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Highlights: 27 

1. Three coactivation patterns (CAPs) pairs with opposite coactivation profiles were 28 

identified, and the between-state transition probability was positively correlated with their 29 

spatial similarity. 30 

2. Good spatial and temporal reproducibility and generalizability of CAPs were achieved 31 

under varied analytic methods and independent cohorts. 32 

3. Schizophrenia patients showed altered temporal dynamics not only within the triple-33 

network but also other primary and higher-order networks. 34 

 35 

Abstract 36 

It is well documented that massive dynamic information is contained in the resting-state 37 

fMRI. Recent studies have identified recurring states dominated by similar coactivation 38 

patterns (CAP) and revealed their temporal dynamics. However, the reproducibility and 39 

generalizability of the CAP analysis is unclear. To address this question, the effects of 40 

methodological pipelines on CAP are comprehensively evaluated in this study, including 41 

preprocessing, network construction, cluster number and three independent cohorts. The CAP 42 

state dynamics are characterized by fraction of time, persistence, counts, and transition 43 

probability. Results demonstrate six reliable CAP states and their dynamic characteristics are 44 

also reproducible. The state transition probability is found to be positively associated with the 45 

spatial similarity. Furthermore, the aberrant CAP in schizophrenia has been investigated by 46 

using the reproducible method on three cohorts. Schizophrenia patients spend less time in 47 

CAP states that involve the fronto-parietal network, but more time in CAP states that involve 48 

the default mode and salience network. The aberrant dynamic characteristics of CAP are 49 

correlated with the symptom severity. These results reveal the reproducibility and 50 

generalizability of the CAP analysis, which can provide novel insights into the 51 

neuropathological mechanism associated with aberrant brain network dynamics of 52 

schizophrenia. 53 

 54 

Keywords: coactivation patterns, dynamics, reproducibility, schizophrenia, triple-network 55 
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1. Introduction 57 

Since the resting-state fMRI was confirmed to be physiologically meaningful,(B. Biswal 58 

et al., 1995) a number of resting-state fMRI studies have emerged, of which functional 59 

connectivity (FC) is one popular method to detect the remote functional co-fluctuations (B. B. 60 

Biswal et al., 2010; Friston, 2011). Previous functional connectivity methods have typically 61 

assumed stationarity that the time series do not change their characteristics over time. 62 

However, the brain is indeed a complex system featured by the dynamic functional brain 63 

connectome (Zalesky et al., 2014). Recent evidence suggests that functional interactions 64 

between different brain regions and networks vary with time. The sliding-window based 65 

dynamic functional connectivity (dFC) is intensively used to measure the dynamic interaction 66 

between two regions (Hutchison et al., 2013; Preti et al., 2017), which has been shown to link 67 

with individual differences (Fong et al., 2019), task performances and disease alterations 68 

(Gonzalez-Castillo & Bandettini, 2018). 69 

Despite the limitation of the sliding-window approach, the dynamic characteristics of the 70 

functional brain connectome at the macroscopic level support that the brain has multiple 71 

functional recurring states (Zalesky et al., 2014). There are several methods for dynamic brain 72 

state detection. Combining the sliding-window dFC with the clustering method, Allen and 73 

colleagues identified several FC states, as an intermediate scale between static and instant FC 74 

underlying small short-time tasks, which can reallocate and integrate attentional and executive 75 

resources (Allen et al., 2014). Besides, based on the assumption of temporal independence, 76 

Smith and colleagues used temporal ICA to identify temporal function modes (TFM), which 77 

represent unique brain activation patterns (Smith et al., 2012). Different from the dFC-78 

clustering and TFM which assign each time point to one single state, the approach of the 79 

hidden Markov model (HMM) could identify a mixture of the brain states with a given 80 

probability at each time point, by assuming the transitions between states should follow a 81 

Markov process (Vidaurre et al., 2016). Vidaurre et al. used HMM in resting-state fMRI, and 82 

they found two hierarchical metastates that represent higher-order cognition and sensorimotor 83 

systems (Vidaurre et al., 2017). 84 

The coactivation pattern (CAP) analysis is a data-driven method to detect the functional 85 

brain states in a single volume level (Liu et al., 2013; Liu & Duyn, 2013), which originates 86 

from the point process analysis (Tagliazucchi et al., 2012). Rather than capturing the dFC 87 

configurations as brain states, it is simple and straightforward that, for each frame of the data, 88 

the spatial coactivation patterns represent a specific whole-brain activation configuration to 89 

deal with the real-time task at that time, and that different frames which share the same spatial 90 
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patterns are regarded as the same CAP state (Figure 1A). As a data-driven method, CAP 91 

analysis relies on very few mathematical presumptions, and is free of the confounding 92 

influence from the sliding window length. Therefore, CAP analysis has increasingly been 93 

used to study the abnormal network dynamics in depression (Kaiser et al., 2019), Alzheimer’s 94 

disease (Kaiser et al., 2019; Ma et al., 2020) and task fMRI (Freitas et al., 2020). 95 

The reproducibility is crucial for analytical methods in fMRI studies (Botvinik-Nezer et 96 

al., 2020; Eklund et al., 2016; Zuo et al., 2019). A lot of analytic flexibility exists in fMRI 97 

studies (Vergara et al., 2017), such as different preprocessing pipelines (Shirer et al., 2015), 98 

different software and toolboxes (Bowring et al., 2019). It is necessary to clarify the effects of 99 

varied settings in neuroimaging analyses (Aurich et al., 2015; Strother, 2006; Vergara et al., 100 

2017) and to establish a standard and robust methodological pipeline (Esteban et al., 2019). 101 

However, it still remains unknown about the analytic flexibility and reproducibility for CAP 102 

analysis. 103 

Schizophrenia is a psychiatric disorder with complex structural and functional brain 104 

alterations, characterized by abnormal connectome and functional dynamics (Collin et al., 105 

2016; Fornito et al., 2012; Hunt et al., 2017). Particularly, the triple-network (V. Menon, 106 

2011), including the default-mode network (DMN), fronto-parietal network central (FPN) or 107 

executive network (CEN), and salience network (SN), is postulated as a critical core of 108 

network dysfunction for understanding the neuropathological mechanism of psychiatric 109 

disorders including schizophrenia (Manoliu et al., 2014; V. Menon, 2011). Recently, Supekar 110 

and colleagues found that reduced dynamic interactions among the SN, CEN and DMN may 111 

substrate neurobiological signatures of schizophrenia (Supekar et al., 2019). However, little is 112 

known about the aberrant dynamic characteristics in schizophrenia concerning triple networks 113 

as well as other parts of the whole brain. 114 

This study aimed to first investigate the reproducibility and generalizability of the CAP, 115 

and then utilize the robust analytical approach to study the aberrant dynamic state transition in 116 

schizophrenia. To achieve this goal, key methodological aspects were carefully evaluated for 117 

the robustness of CAP, including different preprocessing pipelines, ROI numbers for network 118 

construction, cluster numbers, and cohorts. Then, reliable dynamic states in the functional 119 

brain coactivation patterns were identified and further employed to compare the temporal 120 

dynamic characteristics between schizophrenia patients (SZ) and healthy controls (HC) in 121 

three independent data cohorts. Next, the associations between aberrant dynamic state 122 

transition and clinical symptom severity were explored. 123 

 124 
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2. Materials and Methods 125 

2.1 Participants  126 

To explore the reproducibility and generalizability of this study, three cohorts (WuXi, 127 

COBRE and UCLA) were analyzed. The WuXi cohort was used as the primary cohort, the 128 

other two open-access cohorts were treated as verification and their detailed participant 129 

information was described in the Supplementary material. 130 

For the primary cohort (WuXi), all subjects were scanned by a structural MRI and 131 

resting-state functional MRI on a 3.0-Tesla Magnetom TIM Trio (Siemens Medical System) at 132 

the Department of Medical Imaging, Wuxi People's Hospital, Nanjing Medical University. 133 

Foam pads were used to reduce head motion and scanner noise. Before the scan, the subjects 134 

were instructed to keep their eyes closed, relax but not fall asleep, and move as little as 135 

possible during data acquisition. After excluding subjects with large head motion, 69 SZ 136 

subjects and 97 HC subjects remained for the current study. Positive and Negative Syndrome 137 

Scale (PANSS) was used to measure the psychiatric symptoms of SZ patients. 138 

Framewise displacement (FD) was calculated from the resting-state fMRI data to 139 

measure head motion (Di & Biswal, 2015). Subjects were excluded if their maximum 140 

translation or rotation FD were greater than 2 mm or 2°. The k-means clustering was 141 

performed in all 97 HC subjects. For the group comparisons between SZ and HC, only age- 142 

and gender-matched HC subjects were analyzed. The age- and gender-matched demographic 143 

information for the three cohorts were provided in Table 1. The information for all HC 144 

subjects used in the coactivation patterns generation can be found in the Supplementary 145 

material. 146 

 147 

2.2 fMRI Data Acquisition 148 

for the primary cohort (WuXi), the resting-state scans were acquired using a single-shot 149 

gradient-echo echo-planar-imaging sequence (Tian et al., 2016) with the following 150 

parameters: TR = 2000 ms, TE = 30 ms, slice number = 33, slice thickness = 4 mm, flip 151 

angle = 90°, matrix size = 64 × 64, FOV = 220 mm, voxel size = 3.4 × 3.4 × 4 mm3, and volume 152 

number = 240. Three-dimensional T1-weighted images were acquired by employing a 3D-153 

MPRAGE sequence with the following parameters: TR = 2530 ms, TE = 3.44 ms, flip 154 

angle = 7°, matrix size = 256 × 256, slice number = 192, slice thickness = 1 mm, 155 

FOV = 256 mm, and voxel size = 1 × 1 × 1 mm3. The fMRI data acquisition parameters for the 156 

other two cohorts were described in the Supplementary material. 157 

 158 
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2.3 fMRI Data Preprocessing 159 

The resting-state fMRI data were preprocessed using DPABI (http://rfmri.org/dpabi), and 160 

the preprocessing steps were followed: 1) Remove the first 2 time points for the UCLA and 161 

COBRE dataset, and remove the first 5 time points for the WuXi cohort; 2) Realignment; 3) 162 

Coregisteration of T1 image to functional image; 4) T1 segmentation by DARTEL; 5) 163 

Normalization of the functional images by T1 DARTEL; 6) Nuisance regression, including 24 164 

head motion parameters, mean white matter (WM) and mean cerebrospinal fluid (CSF) signal, 165 

both with and without global signal regression (GSR); 7) Detrend; 8) Band-pass filtering, 166 

from 0.01 ~ 0.08 Hz; 9) Smoothing with an 8 mm FWHM kernel. 167 

To evaluate the effect of preprocessing steps, the resting-state fMRI data was also 168 

preprocessed using a standard task fMRI data preprocessing pipeline, which is similar to the 169 

above steps but without nuisance regression and filtering. 170 

The BOLD signal for the preprocessed resting-state fMRI data was extracted from 408 171 

ROIs separately. The 408 ROIs were consist of 400 cortical regions from Yeo's 7 network 172 

parcellation (Schaefer et al., 2018) and 8 subcortical regions (bilateral caudate nucleus, 173 

putamen, globus pallidus and amygdala) from the AAL template (Tzourio-Mazoyer et al., 174 

2002). The 400 cortical regions are allocated to 7 networks including the visual network 175 

(VN), somatomotor network (SMN), dorsal attention network (DAN), ventral attention 176 

network (VAN), limbic network, fronto-parietal network (FPN) and default mode network 177 

(DMN) (Yeo et al., 2011). The 7 networks have parcellations with different spatial scales from 178 

100 to 1000, and 400 was mainly used in this study because the average voxel size for the 400 179 

ROIs is comparable to the average voxel size of the 8 subcortical regions from the AAL 180 

template. 181 

 182 

2.4 Coactivation Pattern Analysis 183 

Coactivation pattern (CAP) analysis is a data-driven method that identifies recurring 184 

states across time points with similar whole-brain coactivation patterns. In this study, the CAP 185 

analysis was performed using home-made scripts in MATLAB 186 

(https://www.mathworks.com/). 187 

First, to represent the relative activation magnitude changes in the 408 ROIs, each time 188 

series were normalized using a z-score. For each subject i, a two-dimensional normalized 189 

BOLD matrix Xi (T × 408) was obtained, where T is the number of time points and 408 is the 190 

ROI number. 191 
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Next, all HC subjects' normalized BOLD metrics XHC_i (T × 408) were concatenated to 192 

obtain the XHC (THC × 408, THC = T × N), where N is the sample size of all HC subjects. Then, 193 

k-means clustering was performed to identify similar coactivation patterns across all volumes 194 

from all HC subjects, and the distance between two volumes was calculated by subtracting 195 

their Pearson correlation coefficient from one. The cluster number K was selected from 2 to 196 

21 with a step length of 1. The clustering algorithm was repeated 100 times with a new initial 197 

cluster centroid for each K value, and the results with the lowest within-cluster sums of point-198 

to-centroid distances were used. Frames assigned to the same CAP state were averaged and 199 

divided by the within-cluster standard deviation to generate the normalized CAP maps (Z-200 

maps) at the group level (Figure 1A). 201 

The clustering patterns obtained from all HC subjects were then applied to each SZ 202 

subject. Specifically, each frame from the XSZ_i (T × 408) was extracted, which is a 1 × 408 203 

vector representing the whole-brain coactivation level at that time point. Then, the spatial 204 

similarity between each frame and each normalized CAP map was calculated using the 205 

Pearson correlation, and the frame was assigned to the CAP with the largest spatial similarity. 206 

The silhouette score (Rousseeuw, 1987) was calculated to evaluate the clustering results 207 

for different K values. As shown in Figure S1, Supplementary material, the silhouette score 208 

was monotonically decreasing with the increase of K. Then, the elbow criterion was 209 

considered to determine the number of clusters. While one issue is that the time points of the 210 

three cohorts are limited, if the cluster number is too large, then each CAP state would only 211 

account for a few seconds through the entire scan. Therefore, 6 clusters were mainly analyzed 212 

and reported in the manuscript as a trade-off, and one recent paper also used 6 clusters for the 213 

CAP analysis (Zhang et al., 2020). 214 

 215 

2.5 State Temporal Dynamics Measures / CAP Metrics:  216 

To evaluate the dynamic properties within and between CAP states, four dynamic 217 

measures (CAP metrics) were calculated at the individual level: 1) Fraction of time is 218 

defined as the proportion of total volumes spent in one CAP state over the whole time series; 219 

2) Persistence is the average time spent in one state before transferring to another state, and it 220 

describes the mean volume-to-volume maintenance of one CAP state; 3) Number of states 221 

(Counts) is how many times one state occurred during the whole scan; and 4) Transition 222 

probability matrix is the probability that one volume within State A transfers to the next 223 

volume belonging to State B, with a non-zero diagonal as the volume within State A could 224 

still stay within State A for the next volume. 225 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.29.437611doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437611
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

8 
 

 226 

2.6 Transition Probability and Spatial Similarity between States 227 

The relationship between the spatial similarity and transition probability between two 228 

states was measured in all HC subjects. The spatial similarity between different brain states 229 

was calculated using the Pearson correlation. Before measuring the relationship between the 230 

two metrics, the symmetry of the transition probability was first examined. In detail, the 231 

transition probability from State A to State B was paired with the transition probability from 232 

State B to State A, and the Pearson correlation was calculated between all pairs to test the 233 

symmetry level. The transition probability metrics were then averaged on the group level and 234 

symmetrized. Finally, the relationship between the spatial similarity and transition probability 235 

was measured using the Pearson correlation. The diagonal values were not analyzed in this 236 

part. 237 

 238 

2.7 Reproducibility Analysis 239 

Recently, neuroimaging studies have drawn more attention to reproducibility. In this 240 

study, the CAPs' spatial and temporal reproducibility were considered from four aspects. The 241 

first aspect is to consider the effects of different data preprocessing steps, including two 242 

standard resting-state fMRI preprocessing pipelines (with and without GSR) and one classic 243 

task fMRI preprocessing pipeline. Then, the effects of different spatial resolutions of the 244 

template were assessed. In detail, 100, 200, 400 and 1000 ROIs from Yeo's 7 network 245 

parcellations (Schaefer et al., 2018) plus the 8 subcortical regions from the AAL atlas 246 

(Tzourio-Mazoyer et al., 2002) were tested. Different K values were also compared to see 247 

whether the CAP states gradually change with the increase of cluster number. Finally, the 248 

CAP analysis was performed in three independent cohorts separately to detect the site effect. 249 

Furthermore, to verify the generalizability of this study, whether the results obtained by 250 

one cohort can be directly replicated in other cohorts, we applied the CAPs generated from 251 

the WuXi cohort to the other two cohorts, then the spatial maps and temporal dynamics 252 

among CAP states were compared. 253 

The spatial reproducibility was assessed by calculating the Pearson correlations between 254 

CAPs’ spatial maps under different conditions, and the temporal dynamics were then 255 

compared between spatial matched CAPs. 256 

 257 

2.8 Statistical Analysis 258 
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For group comparisons, only age- and gender-matched HC and SZ subjects were 259 

analyzed. Age was compared between SZ and HC by a two-sample t-test, and a chi-square 260 

cross-table test was used to test the gender difference. As for the CAP metrics, two-sample t-261 

tests were performed with age and gender as covariates. FDR correction (q = 0.05) was used 262 

to correct for the multiple comparisons. 263 

The relationship between CAP metrics and behavioral measures, such as disease 264 

symptoms and disease duration, were tested using partial correlation with age and gender as 265 

covariates. The state temporal dynamics and behavioral measures were first normalized using 266 

z-score, and subjects with large deviation (Z > 3) were excluded in the correlation analysis as 267 

the outlier. FDR correction (q = 0.05) was used to correct for the multiple comparisons. 268 

 269 

3. Results 270 

3.1. Demographics and Questionnaires 271 

No group differences of age or gender were found between the SZ and HC in all three 272 

cohorts, and the detailed group characteristics are given in Table 1. 273 

 274 

Table 1. The demographic information for the three cohorts 275 

 HC SZ P value 
WuXi cohort (n = 138)    
Num of subjects 69 69  
Age [years] 45.84 ± 11.89 46.06 ± 10.96 0.9112a) 

Gender (Male / Female) 35 / 34 35 / 34 1b) 

Disease duration - 19.84 ± 10.96 - 
PANSS positive - 20.06 ± 4.59 - 
PANSS negative - 23.78 ± 3.84 - 
PNASS general - 41.67 ± 5.27 - 
PNASS total - 85.51 ± 9.50 - 
COBRE cohort (n = 108)    
Num of subjects 54 54  
Age [years] 37.22 ± 12.48 37.80 ± 14.13 0.8234a) 
Gender (Male / Female) 43 / 11 43 / 11 1b) 
Disease duration  - 15.19 ± 12.46 - 
PANSS positive - 14.13 ± 4.29 - 
PANSS negative - 14.46 ± 5.10 - 
PNASS general - 28.57 ± 8.40 - 
PNASS total - 57.17 ± 13.52 - 
UCLA cohort (n = 90)    
Num of subjects 45 45  
Age [years] 36.73 ± 8.65 37.00 ± 8.75 0.8973a) 
Gender (Male / Female) 33 / 12 33 / 12 1b) 
BPRS - 50.40 ± 14.08 - 
SAPS - 28.89 ± 18.49 - 
SANS - 35.09 ± 18.55 - 

Data are expressed as mean ± SD (SD: standard deviation). 276 
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Abbreviations: BPRS, Brief Psychiatric Rating Scale; SANS, Scale for the Assessment of 277 

Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms; PANSS, 278 

Positive and Negative Syndrome Scale. 279 

a) two-sample t-test; b) chi-square cross-table test. 280 

 281 

3.2. Reliable CAP identification and Dynamic Characteristics 282 

This study tested different methodological combinations on three independent data 283 

cohorts, such as preprocessing pipelines, ROI numbers and cluster numbers. Below we 284 

reported the primary results of six reliable CAP states, which are based on the WuXi cohort, 285 

using the resting-state preprocessing with global signal regression (GSR) and 408 ROIs. The 286 

other validation results are provided in the Supplementary material. 287 

 288 

3.2.1. Coactivation Patterns and Brain States 289 

The coactivation patterns were generated from all HC subjects using temporal k-means 290 

clustering, and six CAP states were finally identified (Figure 1B), after the search for optimal 291 

cluster number (see details in the Supplementary material). Among the six CAP states, brain 292 

regions that belong to the same functional network, such as the default mode network (DMN), 293 

fronto-parietal network (FPN), and salience network (SN), tend to be activated or deactivated 294 

simultaneously. One interesting phenomenon is that the six CAP states were grouped into 295 

three pairs with opposite spatial coactivation patterns. For example, State 1 and 2 grouped 296 

together - State 2 was mainly related with the activated FPN, DMN (without posterior 297 

cingulate cortex and precuneus) and deactivated visual network (VN), while State 1 had the 298 

opposite spatial pattern. Since each CAP state had certain brain networks with relatively 299 

stronger activation or deactivation than the other networks of the whole brain, we found that 300 

not only triple networks but also primary (VN, SMN) and higher-order networks (DAN) were 301 

identified in the dominant CAP states. 302 

 303 
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 304 

Figure 1 A) An illustration for the CAP analysis. The normalized spatial map for each 305 

volume was input for the k-means clustering, to identify volumes with similar coactivation 306 

patterns, and then average them to generate the CAPs. B) Six CAP states were identified by 307 

CAP analysis based on the primary configuration (WuXi cohort, resting-state fMRI 308 

preprocessing with GSR and 408 ROIs for the network construction). These brain states were 309 

normalized at the group level, and the value is the z-statistic value. Red color indicates a 310 

relatively stronger activation, while blue color indicates a relatively stronger deactivation. 311 

State 1 was mainly related to deactivated FPN, DMN and activated VN, and the opposite is 312 

true for State 2; State 3 was mainly characterized by activated DMN and deactivated FPN and 313 

DAN, and the opposite is true for State 6; State 4 was mainly characterized by deactivated 314 

DMN and activated SN and SMN, and the opposite is true for State 5. 315 
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Abbreviations: DAN, dorsal attention network; DMN, default mode network; FPN, fronto-316 

parietal network; SN, salience network; SMN, somatomotor network; VN, visual network. 317 

 318 

3.2.2. Transition Probability and Spatial Similarity between States 319 

As shown in the diagonal of the transition probability matrix (Figure 2A), the temporal 320 

activity was dominated by the identified CAP states (more than 60% of the time), and the 321 

between-state alteration remained low transition probability (1% to 11 % of the time). 322 

Comparing Figure 2A and Figure 2B, it is clear that the transition probability between brain 323 

states with strong anti-correlated spatial coactivation was close to zero. Taking State 4 and 324 

State 5 for an example (Figure 2C), their coactivation patterns were opposite (spatial 325 

similarity r = - 0.99), their transition probability from State 4 to State 5 was 0.0081, and from 326 

State 5 to State 4 was 0.0103. Despite the small discrepancy in bi-directional transition 327 

probability, the symmetry in the transition probability matrix is pronounced. Figure 2D 328 

showed a significant positive correlation (r = 0.8479, p < 0.0001) between the transition 329 

probability from State A to State B and transition probability from State B to State A. Finally, 330 

the relationship between the transition probability and spatial similarity metrics was 331 

evaluated. As shown in Figure 2E, the transition probability between two CAP states was 332 

highly correlated with their spatial similarity (r = 0.9817, p < 0.0001). 333 

 334 
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 335 

Figure 2. The relationship between CAP state transition probability and their spatial 336 

similarity. A) The group average transition probability matrix in all HC subjects. B) The 337 

spatial similarity between six CAP states, measured by the Pearson correlation. C) The 338 

transition probability between State 4 and State 5, and their spatial similarity, the values were 339 

shown in the white dashed circles in Figure 2A and Figure 2B. D) The correlation between 340 

transition probability from State A to State B and transition probability from State B to State 341 

A. The shadow represents the 95% confidence interval. E) The correlation between the 342 

symmetrized transition probability between State A and State B and their spatial similarity. 343 

The shadow represents the 95% confidence interval. 344 

 345 

3.2.3. Spatial Reproducibility Evaluation 346 
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As shown in Figure 3, each row or column showed two pairs with high spatial similarity, 347 

which suggest reproducible CAP states and their groups. It indicated that good spatial 348 

reproducibility within the HC group remained across different preprocessing pipelines and 349 

ROI numbers for network construction. 350 

Moreover, the validation analysis for different cluster number K also demonstrated good 351 

spatial reproducibility, although more CAP states were separated with the increase of K. For 352 

example, as shown in Figure 6, when K increased from 6 to 8, four states (State 3 to State 6) 353 

remained unchanged, their one-to-one correspondence spatial similarity was larger than 0.9, 354 

and the other two states (State 1 and State 2) were subdivided into four states. 355 

To evaluate the reproducibility and generalizability of identified CAP states, the 356 

clustering results from the WuXi cohort were applied to all subjects from the COBRE cohort 357 

and UCLA cohort. The diagonal of metrics in Figure 7A showed the high spatial similarity of 358 

each CAP state between the WuXi cohort and the other two cohorts. 359 

 360 

 361 

Figure 3. The CAP spatial similarity between states under A) different preprocessing 362 

pipelines and B) different ROI numbers. The spatial similarity was measured by the Pearson 363 

correction. 364 

 365 

3.2.4. Temporal Reproducibility Evaluation 366 

To verify the temporal reproducibility within the HC group more straightforwardly, all 367 

states were relabeled to group corresponding states together. As shown in Figure 4, the 368 

absolute values for the CAP metrics across different preprocessing pipelines, ROI numbers 369 
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and cohorts were evaluated in HC. As for the preprocessing pipeline, rest preprocessing with 370 

and without GSR showed consistent results across all the three CAP metrics, while task 371 

preprocessing showed shorter persistence and more counts. All three CAP metrics were not 372 

sensitive to the ROI number. Different cohorts showed a consistent fraction of time and 373 

persistence, and the WuXi cohort exhibited more counts than the other two cohorts. 374 

 375 

 376 

Figure 4. The CAP metrics reproducibility within the HC group under different A) 377 

preprocessing pipelines, B) ROI numbers and C) cohorts. 378 

 379 

3.3. Aberrant and Reproducible State Dynamics in Schizophrenia 380 

3.3.1. State Temporal Dynamic Differences between SZ and HC 381 

The robust CAP analysis was applied to investigate the schizophrenia-related 382 

abnormalities in the CAP dynamic state transition across three independent data cohorts. The 383 

state temporal dynamics (CAP metrics) were compared between SZ patients and well-384 

matched HC controls by using a two-sample t-test, with age and gender as covariates. The 385 

results of group comparisons were presented in Figure 5. As mentioned above, the six CAP 386 

states could be grouped into three pairs (State 1 and 2, State 3 and 6, State 4 and 5). The mean 387 

fraction of time of each state for SZ and HC groups was around 15% to 20%, and each state 388 

persisted for 5 to 6 seconds. For example, the pair of State 4 and State 5 occupied the highest 389 
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fraction of time in both the SZ and HC groups, which shared opposite spatial coactivation 390 

patterns dominated by SN, SMN and DMN. Almost every state except State 6 showed 391 

significant temporal dynamic differences (P<0.05, FDR corrected). The group differences 392 

were similar within each pair. For instance, SZ patients showed less fraction of time in states 393 

characterized by FPN and DMN (State 1 and State 2), and more fraction of time in states 394 

characterized by SN and DMN (State 4 and State 5). 395 

Specifically, SZ patients showed a significantly reduced fraction of time and persistence 396 

in State 1 and 2, as well as reduced counts in State 2, compared with the HC group (Figure 397 

5A). In State 4 and 5, SZ patients had significantly increased fraction of time and counts. 398 

Moreover, SZ patients showed a significantly increased fraction of time and counts in State 3, 399 

but not in State 6. As for the transition probability between CAP states, SZ patients showed 400 

lower transition probability from State 4 to State 2, and lower transition probability within 401 

State 1 and State 2 (Figure 5B). On the other hand, SZ patients showed higher transition 402 

probability from State 1 to State 5, State 2 to State 3, State 3 to State 5 and State 6 to State 4. 403 

The detailed statistic values for these CAP metrics were described in Table S2, Supplementary 404 

material. 405 

 406 
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 407 

Figure 5. State temporal dynamic differences between SZ and HC. The group differences in 408 

A) fraction of time, persistence, counts and B) transition probability. Red bins are the SZ 409 

group and blue bins are the HC group. Two-sample t-tests were performed with age and 410 

gender as covariates. Error-bar is the standard error. * indicates p < 0.05, and ** indicates p < 411 

0.005, and *** indicates p < 0.0005 with FDR correction. For the transition probability, the 412 

red arrow means higher transition probability in the SZ group, and vice versa for the blue 413 

arrow. C) Behavioral relevance with state temporal dynamics in SZ. The fraction of time of 414 

State 6 was negatively correlated with the positive PANSS score, r = -0.4406, p = 0.0013; The 415 

counts of State 6 was negatively correlated with the positive PANSS score, r = -0.4657, p = 416 

0.0005; The transition probability from State 5 to State 6 was negatively correlated with the 417 

positive PANSS score, r = -0.3953, p = 0.0316 (all the p values were FDR adjusted). The 418 

shadow represents the 95% confidence interval. 419 

Abbreviations: PANSS, Positive and Negative Syndrome Scale. 420 

 421 

3.3.2. The relationships between State Temporal Dynamics and Clinical Data 422 
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The clinical relevance with state temporal dynamics was evaluated in the SZ group, 423 

using partial correlation with age and gender controlled. As shown in Figure 5C, after FDR 424 

correction, the following negative correlations between CAP metrics and positive PANSS 425 

score were found: the fraction of time of State 6 (r = -0.4406, p = 0.0013), the counts of State 426 

6 (r = -0.4657, p = 0.0005), and the transition probability from State 5 to State 6 (r = -0.3953, 427 

p = 0.0316). In addition, the persistence of State 3 (r = -0.3388, p = 0.0323) was negatively 428 

correlated with the disease duration, the fraction of time of State 4 (r = 0.3556, p = 0.0203), 429 

and the persistence of State 5 (r = 0.3653, p = 0.0154) was positively correlated with the 430 

PANSS total score.  431 

 432 

3.3.3. Reproducible Group Differences between SZ and HC 433 

The reproducibility of SZ patients’ dynamic alterations was also validated in this study, 434 

which confirmed good temporal reproducibility for the group differences. For instance, SZ 435 

showed more fraction of time in State 4 and State 5 and less fraction of time in State 1 and 436 

State 2. These results were consistent across different methodological pipelines (Figure S5 437 

and Figure S8, Supplementary material). And for the unchanged states under K = 6 (State 5) 438 

and K = 8 (State 1), their temporal dynamic differences that SZ showed more fraction of time 439 

than HC were consistent as well (Figure 6B). 440 

Figure 7B showed the fraction of time differences between SZ and HC across the three 441 

cohorts. Their overall trend among the six CAP states was similar, particularly State 2, State 3 442 

and State 5 showed consistent significant group differences in the WuXi cohort and COBRE 443 

cohort. Although the temporal dynamic differences obtained from the UCLA cohort were less 444 

similar compared with the other two cohorts, the absolute values still showed a consistent 445 

trend as presented in Figure 5C. 446 

In addition, the repeatability for different cohorts was validated. Rather than using the 447 

CAP maps from one cohort to the other cohorts, the CAP analysis was independently 448 

performed for the COBRE and UCLA cohort, and the spatial and temporal results were 449 

compared. Although the repeatability for different cohorts was relatively weaker, considerable 450 

spatial overlaps were identified across the three cohorts. More details were described in 451 

Figure S11 to Figure S13, Supplementary material. 452 

 453 
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 454 

Figure 6. CAP analysis reproducibility with different cluster numbers. In this case, the 455 

configuration was WuXi cohort, rest preprocessing with GSR and 408 ROIs. A) The CAP 456 

spatial similarity between K = 6 and K = 8. B) The State 1 in K = 6 was divided into two 457 

states in K = 8, State 2 and State 3. State 5 in K = 6 remained in K = 8, which corresponds to 458 

State 1, and the SZ group also showed a consistent more fraction of time than the HC group. 459 

The error bar is the standard error. 460 

 461 
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 462 

Figure 7. The generalizability of network dynamic measure differences between SZ and HC 463 

across the three independent cohorts. A) Applying the clustering results based on the WuXi 464 

cohort to the other two cohorts, their spatial similarity was measured by the Pearson 465 

correlation. B) The fraction of time differences between SZ and HC across the three cohorts. * 466 

indicates p < 0.05, ** indicates p < 0.005and *** indicates p < 0.005 (FDR adjusted). The 467 

error bar is the standard error. 468 

 469 

4. Discussion 470 

In this study, we first identified the characteristic and reliable states and transitions of 471 

functional brain networks in the healthy adults, and then investigated the schizophrenia-472 

related aberrant state dynamics, based on the coactivation pattern analysis and three 473 

independent cohorts. Healthy and patient cohorts achieved robust results across different 474 

methodological pipelines. Our results revealed six reliable coactivation states of functional 475 

brain networks, which were constituted by typical resting-state networks including triple 476 

networks as well as primary and other higher-order networks. The principle of spontaneous 477 

state transitions inferred the higher spatial similarity, the higher transferring probability 478 

between the separable coactivation states. Patients with schizophrenia showed reproducible 479 

evidence of aberrant coactivation patterns dynamics, particularly the state dominance such as 480 

the fraction of time was altered and associated with positive symptoms in the patients. 481 

Together, our study confirms the reproducibility and generalizability of CAP analysis, which 482 

could provide meaningful information about the network dysfunction and neuropathological 483 

mechanisms in psychiatric disorders. 484 
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 485 

4.1. Coactivation Patterns for Brain States 486 

The CAP analysis is based on the temporal k-means clustering of whole-brain functional 487 

activities, which identifies a group of spatial maps with similar whole-brain coactivation 488 

patterns across the whole scan. Motivated by the idea of PPA (Tagliazucchi et al., 2012), Liu 489 

et al. found that the DMN can be simply identified by averaging multiple distinct 490 

coactivations or co-deactivation patterns at different time points (Liu & Duyn, 2013). Yeo's 7 491 

network parcellation was used in this study, and brain regions belonging to the same network 492 

tended to be activated or deactivated together (Figure 2). This result supports the intrinsic 493 

relationship between brain regions within the same functional network (B. B. Biswal et al., 494 

2010; Calhoun & Adali, 2012), and these intrinsic networks can be simply extracted by 495 

averaging a few time points rather than using a more complex mathematical method such as 496 

ICA. Thus, while CAP states are derived from resting-state fMRI signals by using not 497 

pairwise functional connectivity but temporal clustering, which we feel at least partly 498 

represents the temporal dynamic characteristics of the whole-brain functional connectome 499 

(Zuo et al., 2012). 500 

Previous ICA analyses used to divide the DMN network into anterior part and posterior 501 

part (B. B. Biswal et al., 2010; Zuo et al., 2010). Our results also found the posterior DMN 502 

(mainly includes the precuneus/posterior cingulate cortex and angular gyrus) and the anterior 503 

DMN (mainly includes the medial prefrontal cortex) were activated at different level across 504 

states. The posterior DMN tends to be related to the SN and SMN (State 4 and 5), while the 505 

anterior DMN was associated with FPN and DAN (State 3 and 6). Besides, three pairs of 506 

states were identified with opposite coactivation patterns. For instance, when DMN was 507 

activated, the FPN and DAN were deactivated (State 3), and vice versa is true for State 6. The 508 

phenomenon of opposite CAP pairs has also been found in previous studies (Huang et al., 509 

2020; Janes et al., 2020; Zhang et al., 2020), suggesting these regions tend to be activated in 510 

an opposite manner that the activation of region A would suppress the activity of another 511 

region B, and vice versa. 512 

The DMN is known as the task-negative network. For State 3 to State 6, when DMN was 513 

activated, other task-positive networks such as FPN and SN were either not activated or 514 

deactivated. These results verified the anti-correlation between the task-positive network and 515 

the task-negative network (Fox et al., 2005; Power et al., 2011). Based on CAPs, Li and 516 

colleagues concatenated a set of task activation maps from the Human Connectome Project, 517 

and validated the robust anti-correlated functional network (DMN) across multiple tasks (Li et 518 
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al., 2020). However, we found that the DMN was not always activated conversely compared 519 

with FPN. Specifically, the medial-prefrontal subsystem and temporal subsystem of DMN 520 

were co-deactivated with FPN when the visual network was activated, and vice versa is true 521 

(State 1 and State 2). This is consistent with recent findings that the DMN and FPN are 522 

coactivated when evaluating internal information (Beaty et al., 2016; Zhu et al., 2017) and 523 

involved in task preparation (Koshino et al., 2011). 524 

 525 

4.2. Transition Probability and Spatial Similarity 526 

Unlike the Pearson correlation matrix which is mathematically symmetric, the transition 527 

probability between State A and State B is not equal. Nevertheless, a significant positive 528 

correlation was obtained (r = 0.8479, p < 0.0001) between the transition probability pairs, 529 

suggesting the transition probability between two states is an approximation (Figure 4A). In 530 

addition, the transition probability between two states was significantly correlated with their 531 

spatial similarity (r = 0.9817, p < 0.0001), which suggests that one state would transfer to the 532 

other state with a higher probability. This positive association was also found by a previous 533 

study based on the hidden Markov model (Vidaurre et al., 2017), as the brain should activate 534 

continuously, it is less likely that one CAP state would directly change to another state with 535 

opposite whole-brain coactivation configuration without any intermediate state. 536 

 537 

4.3. Reproducibility in CAPs Analysis and Results 538 

In this study, we considered the reproducibility of our analyses from several aspects, 539 

including preprocessing pipeline, ROI number, cluster number and cohort, and they showed 540 

consistent results. 541 

For CAP analysis based on resting-state fMRI data, currently there is no standard 542 

preprocessing pipeline. Some studies used the common task preprocessing pipeline, which 543 

mainly includes realignment, spatial normalization and smoothing (Kaiser et al., 2019; 544 

Karahanoglu & Van De Ville, 2015). More studies used the standard resting-state 545 

preprocessing pipeline, which has additional steps such as nuisance signal regression (WM, 546 

CSF) and temporal filtering, with and without GSR (Karahanoglu & Van De Ville, 2015; Liu 547 

et al., 2013; Liu & Duyn, 2013; Ma et al., 2020). We used both the task and resting-state 548 

preprocessing pipelines (with and without GSR) in this study. As shown in Figure 3 and 549 

Figure 4, similar coactivation patterns and temporal dynamics were obtained for different 550 

preprocessing pipelines, which suggests the preprocessing has little effect on the whole-brain 551 

coactivation patterns. Besides, as Figure 4A showed, task preprocessing has shorter 552 
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persistence and more counts. The reason could be that the high-frequency noise (Chen & 553 

Glover, 2015) was not filtered during the task preprocessing, which causes frequent 554 

fluctuations and shorter persistence. 555 

Both voxel-level (Liu et al., 2013) and ROI-level (Janes et al., 2020) were studied in 556 

previous CAP analysis studies. Using ROI could reduce the dimension and save a lot of time 557 

and computational resources (Chen et al., 2015), while it could also decrease the spatial 558 

resolution and ignore spatial details. We chose different ROI numbers from 100, 200, 400 to 559 

1000 to represent multiple levels of ROI size. As shown in Figure 3 and Figure 4, the 560 

coactivation patterns showed highly spatial and temporal dynamics consistency, suggesting 561 

that the CAP analysis is not sensitive to the spatial resolution. 562 

As for the cluster number, when increasing the cluster number, the spatial and temporal 563 

properties change continuously. For instance, when K increased from 6 to 8, four states 564 

remained the overall spatial coactivation patterns, and their temporal dynamics were also 565 

unchanged (Figure 6). 566 

Besides the analytic variations, we also validated the results obtained from the three 567 

independent cohorts. Although the spatial consistency of coactivation patterns between 568 

cohorts was less than that of different preprocessing steps, there were still considerable spatial 569 

overlaps. To further verify the generalizability of our findings, we mapped the CAP maps 570 

obtained by the WuXi cohort to the other two cohorts, and the group temporal dynamic 571 

differences between SZ and HC were similar across cohorts (Figure 7B). In conclusion, our 572 

study suggested there was considerable reproducibility across different analytic variations and 573 

cohorts. 574 

 575 

4.4. State Temporal Dynamics Abnormalities in Schizophrenia and Their 576 

Reproducibility 577 

Using the robust CAP spatial maps, the state temporal dynamics in terms of fraction of 578 

time, persistence, counts, and transition probability were calculated and compared between 579 

SZ and HC groups. Reproducible and aberrant state temporal dynamic was found in 580 

schizphrenia patients concerning different methodological pipelines or cohorts (Figure 5 - 7). 581 

Most CAP states demonstrated aberrant dynamic characteristics, suggesting schizophrenia-582 

related network dysfunction is widespread over the whole brain, which is consistent with the 583 

accumulating evidence that schizophrenia is characterized by whole-brain network 584 

dysfunction (Adhikari et al., 2019; Collin et al., 2016; Fornito et al., 2012; Kambeitz et al., 585 

2016; Venkataraman et al., 2012). Previous fMRI studies reported that schizophrenia patients 586 
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showed distributed alterations in the dynamic functional connectivity (Du et al., 2018), 587 

dynamic brain activity (Fu et al., 2018) and dynamic state (Allen et al., 2014; Damaraju et al., 588 

2014; Fu et al., 2020; Mennigen et al., 2018; Rashid et al., 2014). A recent resting-state fMRI 589 

study revealed dysregulated brain dynamics, i.e., reduced, less persistent, and more variable 590 

between-network interactions among SN, FPN and DMN in schizophrenia (Supekar et al., 591 

2019), which proves aberrant triple network saliency model of psychosis (V. J. W. P. Menon, 592 

2020). Our findings extend the current understanding about schizophrenia-related dynamic 593 

abnormalities in such manner that aberrant state temporal dynamics in schizophrenia is 594 

associated with not only triple networks but also part of primary (VN, SMN) and higher-order 595 

networks (DAN). 596 

First, we found that SZ patients had insufficiently intensified activation and less inhibited 597 

deactivation in FPN-DMN state, but on the contrary for SN-DMN state, of which the 598 

transition probability changed significantly. It has been well documented that, the triple 599 

networks, involving FPN, SN and DMN, are the cores for higher cognition. Specifically, FPN 600 

is engaged in externally oriented attention during demanding cognitive tasks, SN is crucial in 601 

the process of salience mapping, and DMN is related to self-referential processes (V. Menon, 602 

2011). Imaging findings based on triple network alterations have enhanced our understanding 603 

of the psychopathology in schizophrenia, depression and autism (Krishnadas et al., 2014; 604 

Manoliu et al., 2014; Nekovarova et al., 2014; Supekar et al., 2019; J. Wang et al., 2020). 605 

Recent meta-analysis confirms that the triple network might underlie the common network 606 

dysfunction across psychiatric disorders including schizophrenia (Sha et al., 2019). Although 607 

our findings highlight schizophrenia-related dynamic abnormalities centered in the triple 608 

network, in line with an earlier study (Supekar et al., 2019), our results further point out that 609 

the DMN was continuously activated across all states while SN and FPN were only involved 610 

with specific states, which may suggest the DMN play a crucial role in the state transitions 611 

and cross-network interactions within the triple networks. 612 

Second, we found that the robust CAP states were also centered in the primary networks 613 

such as VN and SMN, and higher-order network such as DAN, which had substantially 614 

altered temporal state dynamics in schizophrenia patients. Interestingly, the VN, SMN, and 615 

DAN were recently identified across psychiatric disorders, by partial least squares which is a 616 

different data-driven approach from CAP analysis, as key parts underlying the general 617 

psychopathology, cognitive dysfunction, and impulsivity (Kebets et al., 2019). In this study, 618 

Kebets and colleagues found the latent components of whole-brain resting-state functional 619 

connectivity were robust, and particularly, SMN showed featured alterations in the static 620 
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resting-state functional connectivity within and between networks. Our study provides 621 

consistent evidence for schizophrenia-related network dysfunction from a new perspective of 622 

CAP states and state transition. Furthermore, we reported that the dynamic characteristics of 623 

the FPN-DAN state (State 6) were negatively correlated with the PANSS positive scores, and 624 

those of SN-DMN state (State 4 and 5) were positively correlated with the PANSS total 625 

scores, consistent with previous evidence (Kindler et al., 2015; Manoliu et al., 2013; Pang et 626 

al., 2017; Rotarska-Jagiela et al., 2010; D. H. Wang et al., 2018). Importantly, the transition 627 

probability from the SN-DMN state (State 5) to the FPN-DAN state (State 6) was also 628 

negatively correlated with the positive PANSS scores. Notably, the group difference was not 629 

significant for State 6 (Figure 5A). This finding may suggest that the state transition is likely 630 

to alleviate the disease severity from the symptom positively-related state to the symptom 631 

negatively-related state, which might provide a potential intervention target for schizophrenia 632 

patients. Taken together, the reproducible abnormalities of state temporal dynamics identified 633 

in this study implicate that schizophrenia is associated with whole-brain functional network 634 

dysregulation and dynamic alterations. 635 

  636 

4.5. Limitations 637 

Although the k-means clustering has been widely used in fMRI data, currently there is no 638 

optimal criterion to determine the cluster number (Vergara et al., 2020). In this study, the 639 

volume numbers for the WuXi, COBRE and UCLA cohort are 240, 150 and 152 respectively, 640 

with the same TR. When we increased the cluster number in the CAP analysis, the average 641 

volumes allocated to each cluster (state) decreased, which might cause more variability for 642 

each cluster and reduce the clustering stability. In the COBRE and UCLA cohort, we tested 643 

the k-means clustering from 2 to 21, and for K = 21 there are only average 7 volumes for a 644 

single state, which had too limited temporal information. Therefore, we chose the K = 6 645 

following the qualitative but arbitrary criteria in line with the prior study (Liu & Duyn, 2013). 646 

 647 

5. Conclusion 648 

In summary, functional brain states involved with specific coactivation patterns at 649 

different time points were obtained using coactivation pattern analysis. The spatial and 650 

temporal reproducibility of these CAPs was verified from multiple aspects, such as different 651 

preprocessing pipelines and independent cohorts. Moreover, the robust and aberrant temporal 652 

dynamics were identified in schizophrenia, associated with the severity of clinical symptoms. 653 

This study proved that the CAP analysis has good reproducibility and generalizability, which 654 
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is useful to provide novel and robust information about aberrant brain dynamic configurations 655 

for understanding the psychopathological mechanisms in schizophrenia. 656 
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