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SUMMARY
Synaptic plasticity rules used in current computational models of learning are generally insensitive to phys-
iological factors such as spine voltage, animal age, extracellular fluid composition, and body temperature,
limiting their predictive power. Here, we built a biophysically detailed synapse model inclusive of electri-
cal dynamics, calcium-dependent signaling via CaMKII and Calcineurin (CaN) activities. The model com-
bined multi-timescale variables, milliseconds to minutes, and intrinsic noise from stochastic ion channel gat-
ing. Analysis of the trajectories of joint CaMKII and CaN activities yielded an interpretable geometrical
readout that fitted the synaptic plasticity outcomes of nine published ex vivo experiments covering various
spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental condi-
tions. Using this new approach, we then generated maps predicting plasticity outcomes across the space of
these stimulation conditions. Finally, we tested the model’s robustness to in vivo-like spike time irregularity,
showing that it significantly alters plasticity outcomes.

INTRODUCTION

To understand how brains learn, we need to identify the
rules governing how synapses change their strength in
neural circuits. What determines whether each synapse
strengthens, weakens, or stays the same? The domi-
nant principle at the basis of current models of synap-
tic plasticity is the Hebb postulate (Hebb, 1949) which
states that neurons with correlated electrical activity
strengthen their synaptic connections, while neurons
active at different times weaken their connections. In
particular, spike-timing-dependent plasticity (STDP)
models (Blum and Abbott, 1996; Gerstner et al., 1996;
Eurich et al., 1999) were formulated based on exper-
imental observations that precise timing of pre- and
post-synaptic spiking determines whether synapses
are strengthened or weakened (Debanne et al., 1996;
Tsodyks and Markram, 1997; Bi and Poo, 1998; Markram
et al., 2011). However experiments also found that
plasticity induction depends on the rate and number

of stimuli presented to the synapse (Dudek and Bear,
1992; Sjöström et al., 2001), and the level of dendritic
spine depolarisation (Artola et al., 1990; Magee and
Johnston, 1997; Sjöström and Häusser, 2006; Golding
et al., 2002; Hardie and Spruston, 2009). The lack of
satisfactory plasticity models based solely on neural
spiking prompted researchers to consider more elabo-
rate models based on synapse biochemistry (Shouval
et al., 2010). Following a proposed role for postsynaptic
calcium (Ca2+) signalling in synaptic plasticity (Lisman,
1989), previous models assumed that the amplitude of
postsynaptic calcium controls long-term alterations in
synaptic strength, with moderate levels of calcium caus-
ing long-term depression (LTD) and high calcium caus-
ing long-term potentiation (LTP) (Shouval et al., 2002;
Karmarkar and Buonomano, 2002). Recent experimen-
tal data suggests that calcium dynamics is also impor-
tant (Yang et al., 1999; Mizuno et al., 2001; Wang et al.,
2005; Nevian and Sakmann, 2006; Tigaret et al., 2016).
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As a result, subsequent phenomenological models of
plasticity incorporated slow variables that integrate the
fast synaptic input signals, loosely modelling calcium
and its downstream effectors (Abarbanel et al., 2003;
Rubin et al., 2005; Rackham et al., 2010; Clopath and
Gerstner, 2010; Kumar and Mehta, 2011; Graupner and
Brunel, 2012; Standage et al., 2014; De Pittà and Brunel,
2016).

However, even these models do not account for data
showing that plasticity is highly sensitive to physiolog-
ical conditions such as the developmental age of the
animal (Dudek and Bear, 1993; Meredith et al., 2003;
Cao and Harris, 2012; Cizeron et al., 2020), extracellular
calcium and magnesium concentrations (Mulkey and
Malenka, 1992; Inglebert et al., 2020) and tissue tem-
perature (Volgushev et al., 2004; Wittenberg and Wang,
2006; Klyachko and Stevens, 2006). The fundamental
issue is that the components of these phenomenological
models do not directly map to biological components
of synapses, so they cannot automatically model alter-
ations due to physiological and experimental conditions.
This absence limits the predictive power of existing plas-
ticity models.

To tackle this problem, we took a bottom-up, data-
driven approach by building a biologically-grounded
model of plasticity induction at a single rat hippocam-
pal CA3–CA1 synapse. We focus on this synapse type
because of the abundant published experimental data
that can be used to quantitatively constrain the model
parameters. Compared to previous models in the lit-
erature, we aimed for an intermediate level of detail:
enough biophysical components to capture the key dy-
namical processes underlying plasticity induction, but
not the full molecular cascade underlying plasticity ex-
pression; much of which is poorly quantified (Heil et al.,
2018). Our model centred on dendritic spine electri-
cal dynamics, calcium signalling and immediate down-
stream molecules, which we then mapped to synaptic
strength change via an conceptually new dynamical, ge-
ometric readout mechanism. Crucially, the model also
captures intrinsic noise based on the stochastic switch-
ing of synaptic receptors and ion channels (Yuste et al.,
1999; Ribrault et al., 2011). We found that the model
can account for published data from spike-timing and
frequency-dependent plasticity experiments, and varia-
tions in physiological parameters influencing plasticity
outcomes. We also tested how the model responded to
in vivo-like spike timing jitter and spike failures, and
found that the plasticity rules were highly sensitive to
these subtle input alterations.

RESULTS
A multi-timescale model of synaptic plasticity in-
duction
We built a computational model of plasticity induction
at a single CA3-CA1 rat glutamatergic synapse (Fig-

ure 1). Our goal was to reproduce results on synap-
tic plasticity that explored the effects of several exper-
imental parameters: fine timing differences between
pre and postsynaptic spiking (Figures 2-3); stimulation
frequency (Figure 4); animal age (Figure 5); external
calcium and magnesium (Figure 6); stochasticity in the
firing structure (Figure 7), temperature and experimen-
tal conditions variations (Supplemental Information).
Where possible, we set parameters to values previously
estimated from experiments, and tuned the remainder
within physiologically plausible ranges to reproduce
our target plasticity experiments (Methods).

The model components are schematized in Figure
1A (full details in Methods). For glutamate release, we
used a two-pool vesicle depletion and recycling system,
which accounts for short-term presynaptic depression
and facilitation. When glutamate is released from vesi-
cles, it can bind to the postsynaptic α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid and N-methyl-D-
aspartate receptors (AMPArs and NMDArs, respec-
tively). When dendritic spine voltage depolarises, it
activates voltage-gated calcium channels (VGCCs) and
removes magnesium (Mg2+) block from NMDArs. Back-
propagating action potentials (BaP) can also cause spine
depolarisation. As an inhibitory component, we mod-
elled a gamma-aminobutyric acid receptor (GABAr)
synapse on the dendrite shaft (Destexhe et al., 1998). Cal-
cium ions influxing through VGCCs and NMDArs can
activate hyperpolarising SK potassium channels (Adel-
man et al., 2012; Griffith et al., 2016), bind to calmodulin
(CaM) or to a generic calcium buffer. Calcium-bound
calmodulin activates two major signalling molecules
immediately downstream of Ca/CaM enzymes (Fujii
et al., 2013): Ca2+/calmodulin-dependent protein ki-
nase II (CaMKII) or calcineurin (CaN) phosphatase, also
known as PP2B (Saraf et al., 2018). We included these
two proteins because CaMKII activation is necessary
for Schaffer-collateral LTP Giese et al. (1998); Chang
et al. (2017), while CaN activation is necessary for LTD
(O’Connor et al., 2005; Otmakhov et al., 2015). Later,
we show how we map the joint activity of CaMKII and
CaN to LTP and LTD.

Synaptic receptors and ion channels have an inher-
ent random behavior, stochastically switching between
open and closed states (Ribrault et al., 2011). If the
number of receptors or channels is large, then the vari-
ability of the total population activity becomes negligi-
ble relative to the mean (O’Donnell and van Rossum,
2014). However individual hippocampal synapses con-
tain only small numbers of receptors and ion channels,
for example ∼10 NMDA receptors and <15 VGCCs
(Takumi et al., 1999; Sabatini and Svoboda, 2000; Nim-
chinsky et al., 2004), making their total activation highly
stochastic. Therefore, we modelled AMPAr, NMDAr,
VGCCs and GABAr as stochastic processes. Presynaptic
vesicle release events were also stochastic: glutamate
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Figure 1. The synapse model, its timescales and mechanisms. A) Model diagram with the synaptic components, the pre and postsynaptic compartments. In-
hibitory receptor bottom left. B) Stochastic dynamics of the different receptors and channels. Plots show the total number of open channels/receptors as a function
of time. AMPArs and NMDArs are activated by glutamate, VGCC are activated by membrane potential, and GABArs are activated by GABA. The timescale of
variable response increases from top to bottom panels. C) Dendritic spine membrane potential (left) and calcium concentration (right) as function of time for a
single causal (1Pre1Post10) stimulus. D) Left: depletion of vesicle pools (reserve and docked) induced by 30 pairing repetitions delivered at 5 Hz (Sterratt et al.,
2011) (Methods). The same vesicle depletion rule is applied to both glutamate and GABA. Right: BaP efficiency as function of time. BaP efficiency controls the
axial resistance between soma and dendrite in order to phenomenologically capture the distance-dependent BaP attenuation (Buchanan and Mellor, 2007; Golding
et al., 2001) (Methods). E) Activated enzyme concentration for CaM, CaN and CaMKII, as function of time for the stimulus 1Pre1Post10, 30 pairing repetitions
delivered at 5 Hz. Note that the vertical grey bar is the duration of the stimuli, 6 s.

release was an all-or-nothing event, and the amplitude
of each glutamate pulse was drawn randomly, mod-
elling heterogeneity in vesicle size (Liu et al., 1999). The
inclusion of stochastic processes to account for an intrin-
sic noise in synaptic activation (Deperrois and Graup-
ner, 2020) contrasts with most previous models in the
literature, which either represent all variables as con-
tinuous and deterministic or add an external generic
noise source (although see Bhalla, 2004; Antunes and
De Schutter, 2012; Bartol et al., 2015).

The synapse model showed nonlinear dynamics
across multiple timescales. For illustration, we stim-
ulated the synapse with single simultaneous glutamate
and GABA vesicle releases (Figure 1B). AMPArs and
VGCCs open rapidly but close again within a few mil-
liseconds. The dendritic GABAr closes more slowly, on
a timescale of ∼10 ms. NMDArs, the major calcium
source, closes on timescales of ∼50 ms and ∼250 ms for
the GluN2A and GluN2B subtypes, respectively.

To show the typical responses of the spine head volt-
age and Ca2+, we stimulated the synapse with a single
presynaptic pulse (EPSP) paired 10 ms later with a sin-
gle BaP (1Pre1Post10) (Figure 1C, left). For this pairing,
when BaP is triggered immediately after an EPSP, it

leads to a large Ca2+ transient aligned with the BaP due
to the NMDArs first being bound by glutamate then
unblocked by the BaP depolarisation (Figure 1C, right).

Single pre or postsynaptic stimulation pulses did
not cause depletion of vesicle reserves or substantial
activation of the enzymes. To illustrate these slower-
timescale processes, we stimulated the synapse with a
prolonged protocol: one presynaptic pulse followed by
one postsynaptic pulse 10 ms later, repeated 30 times
at 5 Hz (Figure 1D, E). The number of vesicles in both
the docked and reserve pools decreased substantially
over the course of the stimulation train (Figure 1D, left),
which in turn causes decreased vesicle release probabil-
ity. Similarly, by the 30th pulse, the dendritic BaP am-
plitude had attenuated to ∼85% (∼70% BaP efficiency;
Figure 1D, right) of its initial amplitude, modelling the
effects of slow dendritic sodium channel inactivation
(Colbert et al., 1997; Golding et al., 2001). CaM concen-
tration rose rapidly in response to calcium transients but
also decayed back to baseline on a timescale of ∼500 ms
(Figure 1E top). In contrast, the concentration of active
CaMKII and CaN accumulated over a timescale of sec-
onds, reaching a sustained peak during the stimulation
train, then decayed back to baseline on a timescale of
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∼10 and ∼120 s respectively, in line with experimental
data (Quintana et al., 2005; Fujii et al., 2013; Chang et al.,
2017) (Figure 1E middle and bottom).

The effects of the stochastic variables can be seen
in Figure 1B–D. The synaptic receptors and ion chan-
nels open and close randomly (Figure 1B). Even though
spine voltage, calcium, and downstream molecules
were modelled as continuous and deterministic, they in-
herited some randomness from the upstream stochastic
variables. As a result, there was substantial trial-to-trial
variability in the voltage and calcium responses to iden-
tical pre and postsynaptic spike trains (grey traces in
Figure 1D). This variability was also passed on to the
downstream enzymes CaM, CaMKII and CaN, but was
filtered and therefore attenuated by the slow dynamics
of CaMKII and CaN. In summary, the model contained
stochastic nonlinear variables acting over five different
orders of magnitude of timescale, from∼1 ms to∼1 min,
making it sensitive to both fast and slow components of
input signals.

Distinguishing between stimulation protocols us-
ing the CaMKII and CaN joint response
It has proven difficult for simple models of synaptic
plasticity to capture the underlying rules and explain
why some stimulation protocols induce plasticity while
others do not. We tested the model’s sensitivity by sim-
ulating its response to a set of protocols used by Tigaret
et al. (2016) in a recent ex vivo experimental study on
adult (P50-55) rat hippocampus with blocked GABAr.
We focused on three pairs of protocols (three rows in Fig-
ure 2). In each case in Tigaret et al. (2016)’s experiments,
one of the pair induced LTP or LTD, while the other sub-
tly different protocol caused no change (NC) in synaptic
strength. We asked if the model’s joint CaMKII-CaN ac-
tivity could distinguish between each pair of protocols.

The first pair of protocols differed in intensity. A
protocol which caused no plasticity consisted of 1 presy-
naptic spike followed 10 ms later by one postsynaptic
spike repeated at 5 Hz for one minute (1Pre1Post10, 300
at 5Hz). The other protocol induced LTP, but differed
only in that it included a postsynaptic doublet instead
of a single spike (1Pre2Post10, 300 at 5Hz), implying a
slightly stronger BaP amplitude initially. For the plots
in Figure 2A, it was not possible to set a single concen-
tration threshold on either CaMKII or CaN that would
discriminate between the protocols.

To achieve better separability, we combined the ac-
tivity of the two enzymes, plotting the joint CaMKII
and CaN responses against each other on a 2D plane
(Figure 2B). In this geometric plot, the two protocol’s tra-
jectories can be seen to overlap for the initial part of the
transient, but then diverge. To quantify trial to trial vari-
ability, we also calculated contour maps showing the
mean fraction of time the trajectories spent in each part
of the plane during the stimulation (Figure 2C). Impor-

tantly, both the trajectories and contour maps were sub-
stantially non-overlapping between the two protocols,
implying that they can be separated based on the joint
CaN-CaMKII activity. We found that the 1Pre2Post10
protocol leads to a weaker response in both CaMKII and
CaN, corresponding to the lower blue traces Figure 2 B.
The decreased response to the doublet protocol was due
to the enhanced attenuation of dendritic BaP amplitude
over the course of the simulation (Golding et al., 2001),
leading to less calcium influx through NMDArs and
VGCCs (data not shown).

The second pair of protocols we explored differed in
sequencing. We stimulated the synapse model with one
causal (EPSP-BaP) protocol involving a single presynap-
tic spike followed 50 ms later by a doublet of postsynap-
tic spikes (1Pre2Post50, 300 at 5Hz), repeated at 5 Hz
for one minute, which Tigaret et al. (2016) found caused
LTP. The other anticausal protocol involved the same
total number of pre and postsynaptic spikes, but with
the pre-post order reversed (2Post1Pre50, 300 at 5Hz).
Experimentally this anticausal (BaP-EPSP) protocol did
not induce plasticity. Notably, the only difference was
the sequencing of whether the pre or postsynaptic neu-
ron fired first, over a short time gap of 50 ms. Despite
the activations being apparently difficult to distinguish
(Figure 2D), we found that the LTP-inducing protocol
caused greater CaN activation than the protocol that
did not trigger plasticity. Indeed, this translated to a
horizontal offset in both the trajectory and contour map
(Figure 2E,F), demonstrating that another pair of proto-
cols can be separated in the joint CaN-CaMKII plane.

The third pair of protocols differed in both dura-
tion and intensity. In line with previous studies, Tigaret
et al. (2016) found that a train of doublets of presynaptic
spikes separated by 50 ms repeated at a low frequency
of 3 Hz for 5 minutes (2Pre50, 900 at 3Hz) induced LTD,
while a slightly more intense but shorter duration pro-
tocol of presynaptic spike doublets separated by 10 ms
repeated at 5 Hz for one minute (2Pre10, 300 at 5Hz)
did not cause plasticity. When we simulated both pro-
tocols in the model (Figure 2G–I), both caused similar
initial responses in CaMKII and CaN. In the shorter pro-
tocol, this activation decayed to baseline within 100 s
of the end of the stimulation. However the slower and
longer-duration 2Pre50 3Hz 900p protocol caused an
additional sustained, stochastically fluctuating, plateau
of activation of both enzymes (Figure 2G). This resulted
in the LTD-inducing protocol having a downward and
leftward-shifted CaN-CaMKII trajectory and contour
plot, relative to the other protocol (Figure 2 H, I). These
results again showed that the joint CaN-CaMKII activity
may be useful to predict plasticity changes.
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Figure 2. The duration and amplitude of the joint CaN-CaMKII activity differentiates plasticity protocols. A) Activity of CaMKII (solid line) and CaN (dashed
line) (µM) for two protocols. Experimentally the 1Pre2Post10 produces LTP, and 1Pre1Post10 produces no change (NC). Both are composed of 300 pairing repeti-
tions delivered at 5 Hz. B) Joint enzymatic activity (CaN-CaMKII) for the protocols in panel A. The black dot indicates the initial resting activity and the arrows
the trajectory direction as function of time. The grey points mark the time position (x-axis in panel A) for both protocols at 2, 10 and 60 s (when the stimulation
stops). The black square is the zoomed region in panel C. C) The mean time spent (colorbar) for each protocol in panel B (100 samples for each protocol for panels
C, F and I). D) Same as in panel A, but for the LTP protocol, 1Pre2Post50 and, the NC protocol, 2Post1Pre50. Both are composed of 300 pairing repetitions at 5 Hz.
E) Same as in panel B for protocols in panel D. F) The mean time spent (colorbar) for each protocol in panel E. G) Same as in panel A and D, but for two protocols
with different frequencies and pulse repetitions. The LTD protocol, 2Pre50 900 at 3 Hz and, the NC protocol 2Pre10 300 at 5 Hz. H) Same as in panel B and E for
protocols in panel G. I) The mean time spent (colorbar) for each protocol in panel H.

A geometrical readout mapping joint enzymatic ac-
tivity to plasticity outcomes

We found that the simulated CaN-CaMKII trajectories
from the two LTP-inducing protocols (1Pre2Post10 and
1Pre2Post50, at Figure 2A and 2D respectively) spent
a large fraction of time near ∼ 20 µM CaMKII and 7–
10 µM CaN. In contrast, protocols that failed to trigger
LTP had either lower (2Post1Pre50 and 2Pre10, Figure
2D and 2G respectively), or higher CaMKII and CaN
activation (1Pre1Post10, Figure 2A). The LTD-inducing
protocol, by comparison, spent a longer period in a
region of sustained but lower ∼ 12µM CaMKII and
∼ 2µM CaN and activation. The plots in Figure 2C,
F and G show contour maps of histograms of the joint
CaMKII-CaN activity, indicating where in the plane the
trajectories spent most time. Figures 2C and F indicate
this measure can be used to predict plasticity, because
the NC and LTP protocol histograms are largely non-
overlapping. In Figure 2C, the NC protocol response
‘overshoots’ the LTP protocol response, whereas in Fig-
ure 2F the NC protocol response ‘undershoots’ the LTP

protocol response. In contrast, when we compared the
response histograms for LTD and NC protocols, we
found a greater overlap (Figure 2I). This suggested that
in this case the histogram alone was not sufficient to
separate the protocols, and that protocol duration is
also important. LTD induction (2Pre50) required a more
prolonged activation than NC (2Pre10).

To design a geometrical readout mechanism to map
the enzyme activity to plasticity outcomes, we first drew
non-overlapping boxes of LTP and LTD “plasticity re-
gions” in the CaN-CaMKII plane (Figure 3A). We posi-
tioned these regions over the parts of the phase space
where the enzyme activities corresponding to the LTP-
and LTD-inducing protocols were most different, as
shown by trajectories in Figure 2. We then fixed these
regions for all subsequent parts of this study. When a
trajectory enters in one of these plasticity regions, it acti-
vates LTD or LTP indicator variables (Methods) which
encode the joint enzyme activities (trajectories in the
phase plots) transitions across the LTP and LTD regions
over time (Figure 3B). These indicator variable drove
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Figure 3. Read-out strategy an Tigaret et al. (2016) experiment. A) Illustration of the joint CaMKII and CaN activities crossing the plasticity regions. Arrows
indicate the flow of time, starting at the black dot. Note that here time is hidden and one can only see the changes in enzyme concentrations. B) Region indicator
showing when CaN and CaMKII crosses the LTD or LTP regions in panel A. Leaving the region activates a leaking mechanism that keeps track of the accumulated
time inside the region. Such leaking mechanism drives the transition rates used to predict plasticity (Methods). C) Plasticity Markov chain with three states: LTD,
LTP and NC. There are only two transition rates which are functions of the plasticity region indicator (Methods). The LTP transition is fast whereas the transition
LTD is slow, meaning that LTD change requires longer time inside the LTD region (panel A). The NC state starts with 100 processes. D) Joint CaMKII and CaN
activity for all Tigaret protocols (labelled in F). The stimulus ends when the trajectory becomes smooth. Corresponds to Figure 2B,E,H, at 60 s. E) Region indicator
for the protocols labelled in F. The upper square bumps are caused by the protocol crossing the LTP region, the lower square bumps when the protocol crosses
the LTD region (as in panel D). F) Synaptic weight (%) as function of time for each protocol. The weight change is defined as the number (out of 100) of states in
the LTP state minus the number of states in the LTD state (panel C). The trajectories correspond to the median of the simulations in panel G. G) Synaptic weight
change (%) predicted by the model compared to data (EPSC amplitudes) from Tigaret et al. (2016) (100 samples for each protocol, also for panel H and I). The data
(grey dots) was provided by Tigaret et al. (2016) (note an 230% outlier as the red asterisk), red bands indicate data means. H) Predicted mean synaptic weight
change (%) as function of delay (ms) and number of pairing repetitions (pulses) for the protocol 1Pre2Post(delay), for delay between -100 and 100. LTD is induced
by 2Post1Pre50 after at least 500 pulses. The mean weight change along each dashed line is reported in the STDP curves in panel I. I) Synaptic weight change (%)
as function of pre-post delay. Each plot corresponds to a different pairing repetition number (legend). The solid line shows the mean, and the ribbons are the 2nd
and 4th quantiles. The red dots are the data means estimated in Tigaret et al. (2016), also shown in panel G.

transition rates in a plasticity Markov chain used to pre-
dict LTP or LTD (Figure 3C), see Methods. The LTD tran-
sition rates were slower than the LTP transition rates,
to reflect studies showing that LTD requires sustained
synaptic stimulation (Yang et al., 1999; Mizuno et al.,
2001; Wang et al., 2005). The parameters for this plas-
ticity Markov chain (Methods) were fit to the plasticity
induction outcomes from different protocols (Table M1).
In the beginning of the simulation, the plasticity Markov
chain starts with 100 processes (Destexhe et al., 1998) in
the state NC, with each variable representing 1% weight
change, an abstract measure of synaptic strength that
can be either EPSP, EPSC, or field EPSP slope depending
on the experiment. Each process can transit stochasti-
cally between NC, LTP and LTD states. At the end of
the protocol, the plasticity outcome is given by the dif-
ference between the number of processes in the LTP and
the LTD states (Methods).

This readout mechanism acts as a parsimonious
model of the complex signalling cascade linking
CaMKII and CaN activation to expression of synap-
tic plasticity (He et al., 2015). It can be considered as a
two-dimensional extension of previous computational
studies that applied analogous 1D threshold functions
to dendritic spine calcium concentration (Shouval et al.,
2002; Karmarkar and Buonomano, 2002; Graupner and
Brunel, 2012; Standage et al., 2014). Our model is scal-
able, as it gives the possibility for the readout to be
extended to dynamics of n different molecules, using
n-dimensional closed regions.

In Figure 3D, we plot the model’s responses to seven
different plasticity protocols used by Tigaret et al. (2016)
by overlaying example CaMKII-CaN trajectories for
each protocol with the LTP and LTD regions. The cor-
responding region occupancies are plotted as function
of time in 3E, and long-term alterations in the synaptic
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strength are plotted as function of time in 3F. The three
protocols that induced LTP in the Tigaret et al. (2016) ex-
periments spent substantial time in the LTP region, and
so triggered potentiation. In contrast, the 1Pre1Post10
(yellow trace) overshoots both regions, crossing them
only briefly on its return to baseline, and so resulted
in little weight change. The protocol that induced LTD
(2Pre50, purple trace) is five times longer than other pro-
tocols, spending sufficient time inside the LTD region
(Figure 3F). In contrast, two other protocols that spent
time in the same LTD region of the CaN-CaMKII plane
(2Post1Pre50 and 2Pre10) were too brief to induce LTD.
These protocols were also not strong enough to reach
the LTP region, so resulted in no net plasticity, again
consistent with Tigaret et al. (2016)’s experiments.

We observed run-to-run variability in the amplitude
of the predicted plasticity, due to the inherent stochastic-
ity in the model. In Figure 3G, we plot the distribution
of the predicted plasticity from each protocol (colours)
alongside the data from Tigaret et al. (2016)’s study, find-
ing a good correspondence.

Experimentally, LTP can be induced by few pulses
while LTD usually requires longer-duration stimulation
(Yang et al., 1999; Mizuno et al., 2001; Wang et al., 2005).
We incorporated this effect into the readout model by
letting LTP have faster transition rates than LTD (Figure
3C). Tigaret et al. (2016) found that 300 repetitions of an-
ticausal post-before-pre pairings did not cause LTD, in
contrast to the canonical spike-timing-dependent plas-
ticity curve (Bi and Poo, 1998). We hypothesized that
LTD might indeed appear with the anticausal Tigaret
et al. (2016) protocol (Table M1) if stimulation duration
was increased. To explore this possibility in the model,
we systematically varied the number of paired repeti-
tions from 100 to 1200, and also co-varied the pre-post
delay from -100 to 100 ms. Figure 3H shows a contour
plot of the predicted mean synaptic strength change
across for the 1Pre2Post(delay) stimulation protocol for
different numbers of pairing repetitions. A LTD win-
dow appears after ∼500 pairing repetitions for some
anticausal pairings, in line with our hypothesis. The
magnitude of LTP also increases with pulse number,
for causal positive pairings. For either 100 or 300 pair-
ing repetitions, only LTP or NC is induced (Figure 3I).
The model also made other plasticity predictions by
varying Tigaret et al. (2016)’s experimental conditions
(Figure S1). In summary, our model readout reveals that
the direction and magnitude of the change in synaptic
strength can be predicted from the joint CaMKII-CaN
activity in the LTP and LTD regions.

Frequency-dependent plasticity
The stimulation protocols used by Tigaret et al. (2016)
explored how subtle variations in pre and postsynaptic
spike timing influenced the direction and magnitude of
plasticity (see Table M1 for experimental differences).

In contrast, traditional synaptic plasticity protocols ex-
ploring the role of presynaptic stimulation frequency
did not measure the timing of co-occurring postsynap-
tic spikes (Dudek and Bear, 1992; Wang and Wagner,
1999; Kealy and Commins, 2010). These studies found
that long-duration low-frequency stimulation induces
LTD, whereas short-duration high-frequency stimula-
tion induces LTP, with a cross-over point of zero change
at intermediate stimulation frequencies. In addition to
allowing us to explore frequency-dependent plasticity
(FDP), this stimulation paradigm also gives us further
constraints for LTD in the model since in Tigaret et al.
(2016), only one LTD case was available. For FDP, we
focused on modelling the experiments from Dudek and
Bear (1992), who stimulated Schaffer collateral projec-
tions to pyramidal CA1 neurons with 900 pulses in fre-
quencies ranging from 1 Hz to 50 Hz. In addition to
presynaptic stimulation patterns, the experimental con-
ditions differed from Tigaret et al. (2016) in two other
aspects: animal age and control of postsynaptic spik-
ing activity (see Table M1 legend). We incorporated
both age-dependence and EPSP-evoked-BaPs (Meth-
ods). Importantly, the read-out mechanism mapping
joint CaMKII-CaN activity to plasticity is the same for
all experiments in this work.

Figure 4A shows the joint CaMKII-CaN activity
when we stimulated the model with 900 presynap-
tic spikes at 1, 3, 5, 10 and 50 Hz (Dudek and Bear,
1992). Higher stimulation frequencies drove stronger
responses in both CaN and CaMKII activities (Figure
4A). Figure 4B and C show the corresponding plastic-
ity region indicator for the LTP/LTD region threshold
crossings (panel B) and the eventual synaptic strength
change (panel C). From this set of five protocols, only
the 50 Hz stimulation drove a response strong enough
to reach the LTP region of the plane (Figure 4A and D).
Although the remaining four protocols drove responses
primarily in the LTD region, only the 3 and 5 Hz stim-
ulations resulted in substantial LTD. The 1 Hz and 10
Hz stimulations resulted in negligible LTD, but for two
distinct reasons. Although the 10 Hz protocol’s joint
CaMKII-CaN activity passed through the LTD region of
the plane (Figure 4A,D), it was too brief to activate the
slow LTD mechanism built into the readout (Methods).
The 1 Hz stimulation, on the other hand, was prolonged,
but its response was mostly too weak to reach the LTD
region, crossing the threshold only intermittently (Fig-
ure 4B, bottom trace). Overall the model matched well
the mean plasticity response found by Dudek and Bear
(Figure 4E), following a classic BCM-like curve as func-
tion of stimulation frequency (Abraham et al., 2001; Bi-
enenstock et al., 1982).

We then used the model to explore the stimulation
space in more detail by varying the stimulation fre-
quency from 0.5 Hz to 50 Hz, and varying the number
of presynaptic pulses from 50 to 1200. Figure 4F shows
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Figure 4. Frequency dependent plasticity, Dudek and Bear (1992) dataset. A) Example traces of joint CaMKII-CaN activity for each of Dudek and Bear (1992)’s
protocols. B) Region indicator showing when the joint CaMKII-CaN activity crosses the LTD or LTP regions for each protocol in panel A. C) Synaptic weight
change (%) as function of time for each protocol, analogous to Figure 3C. Trace colours correspond to panel A. The trajectories displayed were chosen to match
the medians in panel E. D) Mean (100 samples) time spent (s) for protocols 1Pre for 900 pairing repetitions at 3, 10 and 50 Hz. E) Comparison between data from
Dudek and Bear (1992) and our model (1Pre 900p, 300 samples per frequency, Table M1). Data are represented as normal distributions with the mean and variance
extracted from Dudek and Bear (1992). Note that data from Dudek and Bear are given in field EPSP slope change. F) Prediction for the mean weight change (%)
varying the stimulation frequency and pulse number (24x38x100 data points, respectively pulse x frequency x samples). The red dots show the Dudek and Bear
(1992) protocol parameters, the corresponding results are shown in panel E.

a contour map of the mean synaptic strength change
(%) in this 2D frequency–pulse number space. Under
Dudek and Bear (1992)’s experimental conditions, we
found that LTD induction required at least ∼300 pulses,
at frequencies between 1Hz and 3Hz. In contrast, LTP
could be induced using ∼50 pulses at ∼20Hz or greater.
The contour map also showed that increasing the num-
ber of pulses (vertical axis in Figure 4E) increases the
magnitude of both LTP and LTD. This was paralleled
by a widening of the LTD frequency range, whereas
the LTP frequency threshold remained around ∼20Hz,
independent of pulse number. The pulse dependence
amplitude increase predicted in Figure 4 is also valid for
Tigaret et al. (2016) experiment shown in Figures S1F.

Dudek and Bear (1992)’s ex vivo experiments were
done at 35°C. However, lower temperatures are more
widely used ex vivo because they extend brain slice vi-
ability. We performed further simulations testing tem-
perature modifications for Dudek and Bear (1992)’s ex-
periment, finding that it had a strong effect on plasticity
outcomes (Figure S2D–F).

Variations in plasticity induction with developmen-
tal age
The rules for induction of LTP and LTD change dur-
ing development (Dudek and Bear, 1993; Cao and Har-
ris, 2012), so a given plasticity protocol can produce
different outcomes when delivered to synapses from
young animals versus mature animals. For example,
when Dudek and Bear (1993) tested the effects of low-
frequency stimulation (1 Hz) on CA3-CA1 synapses

from rats of different ages, they found that the magni-
tude of LTD decreases steeply with age from P7 until
becoming minimal in mature animals >P35 (Figure 5A,
circles). Across the same age range, they found that a
theta-burst stimulation protocol induced progressively
greater LTP magnitude with developmental age (Fig-
ure 5B, circles). Paralleling this, multiple properties
of neurons change during development: the NMDAr
switches its dominant subunit expression from GluN2B
to GluN2A (Sheng et al., 1994; Popescu et al., 2004; Ia-
cobucci and Popescu, 2017), the reversal potential of
the receptor (GABAr) switches from depolarising to hy-
perpolarizing (Rivera et al., 1999; Meredith et al., 2003;
Rinetti-Vargas et al., 2017), and the action potential back-
propagates more efficiently with age (Buchanan and
Mellor, 2007). These mechanisms have been proposed
to underlie the developmental changes in synaptic plas-
ticity rules because they are key regulators of synaptic
calcium signalling (Meredith et al., 2003; Buchanan and
Mellor, 2007; Sanz-Clemente et al., 2013). However,
their sufficiency and individual contributions to the age-
related plasticity changes are unclear. We incorporated
these mechanisms in the model (Methods) by parame-
terizing each of the three components to vary with the
animal’s postnatal age, to test if they could account for
the age-dependent plasticity data.

We found that elaborating the model with age-
dependent changes in NMDAr composition, GABAr
reversal potential, and BaP efficiency, while keeping the
same plasticity readout parameters, was sufficient to

8/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/


account for the developmental changes in LTD and LTP
observed by Dudek and Bear (1993) (Figure 5A,B). We
then explored the model’s response to protocols of var-
ious stimulation frequencies, from 0.5 to 50 Hz, across
ages from P5 to P80 (Figure 5C,E). Figure 5C shows the
synaptic strength change as function of stimulation fre-
quency for ages P15, P25, P35 and P45. The magnitude
of LTD decreases with age, while the magnitude of LTP
increases with age. Figure 5E shows a contour plot of
the same result, covering the age-frequency space.

Figure 5. Age-dependent plasticity, Dudek and Bear (1993) dataset A) Synap-
tic weight change for 1Pre, 900 at 1 Hz as in Dudek and Bear (1993). The solid
line is the mean and the ribbons are the 2nd and 4th quantiles predicted by our
model (same for panel B, C and F). B) Synaptic weight change for Theta Burst
Stimulation (TBS - 4Pre at 100 Hz repeated 10 times at 5Hz given in 6 epochs
at 0.1Hz (Table M1) and Dudek and Bear (1993). C) Synaptic weight change as
function of frequency for different ages. BCM-like curves showing that, dur-
ing adulthood, the same LTD protocol becomes less efficient. It also shows
that high-frequencies are inefficient at inducing LTP before P15. D) Synaptic
weight change as function of age. Proposed protocol using presynaptic bursts
to recover LTD at ≥ P35 with less pulses, 300 instead of the original 900 from
Dudek and Bear (1993). This effect is more pronounced for young rats. Figure
S3 shows a 900 pulses comparison. E) Mean synaptic strength change (%) as
function of frequency and age for 1Pre 900 pulses (32x38x100, respectively, for
frequency, age and samples). The protocols in Dudek and Bear (1993) (panel
A) are marked with the yellow vertical line. The horizontal lines represent the
experimental conditions of panel C. Note the P35 was used for Dudek and Bear
(1992) experiment in Figure 4F.F) Mean time spent for the 1Pre 1Hz 900 pulses
protocol showing how the trajectories are left-shifted as rat age increases.

The 1Hz presynaptic stimulation protocol in Dudek
and Bear (1993) did not induce LTD in adult animals
(Dudek and Bear, 1992). We found that the joint CaN-

CaMKII activity trajectories for this stimulation protocol
underwent an age-dependent leftward shift beyond the
LTD region (Figure 5F). This implies that LTD is not
induced in mature animals by this conventional LFS
protocol due to insufficient activation of enzymes. In
contrast, Tigaret et al. (2016) and Isaac et al. (2009) were
able to induce LTD in adult rat tissue by combining LFS
with presynaptic spike pairs repeated 900 times at 3
Hz. Given these empirical findings and our modelling
results, we hypothesized that LTD induction in adult
animals requires that the stimulation protocol: 1) causes
CaMKII and CaN activity to stay more in the LTD region
than the LTP region, and 2) is sufficiently long to acti-
vate the LTD readout mechanism. With experimental
parameters used by Dudek and Bear (1993), this may be
as short as 300 pulses when multi-spike presynaptic pro-
tocols are used since the joint CaMKII-CaN activity can
reach the LTD region more quickly than for single spike
protocols. We simulated two such potential protocols
as predictions: doublet and quadruplet spike groups
delivered 300 times at 1 Hz, with 50 ms between each
pair of spikes in the group (Figure 5D). The model pre-
dicted that both these protocols induce LTD in adults
(green and blue curves), whereas as shown above, the
single pulse protocol did not cause LTD (yellow curve).
These findings suggest that the temporal requirements
for inducing LTD may not be as prolonged as previously
assumed, since they can be reduced by varying stimu-
lation intensity. See Figure S3 for frequency versus age
maps for presynaptic bursts.

Dudek and Bear (1993) also performed theta-burst
stimulation (TBS, Table M1) at different developmental
ages, and found that LTP is not easily induced in young
rats (Figure 5B), see also (Cao and Harris, 2012). The
model qualitatively matches this trend, and also pre-
dicts that TBS induces maximal LTP around P21, before
declining further during development (Figure 5B, green
curve). Similarly, we found that high-frequency stim-
ulation induces LTP only for ages >P15, peaks at P35,
then gradually declines at older ages (Figure 5E). Note
that in Figure 5B, we used 6 epochs instead of 4 used by
Dudek and Bear (1993) to increase LTP outcome which
is known to washout after one hour for young rats (Cao
and Harris, 2012).

In contrast to Dudek and Bear (1993)’s findings,
other studies have found that LTP can be induced in hip-
pocampus in young animals (<P15) with STDP. For ex-
ample, Meredith et al. (2003) found that at room temper-
ature, 1Pre1Post10 induces LTP in young rats, whereas
1Pre2Post10 induces NC. This relationship was inverted
for adults, with 1Pre1Post inducing no plasticity and
1Pre2Post10 inducing LTP (Figure S5).

Together, these results suggest that not only do the
requirements for LTP/LTD change with age, but also
that these age-dependencies are different for different
stimulation patterns. Finally, we explore which mecha-
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nisms are responsible for plasticity induction changes
across development in the FDP protocol (Figure S3) by
fixing each parameter to young or adult values for the
FDP paradigm. Our model analysis suggests that the
NMDAr switch (Iacobucci and Popescu, 2017) (Meth-
ods) is a dominant factor affecting LTD induction, but
the maturation of BaP (Buchanan and Mellor, 2007)
is the dominant factor affecting LTP induction, with
GABAr shift having only a weak influence on LTD in-
duction for Dudek and Bear (1993)’s FDP.

Plasticity requirements during development do not
necessarily follow the profile in Dudek and Bear (1993)
as shown by Meredith et al. (2003)’s STDP experiment.
Our model shows that multiple developmental profiles
are possible when experimental conditions vary within
the same stimulation paradigm. This is illustrated in
Figure S5A-C by varying the age of STDP experiments
done in different conditions.

Effects of extracellular calcium and magnesium
concentration on plasticity
The canonical STDP rule (Bi and Poo, 1998) measured
in cultured neurons, high [Ca2+]o, and at room tem-
perature, was recently found not to be reproducible
at physiological [Ca2+]o in CA1 brain slices (Inglebert
et al., 2020). Instead, by varying the [Ca2+]o and [Mg2+]o
they found a spectrum of STDP rules with either no
plasticity or full-LTD for physiological [Ca2+]o condi-
tions ([Ca2+]o < 1.8 mM) and a bidirectional rule for
high [Ca2+]o ([Ca2+]o > 2.5 mM), shown in Figure 6A-C
(data).

We attempted to reproduce Inglebert et al. (2020)’s
findings by varying [Ca2+]o and [Mg2+]o with the follow-
ing consequences for the model mechanisms (Methods).
On the presynaptic side, [Ca2+]o modulates vesicle re-
lease probability. On the postsynaptic side, high [Ca2+]o
reduces NMDAr conductance (Maki and Popescu, 2014),
whereas [Mg2+]o affects the NMDAr Mg2+ block (Jahr
and Stevens, 1990). Furthermore, spine [Ca2+]o influx
activates SK channels, which hyperpolarize the mem-
brane and indirectly modulate NMDAr activity (Ngo-
Anh et al., 2005; Griffith et al., 2016).

Figure 6A-C compares our model to Inglebert et al.
(2020)’s STDP data at different [Ca2+]o and [Mg2+]o.
Note that Inglebert et al. (2020) used 150 (100) pairing
repetitions for the anti-causal (causal) both delivered
at 0.3 Hz. At [Ca2+]o=1.3 mM, Figure 6A shows the
STDP rule induced weak LTD for brief causal delays. At
[Ca2+]o= 1.8 mM, in Figure 6B, the model predicted a
full-LTD window. At [Ca2+]o= 3 mM, in Figure 6C, it pre-
dicted a bidirectional rule with a second LTD window
for long pre-before-post pairings, previously theorized
by Rubin et al. (2005).

Figure 6D illustrates the time spent by the joint CaN-
CaMKII activity for 1Pre1Post10 using Inglebert et al.
(2020)’s experimental conditions. Each density plot cor-

responds to a different panel in Figure 6 with the re-
spective Ca/Mg. The response under low [Ca2+]o spent
most time inside the LTD region, but high [Ca2+]o shifts
the trajectory to the LTP region. Figure S4A presents
density plots for the anticausal post-before-pre proto-
cols.

Inglebert et al. (2020) fixed the Ca/Mg ratio at 1.5,
although aCSF formulations in the literature differ (see
Table M1). Figure S4D shows that varying Ca/Mg ra-
tio and [Ca2+]o for Inglebert et al. (2020)’s experiments
restrict LTP to Ca/Mg>1.5 and [Ca2+]o>1.8 mM.

Our model can also identify the transitions between
LTD and LTP depending on Ca/Mg. Figure 6E shows
a map of plasticity as function of pre-post delay and
Ca/Mg concentrations and the parameters where LTP
is induced for the 1Pre1Post10 protocol. Since plasticity
rises steeply at around [Ca2+]o= 2.2 mM, small fluctua-
tions in [Ca2+]o near this boundary could cause quali-
tative transitions in plasticity outcomes. For anticausal
pairings, increasing [Ca2+]o increases the magnitude
of LTD (Figure S4B illustrates this with Inglebert et al.
(2020)’s data).

Inglebert et al. (2020) also found that increasing the
pairing frequency to 5 or 10 Hz results in a transition
from LTD to LTP for 1Pre1Post10 at [Ca2+]o= 1.8 mM
(Figure S4C), similar frequency-STDP behaviour has
been reported in cortex (Sjöström et al., 2001). In Figure
6F, we varied both the pairing frequencies and [Ca2+]o
and we observe similar transitions to Inglebert et al.
(2020). However, the model’s transition for [Ca2+]o= 1.8
mM was centred around 0.5 Hz, which was untested by
Inglebert et al. (2020). The model predicted no plasticity
at higher frequencies, unlike the data, that shows scat-
tered LTP and LTD (see Figure S4C). Figure S1D and
S4E shows that Tigaret et al. (2016)’s burst-STDP and
Inglebert et al. (2020)’s STDP share a similar transition
structure, but not Dudek and Bear (1992)’s FDP.

In contrast to Inglebert et al. (2020)’s results, we
found that setting low [Ca2+]o for Tigaret et al. (2016)’s
burst-STDP abolishes LTP, and does not induce strong
LTD (Figure S1D).

For Dudek and Bear (1992)’s experiment, Figure S2A
[Mg2+]o controls a sliding threshold between LTD and
LTP but not [Ca2+]o (Figure S2B). For another direct
stimulation experiment, Figure S4C shows that in an
Mg-free medium, LTP expression requires fewer pulses
(Mizuno et al., 2001).

Despite exploring physiological [Ca2+]o and [Mg2+]o
Inglebert et al. (2020) use a non-physiological tempera-
ture (30°C) which extends T-type VGCC closing times
and modifies the CaN-CaMKII baseline (Figure S5I).
Figure S5G,H shows comparable simulations for physi-
ological temperatures. Overall our model predicts that
temperature can change STDP rules in a similar fash-
ion to [Ca2+]o (Figure S4A,B). In summary, plasticity is
highly sensitive to variations in extracellular calcium,

10/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/


LTP

LTD

NC

1Pre1Post10
100 at 0.3 Hz 

7 4 1 E FD

3.0/2.0

1.8/1.2

1.3/0.8

mean weight
change (%)

mean weight
change (%)(s)

w
e
ig

h
t 

c
h
a
n
g
e
 (

%
)

w
e
ig

h
t 

c
h
a
n
g
e
 (

%
)

w
e
ig

h
t 

c
h
a
n
g
e
 (

%
)A B C 3.0/2.0 (Ca/Mg)1.8/1.2 (Ca/Mg)1.3/0.8 (Ca/Mg)

C

B

A

Figure 6. Effects of extracellular calcium and magnesium concentrations on plasticity A) Synaptic weight (%) for a STDP rule with [Ca2+]o = 1.3 mM (fixed
ratio, Ca/Mg=1.5). According to the data extracted from Inglebert et al. (2020), the number of pairing repetitions for positive (negative) delays is 100 (150), both
delivered at 0.3 Hz (Inglebert et al., 2020). The solid line is the mean, and the ribbons are the 2nd and 4th quantiles predicted by our model (all panels use 100
samples). B) Same as A, but for [Ca2+]o= 1.8 mM (Ca/Mg ratio = 1.5). C) Same as A, but for [Ca2+]o= 3 mM (Ca/Mg ratio = 1.5). D) Mean time spent for causal
pairing, 1Pre1Post10, at different Ca/Mg concentrations. The contour plots are associated with the panels A, B and C. E) STDP and extracellular Ca/Mg. Synaptic
weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying extracellular Ca from 1.0 to 3 mM (Ca/Mg
ratio = 1.5). The dashed lines represent the experiments in the panel A, B and C. We used 21x22x100 data points, respectively calcium x delay x samples. F) Varying
frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10, 100 at 0.3 Hz. Contour plot showing the mean synaptic weight (%) for a single causal
pairing protocol (1Pre1Post10, 100 samples) varying frequency from 0.1 to 10 Hz and [Ca2+]o from 1.0 to 3 mM (Ca/Mg ratio = 1.5). We used 21x18x100 data points,
respectively calcium x frequency x samples.

magnesium, and temperature (Figure S1A, Figure S5D-
F; Wittenberg and Wang (2006)).

In vivo-like spike variability affects plasticity
In the above sections, we used highly regular and stereo-
typical stimulation protocols to replicate typical ex vivo
plasticity experiments. In contrast, neural spiking in
hippocampus in vivo is irregular and variable (Fenton
and Muller, 1998; Isaac et al., 2009). It is unclear how
natural firing variability affects the rules of plasticity
induction (Rackham et al., 2010; Graupner et al., 2016;
Bittner et al., 2017; Cui et al., 2018). We explored this
question using model simulations by adding three dis-
tinct types of variability: 1) spike time jitter, 2) failures
induced by dropping spikes, 3) independent pre and
postsynaptic Poisson spike trains (Graupner et al., 2016).

We introduced spike timing jitter by adding zero-
mean Gaussian noise (s.d. σ ) to pre and postsynaptic
spikes, changing spike pairs inter-stimulus interval (ISI).
In Figure 7A, we plot the LTP magnitude as function of
jitter magnitude (controlled by σ ) for protocols taken
from Tigaret et al. (2016). With no jitter, σ = 0, these pro-
tocols have different LTP magnitudes (corresponding
to Figure 3) and become similar once σ increases. The
three protocols with a postsynaptic spike doublet gave
identical plasticity for σ = 50 ms.

To understand the effects of jittering, we plotted
the trajectories of CaN-CaMKII activity (Figure 7C).

2Post1Pre50 which "undershoots" the LTP region shifted
into the LTP region for jitter σ = 50 ms. In contrast,
1Pre1Post10 which "overshoots" the LTP region shifted
to the opposite direction towards the LTP region.

Why does jitter cause different spike timing proto-
cols to yield similar plasticity magnitudes? Increasing
jitter causes a fraction of pairings to invert causality.
Therefore, the jittered protocols became a mixture of
causal and anticausal pairings (Figure 7C). This situ-
ation occurs for all paired protocols. So any protocol
with the same number spikes will become mixed if the
jitter is large enough. Note that despite noise the mean
frequency was conserved at 5 ± 13.5 Hz (see Figure 7E).

Next, we studied the effect of spike removal. In
the previous sections, synaptic release probability was
∼60% (for [Ca2+]o= 2.5 mM) or lower, depending on
the availability of docked vesicles (Methods). However,
baseline presynaptic vesicle release probability is het-
erogeneous across CA3-CA1 synapses, ranging from
∼ 10−90% (Dobrunz et al., 1997; Enoki et al., 2009) and
likely lower on average in vivo (Borst, 2010). BaPs are
also heterogeneous with random attenuation profiles
(Golding et al., 2001) and spike failures (Short et al.,
2017). To test the effects of pre and postsynaptic fail-
ures on plasticity induction, we performed simulations
where we randomly removed spikes, altering the previ-
ously regular attenuation in Tigaret et al. (2016)’s proto-
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cols.

In Figure 7B we plot the plasticity magnitude as func-
tion of sparsity (percentage of removed spikes). The
sparsity had different specific effects for each protocol.
1Pre2Post10 and 1Pre2Post50 which originally produced
substantial LTP were robust to spike removal until∼60%
sparsity. In contrast, the plasticity magnitude from both
1Pre1Post10 and 2Post1Pre50 showed a non-monotonic
dependence on sparsity, first increasing then decreasing,
with maximal LTP at ∼40% sparsity.

To understand how sparsity causes this non-
monotonic effect on plasticity magnitude, we plotted
the histograms of time spent in the CaN-CaMKII plane
for 2Post1Pre50 for three levels of sparsity: 0%, 30% and
80% (Figure 7D). For 0% sparsity, the activation spent
most time at the border between the LTP and LTD re-
gions, resulting in no plasticity. Increasing sparsity to
30% caused the activation to shift rightward into the
LTP region because there was less attenuation of pre
and postsynaptic resources. In contrast, at 80% spar-
sity, the activation moved into the LTD region because
there were not enough events to substantially activate
CaMKII and CaN. Since LTD is a slow process and the
protocol duration is short (60s), there was no net plas-
ticity. Therefore for this protocol, high and low sparsity
caused no plasticity for distinct reasons, whereas in-
termediate sparsity enabled LTP by balancing resource
depletion with enzyme activation.

Next we tested the interaction of jitter and spike re-
moval. Figure 7F shows a contour map of weight change
as function of jitter and sparsity for the 2Post1Pre50 pro-
tocol, which originally induced no plasticity (Figure 2).
Increasing spike jitter enlarged the range of sparsity in-
ducing LTP. In summary, these simulations (Figure 7A,B,
F and H) show that different STDP protocols have differ-
ent degrees of sensitivity to noise in the firing structure,
suggesting that simple plasticity rules derived from reg-
ular ex vivo experiments may not predict plasticity in
vivo.

How does random spike timing affect rate-
dependent plasticity? We stimulated the model with
pre and postsynaptic Poisson spike trains for 10s, un-
der Dudek and Bear (1992)’s experimental conditions.
We systematically varied both the pre and postsynaptic
rates (Figure 7H). The 10s stimulation protocols induced
only LTP, since LTD requires a prolonged stimulation
(Mizuno et al., 2001). LTP magnitude monotonically
increased with the presynaptic rate (Figure 7G,H). In
contrast, LTP magnitude varied non-monotonically as
function of postsynaptic rate, initially increasing until
a peak at 10 Hz, then decreasing with higher stimula-
tion frequencies. This non-monotonic dependence on
post-synaptic rate is inconsistent with classic rate-based
models of Hebbian plasticity. We also investigated how
this plasticity dependence on pre- and post-synaptic

Figure 7. Jitter and spike dropping effects on STDP; and pre and postsy-
naptic Poisson spike trains. A) Synaptic weight (%) for the four STDP proto-
cols used in Tigaret et al. (2016) varying jittering (normally distributed, N(0,σ )).
Burst pulses are jittered together. The solid line is the mean, and the ribbons
are the 2nd and 4th quantiles predicted by our model estimated using 100 sam-
ples (same sample number for all panels). B) Synaptic weight (%) for the same
Tigaret et al. (2016) protocols used at panel A subjected to random spike re-
moval (sparsity %). (100 samples for each). C) Mean time spent (s) varying
jittering. Contour plot in grey showing 2Post1Pre50 and 1Pre1Post10 (both 300
at 5 Hz) without jittering (σ=0 ms, same as in Figure 2C and F), and with jitter-
ing (σ=50 ms, coloured contour plot). The circles and squares correspond to the
same marks in panel A. D) Mean time spent (s) (100 samples for each protocol)
varying sparsity. Contour plot in grey showing 0% sparsity for 2Post1Pre50 300
at 5Hz (as in Figure 2F). The coloured contour plots show the original protocol
with two different spike removal sparsities: 30% of the spikes removed at right
inducing LTP, and 80% of the spikes removed at left inducing NC. The triangles
correspond to the same marks in panel B. E) Schematic showing one example
of 50 ms jittering applied to the causal protocol 1Pre1Post10, 300 at 5 Hz in
which nearly half of the pairs turned into anticausal. The mean frequency is
the same (mean of 1000/ISI), 5 ± 13.5 Hz. After the jitter is applied, the causal
pairings will have a delay of 58±46.7 ms, whereas the anticausal -56.6 ± 46.7
ms. The protocol 2Post1Pre50 will have nearly half of the pairings turning into
causal, making them have a similar firing structure and position inside the LTP
region. F) Mean weight change (%) combining both sparsity (panel B) and jit-
tering (panel A) for 2Post1Pre50, 300 at 5 Hz. We used 21x17x100 data points,
respectively sparsity x jitter x samples. G) Synaptic weight (%) of pre and post-
synaptic Poisson spike train delivered simultaneously for 10 s. The plot shows
the plasticity outcome for different presynaptic firing rate (1000/frequency) for
a fixed postsynaptic baseline at 10Hz. The upper raster plot depicts the re-
leased vesicles at 40 Hz and the postsynaptic baseline at 10Hz (including the
AP evoked by EPSP). H) Mean weight change (%) varying the rate of pre and
postsynaptic Poisson spike train delivered simultaneously for 10 s. The dashed
line depicts panel G.We used 24x24x100 data points, respectively postsynaptic
x presynaptic x samples.
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Poisson firing rates varies with developmental age (Fig-
ure S2G–I). We found that at P5 no plasticity is induced,
at P15 a LTP region appears at around 1 Hz postsynap-
tic rate, and at P20 plasticity becomes similar to the
mature age, with a peak in LTP magnitude at 10 Hz
postsynaptic rate.

Discussion and conclusion
We built a model of a rat CA3-CA1 hippocampal
synapse, including key electrical and biochemical com-
ponents underlying synaptic plasticity induction (Fig-
ure 1). We used a novel geometric readout of CaN-
CaMKII dynamics (Figure 2-4) to predict the outcomes
from a range plasticity experiments with heterogeneous
conditions: animal developmental age (Figure 5), aCSF
composition (Figure 6), temperature (Supplemental
files), and in vivo-like firing variability (Figure 7).

Our model includes critical components for plastic-
ity induction at CA3-CA1 synapses: those affecting den-
dritic spine voltage, calcium signalling, and enzymatic
activation. The model can be used to make quantita-
tive predictions, because its variables and parameters
correspond to biological components. This property
allowed us to incorporate the model components’ de-
pendence on developmental age, external Ca/Mg levels,
and temperature to replicate datasets across a range of
experimental conditions. The model is relatively fast to
simulate, taking∼1 minute of CPU time to run 1 minute
of biological time. These practical benefits should en-
able future studies to make experimental predictions on
dendritic integration of multiple synaptic inputs (Black-
well et al., 2019; Oliveira et al., 2012; Ebner et al., 2019)
and on the effects of synaptic molecular alterations in
pathological conditions. In contrast, abstract models
based on spike timing (Song et al., 2000; Pfister and
Gerstner, 2006; Clopath and Gerstner, 2010) or simpli-
fied calcium dynamics (Shouval et al., 2002; Graupner
and Brunel, 2012) must rely on ad hoc adjustment of
parameters with less biological interpretability.

The model builds upon the concept that the full tem-
poral activity of CaN-CaMKII over the stimulus dura-
tion (Fujii et al., 2013), and not their instantaneous activ-
ity levels (Shouval et al., 2002; Karmarkar and Buono-
mano, 2002), is responsible for plasticity changes. We
instantiate this concept by analyzing the joint activity
in the two-dimensional plane and designing polygonal
plasticity readout regions (Figure 3A) based on the ge-
ometry that CaN-CaMKII activity leaves on the plane.
In doing so, we generalise previous work with plasticity
induction based on single threshold and a slow vari-
able (Badoual et al., 2006; Rubin et al., 2005; Clopath
and Gerstner, 2010; Graupner and Brunel, 2012). Here,
we used a two-dimensional readout, but anticipate a
straightforward generalisation to higher-dimensions for
different cellular processes, both in neuroscience and
in systems biology. The central discovery is that these

trajectories, despite being stochastic, can be separated
in the plane as function of the stimulus (Figure 3).

Let us describe the intuition behind our model more
concisely. First, we abstract away the sophisticated cas-
cade of plasticity expression. Second, the plasticity re-
gions, crossed by the trajectories, are described with
a minimal set of parameters and their tuning is quite
straightforward and done once and for all even when
the joint activity is stochastic. The tuning of the model
is possible thanks to the decoupling of the plasticity
process from the spine biophysics which acts as a feed-
forward input to the plasticity Markov chain and from
the distributions of the different trajectories which are
well separated. It is expected that one can find other
model versions (parameters or conceptual) instantiating
our concept that also match the data well.

In our model, some CaMKII-CaN trajectories over-
shoot the plasticity regions. Although abnormally high
and prolonged calcium influx to cells can trigger cell
death (Zhivotovsky and Orrenius, 2011), the effects
of high calcium concentrations at single synapses are
poorly understood. Notably, a few studies have re-
ported evidence consistent with an overshoot, where
strong synaptic calcium influx does not induce LTP
(Yang et al., 1999; Tigaret et al., 2016; Pousinha et al.,
2017).

How can the synapse reliably express plasticity but
be noisy at the same time (Yuste et al., 1999; Ribrault
et al., 2011)? Noise can be reduced either by redun-
dancy or by averaging across time, also called ergodic-
ity (Sterling and Laughlin, 2015). However redundancy
requires manufacturing and maintaining more compo-
nents, and therefore costs energy. We propose that, in-
stead, plasticity induction is robust due to temporal
averaging by slow-timescale signalling and adaptation
processes. These slow variables reduce noise by averag-
ing the faster timescale stochastic variables. This may
be a reason why CaMKII uses auto-phosphorylation
to sustain its activity and slow its decay time (Chang
et al., 2017, 2019). In summary, this suggests that the
temporal averaging by slow variables, combined with
the separability afforded by the multidimensional read-
out, allows synapses to tolerate noise while remaining
energy-efficient.

We identified some limitations of the model. First,
we modelled only a single postsynaptic spine attached
to two-compartment neuron for soma and dendrite.
Second, the model abstracted the complicated pro-
cess of synaptic plasticity expression, and even if this
replicated the "early" phase of LTP/LTD expression
in the first 30-60 mins after induction, slower protein-
synthesis-dependent processes, maintenance processes,
and synaptic pruning proceed at later timescales (Bailey
et al., 2015). Third, like most biophysical models, ours
contained many parameters (Methods). Although we
set these to physiologically plausible values and then
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tuned to match the plasticity data, other combinations
of parameters may fit the data equally well (Marder and
Taylor, 2011; Mäki-Marttunen et al., 2020) due to the
ubiquitous phenomenon of redundancy in biochemi-
cal and neural systems (Gutenkunst et al., 2007; Marder,
2011). Indeed synapses are quite heterogeneous in recep-
tor and ion channel counts (Takumi et al., 1999; Sabatini
and Svoboda, 2000; Racca et al., 2000; Nimchinsky et al.,
2004), protein abundances (Shepherd and Harris, 1998;
Sugiyama et al., 2005), and spine morphologies (Har-
ris and Stevens, 1989; Bartol et al., 2015), even within
the subpopulation of CA1 pyramidal neuron synapses
that we modelled here. It remains to be discovered
how neurons tune their synaptic properties in this vast
parameter space to achieve functional plasticity rules,
or implement meta-plasticity (Huang et al., 1992; Deis-
seroth et al., 1995; Abraham, 2008).

Several predictions follow from our results. Since
the model respected the stochasticity of vesicle release
(Rizzoli and Betz, 2005; Alabi and Tsien, 2012), NM-
DAr (Nimchinsky et al., 2004; Popescu et al., 2004; Ia-
cobucci and Popescu, 2017; Sinclair et al., 2016), and
VGCC opening (Magee and Johnston, 1995; Sabatini
and Svoboda, 2000; Iftinca et al., 2006), the magnitude
of plasticity varied from simulation trial to trial (Fig-
ures 3G,4E). This suggests that the rules of plasticity
are inherently stochastic (Bhalla, 2004; Antunes et al.,
2016) and that the variability observed in experiments
(Inglebert et al., 2020; Tigaret et al., 2016; Dudek and
Bear, 1992, 1993; Mizuno et al., 2001; Meredith et al.,
2003; Wittenberg and Wang, 2006) is not just due to het-
erogeneity in synapse properties. By running extensive
simulations over the space of protocols beyond those
tested experimentally (Figures 3H,I; 4F; 5C,E,F; 6E,F),
we made testable predictions for plasticity outcomes.
For example, Tigaret et al. (2016) did not find LTD when
using classic post-before-pre stimulation protocols, but
the model predicted that LTD could be induced if the
number of pairing repetitions was extended (Figure
3H,I). The model also predicts that the lack of LTD in-
duced by FDP in adults can be recovered using doublets
or quadruplet spike protocols (Figure 5D). We tested the
model’s sensitivity to spike time jitter and spike failure
in the stimulation protocols (Figure 7). Our simulations
predict that this firing variability can alter the rules of
plasticity, in the sense that it is possible to add noise to
cause LTP for protocols that did not otherwise induce
plasticity.

What do these results imply about the rules of plas-
ticity in vivo? First, we noticed that successful LTP or
LTD induction required a balance between two types of
slow variables: those that attenuate, such as presynaptic
vesicle pools and dendritic BaP, versus those that accu-
mulate, such as slow enzymatic integration (Cai et al.,
2007; Mizusaki et al., 2018; Deperrois and Graupner,
2020). This balance is reflected in the inverted-U shaped

magnitude of LTP seen as a function of post-synaptic fir-
ing rate (Figure 7H). Second, although spike timing on
millisecond timescales can in certain circumstances af-
fect the direction and magnitude of plasticity (Figure 3),
in order to drive sufficient activity of synaptic enzymes,
these patterns would need to be repeated for several sec-
onds. However, if these repetitions are subject to jitter
or failures, as observed in hippocampal spike trains in
vivo (Fenton and Muller, 1998; Wierzynski et al., 2009),
then the millisecond-timescale information will be de-
stroyed as it gets averaged out across repetitions by the
slow integration processes of CaMKII and CaN (Figure
7A-D). The net implication is that millisecond-timescale
structure of individual spike pairs is unlikely to play
an important role in determining hippocampal synap-
tic plasticity in vivo (Froemke and Dan, 2002; Sadowski
et al., 2016; Graupner et al., 2016).

In summary, we presented a new type of biophys-
ical model for plasticity induction at the rat CA3-CA1
glutamatergic synapse. Although the model itself is
specific to this synapse type, the study’s insights may
generalise to other synapse types, enabling a deeper un-
derstanding of the rules of synaptic plasticity and brain
learning.

Methods
Detailed methods are provided in the online version of
this paper and include the following:

• Resource availability
Lead Contact
Data and code availability
Notations

• Modelling procedures
Vesicle release and recycling
Membrane potential and currents
Action-potential backpropagation (BaP)

Postsynaptic currents
Age-dependent BaP adaptation
AP evoked by EPSP

AMPAr
Markov chain

Postsynaptic Ca2+ influx
NMDAr - GluN2A and GluN2B

Markov chain
NMDAr and age switch
NMDAr and temperature
NMDAr current and Ca2+-dependent conduc-

tance
GABA(A) receptor

Markov chain
GABA(A)r and temperature
GABA(A)r and age switch

VGCC - T, R and L type
Markov chain
VGCC and temperature
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VGCC currents
SK channel
Enzymes - CaM, CaN and CaMKII

Markov chain
Temperature change on enzymatic-activity

Readout

Data and Software Availability
The code will be available on Github after peer-review
process.

Supplemental Information description
Supplemental information can be found in the online
version of this paper and include the following content:

• Varying experimental parameters in (Tigaret et al.,
2016).

• Varying experimental parameters in (Dudek and
Bear, 1992) and Poisson spike train during devel-
opment.

• Duplets, triplets and quadruplets for FDP, per-
turbing developmental-mechanisms for LFS and
HFS in (Dudek and Bear, 1993), and age-related
changes in STDP experiments (Inglebert et al.,
2020; Tigaret et al., 2016; Meredith et al., 2003).

• Varying experimental parameters in (Inglebert
et al., 2020), other (Inglebert et al., 2020)’s data
and model comparison, and Mizuno et al. (2001)’s
data.

• Effects of temperature and [Ca2+]o on the CaN-
CaMKII initial conditions, Wittenberg and Wang
(2006)’s data, literature comparison on the physio-
logically relevant temperature.
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Methods

Resource availability
Lead contact
Additional information regarding the methods or computational resources used in this work should be directed to
Romain Veltz (romain.veltz@inria.fr) and Yuri E. Rodrigues (yuri.rodrigues@inria.fr).

Data and code availability
All simulations were performed in the Julia programming language (version 1.4.2). Simulating the synapse
model is equivalent to sampling a piecewise deterministic Markov process, and this relies on the Julia package
PiecewiseDeterministicMarkovProcesses.jl. These simulations are event-based, and no approximation is made
beyond the ones required to integrate the ordinary differential equations by the method LSODA (Livermore Solver
for Ordinary Differential Equations). We run the parallel simulations in the Nef cluster operated by Inria.

EXPERIMENT PAPER REPETITIONS FREQ (Hz) AGE (DAYS) TEMP. (°C) Ca (mM) Mg (mM)
STDP (Tigaret et al., 2016) 300 5 56 35 2.5 1.3

STDP (Inglebert et al., 2020) 100, positive delays
150, negative delays 0.3 14—20

(21 for LTP)
30
(30.45 for LTP) 1.3—3 Ca/1.5

STDP (Meredith et al., 2003) 20 0.2 9—45 24—28 2 2

STDP (Wittenberg and Wang, 2006) 70—100 5 14—21 24—30
(22.5-23) 2 1

pre-burst (Tigaret et al., 2016) 300 and 900 3 and 5 56 35 2.5 1.3
FDP (Dudek and Bear, 1992) 900 1—50 35 35 2.5 1.5
FDP (Dudek and Bear, 1993) 900 1 7—35 35 2.5 1.5

TBS (Dudek and Bear, 1993) 3—4 (5) epochs 4Pre at 100 Hz
(10x at 5Hz) 6, 14 and 17 35 2.5 1.5

LFS (Mizuno et al., 2001) 1—600 1 12—28 30
(26.5-31) 2.4 0

Table M1. Table with the parameters extracted from the respective publications. To fit the data associated to publications displaying a parameter interval (e.g. 70
or 100) we used a value within the provided limits. Otherwise, we depict in red the value used to fit to the data. For complete data structure on these publications
and the ones used for method validation see github code. We allowed the AP to be evoked by EPSPs for these protocols: Mizuno et al. (2001); Dudek and Bear
(1992, 1993). Note that Tigaret et al. (2016) used GABA(A)r blocker modelled by turning GABAr conductance to zero. Also, Mizuno et al. (2001) LTD protocol used
partial NMDA blocker modelled by reducing NMDA conductance by 97 %.

Modelling procedures
Notations
We write 1A the indicator of a set A meaning that 1A(x) = 1 if x belongs to A and zero otherwise.

Vesicle release and recycling
Vesicle-filled neurotransmitters from the presynaptic terminals stimulate the postsynaptic side when successfully
released. We derived a vesicle release Markov chain model based on a deterministic approach described in (Sterratt
et al., 2011) on page 183. We denote by (t1, · · · , tn) the time arrivals of the presynaptic spikes.

Vesicles can be in two states, either belonging to the docked pool (with cardinal D) with fast emptying, or to the
reserve pool (with cardinal R) which replenishes D (Rizzoli and Betz, 2005). The docked pool loses one vesicle each
time a release (Rudolph et al., 2015) occurs with transition D−→ D−1 (Figure M1C). The reserve pool replenishes
the docked one with transition (R,D)→ (R−1,D+1). Finally, the reserve pool is replenished with rate (R0−R)/τ

re f
D

with the transition (R,D)−→ (R+1,D).

TRANSITION RATE INITIAL CONDITION
(R,D)→ (R−1,D+1) (D0−D) ·R/τD D(0) = D0
(R,D)→ (R+1,D−1) (R0−R) ·D/τR R(0) = R0

(R,D)−→ (R+1,D) (R0−R)/τ
re f
R

Table M2. Stochastic transitions used in the pool dynamics. Note that the rates depend on the pool’s cardinal (Pyle et al., 2000).

In addition to the stochastic dynamics in Table M2, each spike ti triggers a vesicle release D −→ D− 1 with
probability prel :

prel(Capre, [Ca2+]o,D) =
(Capre)

s

(Capre)
s +h([Ca2+]o)

s 1D>0, h([Ca2+]o) = 0.654+
1.349

1+ e4·([Ca2+]o−1.708 mM)
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which is a function of presynaptic calcium Capre and extracellular calcium concentration [Ca2+]o through the
threshold h([Ca2+]o). To decide whether a vesicle is released for a presynaptic spike ti, we use a phenomenological
model of Capre (see Figure M1A) based on a resource-use function (Tsodyks and Markram, 1997):{

Ċapre =−
Capre
τpre

Capre(0) = 0

Ċa jump =
1−Ca jump

τrec
−δdecay ·Ca jump ·Capre Ca jump(0) = 1.

(1)

Upon arrival of the presynaptic spikes, t ∈ (t1, · · · , tn), we update Capre according to the deterministic jump:

Capre −→Capre +Ca jump.

Finally, after Capre has been updated, a vesicle is released with probability prel (Figure M1B).
Parameters for the vesicle release model is given in Table M3. The experimental constraints to devise a release

probability model are given by Hardingham et al. (2006) and Tigaret et al. (2016). Because [Ca2+]o modifies the
release probability dynamics (King et al., 2001), we fixed an initial release probability of 68 % for [Ca2+]o = 2.5
mM as reported by Tigaret et al. (2016) (initial value in Figure M1B and D). Additionally, Hardingham et al. (2006)
report a 38% reduction in the initial release probability when changing [Ca2+]o from 2.5 mM to 1 mM. Taking these
into account, the decreasing sigmoid function in the Figure M1E depicts our [Ca2+]o-dependent release probability
model (prel).

Figure M1E shows that our prel function is in good agreement with a previous analytical model (King et al.,
2001) suggesting that prel([Ca2+]o) ∝ ([Ca2+]o)

2 mM−2. Our model also qualitatively reproduces the vanishing of
calcium dye fluorescence levels after 20 s of theta trains from Tigaret et al. (2016) (in their Supplementary Materials).
We interpret their fluorescence measurements as an effect of short-term depression (see Figure M1B).

Despite our model agreeing with previous works, it is a simplified presynaptic model that does not encompass
the vesicle release’s highly heterogeneous nature. Vesicle release dynamics are known to be sensitivity to various
experimental conditions such as temperature (Fernández-Alfonso and Ryan, 2004), the age for some brain regions
(Rudolph et al., 2015) or magnesium concentration (Hardingham et al., 2006). Furthermore, since our model of
vesicle dynamics is simple, τrec in Equation (1) has two roles: to delay the prel recovery caused by Capre inactivation
(enforced by δCa in Equation (1)) and to prevent vesicle release after HFS induced depression (King et al., 2001;
Rizzoli and Betz, 2005). Later, we incorporate a higher number of experimental parameters (age, temperature,
[Ca2+]o, [Mg2+]o) with our NMDAr model, the main postsynaptic calcium source.

NAME VALUE REFERENCE
Vesicle release model (stochastic part)
initial number of vesicles at D D0 = 25 5 to 20 (Rizzoli and Betz, 2005; Alabi and Tsien, 2012)
initial number of vesicles at R R0 = 30 17 to 20 vesicles (Alabi and Tsien, 2012)
time constant R→ D
(D recycling) τD = 5 s 1 s (Rizzoli and Betz, 2005)

time constant D→ R
(R mixing) τR = 45 s

20 s (when depleted) to 5 min (hypertonic shock)
(Rizzoli and Betz, 2005; Pyle et al., 2000)

time constant 1→ R
(R recycling) τ

re f
R = 40 s 20 to 30 s (Rizzoli and Betz, 2005)

release probability half-activation curve h adjusted to different [Ca2+]o
release probability sigmoid slope s = 2 adjusted to different [Ca2+]o

Vesicle release model (deterministic part)

Capre attenuation recovery τpre = 20 ms 50 - 500 ms for with dye (Maravall et al., 2000)
therefore < 50 to 500 ms undyed (unbufered)

deterministic jump attenuation recovery τrec = 20 s ∼ 20 s (Rizzoli and Betz, 2005)
deterministic jump attenuation fraction δca = .0004 inactivation of pre calcium (Forsythe et al., 1998)

Table M3. Parameter values used in the presynaptic model. Our model does not implement a larger pool called "resting pool" containing ∼ 180 vesicles (CA3-
CA1 hippocampus) (Alabi and Tsien, 2012). Terminology note: In other works, the larger pool with ∼180 vesicles can be found with different nomenclatures such
as "reserve pool" (Südhof, 2000) or "resting pool" (Alabi and Tsien, 2012). Furthemore, the nomenclature used in our model for the reserve pool, can also be found
as "recycling pool" in (Rizzoli and Betz, 2005; Alabi and Tsien, 2012).

24/49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.30.437703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure M1. Presynaptic release. A) Presynaptic calcium in response to the protocol 1Pre, 300 at 5 Hz displaying adaptation. B) Release probability for the
same protocol as panel A but subjected to the docked vesicles availability. C) Number of vesicles in the docked and reserve pools under depletion caused by
the stimulation from panel A. D) Plot of the mean (300 samples) release probability (%) for different frequencies for the protocol 1Pre 300 pulses at [Ca2+]o = 2.5
mM. Note that most of the frequencies are dominated by short-term depression, and the model also displays short-term facilitation (black curve, at 50 Hz). E)
Release probability (%) for a single presynaptic spike given the [Ca2+]o. Note that King et al. (2001) model was multiplied by the experimentally measured release
probability at [Ca2+]o = 2 mM since their model has this calcium concentration as the baseline. Our model also does not cover the abolishing of release probability
at [Ca2+]o = 0.5 mM which can also be difficult to experimentally measure given the rarity of events (Hardingham et al., 2006).
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NAME VALUE REFERENCE
Passive cable
leak reversal potential Eleak =−70 mV 69mV from (Spigelman et al., 1996)
membrane leak conductance
(for spine and passive dendrite) gleak = 4 ·10−6 nS/µm2 * see table legend (Koch and Zador, 1993)

membrane leak conductance
(only soma) gsoma = 5.31 ·10−3 nS/µm2 3 ·10−4 to 1.3 ·10−3nS/µm2 (Fernandez and White, 2010)

47 to 2.1 ·103nS (NeuroElectro:CA1)

membrane capacitance Cm = 6 ·10−3 pF/µm2 1 ·10−2 pF/µm2 (Hines and Carnevale, 1997)
17 to 177 pF (NeuroElectro:CA1)

axial resistivity of cytoplasm Ra = 1 ·10−2 GΩµm 2 ·10−3 GΩµm (Golding et al., 2001)
Dendrite
dendrite diameter Ddend = 2 µm same as (Yi et al., 2017)
dendrite length Ldend = 1400 µm apical dendrites, 1200 to 1600 µm(Mendozaet al., 2018)
dendrite surface area Adend = 8.79 ·103 µm2 π ·Ddend ·Ldend
dendrite volume Voldend = 4.4 ·103µm3 π · (Ddend/2)2 ·Ldend
dendritic membrane capacitance Cdend = 52.77 pF Cm ·Adend
dendrite leak reversal potential gleakdend = 3.51 ·10−2 nS gleak ·Adend
dendrite axial conductance gdi f f = 50 nS Ra ·Adend

Soma
soma diameter Dsoma = 30 µm 21 µm (Stuart et al., 2016) page 3
soma area (sphere) Asoma = 2.82 ·103 µm2 (4π/3) · (Dsoma/2)3 ; 2.12 ·103 µm2 (Zhuravleva et al., 1997)
soma membrane capacitance Csoma = 16.96 pF Cm ·Asoma
soma leaking conductance gleaksoma = 15 nS gsoma ·Asoma (Fernandez and White, 2010)
Dendritic spine
spine head volume Volsp = 0.03 µm3 same as (Bartol et al., 2015)
spine head surface Asp = 4.66 ·10−1 µm2 4π · (3Volsp/4π)2/3

spine membrane capacitance Csp = 2.8 ·10−3 pF Cm ·Asp

spine head leak conductance gleaksp = 1.86 ·10−6 nS gleak ·Asp

Dendritic spine neck
spine neck diameter Dneck = 0.1 µm 0.05 to 0.6 µm (Harris et al., 1992)
neck length Lneck = 0.2 µm 0.7±0.6 µm (Adrian et al., 2017)
neck cross sectional area CSneck = 7.85 ·10−3 µm2 π · (Dneck/2)2

neck resistance gneck = 3.92 nS≈ 255.1 MΩ
CSneck/(Lneck ·Ra)

50 to 550 MΩ (275±27 MΩ) (Popovic et al., 2015)

Table M4. Parameters for the neuron electrical properties. * The membrane leak conductance in the spine is small since the spine resistance is so high that is
considered infinite (> 106MΩ) (Koch and Zador, 1993), therefore the current mostly leaks through the neck. Additionally, the dendrite leak conductance is equally
small in order to control the distance-dependent attenuation by the axial resistance term gadapt

BaP in Equations 3 and 4.
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Membrane potential and currents
Our model is built over three compartments, a spherical dendritic spine linked by the neck to a cylindrical dendrite
connected to a spherical soma. The membrane potential of these compartments satisfy the equations below
(parameters in Table M4). The different currents are described in the following sections.

Csp ·V̇sp = gneck · (Vdend−Vsp)+gsp
L · (Erev−Vsp)+ IT + IL + IR + INMDA + IAMPA + ISK (2)

Cdend ·V̇dend = gadapt
BaP · (Vsoma−Vdend)+gneck · (Vsp−Vdend)+gdend

L · (Erev−Vdend)+ IGABA (3)

Csoma ·V̇soma = gadapt
BaP · (Vdend−Vsoma)+gsoma

L · (Erev−Vsoma)+βage · (IBaP + INa)+ IK (4)

Action-potential backpropagation (BaP)
Postsynaptic currents
The postsynaptic currents are generated in the soma, backpropagated to the dendritic spine and filtered by a passive
dendrite. The soma generates BaPs using a version of the Na+ and K+ channel models developed by Migliore et al.
(1999). The related parameters are described in Table M5 (the voltage unit is mV).

Sodium channel Potassium channel

αm(Vsoma) = 0.4 · Vsoma +30

1− e−
Vsoma+30

7.2
αn(Vsoma) = e−0.11·(Vsoma−13)

βm(Vsoma) = 0.124 · Vsoma +30

e
Vsoma+30

7.2 −1
βn(Vsoma) = e−0.08·(Vsoma−13)

minf(Vsoma) =
αm(Vsoma)

αm(Vsoma)+βm(Vsoma)
ninf(Vsoma) =

1
1+αn(Vsoma)

mτ(Vsoma) =
1

αm(Vsoma)+βm(Vsoma)
nτ(Vsoma) = max

(
50 · βn(Vsoma)

1+αn(Vsoma)
;2
)

αh(Vsoma) = 0.01 · Vsoma +45

e
Vsoma+45

1.5 −1
ṅ(Vsoma) =

ninf−n
nτ

βh(Vsoma) = 0.03 · Vsoma +45

1− e−
Vsoma+45

1.5
IK = γK ·n · (ErevK−Vsoma)

ḣ(Vsoma) = αh(Vsoma) · (1−h)−βh(Vsoma) ·h

ṁ(Vsoma) =
minf−m

mτ

INa = γNa ·m3 ·h · (ErevNa−Vsoma).

To trigger a BaP, an external current IBaP is injected in the soma at times t ∈ {t1, ..., tn} (postsynaptic input times)
for a chosen duration δin j with amplitude Iamp (nA):

IBaP =
n

∑
i=1

H(ti) · (1−H(ti +δin j)) · Iamp.

The current injected in the soma is filtered in a distance-dependent manner by the dendrite before it reaches the
dendritic spine. The distant-dependent BaP amplitude attenuation changes the axial resistance gadapt

BaP (see equations
3 and 4) between the dendrite and the soma as follows (Figure M2C top):

gadapt
BaP = β ·gdi f f ·βsoma, βsoma(dsoma) = 0.1+

1.4
1+ e0.02·(dsoma−230.3µm)

(5)

where dsoma is the distance of the spine to the soma and where the factor β is dynamically regulated based on
a resource-use equation (Tsodyks and Markram, 1997) with a dampening factor βaux changing the size of the
attenuation step δdecay:

β̇ =
1−β

τrec
−δdecay ·β−1

aux ·β · IBaP(t)

β̇aux =
1−βaux

τaux
rec

−δaux ·βaux · IBaP(t).
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Figure M2. AP Evoked by EPSP. A) Model and data comparison for the distance-dependent BaP amplitude attenuation measured in the dendrite and varying
the distance from the soma. The stimulation in panel A is set to reproduce the same stimulation as Golding et al. (2001). Golding measurements have neurons that
are strongly attenuated and weakly attenuated (dichotomy mark represented by the dashed line). However, in this work, we consider only strongly attenuated
neurons. B) Attenuation of somatic action potential from Buchanan and Mellor (2007) and model in response to five postsynaptic spikes delivered at 100 Hz. The
value showed for the model is the spine voltage with distance from the soma set to zero (scale 25 ms, 20 mV).C) Top panel shows the βsoma used in Equation
(5) to modify the axial conductance between the soma and dendrite. Bottom panel shows the age-dependent changes in the step of the resource-use equation,
in Equation (6) that accelerates the BaP attenuation and decreases the sodium currents in the Equation (4). D) Probability of evoking an AP multiplied by the
successfully evoked AP (pAP(Vevoked) ·1(evoked) for the protocol 1Pre, 300 at 5 Hz (2.5 mM Ca). D) Two-pool dynamics with the stimulation than panel D showing
the vesicle release, the reserve and docked pools, and the evoked AP. E) Probability of evoking an AP for the protocol 1Pre 300 pulses at different frequencies (3
and 5 Hz have the same probability).

The BaP attenuation model is based on Golding et al. (2001) data for strongly attenuating neurons. Therefore,
the second type of attenuation (weakly attenuating) in neurons is not considered (dichotomy in Figure M2A).
Figure M2A compares Golding data to our model and illustrates the effect of BaP attenuation in the upper panels
of Figure M2A and B.

Table M5 shows the BaP attenuation parameters. The plasticity outcomes as function of the dendritic spine
distance from the soma are shown in Figure S2C and Figure S1E.

Age-dependent BaP adaptation
Age-dependent BaP attenuation modifies the neuronal bursting properties through the maturation and expression
of potassium and sodium channels (Gymnopoulos et al., 2014), therefore changing the interaction of polarizing and
depolarizing currents (see Figure M2B) (Grewe et al., 2010; Jung et al., 1997). We reproduce Buchanan and Mellor
(2007) somatic attenuation profiles (Figure M2B) with our model by including an age-dependent BaP amplitude
attenuation factor. We define the attenuation factor βage (Figure M2C bottom), as follows.

β̇age =
1− Iage

τ
age
rec

−δage ·βage · IBaP(t), δ
age
rec =

1.391 ·10−4

1+ e0.135(age−16.482 days)
. (6)

In Equation (4), the age effects are introduced by multiplying the attenuation factor βage by the sodium INa and the
external IBaP currents.

AP evoked by EPSP
A presynaptic stimulation triggers a BaP if sufficient depolarization is caused by the EPSPs reaching the soma
(Stuart et al., 2016) chapter 13. We included an option to choose whether an EPSP can evoke an AP using an event
generator resembling the previous release probability model (prel). Like the prel , the BaPs evoked by EPSPs are
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NAME VALUE REFERENCE
Soma parameters for Na+ and K+ channel

sodium conductance γNa = 8 ·102 nS
0.32 nS/µm2 (Migliore et al., 1999)

see legend commentary

potassium conductance γK = 40 nS
0.48 nS/µm2 (Migliore et al., 1999)

see legend commentary
reversal potential sodium ErevNa = 50 mV (Migliore et al., 1999)
reversal potential potassium ErevK =−90 mV (Migliore et al., 1999)
BaP attenuation parameters

attenuation step factor (age) δage
see Equation (6) and Figure M2B and C bottom

(Buchanan and Mellor, 2007; Golding et al., 2001)

attenuation step factor δdecay = 1.727 ·10−5 adjusted to fit
(Buchanan and Mellor, 2007; Golding et al., 2001)

auxiliary attenuation step factor δaux = 2.304 ·10−5 adjusted to fit
(Buchanan and Mellor, 2007; Golding et al., 2001)

recovery time for the attenuation factor τrec = 2 s
adjusted to fit

(Buchanan and Mellor, 2007; Golding et al., 2001)

recovery time for the auxiliary attenuation factor τaux
rec = 2 s

adjusted to fit
(Buchanan and Mellor, 2007; Golding et al., 2001)

recovery time for the age attenuation factor τ
age
rec = 0.5 s

adjusted to fit
(Buchanan and Mellor, 2007; Golding et al., 2001)

AP evoked by EPSP
decay time for Vevoke τV = 40 ms (Hines and Carnevale, 1997)
delay AP evoked by EPSP δdelay−AP = 15 ms (Fricker and Miles, 2000)

Table M5. The Na+ and K+ conductances intentionally do not match the reference because models with passive dendrite need higher current input to initiate action
potentials (Levine and Woody, 1978). Therefore we set it to achieve the desired amplitude on the dendrite and the dendritic spine according to the predictions of
(Golding et al., 2001) and (Kwon et al., 2017).

estimated before the postsynaptic simulation. To this, we use a variable Vevoke which is incremented by 1 at each
presynaptic time t ∈ (t1, ..., tn) and has exponential decay:{

V̇evoke =−Vevoke
τv

Vevoke(0) = 0
Vevoke −→Vevoke +1.

(7)

Since the BaPs evoked by EPSP are triggered by the afferent synapses and are limited by their respective docked
pools (D), we use the previous prel to define the probability of an AP to occur. We test the ratio of successful releases
from 25 synapses to decide if a BaP is evoked by an EPSP, setting a test threshold of 80%. Therefore, we express the
probability of evoking an AP, pAP(Vevoke), with the following test:

∑
25 1(rand < prel(Vevoked , [Ca2+]o,D))

25
> 80 %.

The EPSP summation dynamics on the soma and dendrites depend on the complex neuron morphology
(Etherington et al., 2010; Ebner et al., 2019) which was not implemented by our model. Therefore, our "AP evoked
by EPSP test" intends to give a simplified way to produce BaPs similar to an integrate-and-fire model (Sterratt et al.,
2011).

Previous work suggests that BaPs can be evoked with a ∼5 % probability for low-frequencies (Mayr and
Partzsch, 2010) in the Dudek and Bear 1992 experiment ([Ca2+]o = 2.5 mM). Our model covers this estimation, but
the chance to elicit an AP increases with the frequency (Etherington et al., 2010). This is captured by the Vevoke (in a
integrate-and-fire fashion (Stuart et al., 2016)) as shown in Figure M2F. The Figures M2D and E show how a 5 Hz
stimulation evokes APs. The delay between the EPSP and the evoked AP is set to δdelay−AP = 15ms, similar to the
EPSP-spike latency reported for CA1 neurons (Fricker and Miles, 2000).

AMPAr
Markov chain
The AMPAr is modeled with the Markov chain (Figure M3) described by Robert and Howe (2003); Coombs
et al. (2017) and adapted to temperature changes according to Postlethwaite et al. (2007). Here, we introduce the
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additional parameters ρAMPA
f ,ρAMPA

b to cover AMPAr temperature-sensitive kinetics (Postlethwaite et al., 2007). The
corresponding parameters are given in Table M6.

C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

O2 O3 O4

D22 D23 D24

4k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

2k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

3k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

4k−1 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

k−2 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

2 · k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

3k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

2k−1 ·ρAMPA
b

4δ0γ0 δ1γ1 2δ1γ1 3δ1γ1 4δ1γ1

δ2γ2 2δ2γ2 3δ2γ2

α2β α3β α4β

Figure M3. AMPAr Markov chain with three sub-conductance states and two desensitisation levels. It includes parameters ρAMPA
f , ρAMPA

b (binding and unbinding
of glutamate) which depend on temperature. Open states are O2, O3 and O4; closed states are C0, C1, C2, C3 and C4; desensitisation states are D0, D1, D2, D3 and
D4; deep desensitisation states are D22, D23 and D24.

The AMPAr current is the sum of the subcurrents associated to the occupancy of the three subconductance
states O2, O3 and O4 of the Markov chain in the Figure M3 and described as follows:

IAMPA = (ErevAMPA−Vsp) · (γA2 ·O2+ γA3 ·O3+ γA4 ·O4).

The adaptation of the Markov chain from (Robert and Howe, 2003) is made by changing the forward ρAMPA
f and

backward ρAMPA
b rates in a temperature-dependent manner matching the decay time reported by (Postlethwaite

et al., 2007):

ρ
AMPA
f =

10.273
1+ e−0.473·(T−31.724°C)

, ρ
AMPA
b =

5.134
1+ e−0.367·(T−28.976°C)

.

The effects of temperature change on AMPAr dynamics are presented in Figure M4, which also shows that
the desensitisation is unaltered between temperature changes (Figure M4B and C). The recovery time from
desensitisation is the same as at room temperature (Robert and Howe, 2003). Desensitisation measurements are
required to account for a temperature-dependent change in the rates of the "vertical" transitions in Figure M3, see
(Postlethwaite et al., 2007). This can be relevant for presynaptic bursts.

Figure M4. Effect of temperature in the AMPAr. A) Probability of AMPAr opening ( O2+O3+O4
NAMPA

) and the decay time at different temperatures in response to 1 mM
glutamate during 1 ms (standard pulse). Postlethwaite et al. (2007) data (our model) suggests that AMPAr decay time at 35°C is ∼ 0.5 ms (∼ 0.6 ms) and at 25°C
is ∼ 0.65 ms (∼ 0.95 ms), this shows a closer match towards more physiological temperatures. B) Desensitisation profile of AMPAr at 35°C showing how many
AMPAr are open in response to a glutamate saturating pulse (5 mM Glu during 20 ms) separated by an interval (x-axis). C) Same as in panel B but for 25°C.
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NAME VALUE REFERENCE
Glutamate parameters
duration of glutamate in the cleft gluwidth = 1 ms (Spruston et al., 1995)
concentration of glutamate in the cleft gluamp = 1 mM (Spruston et al., 1995)
glutamate variability
(gamma distribution Γ) glucv = Γ(1/0.52,0.52) (Liu et al., 1999)

glutamate signal Glu
glucv ·gluamp

for AMPAr, NMDAr and copied to GABA neurotransmitter
AMPAr parameters
number of AMPArs NAMPA = 120 (Bartol et al., 2015)
reversal potential ErevAMPA = 0 mV (Bartol et al., 2015)
subconductance O2 γA2 = 15.5 pS 16.3 pS (Coombs et al., 2017)
subconductance O3 γA3 = 26 pS 28.7 pS (Coombs et al., 2017)
subconductance O4 γA4 = 36.5 pS 37.8 pS (Coombs et al., 2017)
glu binding k1 = 1.6 ·107M−1s−1 (Robert and Howe, 2003)
glu unbinding 1 k−1 = 7400 s−1 (Robert and Howe, 2003)
glu unbinding 2 k−2 = 0.41 s−1 (Robert and Howe, 2003)
closing α = 2600 s−1 (Robert and Howe, 2003)
opening β = 9600 s−1 (Robert and Howe, 2003)
desensitisation 1 δ1 = 1500 s−1 (Robert and Howe, 2003)
desensitisation 2 δ2 = 170 s−1 (Robert and Howe, 2003)
desensitisation 3 δ0 = 0.003 s−1 (Robert and Howe, 2003)
re-desensitisation 1 γ1 = 9.1 s−1 (Robert and Howe, 2003)
re-desensitisation 2 γ2 = 42 s−1 (Robert and Howe, 2003)
re-desensitisation 3 γ0 = 0.83 s−1 (Robert and Howe, 2003)

Table M6. Parameter values for the AMPAr Markov chain and glutamate release affecting NMDAr, AMPAr. Properties of GABA release are the same as those for
glutamate.

Postsynaptic Ca2+ influx
The effects of experimental conditions in the calcium dynamics are due to receptors, ion channels and enzymes. A
leaky term models the calcium resting concentration in the Equation (8). The calcium fluxes from NMDAr and
VGCCs (T, R, L types) are given in Equation (9). The diffusion term through the spine neck is expressed in Equation
(10). Finally, the buffer, the optional dye and the enzymatic reactions are given in Equation (11) (parameter values
given at the Table M7):

Ċa =
Ca∞−Ca

τCa
+ (8)

CaNMDA + IT + IR + IL

2 ·F ·Asp
+ (9)

max(Ca∞,Ca/3)−Ca
τCaDi f f

− (10)

˙Bu f fCa− ˙Dye+ enzymes. (11)

Despite the driving force to the resting concentration, Ca∞ = 50 nM, the tonic opening of T-type channels causes
calcium to fluctuate making its mean value dependent on temperature, extracellular calcium and voltage. The
effects of this tonic opening in various experimental conditions are shown in Figure S4C. To avoid modelling
dendritic calcium sources, we use a dampening term as one-third of the calcium level since calcium imaging
comparing dendrite and spine fluorescence have shown this trend (Segal and Korkotian, 2014). The Equation (10)
implements the diffusion of calcium from the spine to the dendrite through the neck. The time constant for the
diffusion coefficient τCaDi f f , is estimated as described in (Holcman et al., 2005). The calcium buffer and the optional
dye are described as a two states reaction system (Sabatini et al., 2002):

˙Bu f fCa = kBu f f
on · (Bu f fcon−Bu f fCa) ·Ca− kBu f f

o f f ·Bu f fCa

˙Dye = kFluo5
on · (Fluo5 fcon−Dye) ·Ca− kFluo5

o f f ·Dye.

We estimated the calcium reversal potential for the calcium fluxes using the Goldman–Hodgkin–Katz (GHK)
flux equation described in (Hille, 1978). The calcium ion permeability, PCa, was used as a free parameter adjusting a
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single EPSP to produce a calcium amplitude of ∼ 3 µM as reported in Chang et al. (2017).

φ = zCa ·Vsp ·F/R · (T +273.15K)

ΦCa =−PCa · zCa ·F ·φ ·
[Ca]i− [Ca]o · e−φ

1− e−φ
(12)

ΦCa is used to determine the calcium influx through NMDAr and VGCC in the Equations 13, 14, 15 and 16.

NAME VALUE REFERENCE
Buffer and dye

association buffer constant kBu f f
on = 0.247 µM−1ms−1 (Bartol et al., 2015)

dissociation buffer constant kBu f f
o f f = 0.524 ms−1 (Bartol et al., 2015)

buffer concentration Bu f fcon = 62 µM 76.7 µM (Bartol et al., 2015)
Calcium dynamics
Calcium baseline concentration Ca∞ = 50 nM 37±5 to 54±5 nM (Maravall et al., 2000)

Calcium decay time τCa = 10 ms
50 to 500 ms for with dye (Maravall et al., 2000)

therefore < 50 to 500 ms undyed (unbufered)
Calcium diffusion DCa = 0.3338 µm2ms−1 0.22 to 0.4 µm2ms−1 (Bartol et al., 2015; Holcman et al., 2005)
Calcium diffusion time constant τCaDi f f =

Volsp
2DCa·Dneck

+ Lneck
2DCa

= 0.5 ms 8 ms for a Vsp = 0.7 µm3 (Holcman et al., 2005)

GHK
temperature T = 35°C converted to Kelvin in the Equation (12) given the protocol
faraday constant F = 96.485 C mol−1 (Hille, 1978)
gas constant R = 8.314 J K−1 mol−1 (Hille, 1978)

Calcium permeability PCa = 0.045 µm ms−1 adjusted to produce 3 µM Calcium in response to a Glu release
supplementary files from (Chang et al., 2017)

Calcium ion valence zCa = 2 (Hille, 1978)

Table M7. Postsynaptic calcium dynamics parameters.

NMDAr - GluN2A and GluN2B
Markov chain
In the hippocampus, the NMDAr are principally heteromers composed of the obligatory subunit GluN1 and either
the GluN2A or GluN2B subunits. These N2 subunits guide the activation kinetics of these receptors with the
GluN1/GLUN2B heteromers displaying slow kinetics (∼ 250ms) and the GluN1/GluN2A heteromers displaying
faster kinetics (∼ 50ms). We modeled both NMDA subtypes. The NMDAr containing GluN2A is modeled with the
following Markov chain (Popescu et al., 2004) where we introduce the additional parameters ρNMDA

f ,ρNMDA
b :

A0 A1 A2 A3 A4 AO1 AO2

ka · [Glu] ·ρNMDA
f

k−a ·ρNMDA
b

kb · [Glu] ·ρNMDA
f

k−b ·ρNMDA
b

kc ·ρNMDA
f

k−c ·ρNMDA
b

kd ·ρNMDA
f

k−d ·ρNMDA
b

ke ·ρNMDA
f

k−e ·ρNMDA
b

k f ·ρNMDA
f

k− f ·ρNMDA
b

The NMDAr containing GluN2B is modeled with a Markov chain based on the above GluN2A scheme. We
decreased the rates by ∼75% in order to match the GluN2B decay at 25°C as published in (Iacobucci and Popescu,
2018).

B0 B1 B2 B3 B4 BO1 BO2

sa · [Glu] ·ρNMDA
f

s−a ·ρNMDA
b

sb · [Glu] ·ρNMDA
f

s−b ·ρNMDA
b

sc ·ρNMDA
f

s−c ·ρNMDA
b

sd ·ρNMDA
f

s−d ·ρNMDA
b

se ·ρNMDA
f

s−e ·ρNMDA
b

s f ·ρNMDA
f

s− f ·ρNMDA
b

The different rates are given in Table M8.

NMDAr and age switch
The age-dependent expression ratio of the subtypes GluN2A and GluN2B (rage) was obtained from hippocampal
mice data (Sinclair et al., 2016). We added noise to this ratio causing ∼1 NMDAr subunit to flip towards GluN2A
or GluN2B (see Figure M5E). The population of 15 NMDAr is divided in the two subtypes according to the ratio
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Figure M5. NMDAr changes caused by age, temperature and extracellular and magnesium concentrations in the aCSF.A Decay time of the NMDAr-mediated
EPSP recorded from neocortical layer II/III pyramidal neurons (grey) (Korinek et al., 2010) compared to the decay time from the GluN2B channel estimated
by our model (yellow) and data from Iacobussi’s single receptor recording (purple) (Iacobucci and Popescu, 2018). B) Comparison of our implementation of
GluN2B:GluN2A ratio and the GluN2B:GluN2A ratio from the mice’s CA1. C) Comparison of our implementation of NMDAr conductance change in response to
the extracellular against data (Maki and Popescu, 2014). D) Forward and backwards temperature factors implemented to approximate NMDAr subtypes decay
times at room temperature (Iacobucci and Popescu, 2018) and temperature changes observed in (Korinek et al., 2010). E) NMDAr subtypes number on our model
given age. We add noise to have a smoother transition between different ages. F) Calcium concentration changes for causal and anticausal protocols in response
to different aCSF calcium and magnesium compositions with fixed Ca/Mg ratio (1.5). Scale 50 ms and 5 µM.

plotted in Figure M5B as function of age. The ratio to define the number NMDAr subtypes as function of age reads:

rage = 0.507+
0.964

1+ e0.099·(age−25.102 days)
+N (0,0.05)

NGluN2B = round
(

NNMDA · rage

rage +1

)
NGluN2A = round

(
NNMDA

rage +1

)
.

The round term in the two previous equations ensures that we have an integer value for the NMDAr subtypes,
making the stair shaped curve seen in Figure M5E.

NMDAr and temperature
We adjusted the GluN2A and GluN2B forward and backward rates to follow the temperature effects on NMDAr-
mediated EPSP (Korinek et al., 2010) (see Figure M5A and D). Because GluN2B dominates the NMDAr-mediated
EPSP, we fit its decay time on the NMDAr-mediated EPSP as function of temperature as reported by Korinek et al.
(2010) using a logistic functions ρNMDA

f and ρNMDA
b . The decay time comparison is shown in Figure M5A. Then, we

applied the same temperature factor ρNMDA
f and ρNMDA

b for GluN2A. The decay times of GluN2A and GluN2B are
similar to the ones reported by Iacobucci (Iacobucci and Popescu, 2018). The forward and backward factors are
described as follows:

ρ
NMDA
f =−1230.680+

1239.067
1+ e−0.099·(T+37.631°C)

, ρ
NMDA
b = 3.036+

1621.616
1+ e−0.106·(T−98.999°C)

.
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NAME VALUE ENCE
NMDAr (GluN2A)
glutamate binding ka = 34 µM−1s−1 (Popescu et al., 2004)
glutamate binding kb = 17 µM−1s−1 (Popescu et al., 2004)
forward rate kc = 127 s−1 (Popescu et al., 2004)
forward rate kd = 580 s−1 (Popescu et al., 2004)
opening rate ke = 2508 s−1 (Popescu et al., 2004)
opening rate k f = 3449 s−1 (Popescu et al., 2004)
closing rate k− f = 662 s−1 (Popescu et al., 2004)
closing rate k−e = 2167 s−1 (Popescu et al., 2004)
backward rate k−d = 2610 s−1 (Popescu et al., 2004)
backward rate k−c = 161 s−1 (Popescu et al., 2004)
glutamate unbinding k−b = 120 s−1 (Popescu et al., 2004)
glutamate unbinding k−a = 60 s−1 (Popescu et al., 2004)
NMDAr (GluN2B)
glutamate binding sb = 0.25kb adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
glutamate binding sc = 0.25kc adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
forward rate sc = 0.25kc adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
forward rate sd = 0.25kd adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
opening rate se = 0.25ke adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
opening rate s f = 0.25k f adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
closing rate s− f = 0.23k− f adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
closing rate s−e = 0.23k−e adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
backward rate s−d = 0.23k−d adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
backward rate s−c = 0.23k−c adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
glutamate unbinding s−b = 0.23k−b adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
glutamate unbinding s−a = 0.23k−a adapted from GluN2A (Popescu et al., 2004; Iacobucci and Popescu, 2018)
other parameters
total number of NMDAr NNMDA = 15 5-30 (Spruston et al., 1995; Bartol et al., 2015; Nimchinsky et al., 2004)
distribution of GluN2A and GluN2B defined by rage (Sinclair et al., 2016)
NMDAr conductance depending on calcium γNMDA (Maki and Popescu, 2014)
NMDAr reversal potential ErevNMDA = 0 mV (Destexhe et al., 1994)
fraction of calcium carried by NMDAr fCa = 0.1 (Griffith et al., 2016)

Table M8. NMDAr parameters.

NMDAr current and Ca2+-dependent conductance
NMDAr conductance is modulated by external calcium and is modelled according to the next equations using
NMDAr subconductances AO1 and AO2 (GluN2A), and BO1 and BO2 (GluN2B).

γNMDA = 33.949+
58.388

1+ e4·([Ca2+]o−2.701 mM)
pS

B(Vsp, [Mg]o) =
1

1+ [Mg]o
3.57 · e

−0.062·Vsp

NMDA = (BO1 +BO2 +AO1 +AO2) ·B(Vsp, [Mg]o) · γNMDA

INMDA = (ErevNMDA−Vsp) ·NMDA

We now modify the conductance function γNMDA reported by Maki and Popescu (2014). The reported NMDAr
conductance at [Ca2+]o = 1.8 mM is 53±5pS. Here, we used the higher conductance 91.3 pS for NMDAr (for both
subtypes) at [Ca2+]o = 1.8 mM to compensate for the small number of NMDArs reported by Nimchinsky et al.
(2004). Hence, we cover Maki and Popescu (2014) data differently to account for this constraint: this caused a
right-shift in the NMDA-conductance curve (Figure M5C). The calcium influx CaNMDA is modulated by the GHK
factor, Equation (12), as function of the internal and external calcium concentrations and the spine voltage:

CaNMDA = fCa ·ΦCa ·NMDA. (13)

The combined effect of Magnesium (Jahr and Stevens, 1990) and extracellular Calcium concentration are
displayed in Figure M5F.
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GABA(A) receptor
Markov chain
We used the GABA(A) receptor Markov chain (Figure M6) presented in Bush and Sakmann 1990 (Busch and
Sakmann, 1990; Destexhe et al., 1998) and we estimated temperature adaptations using Otis and Mody 1992 (Otis
and Mody, 1992) measurements.

C0 C1 C2

O1 O2

rb1 · [Gaba]

ru1

rb2 · [Gaba]

ru2

ro1rc1 ·ρGABA
b

ro1rc2 ·ρGABA
b

Figure M6. GABAr Markov chain model. Closed states (C0, C1 and C2) open in response to GABAr and can go either close again or open (O1 and O2)

GABA(A)r and temperature
Because the amplitude of GABA(A) current is altered by the GABAr shift (Rinetti-Vargas et al., 2017) during
development, we applied temperature changes only to the closing rates using a logistic the function ρGABA

b
estimated by fitting Otis and Mody (1992) measurements (data comparison in the Figure M7B and E).

ρ
GABA
b = 1.470− −1.279

1+ e0.191·(T−32.167) .

GABA(A)r current and age switch
The GABA(A)r-driven current changes during development (Meredith et al., 2003) passing from depolarizing
(excitatory) to hyperpolarizing (inhibitory) (Chamma et al., 2012). That is, the reversal potential of chloride ions
permeating GABA(A)r shifts from above the membrane resting potential (inward driving force - excitatory) to
below the membrane resting potential (outward driving force - inhibitory) (Rinetti-Vargas et al., 2017). Such effect
mediated by chloride ions is associated with the KCC2 pump (K Cl co-transporter) which becomes efficient in
extruding chloride ions during maturation (Rinetti-Vargas et al., 2017). To cover the GABA(A)r shift, we fit the
chloride reversal potential (ECl

rev) using the data published by Rinetti-Vargas et al. (2017) (Figure M7C):

ECl
rev =−92.649+

243.515
1+ e0.091·(age−0.691 days)

IGABA = (O1 +O2) · (ECl
rev−Vdend) · γGABA.

Table M9 presents the parameters to model the GABAr.

NAME VALUE ENCE
GABA(A) receptor
number of GABA NGABA = 34 30 (Edwards et al., 1990)
chloride reversal potential see age-dependent equation (Rinetti-Vargas et al., 2017)
GABAr conductance γGABA = 36 pS 27 pS (Macdonald et al., 1989)
binding rb1 = 20 ·106M−1 s−1 same as (Busch and Sakmann, 1990)
unbinding ru1 = 4.6 ·103 s−1 same as (Busch and Sakmann, 1990)
binding rb2 = 10 ·106 M−1s−1 same as (Busch and Sakmann, 1990)
unbinding ru2 = 9.2 ·103 s−1 same as (Busch and Sakmann, 1990)
opening pore rro1 = 3.3 ·103 s−1 same as (Busch and Sakmann, 1990)
opening pore rro2 = 10.6 ·103 s−1 same as (Busch and Sakmann, 1990)
closing pore rc2 = 400 s−1 based on (Busch and Sakmann, 1990; Otis and Mody, 1992)
closing pore rc2 = 9.8 ·103 s−1 based on (Busch and Sakmann, 1990; Otis and Mody, 1992)

Table M9. GABAr parameters.
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Figure M7. GABA(A)r current, kinetics and chloride reversal potential. A) States of GABA(A)r Markov chain at 25°C in response to a presynaptic stimulation.
Opened = O1 +O2, closed = C0 +C1 +C2. B) Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at 25°C. Even though data were recorded
from P70 at 25°C and P15 at 35°C, we normalize the amplitude to invert the polarity and compare the decay time. This is done since the noise around P15 can
either make GABAr excitatory or inhibitory as shown by Ecl data in panel C. C) Chloride reversal potential (ECl

rev) fitted to Rinetti-Vargas et al. (2017) data. Note
we used both profiles from axon and dendrite age-depended ECl

rev changes since exclusive dendrite data is scarce. D) States of simulated from GABA(A)r Markov
chain at 35°C in response to a presynaptic stimulation. E) Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at 25°C (same normalization
as in panel B). F) Change in the polarization of GABA(A)r currents given the age driven by the ECl

rev.

VGCC - T, R and L type
Markov chain
A stochastic VGCC model was devised using the channel gating measurements from CA1 rat’s (2-8 weeks)
pyramidal neurons by Magee and Johnston 1995 at room temperature (Magee and Johnston, 1995). Our model has
three different VGCC subtypes described by the Markov chains in Figure M8: the T-type (low-voltage), the R-type
(medium-to-high-voltage) and the L-type (high-voltage).

C0 C1

C2 OR

αR
m(Vsp) ·ρV GCC

f

β R
m(Vsp) ·ρV GCC

b

αR
m(Vsp) ·ρV GCC

f

β R
m(Vsp) ·ρV GCC

b

αR
h (Vsp) ·ρV GCC

fβ R
h (Vsp) ·ρV GCC

b αR
h (Vsp) ·ρV GCC

fβ R
h (Vsp) ·ρV GCC

b

OL1 C0 OL2

β L
1 (Vsp) ·ρV GCC

b

αL(Vsp) ·ρV GCC
f

αL(Vsp) ·ρV GCC
f

β L
2 (Vsp) ·ρV GCC

b

C0 C1

C2 OT

αT
m (Vsp) ·ρV GCC

f

β T
m (Vsp) ·ρV GCC

b

αT
m (Vsp) ·ρV GCC

f

β T
m (Vsp) ·ρV GCC

b

αT
h (Vsp) ·ρV GCC

fβ T
h (Vsp) ·ρV GCC

b αT
h (Vsp) ·ρV GCC

fβ T
h (Vsp) ·ρV GCC

b

Figure M8. From left to right, R-, L-, and T-type VGCCs Markov chain adapted from Magee and Johnston 1995 (Magee and Johnston, 1995). The R- (left scheme)
and T- type (right scheme) have a single open state (red colour), respectively, Or and OT . The L-type VGCC (middle) has two open states, OL1 and OL2.

The VGCC Markov chain derived from Magee and Johnston 1995 (Magee and Johnston, 1995) are composed of
two gates (h,m) for T- (Figure M9A and D) and R-types (Figure M9B and E) and a single gate for L-type (Figure
M9C), as described in the equations below.

R-type h-gate rates

τ
R?
h = 100

hR?
in f (Vsp) =

1

1+ e
Vsp+39

9.2

α
R
h (Vsp) =

hR
in f

τR
h

β
R
h (Vsp) =

1−hR
in f

τR
h
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R-type m-gate rates

β
R?
m = 40

mR?
in f =

1

1+ e
3−10

8

α
R?
m r = β

R?
m ·

mR?
in f

1−mR?
in f

τ
R
m =

1
αR?

m +β R?
m

mR
in f =

1

1+ e
3−Vsp

8

α
R
m(Vsp) =

mR
in f

τR
m

β
R
m(Vsp) =

1−mR
in f

τR
m

T-type h-gate rates

τ
T?
h = 50

hT?
in f (Vsp) =

1

1+ e
Vsp+70

6.5

α
T
h (Vsp) =

hT
in f

τT
h

β
T
h (Vsp) =

1−hT
in f

τT
h

T-type m-gate rates

β
T?
m = 1

mT?
in f =

1

1+ e
−32+20

7

α
T?
m r = β

T?
m ·

mT∗
in f

1−mT?
in f

τ
T
m =

1
αT?

m +β T?
m

mT
in f =

1

1+ e
−32−Vsp

7

α
T
m(Vsp) =

mT
in f

τT
m

β
T
m (Vsp) =

1−mT
in f

τT
m

L-type rates

α
L(Vsp) =

0.83

1+ e
13.7−Vsp

6.1

β
L
1 (Vsp) =

0.53

1+ e
Vsp−11.5

6.4

β
L
2 (Vsp) =

1.86

1+ e
Vsp−18.8

6.17

VGCC and temperature
We used the same temperature factor for every VGCC subtype, respectively ρV GCC

f and ρV GCC
b (see Figure M9F), as

follows:

ρ
V GCC
f = 2.503− 0.304

1+ e1.048·(T−30.668)

ρ
V GCC
b = 0.729+

3.225
1+ e−0.330·(T−36.279) .

The VGCC subtypes are differently sensitive to temperature, with temperature factors for decay times ranging
from 2 (Iftinca et al., 2006) to 50-fold (Peloquin et al., 2008). It further complicates if T-type isoforms are considered.
Indeed, they can have temperature factors that accelerate or slow down the kinetics. For instance, when passing
from room to physiological temperatures, the isoform Cav3.3 has a closing time ∼50 % faster (Iftinca et al., 2006)
and the isoform Cav3.1 becomes ∼15 % slower. To simplify, the same temperature factor is adopted to all VGCC
subtypes.

VGCC currents
The VGCC currents are integrated to the dendritic spine and estimated using the GHK Equation (12), as follows:

IT = γT ·ΦCa ·OT (14)
IR = γR ·ΦCa ·OR (15)
IL = γL ·ΦCa · (OL1 +OL2) (16)

Table M10 presents the parameters to model the VGCC channels.
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NAME VALUE ENCE
VGCC
VGCC T-type conductance γCaT = 12 pS same as (Magee and Johnston, 1995)
VGCC R-type conductance γCaR = 17 pS same as (Magee and Johnston, 1995)
VGCC L-type conductance γCaL = 27 pS same as (Magee and Johnston, 1995)
number of VGCCs 3 for each subtype 1 to 20 (Higley and Sabatini, 2012)

Table M10. VGCC parameters

Figure M9. VGCC rates and temperature factors. A) Activation (αm(Vsp)) and deactivation rates (βm(Vsp)) for the T-type m-gate. B) Activation (αm(Vsp)) and
deactivation rates (βm) for the R-type m-gate. C) Activation (αm(Vsp)) and both deactivation rates (β L

2 (Vsp) and β 1
2 (Vsp)) for the L-type VGCC. D) Activation

(αh(Vsp)) and deactivation rates (βh(Vsp)) for the T-type h-gate. E) Activation (αh(Vsp)) and deactivation rates (βh(Vsp)) for the R-type h-gate. F) Temperature factor
applied to all the rates, forward change (ρV GCC

f ) for the α rates and backward change (ρV GCC
b ) for the β rates.

SK channel
The small potassium (SK) channel produces hyperpolarizing currents which are enhanced in the presence of
intracellular calcium elevations. The SK channel current was based on the description of Griffith et al. (2016) as
follows:

r(Ca) =
Caσ

Caσ +hσ
SK

ṁsk =
r(Ca) ·ρSK

f −ms

τSK ·ρSK
b

ISK = γSK · (ESK
rev −Vsp) ·msk ·NSK .

We chose a temperature factor to decrease the decay time of hyperpolarizing currents by a factor of two when
passing from physiological to room temperature. Despite that the ences for temperature effects on the SK channel
are few, a report (van Herck et al., 2018) suggests a left-ward shift in the SK half-activation when changing from
37°C (hSK = 0.38±0.02 µM) to 25°C (hSK = 0.23±0.01 µM) ; that is a 65% decrease.

ρ
SK
b = 149.37− 147.61

1+ e0.093·(T−98.85C)
, ρ

SK
f = 0.005+

2.205
1+ e−0.334·(T+25.59C)

Table M11 presents the parameters to model the SK channel.
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NAME VALUE ENCE
SK channel
number of SK channels NSK = 15 10–200 (Bock et al., 2019)
SK conductance γSK = 10 pS (Maylie et al., 2004)
SK reversal potential ESK

rev =−90 mV (Griffith et al., 2016)
SK half-activation hSK = 0.333 µM (Griffith et al., 2016)
SK half-activation slope σ = 6 4 in (Griffith et al., 2016)
SK time constant τSK = 6.3 ms (Griffith et al., 2016)

Table M11. SK channel parameters.

Enzymes - CaM, CaN and CaMKII
Markov chain
To model the enzymes dynamics, we adapted a monomeric CaM-CaMKII Markov chain from Chang et al. (2019)
which builds over Pepke et al. (2010). Our adaptation incorporates a simplified CaN reaction which only binds to
fully saturated CaM. That is, CaM bound to four calcium ions on N and C terminals (see Markov chain in the Figure
M10). A consequence of the Pepke coarse-grained model is that calcium binds and unbinds simultaneously from
the CaM terminals (N,C). We assumed no dephosphorylation reaction between CaMKII and CaN since Otmakhov
et al. (2015) experimentally suggested that no known phosphatase affects CaMKII decay time which is probably
caused only by CaM untrapping (Otmakhov et al., 2015). This was previously theorized by Michalski (2013)’s
model, and it is reflected in Chang data (Chang et al., 2019, 2017). The structure of the corresponding Markov chain
is shown in Figure M10.

Chang’s data (Chang et al., 2019) provides a high-temporal resolution fluorescence measurements for CaMKII
in the spines of rat’s CA1 pyramidal neurons and advances the description of CaMKII self-phosphorylation (at
room temperature). We modified Chang’s model of CaMKII unbinding rates k2,k3,k4,k5 to fit CaMKII dynamics
at room/physiological temperature as shown by Chang et al. (2017) supplemental files. Previous modelling of
CaMKII (Chang et al., 2019; Pepke et al., 2010) used a stereotyped waveform with no adaptation to model calcium.
Our contribution to CaMKII modelling was to use calcium dynamics sensitive to the experimental conditions to
reproduce CaMKII data, therefore, allowing us to capture physiological temperature measurements from Chang
et al. (2017). Note that CaMKII dynamics has two time scales and we only capture the fastest one (after stimulation
ceases, 60 s) and the relative amplitude of CaMKII between the different temperatures. The slowest one occurs at
the end of the stimulus, close to the maximum (Figure M11A); this can be caused by the transient volume increase
in the spine as measured by Chang et al. (2017).

Table M12 shows the concentration of the enzymes and Table M13 shows the parameters to model enzymes
reactions in the Figure M10.

NAME VALUE REFERENCE
Enzyme concentrations
free CaM concentration CaMcon = 30 µM (Kakiuchi et al., 1982)
free KCaM concentration mKCaMcon = 70 µM (Feng et al., 2011; Lee et al., 2009)
free CaN concentration mCaNcon = 20 µM 5–20 µM (Roehrl et al., 2004)

Table M12. Concentration of each enzyme.

Temperature effects on enzymatic-activity
We then included temperature factors in the coarse-grained model using Chang data (Chang et al., 2019), as shown
in Figure M11. For CaMKII, we fitted the modified dissociation rates of the phosphorylation states k2, k3 and k5 to
match the data on relative amplitude and decay time using the following logistic function:

ρ
CaMKII
b = 162.171− 161.426

1+ e0.511(T−45.475°C)
.

For CaN, we fit the Fujii et al. (2013)’ data at 25°C as seen in Figure M12A. However, since CaN-CaM dissociation
rates at physiological temperatures were not found, we set the temperature factor to CaN that fits the outcomes of
the protocols we proposed to reproduce. A reference value from the CaN-AKAP79 complex (Li et al., 2012) showed
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a Q10 = 4.46 = (2.19 s−1/9.78 s−1) which is nearly the temperature factor used in our model for CaM. Therefore,
both the association and dissociation rates are modified using the following logistic functions:

ρ
CaN
f = 2.503− 0.304

1+ e1.048(T−30.668°C)

ρ
CaN
b = 0.729+

3.225
1+ e−0.330(T−36.279°C)

.
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Figure M10. Coarse-grained model of CaM, CaMKII and CaN adapted from Chang et al. (2019) and Pepke et al. (2010) The reaction description matches
with the color: Releases 2Ca, consumes 2Ca, consumes mKCaM, releases mKCaM, releases CaM2C, CaM2N, CaM0, CaM2N, releases mCaN, consumes mCaN,
phoshorylate K units to P units, phosphorylated states and dephosphorylation.
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Figure M11. CaMKII temperature changes in our model caused by 1Pre, 30 at 0.49 Hz with Glutamate uncaging (no failures allowed), 1Mm Ca, 2mM Mg, P4-7
organotypic slices from mice hippocampus. A) CaMKII fluorescent probe lifetime change measured by Chang et al. (2017) for 25°(blue) and 35°C (red) (Chang
et al., 2017). The decay time (τ) was estimated by fitting the decay after the stimulation (30 pulses at 0.49Hz) using a single exponential decay, y = a · e−t·b ; τ = 1\b.
B) Simulation of the CaMKII concentration change (with respect to the baseline) at 25°in response to same protocol applied in the panel A. The simulations on the
panels B, C, E and F show the mean of 20 samples. C) Same as in panel B but for 35°C. D) Estimated temperature change factor for the dissociation rates k2, k3 and
k5 in the Markov chain at the Figure M10. E) Change in the concentration of the CaMKII states (25°C) which are summed to compose CaMKII change in the panel
B. F) Same as in panel E for 35°C with reference to the panel C.

Figure M12. CaN temperature changes in our model caused by 1Pre, 100 at 20 Hz with Glutamate uncaging (no failures allowed), 2Mm Ca, Free Mg, 11-13
days in vitro. A) Simulated caN change (blue solid line) in response to the same stimuli of the CaN measurement from Fujii et al. (2013) RY-CaN fluorescent probe
(green solid line). The decay time (τ) estimated from data (y = a · e−t·b) is 94.83 s (dashed purple line) and for our model (solid purple line) is 82.66 s. B) Simulated
CaN change for physiological temperature with decay time 54.44 s. Due to the lack of data, CaN kinetic change was set to fit plasticity on the protocols use in this
work. C) Temperature change, ρCaN

f and ρCaN
b , aplied to CaN association and dissociation rates. Our dissociation rate becomes 0.006 s−1 for 22°C (same temperature

as in Quintana et al. (2005)), 0.0012 s−1), at the same temperature the association rate becomes 9.45 ·106M−1s−1 (46 ·106M−1s−1 in Quintana et al. (2005)).
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REACTIONS VALUE REFERENCE
Coarse-grained model, CaM-Ca reactions
CaM0 + 2Ca⇒ CaM2C
CaM2N + 2Ca⇒ CaM4 k2C

f = adapt(k1C
on ,k

2C
on ,k

1C
o f f ,k

2C
on ,Ca) (Pepke et al., 2010)

CaM0 + 2Ca⇒ CaM2N
CaM2C + 2Ca⇒ CaM4 k2N

f = adapt(k1N
on ,k

2N
on ,k

1N
o f f ,k

2N
on ,Ca) (Pepke et al., 2010)

CaM2C⇒ CaM0 + 2Ca
CaM4⇒ CaM2N + 2Ca k2C

b = adapt(k1C
o f f ,k

2C
o f f ,k

1C
o f f ,k

2C
on ,Ca) (Pepke et al., 2010)

CaM2N⇒ CaM0 + 2Ca
CaM4⇒ CaM2C + 2Ca k2N

b = adapt(k1N
o f f ,k

2N
o f f ,k

1N
o f f ,k

2N
on ,Ca) (Pepke et al., 2010)

k1C
on = 5 ·106M−1s−1 1.2 to 9.6 ·106M−1s−1 (Pepke et al., 2010)

k2C
on = 10 ·106M−1s−1 5 to 35 ·106M−1s−1 (Pepke et al., 2010)

k1N
on = 100 ·106M−1s−1 25 to 260 ·106M−1s−1(Pepke et al., 2010)

k2N
on = 200 ·106M−1s−1 50 to 300 ·106M−1s−1 (Pepke et al., 2010)

k1C
o f f = 50 s−1 10 to 70 s−1(Pepke et al., 2010)

k2C
o f f = 10 s−1 8.5 to 10 s−1(Pepke et al., 2010)

k1N
o f f = 2000 s−1 1 ·103 to 4 ·103 s−1(Pepke et al., 2010)

k2N
o f f = 500 s−1 0.5 ·103 to > 1 ·103 s−1(Pepke et al., 2010)

Coarse-grained model, KCaM-Ca reactions
KCaM0 + 2Ca⇒ KCaM2C
KCaM2N + 2Ca⇒ KCaM4 kK2C

f = adapt(kK1C
on ,kK2C

on ,kK1C
o f f ,k

K2C
on ,Ca) (Pepke et al., 2010)

KCaM0 + 2Ca⇒ KCaM2N
KCaM2C + 2Ca⇒ KCaM4 kK2N

f = adapt(kK1N
on ,kK2N

on ,kK1N
o f f ,k

K2N
on ,Ca) (Pepke et al., 2010)

KCaM2C⇒ KCaM0 + 2Ca
KCaM4⇒ KCaM2N + 2Ca kK2C

b = adapt(kK1C
o f f ,k

K2C
o f f ,k

K1C
o f f ,k

K2C
on ,Ca) (Pepke et al., 2010)

KCaM2N⇒ KCaM0 + 2Ca
KCaM4⇒ KCaM2C + 2Ca kK2N

b = adapt(kK1N
o f f ,k

K2N
o f f ,k

K1N
o f f ,k

K2N
on ,Ca) (Pepke et al., 2010)

kK1C
on = 44 ·106M−1s−1 (Pepke et al., 2010)

kK2C
on = 44 ·106M−1s−1 (Pepke et al., 2010)

kK1N
on = 76 ·106M−1s−1 (Pepke et al., 2010)

kK2N
on = 76 ·106M−1s−1 (Pepke et al., 2010)

kK1C
o f f = 33 s−1 (Pepke et al., 2010)

kK2C
o f f = 0.8 s−1 0.49 to 4.9 s−1 (Pepke et al., 2010)

kK1N
o f f = 300 s−1 (Pepke et al., 2010)

kK2N
o f f = 20 s−1 6 to 60 s−1 (Pepke et al., 2010)

Coarse-grained model, CaM-mKCaM reactions
CaM0 + mKCaM⇒mKCaM0 kCaM0

f = 3.8 ·103M−1s−1 (Pepke et al., 2010)
CaM2C + mKCaM⇒mKCaM2C kCaM2C

f = 0.92 ·106M−1s−1 (Pepke et al., 2010)
CaM2N + mKCaM⇒mKCaM2N kCaM2N

f = 0.12 ·106M−1s−1 (Pepke et al., 2010)
CaM4 + mKCaM⇒mKCaM4 kCaM4

f = 30 ·106M−1s−1 14 to 60 ·106M−1s−1 (Pepke et al., 2010)
mKCaM0⇒ CaM0 + mKCaM kCaM0

b = 5.5 s−1 (Pepke et al., 2010)
mKCaM2C⇒ CaM2C + mKCaM kCaM2C

b = 6.8 s−1 (Pepke et al., 2010)
mKCaM2N⇒ CaM2N + mKCaM kCaM2N

b = 1.7 s−1 (Pepke et al., 2010)
mKCaM4⇒ CaM0 + mKCaM kCaM4

b = 1.5 s−1 1.1 to 2.3 s−1 (Pepke et al., 2010)
Coarse-grained model, self-phosphorylation reactions
KCaM0⇒ PCaM0
KCaM2N⇒ PCaM2N
KCaM2C⇒ PCaM2C
KCaM4⇒ PCaM4

k1 = 12.6 s−1 (Chang et al., 2019)

Fraction of activated CaMKII F =CaMKII/mKCaMcon see Equation (17) (Chang et al., 2019)
PCaM0⇒ P+CaM0
PCaM2N⇒ P+CaM2N
PCaM2C⇒ P+CaM2C
PCaM4⇒ P+CaM4

k2 = 0.33−1 0.33 s−1 ; adapted from (Chang et al., 2019)

P⇒mKCaM k3 = 4 ·0.17s−1 0.17s−1 adapted from (Chang et al., 2019)
P⇒P2 k4 = 4 ·0.041s−1 0.041s−1 adapted from (Chang et al., 2019)
P2⇒P k5 = 8 ·0.017s−1 0.017s−1adapted from (Chang et al., 2019)
Calcineurin model, CaM-CaM4 reactions
CaM4+mCaN⇒mCaNCaM4 kCaN

f = 10.75 ·106M−1s−1 46 ·106M−1s−1 (Quintana et al., 2005)

mCaNCaM4⇒CaM4+mCaN kCaN
b = 0.02 s−1 0.0012 s−1 (Quintana et al., 2005)

see temperature factor

Table M13. Parameters for the coarse-grained model published in Pepke et al. (2010) and adapted by Chang et al. (2019) and this work. Pepke et al. (2010) rate
adaptation for the coarse-grained model adapt(a,b,c,d,Ca) = a·b

c+d·Ca .
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Readout
We describe the readout mechanism which provides the plasticity event which takes place in the synapse. First, we
define the following variables which are representative of "active CaMKII" and "active CaN":

Active CaN
CaN =CaN4

Active CaMKII
KCaM = KCaM0+KCaM2C+KCaM2N +KCaM4
PCaM = PCaM0+PCaM2C+PCaM2N +PCaM4

CaMKII = KCaM+PCaM+P+P2. (17)

It is known that the calcium entry initiates a cascade of events that ultimately leads to short and long term plasticity
changes. Specific concentrations of CaMKII and CaN trigger activation functions actD and actP when they belong to
one of the two polygonal regions (P and D), termed plasticity regions:

˙actD = aD ·1D−bD · (1−1D) ·actD
˙actP = aP ·1P−bP · (1−1P) ·actP.

To Specify the LTP/LTD rates, termed Drate and Prate, we use the activation functions, actD and actP, as follows:

Prate(actP) = t−1
P

acthP
P

acthP
P +KhP

P

Drate(actD) = t−1
D

acthD
D

acthD
D +KhD

D

.

The Markov plasticity chain (see Figure M13) starts with initial conditions NC=100, LTD=0 and LTP=0. Figure
M14 shows how the readout works to predict plasticity for a single orbit. Table M14 shows the parameters to define
the polygons of the plasticity regions (see Figure M14)B.

LTD NC LTP
Prate(actP)

Drate(actD)

Prate(actP)

Drate(actD)

Figure M13. Plasticity Markov Chain.
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Figure M14. Plasticity readout for the protocol 1Pre2Post10, 300 at 5Hz, from Tigaret et al. (2016). A) CaMKII and CaN activity in response to protocol
1Pre2Post10. B) Enzymatic joint activity in the 2D plane showing LTP and LTD’s plasticity regions. The black point marks the beginning of the stimulation, and
the white point shows the end of the stimulation after 60 s. C) Region indicator illustrating how the joint activity crosses the LTP and the LTD regions. D) The
leaky activation functions are used respectively as input to the LTP and LTD rates. The activation function has a constant rise when the joint-activity is inside the
region, and exponential decay when it is out. E) The LTD rate in response to the leaky activation function, actD, in panel D. Note that this rate profile occurs after
the stimulation is finished (60 s). The joint-activity is returning to the resting concentration in panel A. F) The LTP rate in response to the leaky activation function,
actP, in panel D. G) Outcome of the plasticity Markov chain in response to the LTD and LTP rates. The EPSP change (%) is estimated by the difference between the
number of processes in the states LTP and LTD, LT P−LT D. H) Normalized LTP and LTD rates (multiplied to their respective time constant, tD, tP) sigmoids. The
dashed line represents the half-activation curve for the LTP and LTD rates. Note in panel D that the leaky activation function reaches the half-activation Kp = 1.3e4.

NAME VALUE REFERENCE
Leaking variable (a.u.)
rise constant inside the LTD region aD = 0.1 a.u. ·ms−1 fitted to cover all protocols in Table M1
rise constant inside the LTP region aP = 0.2 a.u. ·ms−1 fitted to cover all protocols in Table M1
decay constant outside the LTD region bD = 2 ·10−5 a.u. ·ms−1 fitted to cover all protocols in Table M1
decay constant outside the LTP region bP = 1 ·10−4 a.u. ·ms−1 fitted to cover all protocols in Table M1
Plasticity Markov chain
LTD rate time constant tD = 1.8 ·104 ms fitted to cover all protocols in Table M1
LTP rate time constant tP = 1.3 ·104 ms fitted to cover all protocols in Table M1
hill coefficient LTP hP = 2 fitted to cover all protocols in Table M1
hill coefficient LTD hD = 2 fitted to cover all protocols in Table M1
half occupation LTP KP = 1.3 ·104 a.u. fitted to cover all protocols in Table M1
half occupation LTD KD = 8 ·104 a.u. fitted to cover all protocols in Table M1
Plasticity region (edges of the polygons)
LTP region (CaMKII) - top border 29.5 fitted to cover all protocols in Table M1
LTP region (CaMKII) - bottom border 1.4 fitted to cover all protocols in Table M1
LTP region (CaN) - right border 10. fitted to cover all protocols in Table M1
LTP region (CaN) - left border 6.35 fitted to cover all protocols in Table M1
LTD region (CaMKII) - top border 29.5 fitted to cover all protocols in Table M1
LTD region (CaMKII) - bottom border 1.4 fitted to cover all protocols in Table M1
LTD region (CaN) - right border 1.85 fitted to cover all protocols in Table M1
LTD region (CaN) - left border 6.35 fitted to cover all protocols in Table M1
LTD region - upper diagonal (line equation in the 2D map) CaMKII =+1.64 ·CaN +20.20 fitted to cover all protocols in Table M1
LTD region - lower diagonal (line equation in the 2D map) CaMKII =−5.18 ·CaN +20.91 fitted to cover all protocols in Table M1

Table M14. Parameters to define the plasticity readout.
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Supplementary files
Supplemental files present some experiments and predictions extending the notion of parameter sensitivity. Also,
they show the effect of modifications in the experimental parameters in Table M1. For instance, Figure S1 show
variations on Tigaret et al. (2016)’s experiment.

Figure S1. Varying Tigaret et al. (2016) experimental parameters. Related to Figure 3. A) Mean synaptic weight change for 1Pre2Post(delay) varying the
temperature, original temperature is 35°C (dashed grey line). B) Mean synaptic weight change for 1Pre2Post(delay) varying the age, original age is P50-55 (dashed
grey line). C) Mean synaptic weight change for 1Pre2Post(delay) varying the frequency, original frequency is 5 Hz (dashed grey line). D) Mean synaptic weight
change for 1Pre2Post(delay) varying the [Ca2+]o, original [Ca2+]o= 2.5 mM (dashed grey line). E) Mean synaptic weight change for 1Pre2Post(delay) varying the
distance from the soma, original distance is 200 µm (dashed grey line). A similar trend in distal spines was previously found in Ebner et al. (2019). F) Mean
synaptic weight change of 1Pre2Post50 and 2Post1Pre50 when number of pulses increases or deacreses. Note the similarity with Mizuno et al. (2001) in Figure
S4C.
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Figure S2 shows variations of Dudek and Bear (1992) parameters for [Ca2+]o, [Mg2+]o, temperature and dendritic
spine distance from the soma. Also, it shows the Poisson spike train protocol (as in Figure 7G and H) for temperature
and age parameters obtained from an estimation of the body temperature regulation during development (or
thermoregulation maturation, also called maturation of temperature homeostasis, estimated in Figure S5G).

Figure S2. Varying experimental parameters in (Dudek and Bear, 1992) and Poisson spike train during development. Related to Figure 4 and 7 . A) Mean
synaptic weight change for the FDP experiment varying the [Mg2+]o, original [Mg2+]o= 1.5 mM (dashed grey line). B) Mean synaptic weight change for the FDP
experiment varying the [Ca2+]o, original [Ca2+]o= 2.5 mM (dashed grey line). C) Mean synaptic weight change for the FDP experiment varying the distant from
the soma, original 200 µm (dashed grey line). Changing the distance from the soma modifies how fast BaPs evoked by EPSP will attenuate. Note that LTD is
prevalent for a spine situated far from the soma. This could justify why spines distant from the soma are smaller in size since distance correlates with synaptic
weight. D) Mean synaptic weight change for the FDP experiment varying the temperature, original temperature 35°C (dashed grey line). E) Mean synaptic weight
change for the FDP experiment varying the pairing repetitions at 33°C showing how LTD is enhanced. F) Mean synaptic weight change for the FDP experiment
varying the pairing repetitions at 37°C showing how LTD is abolished. G) Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s
for P5 and 34°C. The panel shows that there is weak and diffused LTP. H) Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s
for P15 and 35°C. The panel shows that there is a start of LTP window forming for slow postsynaptic rates (<1 Hz). I) Mean synaptic weight change for pre and
postsynaptic Poisson spike train during 30 s for P20 and 35°C. The panel shows that a window forms around 10 Hz postsynaptic rate similar to what is shown by
Graupner et al. (2016) and in Figure 7H.

Figure S3 expands the presynaptic burst strategy hypothesized to recover the LTD in adult slices (Figure 5C) for
900 pairing repetitions. Also, Figure S3 tries to isolate the contribution of each age-dependent mechanism (NMDAr,
GABAr, BaP efficiency switches) for 3 and 5 Hz predictions in Dudek and Bear (1993) experiment. To this we fixed
each of the three mechanisms coding for age in our model at P5 and P50, to observe how they shape the plasticity.
Note the experiment in Figure S4D-I is only to theoretically show how each age mechanism contributes to plasticity
in Figure 5. Also we compare predictions of between different STDP experiments across age.
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Figure S3. Duplets, triplets and quadruplets for FDP, perturbing developmental-mechanisms for LFS and HFS in (Dudek and Bear, 1993), and age-related
changes in STDP experiments (Inglebert et al., 2020; Tigaret et al., 2016; Meredith et al., 2003). Related to Figure 3 and 5. A) Mean synaptic weight change (%)
for the duplet-FDP (2Pre50) experiment varying age. The panel shows showing that not only LTD is enhanced but also LTP. B) Mean synaptic weight change (%)
for the triplet-FDP (3Pre50) experiment varying age. The panel shows that LTD magnitude further enhanced for adult rats and that a leftward shift of the LTD-LTP
transition. C) Mean synaptic weight change (%) for the quadruplet-FDP (4Pre50) experiment varying age. The panel shows a further leftward shift on the LTD-LTP
transition (compared to 3Pre50). D) Mean synaptic weight change (%) for the 1 Pre 900 at 30 and 3 Hz with Dudek and Bear (1993). The panel shows the fixed
NMDAr at P5 (more GluN2B) causing an increase of LTD magnitude and a slight increase of LTP magnitude for adult rats compared to baseline (grey solid line).
E) Same experiment as panel D but fixing BaP maturation at P5 (higher BaP attenuation). LTP is abolished, but LTD is not affected. This is because AP induced by
EPSP attenuate too fast for 30 Hz not able to produce enough depolarization to activate NMDAr Mg-unblock. F) Same experiment as panel D but fixing GABAr
maturation at P5 (excitatory GABAr) what causes only slightly enhances LTD (3 Hz) for adult rats. G) Same experiment as panel D but fixing NMDAr at P50
(more GluN2A). LTD appears with decreased magnitude for young rats compared to baseline (grey solid line). H) Same experiment as panel D but fixing BaP
maturation at P50 (less BaP attenuation). LTP is enhanced for young rats because the BaP pairing with the slow closing GluN2B produces more calcium influx. I)
Same experiment as panel D but fixing GABAr maturation at P50 (inhibitory GABAr) which does not affect the FDP experiment. J) Mean synaptic weight change
(%) for Meredith et al. (2003)’s single versus burst-STDP experiment for different ages. The data from Meredith (boxplots) were pooled by the age as shown in
the x-axis. The solid line represents the mean, and the shaded ribbon the 2nd and 4th quantiles simulated by the model (same for panels A-F). K) Mean synaptic
weight change (%) for Inglebert et al. (2020)’s STDP experiment in which the number of postsynaptic spikes increases. The x-axis marker from 14-21 indicates that
only this interval was published without further specification. We use our model to estimate age related changes to Inglebert et al. (2020) protocols. Note that
the model does not cover the 1Pre2Post10 properly (model predicts only outcomes near the first data quantile). Notice that single and burst STDP leads to LTD,
meanwhile Meredith et al. (2003)’s to LTP or NC. L) Mean synaptic weight change (%) for Tigaret et al. (2016)’s STDP experiment which compares single versus
burst STDP. The x-axis marker from 50-55 indicates that only a interval was published without further specification. We use our model to estimate age related
changes to Tigaret et al. (2016) protocols. It is noticeable that each STDP experiment has a different development.
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Figure S4 presents modifications of Inglebert et al. (2020)’s STDP experiment and the reproduction of Mizuno
et al. (2001) data.

Figure S4. [Ca2+]o and [Mg2+]o related modifications for Inglebert et al. (2020)’s experiment. Related to Figure 6. A) Mean time spent for anticausal pairing,
1Post1Pre10, at different Ca/Mg concentrations. The contour plots are associated with the Figure 6A, B and C. B) STDP and extracellular Ca/Mg. Synaptic weight
change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying [Ca2+]o from 1.0 to 3 mM (Ca/Mg ratio = 1.5). C)
Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10, 100 at 0.3 Hz. Synaptic weight change (%) for a single causal pairing protocol
varying frequency from 0.1 to 10 Hz. [Ca2+]o was fixed at 1.8 mM (Ca/Mg ratio = 1.5). D) Mean synaptic weight change (%) for Inglebert et al. (2020)’s STDP
experiment showing how temperature qualitatively modifies plasticity. The dashed lines are ploted in panel B. E) Mean synaptic weight change (%) showing
effects 0.5°C from panel A. Black and grey solid lines represent the same color dashed lines in panel A (30 and 30.5°C). The bidirectional curves, black and grey
lines in panel A (dashed) and panel B (solid), becoming full-LTD when temperature increases to 34.5 and 35°C, respectively yellow and purple lines in panel A
(dashed) and panel B (solid). Further increase abolishes plasticity. F) Mean synaptic weight change (%) for Mizuno et al. (2001)’s experiment in Free-Mg ([Mg2+]o=
10−3mM for best fit) showing the different time requirements to induce LTP and LTD. For LTD, to simulate the NMDAr antagonist D-AP5 which causes a NMDAr
partial blocking we reduced the NMDAr conductance by 97%. Note the similarity with Figure S1F. G) Mean synaptic weight change (%) of Inglebert et al. (2020)’s
STDP experiment changing [Ca2+]o and Ca/Mg ratio. H) Mean synaptic weight change (%) of Inglebert et al. (2020)’s STDP experiment changing pre-post delay
time and frequency. Note the similarity with Figure S1C. I) Mean synaptic weight change (%) of Inglebert et al. (2020)’s STDP experiment changing pre-post delay
time and age. Age has a weak effect on this experiment done at [Ca2+]o= 2.5 mM.
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FigureS5 shows multiple aspects related to temperature in STDP experiments and the temperature and age
choices for the publications described in Table M1 compared to physiological conditions. We estimate how the rat’s
body temperature physiologically evolves in function of age using McCauley et al. (2020) and Wood et al. (2016)’s
data.

Figure S5. Age and temperature effects. Related to Figure 3 and 6. A) Mean synaptic weight change (%) for Wittenberg and Wang (2006)’s STDP experiment
for 1Pre1Post10, 70-100 at 5 Hz (see Table M1) showing a full LTD window. Our model also reproduces the fact that increasing temperature to 32-34°C the LTD is
abolished (data not shown). B) Mean synaptic weight change (%) for Wittenberg and Wang (2006)’s STDP experiment for 1Pre2Post10, 70-100 at 5 Hz (see Table
M1) showing a bidirectional window. C) Mean synaptic weight change (%) for Wittenberg and Wang (2006)’s STDP experiment for 1Pre2Post10, 20-30 at 5 Hz
(see Table M1) showing a bidirectional window. We report that for Wittenberg and Wang (2006) experiment done in room temperature the temperature sensitivity
was higher than other experiments. D) Core temperature varying with age representing the thermoregulation maturation. This function (not shown) was fitted
using rat Wood et al. (2016) and mouse data (McCauley et al., 2020) added by 1°C to compensate species differences (Wood et al., 2016). The blue and white
bars represent the circadian rhythm as shown in (McCauley et al., 2020). However, the "rest rhythm" for young rats (P5-14) may vary. E) Plot showing how far
from being physiological are plasticity experiments done in physiological temperatures. Suggesting, there is scarcity of physiologically relevant data to model and
understand plasticity. The dashed grey line is an approximation of the mean value from panel G. F) Initial conditions for CaN-CaMKII resting concentration for
different [Ca2+]o and temperature values. When [Ca2+]o is changed temperature is fixed at 35°C, while temperature is changed [Ca2+]o is fixed at 2 mM.
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