 1.341 -0.768 0.443
Hock burn percentage -0.043 0.019 -2.238 0.0252
Minimum temperature 0.464 0.106 4.382 0.00001

Test χ2 p

Overall model evaluation
Likelihood ratio test 1 36.611 2.166×10−7

Likelihood ratio test 2 7.137 0.5219

Goodness of fit test
Hosmer-Lemeshow 16.699 0.033

McFadden’s R2 0.314
Cox & Snell’s R2 0.353

1 Compared against null model.
2 Compared against maximal model.

610

611

The only remaining non-significant variable remains within the Breed variable. Table 13 shows that the factor ‘Breed A &612

B’ is not statistically significantly different in its predictive potential from Breed A birds. As such, we collapse the ‘Breed A’613

and ‘Breed A & B’ factors together, to produce the final minimal adequate model as provided in Table 4 of the manuscript.614
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A.3 Appendix 3 - Bayesian network structure with BDE scoring615

Here we present the best-fit network structure when the hill-climbing algorithm is used with BDE scoring instead of BIC616

scoring.617

Figure 3. Bayesian network structure showing the interrelationships between multiple welfare and rearing practise factors in
a flock of broilers. Campylobacter colonization is directly impacted by the season the flock is grown in. Structure was learned
using a hill-climbing algorithm, and sampled networks scored using the Bayesian Dirichlet equivalent score (BDE).
Arrow-width indicates arc strength as scored by BDE.

We provide the exact arc strengths as scored by BDE below.

Table 14. Arc strengths of the Bayesian network shown in Figure A.2.1. Arc
strength is measured by Bayesian Dirichlet equivalent score (BDE), where a
lower value indicators a stronger link.

Parent Child Arc Strength

Company Farm -52.501334
Company Number placed -28.237221

Date placed Minimum temperature -31.034381
7-day Mortality Percentage 28-day Mortality Percentage -20.568572

Company Breed -17.193869
Date placed Campylobacter colonization -18.176669
Company 7-day Mortality Percentage -11.413902

Number placed Date placed -5.470563
Minimum temperature Campylobacter colonization -4.876092

Breed Number placed -4.271554
7-day average weight 28-day average weight -3.898640

Breed Pododermatitis percentage -2.886749
Company 7-day average weight -2.621290

618
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A.4 Appendix 4 - Campylobacter conditional probability tables619

The network structure shown in Figure 2 displays that the date placed alone captures the probabilistic distribution of whether620

or not a flock is colonized by Campylobacter. However, in the absence of data on the date placed, other predictor variables621

can inform our expectations of whether or not a flock will be Campylobacter positive. The following tables provide these622

conditional probabilities for Campylobacter colonization under the assumption that no data is known other than the variable623

displayed. The best fit parameters via both Bayesian inference and MLE are given. The Bayesian estimates are built from a624

larger dataset of 114 entries, 33 of which contain some missing data. We do not provide tables upon mean parent age or number625

of parent flocks, as these variables were found to be unassociated.626

Table 15. Conditional probability table for Campylobacter colonization status, when data is only available on the Company
variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of 10. Below
that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Company

Campylobacter colonization 1 2

Negative 0.508 0.379
Positive 0.492 0.621

Maximum Likelihood Estimator

Company

Campylobacter colonization 1 2

Negative 0.576 0.430
Positive 0.424 0.570
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Table 16. Conditional probability table for Campylobacter colonization status, when data is only available on the Farm
variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of 10. Below
that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Farm

Campylobacter colonization C1F1 C2F1 C2F2 C2F3

Negative 0.505 0.386 0.387 0.388
Positive 0.495 0.614 0.613 0.612

Maximum Likelihood Estimator

Farm

Campylobacter colonization C1F1 C2F1 C2F2 C2F3

Negative 0.576 0.430 0.430 0.430
Positive 0.424 0.570 0.570 0.570

Table 17. Conditional probability table for Campylobacter colonization status, when data is only available on the ‘number
placed’ variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of 10.
Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Number placed

Campylobacter colonization [11770,22000] (22000,33503.3] (33503.3,34650]

Negative 0.362 0.533 0.533
Positive 0.638 0.467 0.467

Maximum Likelihood Estimator

Number placed

Campylobacter colonization [11770,22000] (22000,33503.3] (33503.3,34650]

Negative 0.417 0.616 0.544
Positive 0.583 0.384 0.456
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Table 18. Conditional probability table for Campylobacter colonization status, when data is only available on the breed
variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of 10. Below
that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Breed

Campylobacter colonization B A A & B

Negative 0.471 0.410 0.479
Positive 0.529 0.590 0.521

Maximum Likelihood Estimator

Breed

Campylobacter colonization B A A & B

Negative 0.555 0.454 0.576
Positive 0.445 0.546 0.424

Table 19. Conditional probability table for Campylobacter colonization status, when data is only available on the 7-day
mortality variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of
10. Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

7-Day Mortality Percentage

Campylobacter colonization [0.65,1.21] (1.21,1.81] (1.81,7.26]

Negative 0.496 0.444 0.406
Positive 0.504 0.556 0.594

Maximum Likelihood Estimator

7-Day Mortality Percentage

Campylobacter colonization [0.65,1.21] (1.21,1.81] (1.81,7.26]

Negative 0.571 0.517 0.468
Positive 0.429 0.483 0.532
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Table 20. Conditional probability table for Campylobacter colonization status, when data is only available on the 28-day
mortality variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of
10. Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

28-Day Mortality Percentage

Campylobacter colonization [1.97,3.06667] (3.06667,4.05667] (4.05667,9.61]

Negative 0.480 0.445 0.419
Positive 0.520 0.555 0.581

Maximum Likelihood Estimator

28-Day Mortality Percentage

Campylobacter colonization [1.97,3.06667] (3.06667,4.05667] (4.05667,9.61]

Negative 0.557 0.518 0.481
Positive 0.443 0.482 0.519

Table 21. Conditional probability table for Campylobacter colonization status, when data is only available on the 7-day
weight variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of 10.
Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

7-Day Average Weight

Campylobacter colonization [144,170.667] (170.667,181] (181,213]

Negative 0.481 0.453 0.418
Positive 0.519 0.547 0.582

Maximum Likelihood Estimator

7-Day Average Weight

Campylobacter colonization [144,170.667] (170.667,181] (181,213]

Negative 0.555 0.522 0.479
Positive 0.445 0.478 0.521
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Table 22. Conditional probability table for Campylobacter colonization status, when data is only available on the 28-day
weight variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of 10.
Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

28-Day Average Weight

Campylobacter colonization [1138,1388.33] (1388.33,1475.33] (1475.33,1565]

Negative 0.459 0.451 0.433
Positive 0.541 0.549 0.567

Maximum Likelihood Estimator

28-Day Average Weight

Campylobacter colonization [1138,1388.33] (1388.33,1475.33] (1475.33,1565]

Negative 0.538 0.522 0.496
Positive 0.462 0.478 0.504

Table 23. Conditional probability table for Campylobacter colonization status, when data is only available on the hock burn
percentage variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size of
10. Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Hock Burn Percentage

Campylobacter colonization [0,10] (10,20] (20,90]

Negative 0.438 0.447 0.452
Positive 0.562 0.553 0.548

Maximum Likelihood Estimator

Hock Burn Percentage

Campylobacter colonization [0,10] (10,20] (20,90]

Negative 0.490 0.520 0.548
Positive 0.510 0.480 0.452
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Table 24. Conditional probability table for Campylobacter colonization status, when data is only available on the
pododermatitis percentage variable. We present values calculated by Bayesian inference using uniform priors, and an
equivalent sample size of 10. Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Pododermatitis Percentage

Campylobacter colonization [1,42.6667] (42.6667,76] (76,95]

Negative 0.448 0.457 0.436
Positive 0.552 0.543 0.564

Maximum Likelihood Estimator

Pododermatitis Percentage

Campylobacter colonization [1,42.6667] (42.6667,76] (76,95]

Negative 0.524 0.537 0.490
Positive 0.476 0.463 0.510

Table 25. Conditional probability table for Campylobacter colonization status, when data is only available on the minimum
temperature variable. We present values calculated by Bayesian inference using uniform priors, and an equivalent sample size
of 10. Below that we present values calculated via a maximum likelihood estimator.

Bayesian Inference

Minimum Temperature

Campylobacter colonization [1.3,4] (4,8.7] (8.7,13.8]

Negative 0.452 0.442 0.416
Positive 0.548 0.558 0.584

Maximum Likelihood Estimator

Minimum Temperature

Campylobacter colonization [1.3,4] (4,8.7] (8.7,13.8]

Negative 0.694 0.465 0.313
Positive 0.306 0.535 0.687
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