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Small RNA-sequencing (RNA-Seq) is being increasingly used
for pro�ling of circulating microRNAs (miRNAs), a new
group of promising biomarkers. Unfortunately, small RNA-
Seq protocols are prone to biases limiting quanti�cation
accuracy, which motivated development of several novel
methods. Here, we present comparison of all small RNA-
Seq library preparation approaches that are commercially
available for quanti�cation of miRNAs in bio�uids. Using
synthetic and human plasma samples, we compared perfor-
mance of traditional two-adaptor ligation protocols (Lexo-
gen, Norgen) as well as methods using randomized adap-
tors (NEXT�ex), polyadenylation (SMARTer), circulariza-
tion (RealSeq), capture probes (EdgeSeq) or unique molecu-
lar identi�ers, UMIs (QIAseq). Globally, there was no sin-
gle protocol outperforming others across all metrics. We
documented limited overlap of measured miRNA pro�les
between methods largely owing to protocol-speci�c biases.
We found that methods designed to minimize bias largely
di�er in their performance and we identi�ed contributing
factors. We found that usage of UMIs has rather negligible
e�ect and if designed incorrectly can even introduce spuri-
ous results. Together, these results identify strengths and
weaknesses of current methods and provide guidelines for
applications of small RNA-Seq in biomarker research.
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Introduction
Circulating microRNAs (miRNAs) found in various body
�uids are attractive candidates for clinical biomarkers (1).
To identify disease-speci�c miRNAs, small RNA-sequencing
(RNA-Seq) has become a method of choice for its high
screening capacity, speci�city, sensitivity and ability to
quantify isomiRs or detect novel miRNAs (2, 3). Despite
many advantages, small RNA-Seq protocols su�er from
several limitations that obscure quanti�cation. The classical
protocol for small RNA library preparation employs two
sequential ligations of adaptors to the 3’ and 5’ ends of
the miRNAs (in this study represented by Norgen, Lexogen
and QIAseq). However, serious quanti�cation bias is intro-
duced in this process due to unequal ligation e�ciencies,
leading to systematic over- and under-estimation of true
miRNA levels (4). The e�ect is particularly pronounced in
bio�uids, where miRNA concentration and complexity are
rather low (5). Recently, three alternative approaches have

been developed to improve quanti�cation accuracy. First ap-
proach uses adaptors with randomized nucleotides increas-
ing the chance of e�ective ligation (NEXT�ex) (6); second
approach is ligation-free and employs poly-adenylation and
template switching during reverse transcription (SMARTer),
while third approach relies on ligation of a single 3’ adap-
tor and subsequent circularization (RealSeq) (7). Additional
quanti�cation bias may arise during PCR ampli�cation of
libraries. To mitigate PCR bias, unique molecular identi-
�ers (UMIs) have been introduced to identify and remove
PCR duplicates (employed in QIAseq protocol), but their ef-
fectiveness in small RNA-Seq applications is debated (8, 9).
In addition, EdgeSeq, a platform using hybridization probes
and targeted sequencing readout, speci�cally designed for
ease-of-use in clinical setting, is available as an alternative
to small RNA-Seq. Previous comparative studies performed
on a subsets of available methods revealed vast di�erences
in their performance (7, 9–17). However, how current com-
mercial small RNA-Seq methods perform, particularly in
challenging setting such as liquid biopsy samples, is not yet
established. Here, we present evaluation of seven commer-
cial small RNA-Seq methods representing all currently avail-
able technical approaches for library preparation with focus
on their performance for miRNA quanti�cation in human
plasma.

Results
Seven commercially available protocols were used to pre-
pare small RNA-Seq libraries in technical duplicates from:
i) human plasma; and ii) equimolar mixture of 962 syn-
thetic miRNAs (henceforth called “miRXplore”) (Fig.1 and
Suppl.1). Plasma samples were controlled for isolation arte-
facts and hemolysis (Methods and Suppl.2), small-RNA li-
brary fraction corresponding to miRNAs was gel-puri�ed
(Figure S1) and samples were sequenced in a single sequenc-
ing run to avoid batch e�ects (except for EdgeSeq). This
design allowed for unbiased comparison of protocol perfor-
mance with bio�uids, as well as detailed evaluation of tech-
nical biases. All methods showed high within-protocol re-
producibility (Suppl.5, Fig.2), in contrast to low between-
protocol reproducibility (Fig.1B); demonstrating that sub-
stantial, unique technical bias is introduced by each proto-
col. To evaluate the extent of this bias, we quanti�ed the
log2-fold deviation of measured value from expected value
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for each miRNA in miRXplore sample, where ground truth
is known (Fig.1C). EdgeSeq and SMARTer had least bias,
while Norgen and Lexogen were most biased, with mea-
sured miRNA levels spanning several orders of magnitude
(Suppl.4). Surprisingly, single-molecule ligation and circu-
larization approach (RealSeq), recently claiming to signi�-
cantly reduce bias (7), showed only 21% unbiased miRNAs.
In addition, the sequence bias was not reproducible between
protocols (Fig.1B, miRXplore), showing that miRNA pro�les
obtained with di�erent protocols are not comparable.
While previous studies attributed large proportion of the
bias to adaptor ligation (4), contribution of PCR to overall
bias is often debated, with reports of negligible (4, 18) or
substantial e�ect (8, 9). In miRXplore sample, we quanti-
tatively evaluated contribution of various factors to overall
bias using QIAseq data, which employ UMIs and thus al-
low separation of PCR contribution from other e�ects. Liga-
tion bias was highly explanatory for variability in most miR-
NAs, while PCR bias was overall negligible (Fig.1D). This
is in agreement with our previous result showing ligation-
free protocols (EdgeSeq and SMARTer) are least biased while
ligation-based protocols are most biased overall (Fig.1C). Of
note, we identi�ed that short UMI length resulting in in-
su�cient complexity of available UMIs can lead to erro-
neous overestimation of PCR bias, a likely cause for the
misidenti�cation of its contribution in the previous study
(Suppl.5, Fig.3). To provide insights into mechanisms leading
to biased measurements, we evaluated how miRNA proper-
ties explain measured miRXplore values (Fig.1E). First nu-
cleotide in miRNA sequence was highly in�uential for Re-
alSeq and SMARTer, explaining as much as 44% and 25%
of variability. In addition, the identity of the last nu-
cleotides and free energy of adaptor-miRNA construct, but
not the miRNA itself, had impact with ligation-based proto-
cols using two de�ned adaptors including Lexogen, Norgen
and QIAseq. Overall, these results demonstrate that liga-
tion, but not PCR is a major source of quanti�cation bias
in small RNA-Seq data, and is in�uenced by complex and
technology-speci�c factors.
Our data revealed that each miRNA is burdened by bias
that is speci�c for each protocol. However, these results
were based on balanced mixture of concentrated synthetic
miRNAs that may not be fully representative of biologi-
cal samples such as bio�uids, where miRNA concentrations
vary broadly, and sequence complexity is lower. To iden-
tify how measurements in real bio�uid samples are in�u-
enced by bias, we quanti�ed absolute abundance of 19 miR-
NAs in plasma by RT-qPCR (Suppl.5, Fig.4) and correlated
it to measured RNA-Seq values (Fig.1F, left). All protocols
showed positive correlations with R2 values between 0.53
(Norgen) and 0.88 (SMARTer), although precision for indi-
vidual miRNAs was often low. In agreement with miRXplore
data, Lexogen and Norgen performed worst in this metric.
The analysis demonstrates that globally, across-miRNA cor-
relations are relatively preserved in RNA-Seq output from
bio�uids, i.e., highly abundant miRNAs give high-count val-
ues and vice versa. However, values for individual miRNAs

are biased and cannot be readily transformed to absolute
abundance, making between-miRNA comparisons di�cult.
We therefore explored if protocol-speci�c biases learnt from
synthetic sample (miRXplore) could be leveraged to correct
bias in RNA-Seq data from plasma post-hoc. Indeed, compu-
tational correction increased both, correlation of RNA-Seq
values with known absolute concentrations (Fig.1F, right)
as well as inter-protocol correlation (Fig.1G). These results
suggest that protocol-speci�c biases are preserved (at least
to a degree) even between vastly di�erent samples such as
plasma and miRXplore. Once learned on the sample with
known ground truth, they can be leveraged to both, improve
precision of RNA-Seq values and agreement between proto-
cols, potentially facilitating comparisons across studies.

An important decision that researchers face when design-
ing small RNA-Seq experiments is the targeted sequencing
depth, which a�ects the detection rates and cost-e�ciency
of the experiment. The required sequencing depth is in-
�uenced by the ability of protocol to capture molecules of
interest and by the proportion of artefact reads. To assess
capture e�ciency, we evaluated mapping statistics for each
protocol (Fig.2A). Note that adaptor-dimers were removed
during library preparation in this study and therefore were
not mapped (Suppl.5, Fig.1). Whereas the mapping statis-
tics were comparable between protocols with miRXplore,
the results revealed substantial di�erences with plasma sam-
ples. The most striking was low mapping rate to miRNAs
for SMARTer, which was mostly due to inappropriate read
length (Suppl.5, Fig.5). In contrast, targeted approach Edge-
Seq showed highest mapping rate of 95%. Importantly, with
all protocols the majority of miRNA-mapping reads was con-
sumed by the few highest-ranking miRNAs (Fig.2B,C). As
this may re�ect true miRNA abundance, but also may be a
consequence of bias, we plotted values of the ten most abun-
dant miRNAs in plasma and their corresponding level of bias
measured in miRXplore (Fig.2B). In each protocol, except
SMARTer and NEXT�ex, there was always a single miRNA
consuming more than 50% of all mapped reads. Ranks and
identity of top 10 miRNAs di�ered between protocols. Al-
though some miRNAs, such as erythrocyte-speci�c miR-451
and miR-16 ranked among the highest with all protocols (in
agreement with their true abundance, Suppl.5, Fig.4), other
miRNAs, such as miR-10b with Norgen and Lexogen ap-
peared to be strongly overestimated (up to 64x) due to bias.
To assess allocation of sequencing reads on full miRNA spec-
trum we further examined curves of cumulative frequencies
(Fig.2C). Fast increase in cumulative frequency indicates that
even low-ranking miRNAs contribute signi�cantly to the to-
tal counts. In miRXplore, number of miRNAs at cumula-
tive frequency of 50% (CF50) would ideally be around 481
(half of 962 miRNAs consumes half of the reads; lower val-
ues are better). In agreement with the percentage of unbi-
ased miRNAs, EdgeSeq and SMARTer showed best perfor-
mance, while Norgen and Lexogen were worst in this met-
ric. In plasma, the shape of ideal curve cannot be known,
however it is vastly apparent that the majority of the reads
are consumed by few miRNAs. Together, our results show
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Fig. 1. Experimental design, accuracy and technical biases.
(A) Schematic representation of study design. (B) Correlation heatmaps showing between-protocol reproducibility for miRXplore and plasma samples. (C) Accuracy determined
on miRXplore sample. Density plots show distribution of log2-fold change between measured and expected value. Dashed lines show two-fold deviation from expected value;
numbers indicate percentage of miRNAs within and outside the two-fold range. (D) Percentage of variance in in QIAseq data (miRXplore sample) explained by ligation bias, PCR
bias or replicates. (E) Percentage variance in in QIAseq data (miRXplore sample) explained by miRNA sequence characteristics. (F) Correlation of small RNA-seq with RT-qPCR
data measured in plasma before and a�er data correction with bias ratios learnt from miRXplore samples. (G) Between-protocol reproducibility for plasma samples before and
a�er data correction using bias ratios learnt on miRXplore samples. P-value from two-tailed paired t-test. QIAseq UMI represents data a�er deduplication, whereas QIAseq
means non-deduplicated data.
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that highly skewed miRNA distribution in plasma is caused
by natural miRNA abundance as well as arti�cial protocol-
speci�c biases and both factors need to be considered to se-
lect optimal sequencing strategy.
Considering strong quanti�cation bias of some miRNAs,
binary evaluation of miRNA pro�les (present/absent) may
represent an alternative, more robust approach to identify
candidate biomarkers. To characterize variables in�uenc-
ing such analysis, we examined miRNA detection rates at
various sequencing depths and count thresholds for each
protocol (Fig.2D). While the most of the untargeted proto-
cols approached saturation at 5 million reads, SMARTer and
RealSeq further bene�ted from increased depth. EdgeSeq,
QIAseq and NEXT�ex detected highest number of miRNAs
while Lexogen and Norgen detected fewest. Relative di�er-
ences between protocols were most pronounced with higher
detection thresholds and were retained at various sequenc-
ing depths. Interestingly, EdgeSeq detected up to hundreds
more miRNAs than any other protocol (Fig.2D). This can
be attributed to EdgeSeq high mapping rate (Fig.2A), but it
can be also consequence of lower speci�city of hybridization
probes (19). To investigate this, we plotted measured val-
ues for human miRNAs that are present (i.e. true positives)
vs human miRNAs that are absent (i.e. false positives) in
miRXplore sample (Fig.2E). Indeed, EdgeSeq showed higher
false positive rate and higher false signal intensities com-
pared to other protocols, suggesting that its higher detection
rate in plasma may be partly due to false positivity. Further,
we assessed if miRNAs that were uniquely detected by each
protocol in plasma (i.e. miRNAs not detected by any other
protocol) are signi�cantly enriched with false-positive miR-
NAs from miRXplore (Suppl.3). This was indeed the case
for EdgeSeq, but not other protocols at all examined detec-
tion thresholds. Sequence similarity analysis revealed that
false-positive miRNAs detected by EdgeSeq were only mod-
estly similar to true positive miRNAs (Suppl.5, Fig.6), sug-
gesting that false-positive detections may result from in-
complete digestion of unbound capture probes, in addition
to cross-hybridization. Since miRNA analysis on the level
of miRNA variants, isomiRs, is getting more attention in
miRNA biomarker studies (20–22), we evaluated the levels
of false isomiR detection using miRXplore sample. SMARTer
generated most false isomiRs - over 4% of all raw reads,
compared to less than 0.4% for other sequencing-based pro-
tocols (Fig.2A). Detailed analysis revealed protocol-speci�c
bias between of 3’ and 5’ isomiRs as well as base pref-
erences (Suppl.5,Fig.7,A-B). Whereas some were expected
(dominance of 3’ isomiRs with added adenines in SMARTer),
prevalence of 3’ isomiRs in EdgeSeq or preference for 3’
thymine addition in RealSeq were unexpected. This raises
questions on reliability of isomiRs quanti�cation and war-
rants careful validation of such data. To sum up, we observed
large di�erences in miRNA detection rate between proto-
cols as well as varying contribution of false positives. Al-
though EdgeSeq captured highest number of miRNAs, it suf-
fered from highest false-positive rate, particularly for miR-
NAs with low values. Overall, the results suggest caution

about spurious detections and highlight the need for data
validation by independent technology.

Discussion
In this study, we compared the performance of all currently
available technical approaches for RNA-seq based miRNA
analysis in bio�uids using a complex set of parameters, in-
cluding not only data-driven characteristics, but also practi-
cal features as protocol complexity or level of multiplexing
(Suppl.4). There was no protocol that would stand out as
the best across all metrics (Fig.2F). In agreement with other
studies (9, 10, 15), we show that data generated by ligation-
free protocols were the least biased, suggesting they may be
preferable when quanti�cation of true miRNA abundance is
of interest. Particularly, EdgeSeq outperformed others in ac-
curacy, but also in high mapping and detection rate. Other
advantages of this platform are automatization minimizing
hands-on time and possibility to analyze crude bio�uid sam-
ples. Although here we analyzed isolated RNA for consis-
tency reasons, Godoy et al.(15) found no major di�erences
between crude and isolated samples. EdgeSeq disadvantages
are represented by higher costs of analysis, possibility to
quantify only prede�ned sets of miRNAs and lower speci-
�city, which is in agreement with results of Godoy et al.
(15). SMARTer was the second most accurate and the least
laborious method from wet-lab perspective. However, its
performance was negatively a�ected by the lowest mapping
rate to miRNAs and highest production of artefact reads and
false isomiRs, in accordance with previous studies (9, 10). On
the other hand, SMARTer may be well suited for simultane-
ous analysis of various classes of small RNAs in a single ex-
periment. Surprisingly, the most recent bias-mitigating ap-
proach RealSeq showed accuracy levels similar to NEXT�ex
and QIAseq, in contrast to results of Barberan-Soler et al.(7)
which reported superior accuracy over 70%. Here, we found
that circularization approach is not exempt of bias. Consid-
ering that RealSeq employs two adaptor ligation steps (one
inter- and one intra-molecular) our result seems to be in line
with observations that ligation is the most prominent source
of bias (5, 23) . Random adaptors used in NEXT�ex repre-
sented the third approach in our comparison developed for
reduction of ligation bias. In agreement with recent stud-
ies (11, 12), NEXT�ex showed good to average performance
in the most of the tested parameters and may be there-
fore recommended for routine applications in various ex-
perimental settings. Lastly, we tested three representatives
of traditional ligation-based methods (Lexogen, Norgen, and
QIAseq). As expected, Lexogen and Norgen did not perform
well in the majority of tested parameters, which is in agree-
ment with the recent literature (11, 17). Strong ligation bias
leads to misbalanced miRNA pro�les, low coverage of the
majority of the miRNAs, lower detection rates and therefore
to need for higher sequencing depth. Surprisingly, QIAseq
that also employs ligation of two de�ned adaptors, ranked
together with NEXT�ex among the best in most metrics. We
show that this is not due to the usage of UMIs, and since
details of the protocol are proprietary, we can only specu-
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Fig. 2. Mapping statistics, sensitivity, false positivity and performance evaluation.
(A) Mapping statistics for miRXplore and plasma samples. (B) Top 10 most abundant miRNAs in plasma. Bars (le� y-axis) show fraction of raw reads in plasma and dots (right
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samples in linear and log scale, respectively. Dashed lines indicate cumulative frequency of 50% and 1%. (D) Dependency of number of detected miRNAs in plasma on sequencing
depth and various detection thresholds (1, 5, 10 raw reads). (E) Violin plots showing measured level of true and false positive miRNAs measured in miRXplore samples. (F) Final
evaluation metrics, for details see Table S4
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late if proper optimization or other bias-mitigating measures
are responsible for improved results of QIAseq over Lexogen
and Norgen.
Beside the protocol comparison, our data identi�ed several
opportunities for improvement of small RNA-Seq analysis
in bio�uids. Firstly, we documented highly misbalanced
miRNA pro�les in plasma, where few highly abundant miR-
NAs consumed most reads (partly due to biological, but
also due to technical reasons). New generation of library
preparation protocols would therefore bene�t from block-
ing or depleting highly abundant miRNAs such as miR-451
and miR-16. Similar approach was demonstrated on tRNA-
halves and improved miRNA detection in serum (24). Sec-
ondly, we demonstrated that bias can be learned on synthetic
samples with known ground truth and subsequently trans-
ferred to improve precision and between-protocol correla-
tion of values in real bio�uid sample. Development of ad-
vanced computational correction models allowing for com-
plex cross-study comparisons would therefore dramatically
increase the utility of publicly available datasets and lead
to increase of current knowledge on miRNA pro�les in dif-
ferent pathological states. Lastly, contrary to recent reports
(8, 9), our results suggest that UMIs are super�uous for
miRNA quanti�cation and can even lead to serious quanti�-
cation errors if designed improperly (e.g. with insu�cient
length). However, our data are based on balanced synthetic
template and sample- and protocol-speci�c factors may pro-
nounce UMIs importance, which needs to be addressed in
future studies. For now, we advocate for the developments
primarily focused on overcoming ligation bias and improv-
ing sensitivity.
Overall, this study can serve as a point of reference for an
informed selection of small RNA-Seq method and provide
a framework for future development of library preparation
protocols and computational methods.

Methods
Samples and RNA isolation. Informed consent was ob-
tained from all volunteers participating in the study. All
procedures involving the use of human samples were per-
formed in accordance with the ethical standards of Institute
of Biotechnology of the Czech Academy of Sciences, and
with the Declaration of Helsinki. Blood samples were col-
lected from three healthy volunteers into K2EDTA BD Va-
cutainer tubes (Beckman Dickinson) and centrifuged within
30 min from collection at 1500 x g for 15 min at room tem-
perature. Plasma fraction was aspirated and transferred into
2 ml tubes (Eppendorf) and centrifuged again for 15 min at
3000 x g. The supernatant was transferred into new 2 ml
tubes and stored at -80°C until analysis. Levels of hemolysis
were assessed in each sample by measuring absorbance at
414 nm using NanoDrop 2000 (Thermo Fisher) and molecu-
lar markers of hemolysis (Suppl.2) (25). Total RNA was iso-
lated starting from plasma aliquots of 250 µl using miRNeasy
Serum/Plasma Advanced Kit (Qiagen) according to manu-
facturers instructions and eluted into 20 µl of nuclease-free
water. 1 µl of isolation spike-in mix and 1 µl of GlycoBlue

Coprecipitant (Invitrogen) were added at the lysis step as de-
scribed in (25). Each RNA eluate was assessed for quality of
isolation, levels of hemolysis and presence of inhibitors by
Two-tailed RT-qPCR panel, as described in (25). RNA eluates
were then pooled together to produce standard plasma RNA
sample used through the study. An equimolar mixture of 962
synthetic microRNAs (miRXplore Universal Reference) was
purchased from Miltenyi Biotec.

Library Preparation. Libraries were prepared in technical
duplicates starting from 5 µl of plasma RNA pool and 5 µl of
miRXplore Universal Reference (2x106 copies/µl) according
to each manufacturer’s protocol. The version of the proto-
col, adaptor concentrations and number of PCR cycles for
each protocol are listed in Suppl.1. Libraries were quanti-
�ed on the Qubit 3 �uorometer (ThermoFisher) and Frag-
ment Analyzer (Agilent). Libraries generated by the same
protocol were pooled and separated on 5% TBE-PAGE on
Mini-PROTEAN tetra cell (BioRad) (Suppl.5, Fig.1). A region
representing fragments with RNA inserts of length 22 nt ±
10 nt (i.e. fragments originating from miRNAs) was excised
from the gel, DNA was eluted into nuclease-free water and
puri�ed with SPRIselect reagent (Beckman Coulter). All li-
braries were sequenced in one sequencing run on NextSeq
500 high-output (Illumina) with 85 bp single-end reads. 5.8
- 17.9 million reads per library were obtained with a median
of 11 million reads (Suppl.4). EdgeSeq libraries were pre-
pared according to manufacturer’s protocol and sequenced
in TATAA Biocenter, Sweden.

RT-qPCR. Absolute quanti�cation was performed for 35
pre-selected miRNAs using Two-tailed RT-qPCR as de-
scribed in (26). Brie�y, 4 µl of the standard sample (miRX-
plore) in di�erent concentration (5 to 5x107 copies/µl) were
reverse transcribed using qScript �ex cDNA kit (Quantabio)
in 20-µl reaction containing pool of miRNA-speci�c primers.
After cDNA synthesis, the total volume was diluted to 200
µl and 2 µl of diluted cDNA were used as a template in
10-µl qPCR reaction containing 1× SYBR Grandmaster Mix
(TATAA Biocenter), 0.4 µM forward and reverse primer. The
data was processed in Biorad CFX Manager software. Cq
values generated by reactions with aberrant melting curves
were discarded. For each assay, the standard curves were
generated using miRXplore standards and used to calculate
absolute miRNA concentration in plasma (Suppl.5, Fig.4).
The plasma sample was measured in four technical repli-
cates and two replicates were used for miRXplore standards.
After quality control, only 19 miRNAs passing high con�-
dence criteria were used for correlation analysis with RNA-
Seq data.

Data Processing. Raw reads were trimmed with cutadapt
tool v1.18 (27) according to the respective library prepa-
ration manual. Reads were �ltered for length between
15 and 29 bp and subsequently mapped with Bowtie (28)
to rRNA and UniVec databases obtained from sortmerna
github repository. Reads which did not map to UniVec
and rRNA sequences were further mapped to relevant ref-
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erences with STAR (29) using “end-to-end” mode and 5%
of sequence was allowed to mismatch. Counting of reads
was performed with featureCounts and only uniquely map-
ping reads were counted. UMI-tools software was used
for deduplication before counting of mapped reads in QI-
Aseq samples (30). For comparability with other proto-
cols, non-deduplicated QIAseq data were used for calcu-
lation of relevant metrics. Deduplicated QIAseq samples
are referred to as “QIAseq_UMI”. Plasma samples were
�rst mapped to human genome (GRCh38.95). Reads map-
ping to genome were further mapped to mature human
miRNA sequences in miRBase v22 (31). Reads which were
not mapped to miRBase were further mapped in descended
order to isomiRs, tRNA database (435 mature tRNA se-
quences from gtRNAdb), piRNA database (8 million se-
quences from piRBase v2) and ncRNA database (36 thou-
sand non-coding sequences from ensemble GRCh38). Map-
ping to isomiRs and their counting was performed using
isomiRROR tool with adjusted settings, when only longer
and shorter isomiRs without mismatch in mature sequence
were counted. Mapping to other small RNA references was
performed with STAR aligner with the same settings as for
mapping to miRBase. MiRXplore samples were mapped
to miRXplore reference with same settings as plasma sam-
ples to miRBase. Raw sequencing data and raw count ma-
trices are available on Gene Expression Omnibus database
(GSE149513) and processed data in Suppl.4. All scripts
used for processing data are available on github reposi-
tory https://github.com/besarka16/Benchmarking-of-small-
RNA-seq.

Evaluation Metrics. If not stated otherwise, all statistics
were calculated separately for each technical replicate and
their mean values are shown. All samples were normalized
by CPM method (divided by total number of reads and mul-
tiplied by million). For correlation measures, Pearson coe�-
cients and log2-transformed values were used, if not stated
otherwise. Technical bias was calculated for each miRNA
as a fold change of mean value of two technical replicates
from its predicted value. The predicted value was calcu-
lated as a number of normalized counts per sample divided
by number of miRNAs in miRXplore (962 or 467 for Edge-
Seq protocol, respectively). The contribution of PCR bias
and ligation bias to overall bias in small RNA-seq was as-
sessed on samples processed by QIAseq protocol with us-
age of variancePartition R package which employed linear
mixed model to separate the variance of multiple variables
(PCR bias, ligation bias and technical replicates). Thermody-
namic features of miRNAs were calculated by ViennaRNA
package 2.0 (32). Contribution of miRNA sequence features
to overall bias was assessed using linear model in R with
log2-fold-deviation as dependent variable. Computational
correction of RNA-Seq plasma samples was done using divi-
sion of normalized counts by ratio of measured and expected
expression value in miRXplore sample for corresponding
miRNA (33). Dependence of number of detected miRNAs
on sequencing depth was assessed by down sampling the
raw counts with random generator for binomial distribu-

tion in R. The number of miRNAs was used as a number
of observations and the number of raw counts belonging to
individual miRNAs corresponded to number of trials. The
probability of success in each trial corresponded to propor-
tion of raw reads at speci�c sequencing depth related to the
number of raw reads at the original sequencing depth. False
positivity was assessed in miRXplore samples, which were
re-mapped to human miRNAs (miRBase v22). MiRNAs with
≥1 count (in both replicates) and absent from miRXplore ref-
erence were considered false hits. Sequence similarity was
calculated between all pairs of false hits and miRXplore ref-
erence using pairwiseAlignment function from Biostrings
R package. Alignment scores were normalized by dividing
alignment score by miRNA length and miRNA with maximal
score was considered as the best match.
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