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ABSTRACT 

Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and 

confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of 

identifying for example polycistronic transcripts and transcript isoforms, including transcript length- 

and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-

generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore 

Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA 

software, developed in our laboratory, for the transcript annotations. This study identified a large 

number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, 

as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the 

canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also 

disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.      

keywords: Herpesviruses, human cytomegalovirus, transcriptomics, long-read sequencing, nanopore 

sequencing, Sequel, direct RNA sequencing  

INTRODUCTION 

Next-generation short-read sequencing (SRS) platforms have revolutionized genomics and 

transcriptomics sciences, and while they are still invaluable in sequencing studies, the now state-of-

the art long-read sequencing methods (LRS) are becoming more popular and represent an even more 

powerful approach in transcriptome research. Most genes encode multiple transcript isoforms1 that 

are mRNAs or non-coding RNAs (ncRNAs) transcribed from the same locus, but have different 

transcriptional start sites (TSSs), or transcriptional end sites (TESs), or are the results of alternative 

splicing2,3. The reconstruction of all transcribed isoforms for each gene is challenging with the 

currently available bioinformatics tools since they have been developed for the analysis of SRS 

data4,5. 

Since LRS technologies are able to read full-length RNA molecules, they offer a solution to disclose 

the full spectrum of complex transcriptomes and offer an insight that is unachievable via SRS 

methods6. LRS platforms are currently commercially available by Pacific Biosciences (PacBio) and 

Oxford Nanopore Technologies (ONT), which provide read lengths of ∼15 kb for PacBio and > 30 

kb for ONT that surpass lengths of most transcripts. Both techniques were applied for the 
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investigation of transcriptomic complexity of human cell lines7 and various organisms, such as 

mammals8, fish9 and plants10 and a number of viruses, such as poxviruses11, baculoviruses12, 

coronaviruses13, circoviruses14, adenoviruses15; and herpesviruses16–19.  

Since viral genomes are small and compact, they are ideal subjects for transcriptome analysis with 

the LRS techniques, as these methods still have a relatively low throughput compared to the SRS 

techniques20. These LRS-based studies repeatedly concluded that transcriptional complexity had 

previously been underestimated in all of the examined viruses21. In addition, ONT is capable of 

sequencing not only DNA22 but also RNA in its native form23. Direct RNA sequencing (dRNA-Seq) 

does not require reverse transcription and PCR amplification therefore, it does not produce spurious 

transcripts, which are common artifacts of these techniques. While dRNA-Seq has its own 

limitations24, it can be used to validate and to expand cDNA-based LRS studies16. 

Human cytomegalovirus (HCMV, also termed Human betaherpesvirus 5) infects 60–90% of the 

population worldwide25 and can cause mononucleosis-like symptoms in adults26, and severe life-

threatening infections in newborns27. It can infect various human cells, including fibroblasts, 

epithelial cells, endothelial cells, smooth muscle cells, and monocytes28. HCMV has a linear double-

stranded DNA genome (235 ± 1.9 kbps), which is the largest genome among human herpesviruses29. 

Its E-type genome structure consists of two large domains: the unique long (UL) and the unique short 

(US), each  flanked by terminal (TRL and TRS) and internal (IRL and IRS) inverted repeats30. In 

addition, it encodes four major long non-coding RNAs (lncRNAs) (RNA1.2, RNA2.7, RNA4.9, and 

RNA5.0)31, as well as at least 16 pre-miRNAs and 26 mature miRNAs32–34. Although the functions 

of most genes in infective stages have been identified, many remain uncharacterized29. The HCMV 

genome was shown to express more than 751 translated open reading frames (ORFs)35,36, although 

most of them are very short and located upstream of the canonical ORFs. The compact genome with 

high gene density has many overlapping transcriptional units, which share common 5‘ or 3‘ ends, 

complex splicing patterns, antisense transcription, and transcription of lncRNAs and micro RNAs 

(miRNAs)37. Nested genes are special forms of the 3´-coterminal transcripts, since they have 

truncated in-frame open reading frames (ORFs), which possess different initiation but have common 

termination sites38. These add even more complexity to the genome regulation and expand coding 

potential of the virus. Short-read RNA sequencing studies have discovered splice junctions and 

ncRNAs39 and have shown that the most abundant HCMV transcripts are similarly expressed in 

different cell types10. 

In our previous work40, we used the Pacific Biosciences RSII sequencing platform to investigate the 

HCMV transcriptome and detected 291 previously undescribed or only partially annotated transcript 

isoforms, including polycistronic (PC) RNAs and also transcriptional overlaps. However, the RSII 

method is biased toward cDNA sizes between 1 and 2 kbp, therefore the short and the very long 

transcripts have not been detected by this analysis. As it was concluded by others41, involving other 

sequencing technologies for the analysis could provide additional insights into the operation of 

transcriptional machineries of HCMV. Following this concept, in this work, we analyzed the HCMV 

transcriptome applying a multi-technique approach including ONT MinION and the PacBio Sequel 

platforms and using both cDNA and native RNA sequencings. Our primary objective was to construct 

the most comprehensive HCMV transcriptome atlas currently available using data provided by the 

state-of-the-art LRS methods, and thus to gain a deeper understanding of this important human 

pathogenic virus. 

RESULTS 

Long-read sequencing of HCMV transcriptome using a multi-technique approach 

In this work, we analyzed the HCMV transcripts with ONT MinION technique using cDNA, Cap-

selected cDNA, and native RNA libraries and with PacBio Sequel platform using a cDNA library42. 

We also included the data obtained in our previous work using PacBio RSII method40. These reads, 
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alongside Sequel and ONT reads, were remapped with minimap2 and reanalyzed with the LoRTIA 

program developed in our laboratory43,44. Figure 1 shows the sequencing platforms, library preparation 

methods and data analysis steps that were carried out in this work.  

 

Figure 1. An overview of the utilized sequencing platforms, library preparation and sequencing methods; and bioinformatic analyses of 

the resulting sequencing reads. 

The read statistics of the different sequencing approaches is shown in Table 1, and the read length 

distributions are illustrated in Figure 2. As the various methods have distinct advantages and 

limitations, the use of multiplatform transcriptomics approaches have proven to be valuable43. For 

example, dRNA sequencing produces incomplete reads since a 15-30 nt long sequence always lacks 

from the 5’-termini, and also in many cases poly(A) tails are also missing. Nonetheless, as dRNA-Seq 

is free of RT- and PCR-biases, it can be used for the validation of introns. However, due to its lower 

coverage and shorter average read lengths (Table 1 and Figure 1) compared to the cDNA libraries, and 

its other biases, dRNA-Seq is advised to use in conjunction with other methods. The Cap-selected 

cDNA library produced the highest throughput, but shorter average read-length due to the applied size-

selection (>500 nt). On the other hand, the Sequel library produced the longest reads on average but 

with a relatively low throughput compared to the ONT cDNA libraries. 

 Table 1. Statistics of the reads, mapped to the Towne varS genome, according to each sample library used.  

                        Mapped read statistics 

Sample Sample nr. Read count Min. length Mean length Max. length Mean coverage 

RSII 8 61,375 83 1,250 5,833 329 

dRNA  1 30,366 97 787 8,397 101,8 

Sequel  1 40,233 84 2,021 7,239 325,6 

Non-cap oligo(d)T 1 352,485 135 1,570 10,731 2,271.4 

Cap oligo(d)T 1 576,557 118 1,073 5,137 2,245.4 

Cap random 1 39,776 232 936 8,992 159,6 

Non-cap random 1 151,234 190 996 8,246 645,9 

The LoRTIA software was used to detect the TESs, TSSs and splice sites (hereafter referred to as 

‘features’). This program is also able to check the quality of sequencing adapters and poly(A) 

sequences and to identify and filter out false TESs, TSSs and splice sites generated by RT, PCR and 

sequencing as a result of false-priming, template switching, RNA degradation44, etc. In order to have 

higher confidence for the validity of the annotated features, stringent filtering criteria were used. The 

features were only accepted if either one of the two following criteria were met: they were detected by 
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at least two different methods, or they were detected in at least four different samples, of which no 

more than two could have been RSII samples. For intron annotation, an additional criterion was that 

every intron had to be supported by at least one read in the native RNA library. In each sample a feature 

was considered to exist if at least two reads supported it. Subsequently, the LoRTIA software was used 

to assemble the transcripts based on these features. 

 

Figure 2. Mapped read densities per sample, with median lengths represented as dotted lines. 

The LoRTIA toolkit is able to combine the results of different datasets, therefore this workflow can be 

regarded as a robust approach for the identification of TESs, TSSs and introns. As a result of the feature 

detection and subsequent filtering procedure, 93 novel TSSs and 22 TESs were identified. The stringent 

filtering criteria led to the detection of 103 introns (3 of them are novel), all of them complying with 

the GT/AG rule. The features that passed the stringent filtering criteria, are termed as ‘validated’ 

hereafter. 

The sequencing libraries were downsampled to the library size of the smallest library (dRNA) in order 

to be able to compare the efficiency of the different sequencing methods and library preparations in 

terms of TES, TSS and intron detection. The extent to which the validated features were detected in 

the downsampled sets show how efficient the respective methods are in terms detecting the TESs, TSSs 

and introns, regardless of read count and library size. Figure 3 shows the precision and accuracy (recall) 

of the different libraries in terms of detecting these validated features and the effect of downsampling. 

In terms of intron detection, the highest recall was achieved in the Sequel sequencing library (71%), 

which was comparable to that of the dRNA library. RSII showed a somewhat lower recall, but its 

precision was somewhat higher. With the exception of the Cap-selected cDNA sample, which was 

similar to the PacBio samples, the precision was generally higher in the ONT samples (less false 

positives), while the recall was lower (less true positives). In the case of full libraries, the poly(A)-

selected Cap sample showed a very high recall (95%), but many false positives as well, as this library 

was the largest; while the random Cap sample a high precision, but there were many valid features that 

it could not detect (recall=22%), again because of the library size, which in this case was small, 

comparable to that of the size of the dRNA sample. TES detection was more efficient in the PacBio 

samples, as both the precision and recall were higher in the downsampled libraries, (except for the 

dRNA and the poly(A)-selected Cap samples whose precision was similar, but not their recall). 

Moreover, the full PacBio libraries showed comparable values to the full ONT libraries, despite their 

much lower coverage. The Sequel sample performed the best (94% recall and 81% precision), even 

though its read count was an order of magnitude lower than that of the Cap and non-Cap cDNA samples 

(Table 1). In the case of TSSs, the PacBio samples showed a better performance as well than the Cap 

and non-Cap cDNA samples, both in the downsampled and full libraries. Thus, generally, the PacBio 

samples showed better efficiency in terms of TES and TSS detection than the ONT libraries, and similar 
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performance in intron detection to the dRNA library; as after downsampling, both their precision and 

recall values were higher. 

 

Figure 3. Effect of downsampling on the recall and precision of the detection of the validated features (introns, TESs and TSSs) in the 

different sequencing methods and library preparations. The features were termed validated if they passed the stringent filtering criteria. 

Recall was calculated as the ratio of validated features that was found in the respective samples, while precision was calculated as the 

ratio of true positives in all the hits of respective samples. The downsampling of reads were carried out to match the sizes of the libraries 

to the size of the smallest library (dRNA). 

Next, we used the transcript_annotator function of LoRTIA with the filtered feature sets (TESs, TSSs 

and introns) for the annotation of transcripts. Then, we compared the identified transcripts with the 

previous dataset40 and with other literature sources (Supplementary file S2). We termed a transcript 

identical to another if their termini were within a 10-nt window, and if their intron composition 

matched. If the difference was larger than 10 nt or the intron composition differed, then the transcript 

was termed either a length isoform or a splice-variant, respectively. Categorizing and naming of 

transcripts were carried out in-line with our previous convention45.  

After the stringent filtering procedure, a total of 437 transcripts were annotated (Figure 4). This is a 

significant increase compared to the previously described 291 transcripts using RSII sequencing, 

highlighting the advantages of using various sequencing methods. Although, 242 transcripts have 
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already been described: 183 in our previous dataset40 and 59 in other sources, the remaining 195 

transcripts are novel. Note that the lack of confirmation of certain earlier described TSSs, TESs, introns 

and transcripts due to using more stringent criteria for the annotation in this study, does not necessarily 

mean that they do not exist.   

 

Figure 4. Genes (upper panel), ORFs (middle panel) and the annotated transcripts (bottom panel) of HCVM LT907985.2. Genes are 

colored according to their functional classes, as described in29, while transcripts are colored according to their category. 
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Transcript isoforms 

The alternative use of transcription start sites (TSS isoforms) results in a shorter (labeled here: ‘S’) or 

longer (‘L’) 5’- untranslated regions (5’-UTRs) compared to the canonical transcript, but containing 

the same main ORFs, although short upstream ORF (uORF) compositions may differ. In this dataset, 

we detected 10 novel short TSS isoforms, which include short isoforms of the RL4, RL2 and RL3 

transcripts (3, 3 and 2 isoforms, respectively), as well as one isoform of UL31 and UL25 transcripts 

(Figure 4). We used the reads obtained by dRNA sequencing to validate the TSSs of the short length 

isoforms. Since dRNA sequencing reads lack 10-25 nucleotides from their 5’-termini (Supplementary 

Figure S1), we accepted those transcripts, where at least one (LoRTIA filtered) dRNA read mapped 

(in the correct orientation) near their 5’-ends, and the read was shorter than the transcript but with no 

more than 25 nucleotides. We also detected 16 novel long TSS isoforms: three from the rl7A gene, and 

two long TSS isoforms ul102, ul128, ul26, and us34 genes, and one from the rl4, rl7, ul71, ul72 and 

us6 genes as well. At the rl4-rl8 genomic region transcripts use both alternative TESs and TSSs (Figure 

4). 

In this study, 16 novel alternative TES variants (labelled with –AT in their names) were also identified. 

More than half of them were produced by the rl4, rl5 and rl7 genes (2, 3 and 5 isoforms, respectively). 

Two TES isoforms of the UL25 and two of the UL95 mRNA were identified as well, and one from 

both ul21A and us2 genes. 

In addition, we detected 8 novel splice isoforms of which one is an intron-retention variant (NSP, non-

splice variant) of ul123. Three SP isoforms were found from the ul71 gene, while the rest were 

expressed from the ul106-129 region: ul112, ul123 and also and ul129 genes were found to express 

novel splice variants (2, 2 and 1, respectively).  

 

Non-coding transcripts 

In this work, 96 RNA molecules were identified that did not fully encompass any of the 385 long ORFs 

(>10 AA), described via ribosome-profiling by Stern-Ginossar et al35. However, many of these 

transcripts did contain experimentally validated short ORFs from the same source and in silico 

predicted in-frame co-terminal ORFs (some transcripts of rl2-rl13, ul73, us22, ul111A, ul123, ul128, 

ul129 and ul132), or only predicted ORFs (some transcripts of genes ul82 and us33). UL54.5 is an 

exception, as the in silico predicted ORF that it carries is not co-terminal with the canonical UL54 

ORF, but it is in-frame with it. These transcripts are considered embedded transcripts rather than non-

coding and will be discussed in the following section. The rest of the non-coding transcripts include 3 

novel lncRNAs found to be expressed from the non-coding gene rna4.9, and 4 from the rs2 gene.  

Another important types of lncRNAs are the antisense RNAs (asRNAs) molecules that are controlled 

by their own promoters20,46. We identified 9 such asRNAs from the us30 gene region. The only gene 

in the vicinity that is in the same orientation as these transcripts is the us33, which starts 764 nts 

downstream to the start of these transcripts. It is unlikely however, that its promoter is involved in the 

transcription of these asRNAs, as no detected transcripts initiated from that gene. In addition, many 

transcripts contain antisense segments, but they cannot be considered as true AS transcripts, rather they 

are the products of either transcriptional read-through between convergent genes (as is the case in TES 

isoforms encoded by us1, ul48, ul53, ul54, ul8, ul89, ul103, ul115 and us33), or transcriptional overlaps 

between divergently oriented genes (ul20, ul123 and us34).  

 

Transcriptional overlaps  

We carried out a genome-wide analysis of transcriptional overlaps: the number of overlapping 

transcripts were calculated using a 10-nt sliding window. The transcriptional orientation of genes 
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relative to the adjacent genes can be either convergence (  →← ), divergence (  ←→ ), or co-

orientation ( →→  )20. Parallel overlaps between co-oriented genes are common throughout the entire 

viral genome38, whereas divergent and convergent overlaps are restricted into distinct genomic 

locations (Supplementary File 1. - Supplementary Figure S2). We found two novel convergent 

transcriptional overlaps, one between transcripts encoded by us32 and ul33 genes and another encoded 

by ul112 and ul114 gene pairs. We also detected a novel divergent transcriptional overlap in the ul100-

102 region.  

 

Multigenic transcripts 

Long read sequencing techniques are especially suitable for distinguishing the polycistronic mRNAs 

from monocistronic transcripts18. We detected 90 novel polycistronic (PC) and 15 complex transcripts 

(CX) (Supplementary Figure S3). CX transcripts are multigenic RNA molecules that contain at least 

one oppositely oriented gene49. 13 PC transcripts contain either additional introns or genes which were 

earlier considered to produce exclusively monocistronic transcripts or contain novel introns. Novel 

polycistronism was found in the following genes: us7, us3, us28, us19, us12, ul71, ul50, ul38, ul34, 

ul27, ul17 and ul116. We also identified 12 novel CX transcripts which were generated by 

transcriptional readthroughs or the use of long 5’-UTRs. The rest of the multigenic transcripts are TSS 

or TES variants of already described PC or CX RNA molecules. The identified PC transcripts include 

48 bicistronic, 22 tricistronic, 12 tetracistronic, 5 pentacistronic, 2 hexacistronic and 1 septacistronic 

molecules (Supplementary Figure S3). Polycistronic transcripts of nested genes were also found in 

ul34 (1) and ul148 (1). 

In the ul89-99 region, until now the polycistronic transcription units were shown to produce two 

families of nested 3´-coterminal transcripts, encompassing ORFs UL92–UL94 and UL93–UL99, 

respectively that are differentially regulated48. Here we identified two novel TESs that produce seven 

novel TES transcripts, two in UL95 and three in UL96, respectively (Figure 4, Supplementary File 2). 

The transcripts associated with the former TES are partially antisense to UL89 and carry three distinct 

in-frame ORFs (two short and one long), whereas transcripts associated with the latter TES are either 

monocistronic transcripts of UL96 or are polycistronic UL95-UL96. The bicistronic UL95-UL96 

transcripts carry the same ORFs. Until now, transcripts produced from this region always described to 

end in UL99 and no data was found on the monocistronic, or bicistronic transcripts. UL95 protein is 

required for late viral gene expression and, consequently, for viral growth46 and is associated with 

latency47, thus their monocistronic variant may be important in regulating late gene expression as well.  

Polycistronic transcripts have already been described in the us6-us11 region51, but the US9-US6 

transcript is novel. We also discovered a novel polycistronic RNA molecule (US12-US10) in the us12-

17 genomic region48. 

In addition, six PC transcripts were expressed from the ul42-44 region, and two from the ul130-ul132 

region; and we also identified several polycistronic transcripts in the RL7-RL3 and in the RL11-RL13 

region. A bicistronic IRS2-S2-RL1 transcript, was also identified, which carries the IRL1 ORF and 

shares its TSS with the IRS2 mRNA. The highest number of novel PC transcripts (17) were found in 

the ul71-ul73 region; however, these are length variants of already described PC transcripts. 

We detected two complex transcripts of UL101 which are antisense to UL101 and partially antisense 

to UL102 but sense to UL100. These are probably the products of the downstream convergent gene 

ul103. Antisense transcripts were described already from this gene53, however none of them contains 

the ORFL234C ORF (132 AA), which is located in the intron of the two spliced mRNAs encoded by 

this gene53.  

We identified nine PC and two CX transcripts at the ul112-116 genomic region (Figure 4). The ul112-

113 region encodes four phosphoprotein isoforms, two of them are essential for viral DNA 

replication54, whereas the ul115-116 region encodes envelope glycoproteins55. The complex transcripts 
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in this region are the results of the transcriptional readthrough of the tandem ul115 and ul116 genes 

across the full length of the oppositely oriented ul112 gene. 

 

Nested genes 

The use of alternative TSSs may result in the expression of 5’-truncated transcripts that lack canonical 

ATG start codons. Herein, the canonical ORF contains one or more 5’-truncated in-frame 3’ co-

terminal ORF(s), which if functional can be considered as nested protein-coding genes51. The 

embedded ORFs have been analyzed using ribosome-profiling by Stern-Ginossar and coworkers35 

(referred to as ‘validated’ hereafter). We predicted ORFs on the viral genome (the resulting putative 

ORFs are termed ‘predicted’ hereafter) and found that 15 truncated transcripts carry novel ORFs. If 

translated, the truncated mRNAs lead to an N-terminally truncated version of the protein encoded by 

the canonical ORF. Overall, 63 such transcripts were identified in this sequencing dataset of which 40 

were described previously and 23 is novel (each of these were validated by dRNA sequencing). 

Truncated transcripts for novel putative nested genes were found within the following canonical genes: 

rl2, rl3, rl13, ul111A and ul48A. Additional novel truncated transcripts were found in genes, where 

such transcripts have already been described in genes ul34, ul148, ul94 and rl4. 

We carried out a promoter analysis of the transcripts: the presence and sequence composition of CAT, 

GC and TATA-boxes and their distances from the TSS of the transcripts were examined. In addition, 

the Kozak consensus sequences of the transcripts were analyzed as well. We then compared these 

features of the 5’ truncated RNAs (with truncated ORFs) to the transcripts of their host genes, those 

that carry canonical ORFs. Differences in the sequence compositions of their promoter elements were 

detected (Figure 5), however the number of transcripts where CAT-boxes were found was only 3 (both 

among the truncated and the canonical transcripts). GC-boxes and TATA-boxes were found in more 

cases (Figure 5) and an apparent difference was seen between the two transcripts groups, indicating 

that the transcriptional regulation of the embedded genes differ from their hosts. TSSs showed clear 

differences as well: the bases upstream of the C/G start site contain more A-s in the truncated transcripts 

(Supplementary Figure S4 A). The Kozak sequence composition showed a modification mainly in the 

important -3 Kozak site from the consensus G/A to T/G, which weakens the translation initiation signal 

somewhat, however this did not cause an overall significant decrease of the mean Kozak sequence 

score in these transcripts (Supplementary Figures S4 B and C). The differences altogether suggest that 

besides coding for different protein products, the embedded genes are differentially regulated both on 

the translation and on the transcription level, compared to their canonical counterparts.  

 

Figure 5. Weblogo of promoter elements: GC-boxes A.), CAT-boxes B.) and TATA-boxes C.) of truncated and canonical transcripts. 

Only those host genes were selected for the comparison that contained embedded genes. The number of each transcript that was found 

to contain promoter elements are shown above the respective weblogos. 
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uORFs 

Upstream ORFs are a class of cis-regulatory elements within the 5’ UTR of the respective mRNAs, 

and represent an alternative mode of translational regulation57. The uORFs are short (<30 codons) and 

may initiate at near-cognate start codons; they generally repress the translation of the downstream main 

ORF, however they can stimulate translation of the downstream coding region as well58. The uORFs 

composition in transcript variants (e.g. in short or long TSS variants) encoded by the same gene 

modulates their translational regulation59. In order to assess the coding capacity of the HCMV 

transcriptome, we transferred the experimentally validated ORF list (both short and long) published by 

Stern-Ginossar and collegues35 to the Towne varS genome (from the Merlin genome) using BLAST. 

We included those ORFs from the in silico predicted list that were co-terminal and in-frame with the 

canonical ORFs (these are some of the embedded genes of the truncated transcripts) to the resulting 

ORF list. Subsequently, we mapped them to the detected transcripts and compared these ORF 

compositions to what was previously described40. Figure 6 upper panel shows the distribution of these 

ORFs in the transcripts and which dataset that are derived from. The analysis revealed 149 novel 

combinations of the validated ORFs (considering both short and long) carried by the transcripts. This 

is a ~38% increase compared to the previously described 247, which greatly expands our earlier 

estimate of the coding capacity of the HCMV genome.  

 
Figure 6. Upper panels: The frequency of transcripts, according to the number of ORFs they encompass (Long, or Long+Short, according 

to35). Lower panel: number of transcripts identified according to transcript categories. Transcripts described in this work are colored with 

blue, those that we described previously40 are colored red, and those that we detected but were described in other works previously are 

colored green. 
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DISCUSSION 

In this work, we applied two LRS platforms (ONT and PacBio) with various library preparations and 

sequencing methods: native RNA and cDNA with and without Cap-selection and using oligo(d)T, or 

random primers to re-annotate the HCMV transcriptome. We used minimap2 for mapping and the 

LoRTIA software, with a stringent filtering procedure, to identify transcripts, which lead to the 

identification of 26 novel TSSs, 34 novel TESs and 25 novel introns. Comparison of the downsampled 

libraries showed differences between the library preparation protocols and sequencing methods: 

generally, the PacBio samples showed better performance than the cDNA ONT libraries in terms of 

TES and TSS detection, and similar performance to that of the dRNA library with respect of intron 

detection. 

We then used the identified features to assemble HCMV transcripts, which enabled the confirmation 

of 242 previously described, and the identification of 195 novel transcripts. The novel transcripts 

include 7 lncRNAs, 15 complex, 9 antisense, 23 putative protein coding (truncated), 90 polycistronic, 

7 splice variant, 1 intron-retention variant, 16 5’-long 10 5’-short variants and 16 alternatively 

terminated transcripts. The novel multigenic transcripts include 65 PC transcripts that are expressed 

from genes where polycistronism has not been described before or contain novel introns.  

Many transcript isoforms were produced from rl2-rl7 genes. A previous report detected a high 

transcriptional activity from the RL genes, mainly rl439. The ul71-ul73 region expressed many length 

variants of previously described PC transcripts.  

In the ul89-99 genomic region, we identified novel bicistronic and monocistronic transcripts that are 

likely be differentially regulated as is the case with their the previously identified variants48. Although 

UL95p is required for viral growth, probably these variants were downregulated in previous studies to 

such an extent that they have gone undetected. In the us30-34 region two PC, seven CX, and 14 AS 

transcripts were detected.  

We also identified two complex transcripts of UL102, which are antisense to UL101 and partially 

antisense to UL102 but sense to UL100. Previous studies confirmed antisense transcripts from this 

gene53, however none of them contains the ORFL234C. We also identified two PC and three CX 

transcripts from the UL115-UL116 region. At this point we can only speculate about the function of 

the complex transcripts. It is possible that the overlap causes transcriptional interference, as proposed 

earlier18,60.  

Alternative TSS-usage can cause the 5’-truncation of the ORFs, which may result in the formation 

nested genes, wherein one or more ORFs that are in-frame and co-terminal with the canonical ORF. 

These putative embedded genes might encode N-terminally truncated polypeptides. The identification 

of novel TSSs enabled us to confirm the existence of many such embedded genes. To gain high 

confidence in the existence of their expressed truncated mRNAs, an additional validation step (using 

dRNA reads) was employed to the already stringent transcript filtering criteria. These truncated 

mRNAs represent potentially novel functionalities of the viral protein repertoire, if translated. The 

promoters of nested genes and their sequence composition around the TSSs differ substantially, 

compared to the host genes, which may refer differences in the transcriptional regulation. Their Kozak 

sequences also show dissimilarities, thus they are presumably regulated differentially on a translational 

level as well. 

We found that the detected nested genes and their truncated transcripts, along with multigenic 

transcripts and transcript isoforms carrying different ORF compositions (many times attributed to 

different uORF compositions) significantly expand the coding capacity of HCMV. The previously 

estimated number of unique ORF composition carried by the transcripts was increased with 38%.  

Human Cytomegalovirus is a highly prevalent infectious agent, which partly due to its complex 

genome and transcriptional architecture causes a lifelong infection. By using novel RNA sequencing 

methods, a deeper insight into its intricate transcription was achieved in this study. The herein reported 
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results complemented with the previous ones represent the most detailed transcriptome of this 

important virus. 

 

MATERIALS AND METHODS 

In this article we used the sequencing datasets described in52 for Biosample ERS1870077 and 

ERS2312967 and42 for ERS2312967. The materials and methods used to generate those data are 

described here as well. 

Cells and viruses 

Human lung fibroblast cells [MRC-5; American Type Culture Collection (ATCC)] were cultured at 

37°C and 5% CO2-concentration in DMEM supplemented with 10% fetal bovine serum (Gibco 

Invitrogen), 100 units of potassium penicillin and 100 μg of streptomycin sulfate per 1 ml (Lonza). 

Four and eight T75 cell culture flasks were used for the ERS2312967 and ERS1870077 samples, 

respectively. Semi-confluent cells were infected with the Towne VarS (ATCC) strain of HCMV (a 

multiplicity of infection of 0.5 plaque-forming units (pfu) per cell). The viral-infected cells were then 

incubated for 1 h, which was followed by the removal of the culture medium and washing of the cells 

with phosphate-buffered saline. Subsequently, fresh culture medium was added, and cells were kept in 

the CO2 incubator for 24, 72, or 120 h, in case of ERS2312967, and for 1, 3, 6, 12, 24, 72, 96 or 120 h 

in case of ERS1870077.  

RNA purification 

Total RNA was extracted from each time point samples using the NucleoSpin RNA kit (Macherey-

Nagel) as described in our earlier publications (Oláh et al, 2015 BMC Microbiology, Tombácz et al 

2018 Sci Data PRV).  

PolyA(+) RNA purification and ribosomal RNA removal 

20 μl of the isolated RNA sample from each time point were pooled. The Oligotex mRNA Mini Kit 

(Qiagen) was used to select polyadenylated RNAs from both samples. Two different, poly(A)-selected 

libraries were prepared. For the analysis of the non-polyadenylated RNA fraction of the viral 

transcriptome, the ribosomal RNAs were removed using the RiboMinus™ Eukaryote System v2 

(Thermo Fisher Scientific) according to the kit’s instructions. 

Library preparation and sequencing 

Biosample ERS2312967 

ONT MinION sequencing - direct RNA 500 ng polyA-selected RNA was used for direct RNA 

sequencing. First-strand cDNA was generated using SuperScript IV (Thermo Fischer Scientific) and 

the adapter primers (supplied by the ONT’s Direct RNA Sequencing kit; SQK-RNA001). The library 

preparation was carried out with the ONT Ligation Sequencing 1D kit (SQK-LSK108) following the 

recommendations of the manufacturer. 

ONT MinION sequencing – oligo(dT)-primed, Cap-selected cDNA Two micrograms from the total 

RNA sample was used to generate first strand cDNAs using the Lexogen TeloPrime Full-Length cDNA 

Amplification Kit. Oligo(dT) or random primers were used for the reverse transcription (RT). The 

ligation of the 5′ adapter to the samples was carried out overnight at 25°C. The samples were amplified 

with PCR (30 cycles) using the reagents supplied by the TeloPrime kit. The libraries for nanopore 

sequencing were generated using the Ligation Sequencing 1D kit (SQK-LSK108, ONT) and the 

NEBNext End repair / dA-tailing Module NEB Blunt/TA Ligase Master Mix (New England Biolabs) 

according to the manufacturers' instructions.  

ONT MinION sequencing - random-primed, non-Cap-selected cDNA RNA mixture from the rRNA-

depleted sample was used to produce cDNA library for MinION sequencing. The RT reaction was 
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carried out according to the ONT’s Ligation Sequencing 1D kit (SQK-LSK108) using random primers 

instead of oligo(dT) primers and SuperScript IV (Thermo Fischer Scientific). The second-cDNA strand 

was primed with the strand-switching (5’) adapter. The amplification of the samples was carried out 

with KapaHiFi DNA polymerase (Kapa Biosystems) enzyme applying 16 PCR cycles. For the ligation 

reaction, the NEBNext End repair / dA-tailing Module NEB Blunt/TA Ligase Master Mix (New 

England Biolabs) was used.  

ONT MinION sequencing - random-primed, Cap-selected cDNA The Lexogen TeloPrime Kit was 

used to generate libraries from 5’-Capped RNAs with random primers to enrich the non-poly(A)-tailed 

RNAs or to capture the 5’-end of rare, very-long complex transcripts. The random-primed RT was 

followed by the ligation of the 5’ adapter from the TeloPrime Kit at 25°C, overnight. The sample was 

amplified through 30 PCR cycles with the KapaHiFi DNA polymerase enzyme (Kapa Biosystems). 

The library for nanopore sequencing was generated using the ONT’s Ligation Sequencing 1D kit 

(SQK-LSK108) according to the manufacturer’s recommendations.  

All the ONT libraries were run on R9.4 SpotON Flow Cells with a MinION sequencing device.  

Biosample ERS1870077 

PacBio RSII sequencing A total RNA mixture containing samples in equal volume from all post 

infection (p.i.) time points was used for library preparation. For the enrichment of polyA-tailed RNAs, 

the Oligotex mRNA Mini Kit (Qiagen) was used. The Eukaryote System v2 (Ambion) kit was utilized 

to produce ribosomal RNA-free samples for random primer-based sequencing. Adapter-linked 

anchored oligo(dT) primers or random primers were used for the RT. The cDNA samples were 

prepared using the Clontech SMARTer PCR cDNA Synthesis Kit. The reactions were carried out 

according to the PacBio Isoform Sequencing (Iso-Seq) protocol. PCR reaction was performed on 16 

cycles and 500 ng from the amplified samples were used to prepare the PacBio SMRTbell libraries 

with the PacBio DNA Template Prep Kit 2.0 and they were bound to MagBeads (MagBead Kit v2). 

The P6-C4 chemistry was used for sequencing. RSII SMRT Cells (v3) were applied with the RSII 

platform. Seven SMRT cells were utilized for sequencing the poly(A)+ SMRTbell templates and one 

for the random-primed library. 

PacBio Sequel sequencing RNA mixture from the polyA(+) samples was used to generate cDNA 

library for single-molecular real-time sequencing on PacBio’s Sequel platform. The Clontech 

SMARTer PCR kit and the PacBio Iso-Seq protocol were used. The SMRTbell DNA Template Prep 

Kit 2.0 was used for the generation of libraries, which then were bound to Sequel DNA Polymerase 

2.0. The PacBio’s MagBead-loading protocol was used with MagBead Kit 2.0, and the sequencing was 

carried out on the Sequel instrument using a single Sequel SMRT Cell (v2) 1M with Sequel Sequencing 

chemistry 2.1. The movie length was 10 h. Consensus sequences were generated with the SMRT-Link 

v5.0.1 software (Potter, 2016). 

The optimal conditions for primer annealing and polymerase binding were determined with the 

PacBio's Binding Calculator in RS Remote. 

ONT MinION sequencing – oligo(dT)-primed, non-Cap-selected PolyA(+) RNA fraction was used 

to generate cDNAs using SuperScript IV (Thermo Fischer Scientific) and adapter-linked oligod(T) 

primers. The 5′ adapter primers were ligated to allow for second-strand synthesis. The sample was 

amplified through 16 cycles using KapaHiFi enzyme. The PCR products were run on an UltraPure 

Agarose (Thermo Fischer Scientific) gel and cDNA fragments larger than 500 nt were purified using 

the Zymoclean Large Fragment DNA Recovery Kit (Zymo Research). The library was prepared using 

the ONT 1D kit (SQK-LSK108) and the NEBNext End repair / dA-tailing Module NEB Blunt/TA 

Ligase Master Mix (New England Biolabs) according to the kit’s manual. The library was sequences 

on a R9.4 SpotON Flow Cells using a MinION device.  

Data Validation 
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The measurement of the samples was carried out with Qubit 2.0 fluorometer (Life Technologies) while 

their quality was checked by Agilent 2100 Bioanalyzer (Agilent High Sensitivity DNA Kit). Samples 

with RNA Integrity Numbers higher than 9.5 were used for this study.  

Read Processing 

All sequencing reads were aligned to the HCMV strain Towne VarS genome (LT907985.2) using 

minimap262, using options -ax splice -Y -C5. The mapped reads were not trimmed and may therefore 

contain terminal poly(A) sequences, 3` adapters or 5′ adapter sequences (AGAGTACATGGG in case 

of the Sequel, TGGATTGATATGTAATACGACTCACTATAG in the case of the CapSeq and 

TGCCATTACGGCCGGG in case of the not cap-selected cDNA sequencing). These sequences are 

soft clipped and can be used to determine read strandedness. Direct RNA sequencing reads do not 

contain 5′ adapters; read directions are determined by the sequencer as RNA molecules enter the 

nanopores with the poly(A)-tail first.  

Read statistics were calculated using custom R scripts (available upon request). 

Feature detection and transcript annotations 

The LoRTIA toolkit (https://github.com/zsolt-balazs/LoRTIA), was used with default parameters for 

the both the PacBio (LoRTIA -5 AGAGTACATGGG --five_score 16 --check_in_soft 15 -3 

AAAAAAAAAAAAAAA --three_score 18 -s poisson -f True) and ONT (LoRTIA -5 

TGCCATTAGGCCGGG --five_score 16 --check_in_soft 15 -3 AAAAAAAAAAAAAAA --three_score 

16 -s poisson -f True) mapping outputs to annotate introns, TSSs, and TESs and the results were 

combined with the sum_gffs.py command. In order to make sure that these features are consequently 

valid, they were only accepted if either one of the two following criteria were met: a given feature was 

detected by at least two different methods, or it was detected in at least four different samples, of which 

no more than two could have been RSII samples. For intron annotation, we set an additional criterion: 

one of the samples that supported it had to be the native RNA library. 

Transcript naming scheme: we used the same transcript naming scheme as in our previous studies45. 

Genome annotations (including ORFs, according to Stern-Ginossar et al., 201235) were transferred to 

the Towne var-S genome with metablastr63 and Liftoff 54. 

Data evaluation, comparison of the transcripts, assessing their coding potentials, calculating their 

Kozak sequence score, carrying out ORF predictions and BLAST comparisons and generating 

visualizations were carried out with the following R packages: ORFik65, Gviz55 and tidygenomics58 

using custom R scripts. Promoter elements and PASs were searched with 

https://github.com/moldovannorbert/seqtools.  

Data Availability Statement 

Raw and mapped data files have been uploaded to the European Nucleotide Archive under the acces-

sion number PRJEB25680 (https://www.ebi.ac.uk/ena/data/view/PRJEB25680) and PRJEB22072 

(https://www.ebi.ac.uk/ena/data/view/PRJEB22072). All data can be used without restrictions. 
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