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ABSTRACT 

Immune checkpoint blockade (ICB) therapy has had a major impact on the clinical management 

of head and neck squamous cell carcinoma (HNSCC). However, clinical responses to ICB are 

observed in only a fraction of patients. In the present paper, we used multimodal approaches to 

a) evaluate the utility of existing ICB biomarkers including tumor mutation burden (TMB), 

microsatellite instability (MSI), and a T-cell specific signature in predicting therapy response in 

HNSCC using TCGA cohort, and; b) identify a novel molecular signature to predict ICB therapy 

response using an ICB clinical trial of HNSCC. Our results confirm previous reports showing TMB 

efficacy as a biomarker and its outcome can be influenced by age, tumor sub-site, and smoking 

status; and that High-TMB and high-MSI tumors are associated with T-cell signature, and better 

survival probability in the HNSCC. We go on to demonstrate that High-TMB and high-MSI utilizes 

cell-cycle/cell proliferation processes for their molecular functionality; and identify a novel Cell 

Proliferation ICB-therapy Predicting (CPIP) signature capable of predicting ICB therapy response 

in HNSCC, retrospectively, where traditional biomarkers of ICB response were insufficient. In 

summary, the present study defines strategies and novel signatures that can be appropriately 

used for patient selection for ICB therapy that can improve the clinical outcomes of HNSCC 

patients.  
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INTRODUCTION 

Head and neck squamous cell carcinoma (HNSCC) is an aggressive, genetically complex 

disease characterized by malignant and uncontrolled growth of cells at various sites, including 

the oral cavity, larynx, oropharynx, hypopharynx, paranasal sinuses, and nasal cavity. Globally, 

HNSCC is the sixth most common malignancy and accounts for over 650,000 new cases annually 

with a mortality of approximately 50-60% per year. By far, the commonest site of cancer within 

this region is the oral cavity, and the commonest type of tumor is squamous cell carcinoma (SCC), 

which accounts for over 90% of all malignancies at this site [1]. In the United States, HNSCC 

accounts for 4% of all cancers, with nearly 50,000 Americans diagnosed annually and nearly 

11,000 succumbing to their disease [2]. Long-term tobacco use, consumption of alcohol, and 

infection with high-risk types of Human Papilloma Virus (HPV), are considered the main 

oncogenic drivers [3].  

 Immunotherapy, aiming to boost natural defenses to eliminate malignant cells, is a 

monumental breakthrough for cancer treatment and has revolutionized the field of oncology [4]. 

It eradicates the tumor cells by inducing or enhancing anti-tumor immune responses in active or 

passive ways, including adoptive cell transfer (ACT) and immune checkpoint blockades (ICB) [4, 

5]. Although immunotherapies demonstrate durable clinical responses, their efficacies vary, and 

only subsets of patients benefit from them [6, 7]. To augment the clinical benefits of ICB therapies 

to HNSCC patients, identification of molecular markers/signatures, and approaches predicting 

therapy response is extremely urgent. These signatures and markers will enable predictions about 

which patients will respond most successfully to ICB therapies. Identifying those patients who are 

likely to respond will not only improve their clinical outcomes but also inform about mechanisms 

of therapy resistance and highlight future therapeutic targets and designs.   

 Among the emerging biomarkers for ICB response are PD-1/PD-L1 axis, T-cell inflamed 

signature, tumor mutational burden (TMB), and microsatellite instability (MSI). While their role in 

predicting ICB response in multiple cancers such as non-small-cell lung cancer (NSCLC), colon 

cancer, and melanoma [14,18] is well-established, their value in HNSCC is an evolving area of 

research. At present, majorly, TMB and PD-1/PD-L1 axis are utilized to predict ICB therapy 

response in HNSCC. However, due to their inconsistency in predicting responses, more robust 

signatures and approaches are urgently needed [8-12]. On that front, [13, 14] demonstrated 

success in predicting ICB therapy response in HNSCC using a T-cell inflamed signature. 

However, as each HNSCC patient can have a variable baseline immune-reactivity due to their 

variable phenotype and associated risk factors, immune-based predictive molecular signatures 

might not be sufficient to predict the ICB therapy response. Hence, more robust 
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markers/approaches are needed. In the present study, we identified a novel molecular signature 

that is rather than fully relying on immune-response, is based on the cell-proliferation processes. 

Extracted using multimodal approaches (genomic and transcriptomic data), this signature will not 

only predict the immunotherapy success, but will also lead to elucidation of mechanisms of tumor-

intrinsic and immune mechanism in HNSCC. Additionally, we identified/confirmed the role of TMB 

and MSI in predicting ICB response, along with their association with external factors, as HNSCC 

is a clinically, histologically, and molecularly distinct cancer. Collectively, the present study will 

not only congregate the conclusions of existing predictive markers of ICB response, but will also 

provide a novel signature that can be implemented for ICB therapy success in HNSCC.   
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RESULTS 

Tumor mutation burden analysis: As association of TMB with HNSCC using TCGA-HNSC 

dataset has been studied before [15-17], we first confirmed our results on mutation profile of 

TCGA-HNSC, and association of TMB with survival prognosis. Here, we found our observations 

to be in accordance with these studies [15, 16, 18]. Next, we examined the influence of long-term 

tobacco use, consumption of alcohol, and infection with the HPV16 virus on TMB outcome in the 

TCGA-HNSC cohort (n=506). We observed that TMB outcome is significantly influenced by the 

smoking status (smokers: 3.60 mutations/MB vs. non-smokers: 2.14 mutations/MB; p=0.003) but 

not by HPV status (HPV-positive: 2.80 mutations/MB vs. HPV-negative: 2.43 mutations/MB; 

p=0.80) as shown in Fig. 1A. Since, it is also believed that age, sex, and tumor subsites can also 

influence the efficacy of ICB therapy response, we next evaluated the influence of these factors 

on TMB outcome. Here, we observed that older patients (>60 years) tend to have higher TMB 

rate as compared to young patients (<45 years) (old: 3.85 mutations/Mb vs. young: 1.67 

mutations/Mb; p=0.002) (Fig. 1A). Although, associations of TMB with gender and race was 

observed to be non-significant, tumor subsite was observed to be highly corelated with the TMB 

outcome. Here, tumors obtained from larynx were observed to have significantly higher TMB as 

compared to the ones from oral cavity and/or oropharynx as shown previously by our group [19] 

and further expanded in Table 1.  

It is believed that high TMB tumors contain more neoantigens, that can trigger infiltration 

of CD8+ T cells stimulating broad antitumor immune responses associated with better clinical 

outcomes. To evaluate the influence of TMB on regulating the infiltration of immune-specific cells, 

we observed the correlation of TMB with CD8+ T-cells, T cells, and immune cells infiltration. Here, 

we observed CD8+ T cells, T cells infiltration and immune cells infiltration to be positively 

correlated with TMB, albeit non-significant (Fig. 1B).  

 

Microsatellite instability analysis:  The MSI score was observed (n=506) to be a mean of 0.19 

for TCGA-HNSC cohort. We used this as a cut-off to define high-MSI and low-MSI tumors (Fig. 

2A). Here also, first we evaluated the influence of external risk factors on MSI status, and found 

no significant associations of HPV status, age, sex, and tumor subsite as shown in Table 2. Next, 

correlation of MSI with CD8+ T-cells, T cells, and immune cells infiltration was observed. Here, 

we observed a positive and in fact significant correlation of MSI status with CD8+ T cells, T cells 

infiltration and immune cells infiltration (Fig. 2B). Finally, impact of MSI on patient’s survival was 

observed, where, we found patients with higher MSI have better (although non-significant) 
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survival probability as compared to the patients with lower MSI (Chi -square=3.6 on 1 degrees of 

freedom; log rank p-value=0.06) as shown in Fig. 2C.  

 

T-cell specific molecular signature: TMB and T-cell-inflamed signature by gene expression 

profile (GEP) are individually believed to be associated with better prediction of ICB therapy 

response in multiple cancers, hence, we next tested the correlation of TMB with T-cell specific 

molecular signature in HNSCC. Here, RNA expression data for high and low TMB TCGA-HNSC 

cohort was obtained and their ranked gene list was utilized to perform a gene-set enrichment 

analysis (GSEA) against T-cell specific molecular signature. We observed that high TMB tumors 

have up-regulated T-cell specific molecular signature in the TCGA-HNSC cohort as shown in 

Fig.3A. This confirms the relationship of TMB and T-cell signature, and their utility in predicting 

ICB therapy response in HNSCC.  

 

TMB and MSI related molecular signature: Next, to identify the molecular mechanism of TMB 

and MSI status, we analyzed the transcriptomic profile of high vs. low TMB and MSI patients. 

Here, differential expression analysis between high-TMB (n=134) and low-TMB (n=360) was 

performed, where, we observed 3326 genes to be up-regulated, and 2939 to be down-regulated 

in high-TMB patients. Similarly, for MSI status, we observed 7310 genes to be up-regulated 

(n=86), and 3920 (n=408) to be down-regulated in high-MSI patients as shown in Fig. 3B. To 

evaluate the biological processes being implicated by high TMB and MSI status, we performed 

GSEA analysis using hallmarks of cancer signatures, where we observed cell-cycle and 

progression processes including MYC, G2M and E2F to be up-regulated in both high TMB and 

MSI HNSC tumors as shown in Fig 3C. 

 

Cell Proliferation ICB-therapy Predicting signature: It is known that due to variable levels of 

immune-response in individuals, T-cell specific signatures alone are insufficient to predict ICB 

therapy response, hence additional signatures/markers are imperative for better immunotherapy 

response prediction. Hence, we utilized the differentially expressed genes from high-TMB and 

high-MSI tumors, along with highly ranked genes from the cell-cycle/proliferation processes, to 

identify a signature that can be further used to predict ICB response in HNSCC. We obtained a 

unique list of 31 genes related to cell-cycle/progression processes that can be utilized to predict 

the ICB therapy response in HNSCC, we termed this list as Cell Proliferation ICB-therapy 

Predicting (CPIP) molecular signature. To validate the CPIP signature efficacy, we utilized RNA 

sequencing data of pre-therapeutic tumors from phase-II neoadjuvant trial of nivolumab (PD1-
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inhibitor) in HNSCC. Originally, this cohort had lower expression of PD1/PDL-1/CD8A/IFNG 

genes (Fig 4A), and T-cell specific molecular signature in the responder group (Fig. 4B). To 

retrospectively predict the ICB therapy response in this cohort, we ranked the expressed genes 

from this cohort to perform GSEA against our CPIP signature. Here, we found that responder 

patients had high-expression of the CPIP signature prior to the therapy as compared to the non-

responders. In this specific cohort, out of a total list of 31 genes, 12 genes (AKR1C3, CDX2, 

CRLF1, DDX4, FGF19, GRM1, NR5A1, PEG10, PRAME, SOHLH1, TRPM1, and TRPM3) were 

observed to be driving the ICB therapy response prediction (Fig. 4C). As this signature is derived 

from genes included in functional processes of TMB and MSI, both these endpoints were 

observed to be highly corelated with the CPIP signature (Fig. 5A). Further, as expected, all genes 

constituting this signature was observed to be in a strong correlation with each other (Fig. 5B). 

Next, to evaluate the mechanism of how CPIP signature genes are corelating with T-cell activation 

response, we performed a network analysis using normalized expression of genes of CPIP 

signature, and CD8a from our clinical ICB cohort. Here, we observed that CD8a is directly or 

indirectly related with majority of the genes of CPIP signature (Fig. 6). Moreover, we observed 

that in this cohort CD8a is negatively corelated (blue color edges) with the linked genes of CPIP 

signature. This demonstrates that CPIP signature can be successfully used to predict the ICB 

therapy response where patients have lower immune profile. 
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DISCUSSION 

In the present paper, we followed a rationale, step-wise approach to characterize the 

multimodal genomic markers to predict ICB therapy response in HNSCC. 

This study confirms that TMB, and MSI status have strong scientific base as a predictor 

of immunotherapy response in HNSCC. TMB is a strong genomic biomarker that has been tested 

in multiple cancers, including HNSCC to predict ICB therapy response. However, since HNSCC 

is associated with several risk factors, their influence on TMB is not fully studied. Here, we have 

observed that TMB outcome can be influenced by several external factors known to play role in 

HNSCC pathogenesis. One of the major factors influencing the TMB is long-term smoking. 

Tobacco smoke is a complex mixture of chemicals among which at least 60 are carcinogens. 

Many of these are thought to cause cancer by inducing DNA damage which, if misreplicated, 

leads to an increased burden of somatic mutations and hence an elevated chance of acquiring 

“driver” mutations in cancer genes [15]. Tobacco smoking has been previously associated with 

TMB in NSCLC [20], lung adenocarcinoma [21], along with HNSCC [15, 19]. Our results are in 

accordance with the previous results, emphasizing the value of utilizing smoking as a confounding 

factor, when TMB is used as a predictive biomarker in HNSCC.  Additionally, TMB is believed to 

be a site-specific biomarker with important spatial and histologic differences, as we have found 

strong association of TMB with tumors located in larynx as opposed to the ones located in oral 

cavity and oropharynx. Our results are in accordance with [19, 22] in HNSCC and NSCLC.  As 

per the demographic correlation, we observed age to have a strong association with the TMB 

load. Although, mutations accumulate continuously in somatic cells with increasing age, it is 

unclear whether the age of patients is a determining factor in deriving benefits from 

immunotherapy. From our results, it is likely that age of the HNSCC patients can influence the 

TMB outcome. Our results are in accordance with [23-25], where the authors found high 

correlation of age and TMB in patients of liver, bile duct, colorectal, pancreatic, melanoma, 

esophageal, HNSCC, and lung cancer.  

Recently [18] demonstrated HPV-positive tumors with significantly lower TMB as 

compared to HPV-negative HNSCC. Although, we observed similar trend in our analysis, but we 

observed the differences to be non-significant. This may be due to utilizing different cut-off values 

to define high and low TMB. While, we used the mean TMB/Mb as a cut-off, [18] used only top 

25% patients as high-TMB and bottom 25% as low-TMB. Discordance like this provides a strong 

case to define a universal cut-off value for each cancer type. It should be noted here that generally 

>10 mutations/Mb is defined as a high-TMB tumor but as suggested by our data and others that 
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each cancer has different mutation rate [15], this cut-off cannot be used for all cancer types to 

define a high TMB tumor.  

MSI status has been mainly utilized to predict ICB therapy response in colorectal cancer. 

However, after its implementation of predicting PD-1 response in HNSCC [26], more large-scale 

studies are needed to verify its reliability and stability in clinical applications. In our study, we 

observed high utility of MSI as a predictor of immunotherapy response. It was observed to have 

better association with the T-cells activation compared to TMB. This is due to the fact that high 

TMB/MSI tumors harbor both a higher rate of mutant neo-antigens and a higher number of 

somatic mutations (including frameshift mutations) that triggers recognition of the tumor by the 

immune system and result in higher infiltration of T cells leading to improved response to 

immunotherapies [27]. Interestingly, none of the major external factors were observed to be 

influenced in our study. Additional molecular studies might be required to further confirm this 

finding. Using mean cut-off value, MSI survival statistics between high-MSI vs. low-MSI was 

observed to be on borderline for significance. This might be due to the use of mean as the cut-

off. Previous studies [28] have used higher MSI (>4) as a cut-off and have obtained better and 

significant survival probabilities.  

Due to the complex nature of cancer, and imperfection in measurement of the existing 

predicting biomarkers, new markers and approaches are needed to improve the ICB therapy 

response in HNSCC. On novel markers front, we identified a molecular signature, CPIP that can 

successfully predict the ICB therapy response, where existing predicting markers (PD1/PDL-1 

axis and T-cell specific signatures) were ineffective. As shown in the results, our Nivolumab 

treated HNSCC cohort had lower expression of these traditional markers and no existing immune-

based marker was clearly predicting the ICB response. Here, our CPIP signature successfully 

predicted the therapy response, retrospectively. As cell cycle/proliferation process is one of the 

hallmarks in cancer and is associated with somatic mutations, generation of mutant neo-antigens, 

and activation of immune-response, it could serve to obtain a prediction on ICB therapy response. 

Our CPIP signature includes 31 cell cycle/proliferation related genes and based on our network 

analysis utilizing normalized counts of expression, we observed that at least in our cohort CD8a 

is negatively corelated with the genes in CPIP signature. Thus, the present study demonstrates 

that this signature would be very useful to predict the response of the patients that have overall 

lower immune signature. 

On novel approaches front, this study demonstrated that utilizing a gene signature is more 

robust for therapy prediction instead of using a specific gene. Typically, expression of PD1 and/or 

PD-L1 axis is used to predict the ICB therapy response, however, they are observed to be 
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imperfect. This inconsistency may be due to several reasons: 1) no specific cut-off value: they are 

continuous marker with a range of expression levels that complicates its evaluation, 2) technical 

variation: different assays can generate variable scoring criteria and different thresholds; 3) 

intratumoral variation: they are a heterogeneous marker, with intratumoral and temporal variation 

of expression [29]. In the present study, we rather used a molecular signature that is more robust 

to predict the therapy response. It has already been demonstrated by [13, 14], that a molecular 

signature is better than a single gene/marker to predict the immunotherapy response.  

We note here that further validation of CPIP signature using other published ICB trials, 

where the immune-signature is not sufficient to predict the therapy response would be ideal. 

However, access to those studies might be challenging. In future, we plan to expand our cohort 

and implement machine-learning algorithms to utilize this signature in individual patient settings 

for ICB therapy prediction in clinical settings.  

 

CONCLUSION: 

Our data implicate that TMB, MSI, T-cell specific signatures are strong markers that can be 

implemented in the HNSCC as a predictive marker for immunotherapy. Our novel CPIP signature 

can be utilized as a predictive molecular signature for ICB therapy in HNSCC, where immune-

signature cannot predict the therapy response. 
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METHODS 

TCGA-Data source: The whole-exome sequencing (WES) data in level 3-curated Mutation 

Annotation Format (MAF) file, RNA sequencing data as raw count matrix, and clinical data for 506 

patients of HNSC from The Cancer Genome Atlas (TCGA) was obtained using ‘TCGAbiolinks’ 

package in R/Bioconductor [30, 31]. The MSISensor data for the TCGA-HNSC was obtained from 

[28].  

 

Tumor mutation burden:  

The TMB load for each cancer type was analyzed by calculating the total number of somatic 

nonsynonymous mutations per coding area of a tumor exome, described by [32]. The mean TMB 

was used as the cut-off to determine high vs. low TMB. Mutational analysis was observed using 

maftools package in R/Bioconductor [33]. 

 

Immune landscape analysis: 

The immune landscape data including CD8+ T-cells, TIS score, and IIS score was obtained from 

[6]. Here, TIS was defined as the mean of the standardized values for CD8+ T, T central and 

effector memory, Th1, Th2, Th17, and Treg cells. IIS was defined as the mean of the standardized 

values for macrophages, DC subsets, B cells, cytotoxic cells, eosinophils, mast cells, neutrophils, 

NK cell subsets, and all T cell subsets excluding T gamma delta and T follicular helper cells. T-

cell-inflamed gene list was obtained from [14], but was further modified to include additional T-

cell-related genes from [6]. 

 

Correlation and survival analysis: 

Correlations of HPV status, smoking status, age, gender, race, tumor location, CD8+ T cells, TIS, 

and IIS was observed using ‘ggpubr’ package in R/Bioconductor. Pearson method was utilized 

for the correlations.  

 

RNA-sequencing data analysis: 

The RNA-seq data of pre-therapeutic tumors from phase-II neoadjuvant trial of nivolumab (PD1-

inhibitor) was obtained as raw count matrix from Squamous cell carcinoma (SCC) group in Sidney 

Kimmel Cancer Center, Thomas Jefferson University, PA, USA. Response was characterized as 

pathologic treatment effect where by each tumor was graded by two pathologists to the degree of 

treatment effect within the primary tumor [34]. Overall, we had sequencing data from n=13 

patients, where, n=5 were responders, and n=8 were non-responders. Before differential 
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expression, batch effects or sample heterogeneity was tested using iSeqQC [35]. Differential gene 

expression was performed between responder and non-responder using the DESeq2 package 

[36] in R/Bioconductor. Genes were considered differentially expressed (DE) if they had adjusted 

p value ≤ 0.05 and absolute fold change ≥ 2. All plots were constructed using R/Bioconductor. 

 

Functional annotations: 

The DESeq2 test statistic was used as a ranking metric to perform Gene Set Enrichment Analysis 

(GSEA) in pre-ranked mode, with genes having zero base mean or “NA” test statistic values 

filtered out to avoid providing numerous duplicate values. GSEA was performed against custom 

gene list (T-cell specific genes and CPIP signature), and hallmarks of cancer from MSigDB 

collections [37]. DAVID [38] was performed on list of DEGs between high vs low TMB and high 

vs low MSI. Network analysis was performed using igraph [39], where normalized expression 

counts from Nivolumab HNSCC cohort was used as input. Here, Pearson correlation was used 

to perform the correlation distances.  
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Table 1: TMB association with external factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

    TMB 

(mutations/Mb) 

P-value 

Sex Male 3.32  

  Female 3.11 0.60 

Race White 3.35  

  Black or African 

American (AA) 

2.74 0.10 

Site Larynx 4.97 larynx vs OC: 0.00001 

  Oral Cavity (OC) 2.48 larynx vs Oropharynx: 0.0002 

  Oropharynx 2.43 OC vs Oropharynx: 0.91 
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Table 2: MSI association with external factors 

 

 

 

 

    MSI score  P-value     MSI 

score 

P-value 

Age Young 0.14   Sex Male 0.17  

  Old 0.20 0.55   Female 0.13 0.64 

Race White 0.16   Site Larynx 0.14 larynx vs OC: 0.94 

  Black or African America 

(AA) 

0.11 0.24   Oral Cavity (OC) 0.13 larynx vs Oropharynx: 0.35 

Smoking Life-long non-smokers 0.25    Oropharynx 0.27 OC vs Oropharynx: 0.35 

 Current smokers 0.18 0.64 HPV 

status 

Positive 0.82  

     Negative 0.06 0.37 
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A

B

FIGURE 1

Figure 1: TMB profile in TCGA-HNSC: A) Tobacco smoking status showing significant difference in

TMB score between current smokers vs. non-smokers; HPV status showing non-significant difference in

TMB status between HPV-positive vs. HPV-negative patients, and; age showing significant difference in

TMB score between young (<45 years) vs. old (>60 years); B) Immune-infiltration score (T cells, T-cell

infiltration score (TIS), and Immune-cell infiltration score (IIS)) related to TMB is shown to be positively

corelated (although non-significant) with higher TMB.
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Figure 2: MSI profile in TCGA-HNSC: A) MSI sensor score between high vs low MSI patients; B)

Immune-infiltration score (T cells, TIS, and IIS) related to MSI is shown to be positively corelated with

higher MSI; C) Kaplan-Meier curve shows better (although non-significant) survival probability of high-MSI

HNSCC patients (High-MSI HNSCC patients are represented by the yellow line, and low-MSI patients by

the blue line).
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FDR q-value<0.01

FIGURE 3
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B
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Figure 3: Transcriptomic profile in TCGA-HNSC: A) Gene set enrichment of T-cell specific molecular

signature demonstrating high-TMB TCGA-HNSC tumors have high T-cell specific signature; B) Number of

differentially expressed genes between high-TMB vs. low-TMB, and high-MSI vs. low-MSI; C) Gene set

enrichment of hallmarks of cancer showing up-regulation of cell-cycle and progression processes in high-

TMB/MSI tumors.
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FIGURE 4
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Figure 4: CPIP signature in Nivolumab cohort: A) Reduced log2 expression of established markers of

ICB therapy response in the responders from Nivolumab treated HNSCC cohort; B) Gene set enrichment of

T-cell specific molecular signature demonstrating responders have low T-cell specific signature; C) Gene

set enrichment of CPIP molecular signature demonstrating responders have high CPIP molecular signature,

along with log2 fold change of the genes in the leading edge of the analysis.
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TMB and MSI high

FIGURE 5

A

B

Figure 5: CPIP signature correlations: A) Gene set enrichment of CPIP molecular signature highly

corelated with high TMB and MSI tumors in TCGA-HNSC, B) Correlation of all 31 genes of CPIP showing

strong correlations between each other.
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FIGURE 6

Figure 6: Network analysis of CPIP signature: Network analysis showing interactions of CD8a with the

genes in CPIP signature. Here, size refers to their importance in the network due to connection with other

genes. Different colors of clusters mean closeness of the related genes. Red color of the edges mean

positive correlation and blue color shows negative correlations.
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