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Abstract 

Sepsis is a life-threatening condition associate with significant morbidity and mortality, 

but limited treatment. Mitochondria are recently recognized to be related to the 

pathophysiology of sepsis, and mitochondria could serve as a potential drug target. In 

our study, we aim to identify biological functions and pathways of mitochondria during 

the processes of sepsis by using a bioinformatics method to elucidate their potential 

pathogenesis. The gene expression profiles of the GSE167914 dataset were originally 

created by using the Nanostring nCounter Elements™ TagSet preselected for 

mitochondrial biogenesis and function panel. The biological pathways were analyzed by 

the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), Gene Ontology (GO), 

and Reactome enrichment. KEGG and GO results showed the Neurodegeneration 

pathways such as Huntington and Parkinson pathways were mostly affected in the 

development of sepsis. Moreover, we identified several mitochondrial genes including 

TOMM40, TOMM20, TIMM22, TIMM10, TIMM17A, TIMM9, TIMM44 were involved in 

the regulation of protein translocation into mitochondria. Further, we predicted several 

regulators that had the ability to affect the mitochondria during sepsis by L1000fwd 

analysis. Thus, this study provides further insights into the mechanism of mitochondrial 

function during sepsis. 

 

Introduction 

Sepsis is caused by the dysregulated host response to infections from tissue damage or 

organ dysfunction1. Sepsis is a serious disease with a mortality of 15-20%, which is 

characterized not only by the upregulation of inflammation but also by the strong 

immune suppression2. Understanding the pathophysiology of sepsis may aid in the 

development of novel therapies3. The effects of impaired cellular functions such as 

mitochondrial dysfunction and cell death mechanism in sepsis-associated organ 

dysfunction are beginning to be unrevealed4. 

The significance of mitochondrial dysfunction in sepsis is previously recognized5. As the 

mitochondrion is a critical organelle for multiple cellular processes such as adenosine 

triphosphate (ATP) production, intracellular calcium homeostasis, and the production of 

ROS and some hormones6, 7. Moreover, mitochondria are also associated with 
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triggering the intrinsic pathway of apoptosis, which is caused by the outer membrane 

permeabilization8. The mitochondrial functions are changed during sepsis, which 

includes reduced oxidative phosphorylation, increased ROS production, and altered 

mitochondrial biogenesis9. One hypothesis to explain the dysregulated mitochondrial 

function is that the decreased oxidative phosphorylation might contribute to the reduced 

production of potentially harmful ROS10. Mitophagy and mitochondrial biogenesis might 

be involved in sepsis as a mechanism to reduce the harmful effects of mitochondrial 

dysfunction5. Therefore, during the progression of sepsis, there are various 

mitochondrial alterations at different times. However, what kind of alteration affects the 

mitochondrial functions is unclear.  Thus, studying the regulation of mitochondria and 

the related pathways may be a convincing strategy to study the mechanism of sepsis. 

In this study, we investigated the effect of mitochondrial alterations in sepsis patients. 

We identified several DEGs, candidate inhibitors, and the relevant biological process in 

sepsis patients by utilizing comprehensive bioinformatics analyses. The functional 

enrichment analysis and protein-protein interaction analysis were used for discovering 

significant gene nodes. These key genes and signaling pathways may be essential to 

therapeutic interventions of sepsis. 

 

Methods 

Data resources  

The GSE167914 dataset was obtained from the GEO database 

(http://www.ncbi.nlm.nih.gov/geo/). The data was produced by Nanostring nCounter 

Elements™ TagSet preselected for mitochondrial biogenesis and function panel, 

Faculty of Medicine, Universitas Tarumanagara, Jakarta Barat, DKI Jakarta, Indonesia. 

RNA-Seq analysis was performed using peripheral blood of infection and sepsis 

patients as well as healthy controls. 

 

Data acquisition and preprocessing 

The GSE167914 dataset that contains gene expression related to mitochondrial 

function from the peripheral blood of infection and sepsis patients as well as healthy 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2021.03.29.437586doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.29.437586
http://creativecommons.org/licenses/by-nc-nd/4.0/


controls was conducted by R script11, 12. We used a classical t test to identify DEGs with 

P<.01 and fold change ≥1.5 as being statistically significant. 

 

Gene functional analysis 

Gene Ontology (GO) is a community-based bioinformatics resource that contains the 

model Biological Process, Molecular Function, and Cellular Component. Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database is a useful tool that integrates 

functional information, biological pathways, and sequence similarity13.  GO and KEGG 

pathway analyses were performed by utilizing the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) (http://david.ncifcrf.gov/) and 

Reactome (https://reactome.org/). P<0.05 and gene counts >10 were considered 

statistically significant. 

 

Module analysis 

Molecular Complex Detection (MCODE) of Cytoscape software was used to study the 

connected regions in protein-protein interaction (PPI) networks. The significant modules 

and clusters were selected from the constructed PPI network using MCODE and String 

(https://string-db.org/). The pathway enrichment analyses were performed by using 

Reactome, and P<0.05 was used as the cutoff criterion. 

 

Reactome analysis 

The Reactom pathway (https://reactome.org/) was used to obtain the visualization, 

interpretation, and analysis of potential pathways. P<.05 was considered statistically 

significant. 

 

Results 

Identification of DEGs of mitochondria from the blood of sepsis patients 

The peripheral blood of sepsis patients and healthy controls were harvested to analyze 

the DEGs (differentially expressed genes) of mitochondria. Patients fulfilling infection or 

sepsis criteria were recruited from the emergency department (Faculty of Medicine, 

Universitas Tarumanagara, Velma Herwanto, Indonesia). A total of 56 genes were 
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identified to be differentially expressed in sepsis patients with the threshold of P<0.05. 

The top 10 up- and down-regulated genes are listed in table 1. 

 

KEGG analysis of DEGs of mitochondria from the blood of sepsis patients  

To identify the biological functions and potential mechanisms of DEGs of mitochondria 

from sepsis patients and healthy controls, we performed KEGG pathway enrichment 

analysis and created a visual graph (Supplemental Table S1).  KEGG pathway 

(http://www.genome.jp/kegg/) is a gene collection for exploring the molecular interaction, 

reaction, and relation networks. Our study showed top ten enriched KEGG pathways 

including “Neurodegeneration”, “Platinum drug resistance”, “p53 signaling pathway”, 

“Huntington disease”, “Mitophagy”, “Apoptosis”, “Parkinson disease”, “Apoptosis-

multiple species”, “Measles”, and “Colorectal cancer” (Figure 1).  

 

GO analysis of DEGs from the blood of sepsis patients  

Gene Ontology (GO) analysis is a commonly used tool for classifying genes, which 

includes cellular components (CC), molecular functions (MF), and biological processes 

(BP). Here, we identified the top ten cellular components including “mitochondrial inner 

membrane”, “organelle outer membrane”, “outer membrane”, “mitochondrial outer 

membrane”, “mitochondrial protein complex”, “intrinsic component of organelle 

membrane”, “intrinsic component of mitochondrial membrane”, “integral component of 

organelle membrane”, “integral component of mitochondrial membrane”, and “intrinsic 

component of mitochondrial outer membrane” (Figure 1). We then identified the top ten 

biological processes: “mitochondrial transport”, “protein localization to mitochondrion”, 

“establishment of protein localization to mitochondrion”, “protein targeting to 

mitochondrion”, “mitochondrial transmembrane transport”, “mitochondrial membrane 

organization”, “ATP transport”, “adenine nucleotide transport”, “purine ribonucleotide 

transport”, and “purine nucleotide transport” (Figure 1). We also identified the top ten 

molecular functions: “organic anion transmembrane transporter activity”, “anion 

transmembrane transporter activity”, “ATP transmembrane transporter activity”, 

“adenine nucleotide transmembrane transporter activity”, “purine ribonucleotide 

transmembrane transporter activity”, “purine nucleotide transmembrane transporter 
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activity”, “nucleotide transmembrane transporter activity”, “organophosphate ester 

transmembrane transporter activity”, “nucleobase−containing compound 

transmembrane transporter activity”, and “carbohydrate derivative transmembrane 

transporter activity” (Figure 2 and Supplemental Table S1). 

 

PPI network and Module analysis 

We constructed PPI networks to analyze the relationships of DGEs at the protein level. 

The criterion of combined score >0.7 was chosen and the PPI network was constructed 

by using 55 nodes and 106 interactions. Among these nodes, the top ten genes with the 

highest scores are shown in Table 2. The significant modules of DEGs of mitochondria 

from the blood of sepsis patients were selected to show the functional annotation 

(Figure 3).  

 

Reactome Pathway analysis 

To further understand the potential functions of DEGs, we also identified several 

signaling pathways by using Reactome Pathway Database. The top ten signaling 

pathways include “Mitochondrial protein import”, “Protein localization”, “Mitochondrial 

biogenesis”, “Cristae formation”, “The citric acid (TCA) cycle and respiratory electron 

transport”, “Formation of ATP by chemiosmotic coupling”, “Organelle biogenesis and 

maintenance”, “Intrinsic Pathway for Apoptosis”, “Respiratory electron transport, ATP 

synthesis by chemiosmotic coupling, and heat production by uncoupling proteins”, and 

“Activation of PUMA and translocation to mitochondria” (Supplemental Table S2). We 

then constructed the visual reaction map according to the signaling pathways (Figure 4). 

 

Potential inhibitors for the treatment of sepsis  

To further know the potential inhibitors for the treatment of sepsis, we introduced the 

L1000 fireworks display system that can predict bioactive molecules. The system 

indicated the potential pathways that may be inhibited. We selected the top ten 

molecules according to the DEGs and the inhibitor map: “BRD-K39757396”, “BRD-

K39829853”, “veliparib”, “BRD-K32862555”, “halcinonide”, “DG-041”, “HC-toxin”, “UK-

356618”, “XMD-1150”, and “GSK-461364” (Figure 5 and Supplemental Table S3). 
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Discussion 

Sepsis is a kind of inflammation caused by a serious response of the immune system 

and finally led to multiorgan failure and death14. Sepsis is related to the activation of 

innate immunity through various pathological processes15. For example, the NF-κB 

signaling pathway as the inflammation center in various diseases16, 17 is activated by the 

pathogen-associated molecular patterns (PAMPs) during the beginning of sepsis18. 

Mitochondria provide energy to cells and produce ATP through the basic process of 

respiration. Numerous cells respond to stresses such as cytokines by triggering 

mitochondria-dependent signals that initiate cellular protective responses19. Thus, 

based on the mitochondrial study on sepsis patients, our study may provide gene 

evidence for clinical trials of sepsis. 

To understand the effects of mitochondria in sepsis, we analyzed the mitochondrial 

respiration and gene expression related to mitochondrial functions from the peripheral 

blood of sepsis patients and healthy controls. Ten proteins were selected according to 

the PPI network analysis, which may be important during the development of sepsis. 

TOMM40 is associated with apolipoprotein E (APOE), which further influences age-

related memory performance during Alzheimer's disease20. TOMM20 promotes 

proliferation, resistance to apoptosis, and chemicals21. In melanoma cells, enhanced 

ROS leads to the oxidation and oligomerization of the mitochondrial outer membrane 

protein Tom2022. TIM22 is the complex in the mitochondrial inner membrane23.  

Mitochondrial acylglycerol kinase assembles with TIMM22 to support the import of a 

subset of multi-spanning membrane proteins24. TIMM10 is identified as the blood-based 

biomarkers for pulmonary tuberculosis by modeling and mining molecular interaction 

networks25. TIM17A is the stress-regulated subunit of the translocase of TIM23, which is 

downregulated by the eukaryotic initiation factor 2α (eIF2α)26. TIM9 and TIM44 are 

responsible for the transport of proteins across the inner membrane27. 

KEGG and GO analyses indicated that neurodegeneration was the main pathological 

process during sepsis. The KEGG analysis showed “Neurodegeneration”, “Huntington 

disease”, and “Parkinson disease” were the most phenotypes during sepsis, which 

suggested that the brain or nerve damage was the most affected part during the 

infection. Similarly, Catherine N Widmann reported that sepsis could cause an increase 
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in the permeability of the blood-brain barrier, which may lead to a rapid decline in 

cognitive function or coma28. Thus, sepsis may increase the brain's susceptibility to 

neurodegenerative disease. Moreover, we also found the cell death-related signaling 

processes “p53 signaling pathway”, “Mitophagy”, and “Apoptosis” were involved in 

sepsis. These signaling pathways were widely enhanced in the damaged cells or 

cancers29-34. Interestingly, these signaling pathways are regulated by the circadian 

genes such as Clock16, 35. Circadian clocks play important roles in the physiological and 

pathophysiological processes36-40, such as controlling the immune checkpoint pathways 

in immune cells41. The GO analysis also showed the mitochondrial activity was 

enhanced during sepsis. Processes like “mitochondrial transport”, “protein localization to 

mitochondrion”, “establishment of protein localization to mitochondrion” were associated 

with the mitochondrial function, which suggested that sepsis could affect the 

translocation function of mitochondria. 

In summary, we identified the potential pathways in sepsis patients by analyzing the 

mitochondrial gene functions. Neurodegeneration diseases such as Huntington’s 

disease and Parkinson’s disease are the mainly triggered diseases during sepsis. 

Future studies will focus on the administration of potential mitochondrial regulators on 

clinical trials. This study thus provides further insights into the treatment of sepsis, which 

may facilitate drug development. 
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Figure 1. The KEGG pathways enriched by the DEGs. DEGs =differentially 
expressed genes, KEGG = Kyoto Encyclopedia of Genes and Genomes. 
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Figure 2. The biological process (BP), cellular component (CC), and molecular 
function (MF) terms enriched by the DEGs.  
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Figure 3. Top three modules (Cluster1-3) from the blood of sepsis patients 
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Figure 4. The Reactom pathway visualization map. Input genes are represented by 
the top significantly changed genes obtained from the GSE167914 dataset (P <0.01). 
The yellow color represents the most relevant signaling pathways. 
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Figure 5. Inhibitors by L1000FDW visualization. Input genes are represented by the 
significantly changed genes obtained from the GSE167914 dataset.  Dots are the Mode 
of Action (MOA) of the respective drug. 
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