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Abstract 13 

Many animals produce distinct sounds or substrate-borne vibrations, but these signals have proved 14 

challenging to segment with automated algorithms. We have developed SongExplorer, a web-browser 15 

based interface wrapped around a deep-learning algorithm that supports an interactive workflow for (1) 16 

discovery of animal sounds, (2) manual annotation, (3) supervised training of a deep convolutional 17 

neural network, and (4) automated segmentation of recordings. Raw data can be explored by 18 

simultaneously examining song events, both individually and in the context of the entire recording, 19 

watching synced video, and listening to song. We provide a simple way to visualize many song events 20 

from large datasets within an interactive low-dimensional visualization, which facilitates detection and 21 

correction of incorrectly labelled song events. The machine learning model we implemented displays 22 

higher accuracy than existing heuristic algorithms and similar accuracy as two expert human annotators. 23 

We show that SongExplorer allows rapid detection of all song types from new species and of novel song 24 

types in previously well-studied species. 25 

 26 
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Introduction  29 

Animals produce diverse sounds (Kershenbaum et al., 2016), vibrations (Hill, 2006), and periodic 30 

electrical signals (Zakon et al., 2008) for many purposes, including as components of courtship, to sense 31 

their surroundings, and to localize prey.  Quantitative study of these "sounds” is facilitated by 32 

automated segmentation. However, heuristic segmentation algorithms sometimes have low accuracy 33 

and fail to generalize across species (Arthur et al., 2013; Chesmore and Ohya, 2004; Coffey et al., 2019; 34 

Ivanenko et al., 2018; Koumura and Okanoya, 2016; LaRue et al., 2015; Parsons, 2001; Sattar et al., 35 

2016). Song segmentation is particularly challenging for low signal-to-noise sounds, such as those 36 

produced by many insect species.  37 

Deep neural network classifiers have been developed to study animal sounds (Chesmore and 38 

Ohya, 2004; Coffey et al., 2019; Ivanenko et al., 2018; Koumura and Okanoya, 2016; Parsons, 2001; 39 

Sattar et al., 2016; Steinfath et al., n.d.) and typically exhibit higher accuracy than heuristic algorithms. In 40 

addition, nonlinear dimensionality reduction techniques such as t-SNE (van der Maaten and Hinton, 41 

2008) and UMAP (McInnes et al., 2018) have proven useful for discovering structure in animal sound 42 

datasets (Clemens et al., 2018). To facilitate adoption of deep networks and dimensionality reduction 43 

techniques for the analysis of animal sounds, we developed SongExplorer to support interactive work-44 

flows for discovery, annotation, and segmentation of animal sounds. We illustrate the utility of 45 

SongExplorer with examples from Drosophila courtship song  (Ewing et al., 1968; Greenspan and 46 

Ferveur, 2000) because these low signal-to-noise songs have traditionally been challenging to segment 47 

(LaRue et al., 2015) and different species produce multiple distinct song types. 48 

 49 

Results 50 

 51 
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SongExplorer provides a versatile interface for detecting and segmenting animal sounds 52 

 53 

Each of the steps from discovery to automated segmentation of animal song events has 54 

traditionally required extensive manual investigation of songs and quantitative analysis, usually 55 

requiring use of multiple software tools. To democratize all steps of song analysis, we built a web 56 

browser-based program called SongExplorer that allows exploration of data, annotation of songs, and 57 

several analysis methods, including training of a deep learning neural network classifier, and 58 

quantitative assessment of classifier performance (Figure 1). The web interface presents users with 59 

three major domains in a single view (Figure 1A): the left side presents the data in multiple views; the 60 

middle section provides analysis “wizard” buttons, file handling, and parameter value windows; and the 61 

right side is a scrollable box containing extensive documentation and a tutorial.  62 

Quantitative study of animal sounds typically starts with supervised discovery of sounds. For 63 

species that produce loud and stereotyped sounds, like frogs and birds, it can be straightforward to 64 

identify individual types of songs. For other species, like many small insects, the initial step of identifying 65 

song types often requires examination of long recordings of audio and possibly video due to the sparse 66 

and quiet nature of their songs. Recent work has demonstrated that largely unsupervised clustering 67 

algorithms of song events can highlight distinct song types (Clemens et al., 2018). Therefore, to 68 

accelerate discovery, we provide methods for unsupervised clustering and visualization of song events.  69 

The data view region on the left side of the browser window includes a box (Figure 1C) that 70 

displays data in a dimensionaly reduced form, either as a UMAP or tSNE representation, in either two or 71 

three dimensions. Samples of sound wave forms or frequency spectra can be projected into these 72 

reduced dimensionality spaces (Clemens et al., 2018). However, we have found that the hidden layer 73 
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activations of a trained neural network provide more discrete representations of unique song types than 74 

do the original song events, which can facilitate identification of new song types (see later). 75 

In SongExplorer, the reduced dimensionality space can be navigated rapidly with a modifiable 76 

“lens.” A sample of up to 50 sound events within the lens are represented in the adjacent window 77 

(Figure 1D). Raw sound traces are presented along with a spectrogram and a label indicating the song 78 

type. In the example shown in Figure 1, sounds were automatically detected (within SongExplorer) using 79 

thresholds either for high amplitude events (labelled “time”) or for events with a relatively strong signal 80 

in a subset of the spectrogram (labelled “frequency”). Clicking on each song event reveals the song 81 

event within a longer context of the recording in a separate window (Figure 1E). The context window 82 

(Figure 1E) can be navigated by zooming in or out and panning using buttons located below the context 83 

window. We have found that Drosophila song can sometimes be discriminated from other sounds most 84 

easily by listening to the song and watching associated video. Therefore, SongExplorer facilitates 85 

annotation by allowing the portion of the recording currently shown in Figure 1E to be played as audio 86 

and, if video data are available, for the video section for this region of the recording to be played. 87 

Individual song types can be named in boxes below the context window and labelled by using a 88 

computer mouse to double-click on events or to drag over ranges of continuous sounds. The number of 89 

annotated and automatically detected events are tracked below the context window. 90 

The software is designed to encourage users to follow analysis pipelines that are enabled by 91 

“wizard” buttons (Figure 1B). For example, a user can explore a new dataset containing unlabeled data 92 

by selecting the “label sounds” wizard button, which enables five buttons that can be activated, from 93 

left to right, to perform the following steps: (1) automatically detect sounds above user-defined 94 

thresholds, (2) train a deep-learning classifier to recognize detected sound types, (3) calculate the 95 

classifier hidden-layer activations, (4) cluster these activation values, and (5) visualize the hidden layer 96 

activations using either UMAP or tSNE dimensionality reduction. Eight additional analysis pipelines are 97 
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provided as wizards, and individual analysis steps can be implemented independently of the wizard 98 

buttons. We include methods to correct false positive predictions by a trained classifier and to 99 

iteratively retrain the classifier with corrected values. This kind of iterative classifier training has proven 100 

powerful for training classifiers to recognize visual behaviors (Berg et al., 2019) and served as an 101 

inspiration for our approach. We provide video tutorials 102 

(https://www.youtube.com/playlist?list=PLYXyXDkMwZip8x78RAyN6ee9NK42WBbKb) to guide users 103 

through these analysis pipelines. 104 

 105 

SongExplorer’s deep neural network displays higher accuracy than a heuristic classifier 106 

 107 

SongExplorer includes a deep neural network classifier that can be trained to automate the 108 

annotation of animal sounds. The deep network is configurable, and defaults to a simple 3-layer time-109 

domain convolutional neural network that classifies each sample in a 5000 Hz acoustic waveform using a 110 

204.8 ms (1024 samples) window of context (Figure S1). We compared accuracy of this deep network 111 

versus a previously-described heuristic algorithm (Arthur et al., 2013) at classifying fly song. D. 112 

melanogaster males produce two distinctive types of courtship song, pulse song and sine song, and 113 

pulse song has traditionally been considered harder to classify than sine song. Kyriacou et al. (Kyriacou 114 

et al., 2017) performed a dense annotation of the pulse song events from 25 recordings of D. 115 

melanogaster courtship and a previously-described heuristic algorithm implemented on the same 116 

recordings, and with optimized parameters, displayed an F1 score (the harmonic mean of the precision 117 

and recall) of 87% (Stern et al., 2017).  118 

To examine accuracy of the deep-learning neural network, we aligned pulse annotations to the 119 

nearest peak within five milliseconds and labelled all other points in time as “other” or “ambient” 120 
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depending on whether a time-domain threshold was exceeded or not, respectively. We withheld five of 121 

the 25 recordings for validation and used the remaining 20 recordings to train the classifier. The 122 

classifier returned the probability that a pulse is centered on every time point in the recording (Figure 123 

2A). To allow comparison with the heuristic algorithm, we implemented a discrete-valued ethogram by 124 

calculating a threshold based on the ratio of precision to recall; precision (also called the positive 125 

predictive value) is the fraction of true positives amongst all positives (true and false positives) and recall 126 

(sometimes called sensitivity) is the fraction of true positives detected amongst all real events (true 127 

positives plus false negatives). Using a precision to recall ratio of one (Figure S2), the trained network 128 

displayed an F1 of 94% (Figure 2B) for dense predictions made on the five withheld recordings, a 129 

considerable improvement over the heuristic algorithm. Within SongExplorer, users can select a lower or 130 

higher precision to recall ratio for thresholding to detect more of the relevant events (amongst more 131 

false positives) or mostly (but fewer) true positives, respectively. To explore the effect of sample size on 132 

classifier accuracy, we subsampled from the full dataset and found that 100 labelled pulse events 133 

produced accuracy very similar to the full dataset (Figure S3A). We also explored several parameters of 134 

the neural network and found that performance was largely insensitive to most hyperparameters 135 

(Figure S3B). 136 

 137 

A trained classifier predicts pulse events approximately as well as an “average” human 138 

 139 

To determine how well the trained neural-network classifier could generalize to predict pulse 140 

events in new recordings of D. melanogaster song, we made new recordings of D. melanogaster 141 

courtship song using chambers that were smaller than the chambers employed for the recordings 142 

described above. This is a challenging test case, because the noise characteristics differed systematically 143 
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between the two sets of recordings (Figure S4). Two human experts independently performed dense 144 

annotations of pulse events for 23 randomly-chosen one-minute segments of these recordings without 145 

prior discussion of how they would label events. Different humans often disagree on annotation of low 146 

signal-to-noise events and, indeed, Person 1 labelled more events than Person 2. Both annotators and 147 

the classifier agreed on most pulse events (Figure 2C). Overall, the classifier and the two humans 148 

displayed similar levels of unlabeled events, suggesting that the classifier, even when trained on 149 

different sets of recordings, performed approximately as well as the “average” human.   150 

 151 

A common deep classifier architecture generalizes to many song types 152 

 153 

Given the high accuracy of the classifier at detecting pulse song, we asked whether a classifier 154 

could be trained to accurately predict many song types across multiple species. We performed sparse 155 

annotations of all definable courtship song types from nine additional species, systematically labelled 156 

inter-pulse intervals between labelled pulse events, and trained a classifier to recognize each of the 37 157 

song types (Figure 3A). Since these samples were labelled sparsely, we cannot examine accuracy as we 158 

did above for dense annotations. Instead, we examined the likelihood that an event was labeled 159 

correctly, given that there was an annotated song event at a particular time, and present the results as a 160 

confusion matrix (Figure 3B). The classifier assigned most events with greater than 90% accuracy, 161 

suggesting that the neural network architecture that we employed can be used to classify song from 162 

many Drosophila species.   163 

The classifier discriminated with high accuracy similar song types within a species and very 164 

similar song types from closely related species. For example, D. persimilis produces two different pulse 165 

types (Figure 3D-E) and the classifier accurately discriminated between these subtypes (Figure 3B). 166 
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Surprisingly, the classifier also accurately distinguished between the very similar pulse events of the 167 

sister species D. simulans and D. mauritiana recorded on the same set of microphones, which, in our 168 

experience, cannot be discriminated by humans (Figure 4F-K). The classifier employs a context window 169 

of 204.8 ms surrounding each event, and the classifier may therefore have used information about the 170 

diverged inter-pulse intervals between species to discriminate between these pulse types.  171 

Some song types were not discriminated well, such as D. erecta sine 1 vs sine 2 and D. persimilis 172 

sine 1 vs sine 2. In both cases, the alternative labels were assigned during manual annotation prior to 173 

the availability of SongExplorer. Post hoc examination of songs within the SongExplorer interface 174 

revealed that sine song is rare in both species and there is no compelling evidence for multiple sine 175 

types, suggesting that the classifier correctly failed to discriminate between sine song subtypes in these 176 

species because the species do not produce multiple subtypes. Alternatively, it is possible that the 177 

classifier failed to discriminate multiple sine song types because these songs are rare. However, we 178 

found weak dependence of classifier accuracy and precision on song event sample size (Figure 3C) and 179 

sample sizes above 100 had similar accuracies.  180 

 181 

A trained classifier can provide rapid prediction of song events for closed-loop assays 182 

 183 

Rapid prediction of song could be valuable for closed-loop experiments. We therefore examined 184 

whether our classifier could be implemented, in principle, in closed-loop scenarios. We examined 185 

classifier accuracy when the 204.8 ms context window (the position of the sampled window relative to 186 

the target song event) was shifted earlier in time (Figure 4B). We call the time between the predicted 187 

event and the end of the context window the latency. This latency corresponds to “information latency” 188 

and is a lower bound on the true latency, which will be higher and depend on the efficiency of the 189 
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software and hardware implementation, which we do not consider here. The classifier had precision of 190 

88.6% and recall of 76.6%, on average, in predicting D. melanogaster pulse events with a latency as low 191 

as 12.8 ms (Figure 4B-F), compared with precision and recall of 91.5% and 89%, respectively, with a 192 

latency of 102.4 ms. Accuracy was lower for isolated pulses and the first pulse in a pulse train (Figure 193 

4D-G), suggesting that the classifier may have used past pulses in a pulse train to improve the accuracy 194 

of detecting future pulses. Thus, in principle, this neural network classifier can identify many song events 195 

on the order of fast neuronal spiking in Drosophila (~200Hz).  196 

 197 

The learned feature representations of the neural network exhibit latent structure about song types and 198 

allow efficient discovery of new songs 199 

 200 

Investigators studying animal sounds typically spend considerable time listening to recordings 201 

and examining song traces and video to identify and categorize sounds. This work is not only time 202 

consuming and tedious, but it is also subjective and can frustrate identification of rare sounds. We 203 

therefore sought a method to rapidly identify both common and rare sounds. We found that the 204 

activities of the hidden-layer neurons of a trained network exhibit considerable structure about song 205 

types (Figure 5) and allow rapid identification of novel song types. We illustrate two modes of this 206 

discovery approach.  207 

First, we trained a network on manually labelled male Drosophila melanogaster pulse and sine 208 

song. We also included automatically generated labels for inter-pulse interval and ambient noise 209 

samples in the training. We visualized the patterns of hidden layer neural activation in UMAP space 210 

(Figure 5A-D). These representations revealed that the input layer showed some structure, with pulse 211 

song mainly occupying two domains of the UMAP space and sine song a third domain (Figure 5B). 212 
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However, points were distributed diffusely and multiple song types were intermingled. The two domains 213 

of pulse song in the input layer reflect the two phases of pulse song resulting from different positions of 214 

the fly relative to the directional microphone (Figure 5B inset). Through successive layers of the 215 

network, however, we noticed that each of the song types coalesced into nearly distinct clouds 216 

corresponding to the trained label classes of pulse song, sine song, inter-pulse interval, and ambient 217 

noise (Figure 5C-E). The network apparently correctly learned that the positive and negative deflecting 218 

phases of pulse song were an artifact and not distinguishable features of pulse song. 219 

To explore whether other types of songs might have been missed in D. melanogaster recordings, 220 

we selected a different set of recordings, which had not been manually annotated, and detected all 221 

sounds using time- and frequency-domain thresholds. These sounds were projected through the neural 222 

network and the neural activation values were embedded in a common UMAP space defined by 223 

annotated and detected song events (Figure 5F). This embedding revealed a new density of points that 224 

was obvious in the hidden layers (Figure 5F-H), but not in the input layer (Figure 5E). Manual 225 

examination of these events (a subset of which are highlighted in red in Figure 5G-J) revealed that they 226 

are examples of a recently described female copulation song (Kerwin et al., 2020). Thus, this approach 227 

to discovering animal sounds allows rapid discovery of known and previously unknown song types in 228 

large audio datasets.  229 

To further explore the utility of this kind of approach to song discovery, we trained a classifier to 230 

distinguish samples from 21 species (Figure 6A), providing as training data only sound events detected 231 

by time- and frequency-domain thresholding. Although the classifier was trained only to recognize the 232 

species of origin for a song event, the hidden layer activations contained considerable latent structure 233 

that facilitated discovery of song types (Figure 6B-D). That is, without providing any manually labelled 234 

training data, SongExplorer revealed the multiple song types produced by each species (Figure 6E-F). 235 

This allowed discovery of new song types in species of the Drosophila nasuta species group. One 236 
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previous paper has reported song types from some of these species (Hongguang et al., 1997). Notably, 237 

we identified multiple song types in several species that were not identified in the earlier study (Figure 238 

S6). We estimate that using SongExplorer we discovered many or all song types for each species within 239 

approximately 20 minutes per species of exploring songs. 240 

 241 

DISCUSSION 242 

 243 

SongExplorer provides the first interactive graphical interface to allow exploration, discovery, 244 

and segmentation of animal sounds using deep learning tools. While we have characterized 245 

SongExplorer and a particular instantiation of a neural network model using Drosophila courtship song, 246 

many kinds of animal sounds can be accurately classified using deep learning models (Chesmore and 247 

Ohya, 2004; Coffey et al., 2019; Ivanenko et al., 2018; Koumura and Okanoya, 2016; Parsons, 2001; 248 

Sattar et al., 2016; Steinfath et al., n.d.). The neural network classifier accuracy is only weakly dependent 249 

on sample size and the classifier attained greater than 90% accuracy at detecting D. melanogaster pulse 250 

song with just 100 labelled events.  251 

Many researchers will be interested in generating discrete ethograms from the probabilistic 252 

output generated by SongExplorer. There are many ways to discretize the SongExplorer output and for 253 

this study we employed a threshold derived from the precision-recall curve. It is also possible to employ 254 

heuristic thresholds, or combinations of heuristics to filter SongExplorer output for any particular 255 

purpose.  256 

SongExplorer provides an intuitive interface for efficient discovery of new song types, 257 

segmentation of large song datasets, and reannotation of songs to correct false negative and false 258 
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positive labels. In contrast to the size of deep learning models used in computer vision, our deep 259 

network for acoustic signals is light-weight and runs acceptably on a CPU without the need for 260 

specialized GPU hardware. We therefore anticipate that SongExplorer may be valuable to a wide range 261 

of biologists studying animal sounds. 262 

 263 

Materials and Methods 264 

SongExplorer software program 265 

The SongExplorer user-interface is web browser-based and is implemented in Python using the 266 

Bokeh library (https://bokeh.org/). It is cross-platform and has been tested to run on Mac OS X, 267 

Windows, and Linux computers. The deep learning components use Keras and Tensorflow and benefit 268 

modestly from access to a CUDA-compatible Nvidia GPU. 269 

 270 

Software availability 271 

We provide the source code as well as Singularity and Docker containers of SongExplorer for 272 

Linux, Microsoft Windows, and Apple Macintosh platforms 273 

(https://github.com/JaneliaSciComp/SongExplorer). Extensive tutorials on using SongExplorer are 274 

available on YouTube ( 275 

https://www.youtube.com/playlist?list=PLYXyXDkMwZip8x78RAyN6ee9NK42WBbKb). 276 

 277 

Annotating training data:  278 
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We obtained training data from two sources. First, Kyriacou et al. (Kyriacou et al., 2017) 279 

manually annotated 52,417 D. melanogaster pulse song events from songs that we had recorded 280 

previously (Stern, 2014). We downloaded their manual annotations from  281 

https://doi.org/10.5061/dryad.80c1f. 282 

Second, before we had completed the SongExplorer interface, we employed Tempo 283 

(https://github.com/JaneliaSciComp/tempo) to manually annotate additional song events. Tempo allows 284 

simultaneous examination of synced audio and video recordings and manual annotation of song 285 

recordings with user-defined song types.  We generated dense annotation 286 

of 6,770 pulse events of new D. melanogaster recordings for the congruence assays. We also 287 

generated sparse annotations of 589 sine song events and 172 copulation events from the same D. 288 

melanogaster recordings annotated by Kyriacou et al. We also generated 15,192 sparse pulse 289 

song annotations and 7,537 sparse sine song annotation from five additional strains of D. 290 

melanogaster. Finally, we annotated 74,065 song events from recordings of D. erecta, D. mauritiana, 291 

D. persimilis, D. pseudoobscura, D. santomea, D. simulans, D. teissieri, D. willistoni and D. yakuba. 292 

Sine song was annotated as a range of time points and pulse events were marked by a single 293 

time point per pulse. Pulse annotations were automatically aligned to the largest peak in the full-wave 294 

rectified waveform within 5 ms of the manual annotation to reduce variability in annotator pulse 295 

placement. Time periods between pulse events that were within the same pulse train were 296 

automatically given the annotation of inter-pulse interval (IPI) if the interval was within a median 297 

absolute deviation of the species-specific IPI. 298 

 299 

Detecting sound events with time and frequency domain thresholds 300 
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Sound events were detected using time domain and frequency domain criteria as follows. Time 301 

points with absolute magnitude exceeding a time-domain threshold of 6 median absolute deviations 302 

above the median were selected, and gaps between selected time points shorter than 6.4 ms were 303 

morphologically closed. A second set of sound events were detected using a frequency-domain 304 

threshold of p<0.1 (the FFT window as 25.6 ms and multi-taper settings were NW=4, K=8). Intervals 305 

shorter than 25.6 ms were morphologically opened and gaps shorter than 25.6 ms were morphologically 306 

closed. 307 

 308 

Recordings of Drosophila song:  309 

To explore the ability of the deep learning framework to classify diverse song 310 

events we recorded male courtship song from seventeen Drosophila species using a previously 311 

described Drosophila courtship song recording apparatus (Arthur et al., 2013). The following fly stocks 312 

were employed and samples from the Drosophila Species Stock Center 313 

(http://blogs.cornell.edu/drosophila/) and Ehime stock center (https://kyotofly.kit.jp/cgi-bin/ehime/) 314 

are indicated with the prefixes DSSC and EH: D. albostrigata (Kandy, SriLanka, 15112-315 

1811.08); D. bilimbata (Guam Island, DSSC 15112-1821.08); D. elegans (DSSC 14027-316 

0461.03); D. erecta (DSSC 14021-0224.01), D. gunungcola (gift of Jonathan Massey); D. kepulauana 317 

(Sarawak, Borneo Island, DSSC 15112-1761.01);  D. kohkoa (Sarawak, Borneo Island, DSSC 1511-318 

1771.01);  D. mauritiana (DSSC 14021-0241.01); D. melanogaster (Canton-S); D. nasuta (Mombasa, 319 

Kenya, DSSC 151121781.06);  D. niveifrons (Lae, PapuaNewGuinea, EH LAE-221); D. persimilis (DSSC 320 

14011-0111.50); D. pseudoobscura (DSSC 14022-0121.94); D. pulau (Sarawak, Borneo Island, 15112-321 

1801.00); D. santomea (STO-CAGO 1482); D. simulans (sim5, gift of Peter 322 

Andolfatto); D. sulfurigaster (Kavieng, New Ireland, DSSC 15112-1831.01); D. taxonf (Sarawak, Borneo 323 
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Island, EH B-208); D. teissieri (DSSC 14021-0257.01); D. willistoni (DSSC 14030-0791.00); 324 

and D. yakuba (DSSC 14021-0261-01).  325 

 326 
Design and training of the deep neural network classifier 327 

The SongExplorer interface enables users to customize the classifier architecture and 328 

hyperparameter values to their needs. The classifier tested in this paper is a deep 1D time-domain 329 

convolutional neural network implemented in Keras and Tensorflow (https://www.tensorflow.org/) that 330 

operates directly on the 5000 Hz waveform. The architecture consists of four convolutional layers with 331 

ReLU activation functions. Dropout layers (dropout probability=0.5) were added following each 332 

convolution and activation layer. The number of outputs per time point in the output layer 333 

corresponded to the number of labels. Eight feature maps were used for the three-word pulse classifier 334 

models, and 128 for the others. The last three convolutional layers have a stride of two, which has the 335 

effect of reducing the temporal sampling rate of the output predictions by 8-fold. The classifier is trained 336 

with cross entropy loss using the Adam optimizer (Kingma and Ba, 2014) with a batch size of 32 and 337 

learning rate of 1-e6 for a million training steps over half a day. The learning rate was set such that 338 

accuracy on the validation data set had not plateaued until after at least a full epoch of the training data 339 

had been sampled. Eight-fold cross-validation of the smallest model (batch=32 features=8) can be done 340 

simultaneously on a single Nvidia 1080Ti GPU with only a 29% slow down compared to training a single 341 

model. Using seven CPU cores instead of a GPU is only 6% slower for a single model. 342 

 343 

Training and valuating D. melanogaster pulse classifier accuracy and inter-annotator variability with 344 

dense annotation 345 
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The D. melanogaster pulse classifier was trained using 20 densely annotated recordings from 346 

Kyriacou et al. (Kyriacou et al., 2017), and the remaining 5 recordings were withheld for validation and 347 

used to estimate the best threshold for the classifier probabilities. Each time point was originally 348 

annotated with two classes, “pulse” vs “not-pulse”. We added an additional automatically defined class 349 

“other pulse” which were pulse-like events originally labeled as “not-pulse”. Events originally labeled 350 

“not-pulse” which passed the time domain sound detection threshold but not the frequency domain 351 

threshold were given the label of “other pulse”.  352 

An interval of 2 ms was defined around each ground truth pulse. Probabilities predicted by the 353 

pulse classifier were thresholded and any contiguous time interval of pulse predictions which 354 

overlapped with the 2 ms interval around each ground truth pulse constituted a correct detection or a 355 

hit. Predicted pulse intervals that did not overlap with any ground truth intervals constituted false 356 

positives, and ground truth intervals that did not overlap any predicted intervals were counted as false 357 

negatives or misses. Inter-annotator differences were calculated similarly by defining 2 ms intervals 358 

around each annotated pulse and computing overlaps between intervals annotated by different 359 

humans. Overlapping intervals were counted as annotations agreed upon by both humans. Unmatched 360 

annotations were then labeled “only Person1” or “only Person2.” Precision-recall curves were calculated 361 

for both the validation and test set by sweeping the value at which the pulse probability was 362 

thresholded. Accuracies were reported for the densely annotated test dataset using threshold values of 363 

equal precision and recall on the densely annotated validation set. 364 

 365 

Training and evaluating multi-species song classification from sparse annotations 366 

Multi-species song classification was performed by assigning each time point to the class with 367 

the maximum predicted probability. With sparsely annotated ground truth, only annotated time points 368 
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were considered when evaluating the accuracy of the multi-species classifier. For pulse annotations, a 2 369 

ms window around each pulse was excluded from consideration. The middle half of the interval 370 

between two adjacent pulses was automatically annotated with the “IPI” label. For example, if two 371 

pulses were annotated at 100 ms and 200 ms, the interval from 125 ms to 175 ms was assigned to the 372 

“IPI” class. The multi-species multi-song confusion matrix (Figure 3C) was calculated by counting the 373 

number (or percentage) of test dataset time points for which the class with the maximum predicted 374 

probability coincided with a ground truth class annotation. Confusion matrices for subsets of the classes 375 

(as in Figure 3I,L) were made by first re-normalizing the predicted class probabilities such that the 376 

probabilities of the subset of classes sum to 1, and then calculating the confusion matrix for those 377 

classes. Precision and recall values for each class in Figure 3D were calculated based on the maximum 378 

probability class assignments for each time point, rather than a fixed threshold as used for the pulse 379 

classifier. 380 

 381 

Training the species classifier using automatically generated annotations for unsupervised discovery 382 

Sound events from recordings of each species were detected using both time and frequency 383 

domain thresholds as described above, and all time points were labeled with the species class label. 384 

After training, the classifier was applied to the same detected sounds and the resulting hidden layer 385 

activations were used to generate low-dimensional embeddings for interactive discovery of song types.386 
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Exploratory analysis and visualization using UMAP and t-SNE 387 

SongExplorer can perform nonlinear dimensionality reduction of the high-dimensional acoustic 388 

signal for visualization in 2D or 3D using the UMAP (McInnes et al., 2018) and t-SNE (van der Maaten and 389 

Hinton, 2008) algorithms. Such visualizations can be generated from either the raw acoustic time series 390 

representation, a spectrogram representation, or from the intermediate feature representations of a 391 

trained deep network. 392 

UMAP was implemented using https://github.com/lmcinnes/umap without any pre-processing 393 

of the high dimensional representation. t-SNE was implemented using the scikit-learn library, 394 

(https://scikit-learn.org/) and utilizes a user-selected initial linear dimensionality reduction using 395 

Principle Components Analysis (PCA) to increase algorithm efficiency. 396 

Dimensionality reduction was applied to feature vectors corresponding to 204.8 ms windows of 397 

time. For the input layer, the feature vector corresponded to the raw waveform. For all hidden layers, 398 

the feature vector was constructed by concatenating the 1D time series of all the feature maps in the 399 

hidden layer. The dimensionality of this feature vector is thus given by the number of elements in each 400 

hidden layer, given in Figure S1. 401 
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Figure Legends 476 

 477 

Figure 1 – SongExplorer web browser interface  478 

(A) Screenshot of SongExplorer interface in a web browser window. Data and labelling tools are arrayed 479 

along the left side of wind. Analysis wizard buttons, file selectors, and parameter values are shown in 480 

the middle of the window. The right side of the window displays a detailed description of methods, 481 

including instructions for installation and data analysis. 482 

(B-F) Several regions of the interface are shown in more detail. The analysis wizard buttons (B) guide 483 

users, from left to right, through analysis pipelines and highlight only those windows that are available 484 

for each step of an analysis. The low-dimension feature embedding window (C) displays a tSNE or UMAP 485 

projection of sound events. These projections can be interactively navigated in two or three dimensions 486 

and different projections can be displayed for different song types, species, or layers of the machine 487 

learning model. A subset of events can be examined in detail by selecting events with an interactive 488 

circle selector (shown in pink here). The events, or a subset of events if there are more than 50 in the 489 

region, are shown along with spectrograms for the events (D). Clicking on one of these events results in 490 

the display of this event in the larger context of a complete recording (E). This view of the song can be 491 

navigated and played as an audio clip. Events can be labelled (or unlabeled) in this window. If video was 492 

captured at the same time as audio, then the synchronized video can be loaded and displayed in a 493 

window below the audio recording (F). 494 

 495 

Figure 2.  Performance of the neural network classifier to detect one kind of song event 496 
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A – Outline of analysis pipeline employed to test accuracy of classifier to detect D. melanogaster pulse 497 

song. Dense annotations of pulse songs were combined with automated detection of other pulse-like 498 

sounds and ambient noise and a classifier was trained to recognize these three different kinds of 499 

sounds. Performance of the classifier was tested against dense human annotation. 500 

B – An example of a non-obvious train of pulse song from a D. melanogaster recording is shown above 501 

and the probability of a pulse event over time assigned by the classifier is shown below. Vertical grey 502 

lines indicate human annotated pulse events. 503 

C – To assess performance of the classifier, a dataset consisting of multiple recordings of many flies was 504 

annotated by an independent group that generated consensus labels of pulse events (“Kyriacou”) or 505 

segmented by our previously-developed classifier FlySongSegmenter (FSS). The neural network of 506 

SongExplorer was trained on 20 recordings and validated on the remaining five. 5433 pulses were 507 

labelled by all three methods (“Everyone”), 561 only by SongExplorer (SongExplorer False positives), 578 508 

only by Kyriacou (False negatives) and 51 only by FlySongSegmenter (FSS false positives). A very large 509 

proportion of true pulses were not detected by FlySongSegmenter (4139; “not FSS”) but were detected 510 

by SongExplorer , illustrating the considerable improvement of SongExplorer over FlySongSegmenter. 511 

D – To determine how SongExplorer, trained on the Kyriacou consensus annotations, performs relative 512 

to individual humans, two authors with expertise in annotating fly song independently scored pulse 513 

events in the same random selections of fly song. SongExplorer and the two humans agreed on 2847 514 

pulse events. SongExplorer displayed similar levels of disagreement on the remaining pulse events as the 515 

two humans. Subsequent manual investigation revealed that disagreements related to low-amplitude or 516 

isolated pulse events about which two humans could easily disagree. 517 

 518 

Figure 3 - Multi-species song type classification by SongExplorer 519 
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A – Analysis pipeline to assess ability of classifier to recognize songs from many Drosophila species. Song 520 

events from recordings of ten species were sparsely annotated and species-specific song-type labels 521 

were used to train the classifier. Classifier performance was tested by assessing the frequency with 522 

which the classifier correctly assigned a song type at manually annotated events. 523 

B – Phylogeny of the ten Drosophila species used in this analysis, color coded by the song types shown in 524 

axis labels and the performance statistics shown in panels C and D. 525 

C – Confusion matrix for 37 song types across ten Drosophila species color-coded by the species name 526 

given in B, plus “ambient” and non-song sounds (“other”). During manual annotation, we tentatively 527 

identified multiple types of similar songs for some species, which are indicated by numbers following the 528 

song types. Some of these alternative song types, such as D. erecta pulse types 1 and 2, are well  529 

discriminated by the classifier. Other types, such as D. erecta sine types 1 and 2 are not well 530 

discriminated, suggesting that they do not represent alternative song types. However, the sample sizes 531 

for alternative song types that are not well discriminated are low, suggesting that the failure to 532 

discriminate may have resulted from insufficient data for accurate training on these potentially different 533 

song types. Each colored square represents the fraction of time points that were annotated by humans 534 

as indicated by the row label and classified by the machine learning algorithm as indicated by the 535 

column label. The upper right triangles within each square sum to 100% within each row; the lower left 536 

sum within each column. Non-zero entries off the diagonal indicate false positive and false negatives in 537 

the lower left and upper right triangles, respectively. Each annotated time point was classified as the 538 

song type corresponding to the event with the highest probability.  539 

D, E — Precision (D) and recall (E) of the classifier for all song types plotted against the number of 540 

annotations for each song type. Performance tends to improve with increasing sample size for each song 541 

type. 542 
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F – Example of classifier performance to discriminate two pulse types produced by D. persimilis males. A 543 

trace of approximately 1.5 sec of song is shown at top and the probabilities for pulse type 1 and 2 are 544 

shown below in red and blue, respectively. Vertical lines indicate human annotated pulse events color-545 

coded by pulse type. 546 

G – Magnified views of the D. persimilis pulse types 1 and 2, shown in blue and red, respectively. 547 

H-M – The classifier discriminated similar pulse song events produced by two closely-related species, D. 548 

mauritiana and D. simulans, even though the differences are not obvious to humans. Song traces for D. 549 

mauritiana (top of G) and D. simulans (top of J) are shown with the classifier probabilities shown below 550 

each trace. Magnified views of example pulses from D. mauritiana (H) and D. simulans (K) do not reveal 551 

obvious differences between the pulses. Confusion matrices for D. mauritiana (I) and D. simulans (L) 552 

reveal that the classifier classifies pulse events to the correct species with greater than 90% accuracy. 553 

Vertical lines in (H) and (K) indicate human annotated pulse events color-coded by species, red for D. 554 

mauritiana and blue for D. simulans. 555 

 556 

Figure 4 - SongExplorer allows fast prediction, which will facilitate closed-loop applications.  557 

A – Outline of the analysis pipeline, which differs from the analysis pipeline shown in Figure 2A only by 558 

the use of multiple context windows, representing different latencies relative to the predicted event, for 559 

training. 560 

B – Illustration of how the context window was shifted to test ability of neural network to predict event 561 

at the focal position, indicated by dotted vertical line. Example shows song trace containing ten pulse 562 

events. The context window, which is normally centered on the predicted event, was shifted earlier in 563 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.26.437280doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437280
http://creativecommons.org/licenses/by/4.0/


 

 27 

time to test the predictive ability of the classifier when the latency between the event and the 564 

prediction is shifted from 102.4 ms to 6.4 ms.  565 

C – Performance of the classifier with different latencies was measured as congruence amongst human 566 

annotators and the deep learning network. Congruence amongst “Everyone” remained high for all 567 

latency durations except for 6.4 ms.  568 

D-G – Classifier performance using different latencies relative to manual annotation by two humans. 569 

Performance was considerably lower for isolated pulses relative to pulses within trains. Classifier 570 

performance for the first and last pulse of each train were also lower than for pulses within trains. 571 

 572 

Figure 5  – Dimensionality reduction reveals structure of hidden layers activation and facilitates rapid 573 

identification of new song types. 574 

A – Analysis pipeline to illustrate how visualization of hidden layer activations reveals relatively discrete 575 

structure of single song types. Songs that were sparsely annotated for pulse, sine, inter-pulse interval 576 

and ambient sounds were used to train a classifier. Principle component analysis values of the the input 577 

and hidden layer activations were projected into UMAP space. 578 

B-E – UMAP projections of input (B) and hidden layer (C-E) activations for D. melanogaster song. For 579 

input layer (B), pulse events form two loose clusters and sine song forms one loose cluster and all IPI 580 

events overlap with ambient sound. The two pulse event clusters represent the two phases of pulse 581 

song present in the data, which is an artifact of the position of the fly relative to the microphone at 582 

different times in the recording. At increasingly deeper layers in the model, the activations become 583 

increasingly differentiated (C-E), and clearly separate out most pulse, sine, IPI, and ambient events by 584 

hidden layer 3 (E).   585 
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F – Analysis pipeline illustrates how new song types can be rapidly identified by clustering hidden layer 586 

activations. Sound events passing a simple amplitude or power spectrum threshold were projected 587 

through the model trained on annotated song (A-E) and the input layer and hidden-layer activations 588 

were projected into UMAP space. 589 

G-K – One strong cluster of thresholded events was obvious in all hidden layers (H-J), but not obvious in 590 

the input layer (G). Most of these events corresponded to a novel song type, which has recently been 591 

reported to be the female copulation song. Three of these copulation song events are illustrated (K) and 592 

their locations in the input and hidden layers are indicated by three larger red dots. 593 

 594 

Figure 6 – A classifier trained to recognize species sounds, rather than specific events, facilitates de novo 595 

discovery of song types. 596 

A – The deep learning classifier was trained to recognize sounds automatically detected with time- and 597 

frequency-domain thresholds sampled from multiple species. The classifier was trained to recognize the 598 

species, not individual song types. Data represented in UMAP space were manually examined to identify 599 

previously discovered and new song types.   600 

B – The 21 species used in the analysis. Two D. melanogaster recordings were labelled separately as a 601 

negative control. 602 

C,D – UMAP projections of the input layer (C), which contained little structure, and hidden layer 3 (D), 603 

which exhibited extensive structure. The detected sound events from many species occupied distinct 604 

domains in the UMAP projection of hidden layer 3. 605 

E – UMAP projections of hidden layer 3 for detected events from the two D. melanogaster recordings 606 

shows that that the classifier was unable to differentiate two sets of recordings from D. melanogaster.  607 
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F-H — UMAP projections of D. teissieri, D. nasuta, and D. persimilis illustrate that songs from different 608 

species occupy different locations within UMAP space and facilitated discovery novel song types. 609 

 610 

Figure S1. Neural network architecture implemented in SongExplorer. Variable C indicates the number of 611 

feature maps used in each layer, and was 8 for the 3-word models and 128 for the others. Variable T 612 

indicates the number of output classes, which is equal to the number of labelled word classes. Other 613 

hyperparameters include a batch size of 32, the Adam optimizer, a dropout probability of 0.5, and a 614 

learning rate of 1e-6. A Keras summary of the model is shown below. 615 

 616 

Figure S2. Use of precision-recall curves to select thresholds for converting event probabilities to 617 

ethograms. (A) Congruence between dense predictions by SongExplorer and dense annotations by a 618 

human was calculated for a range of thresholds. The chosen threshold (vertical purple line) was that for 619 

which an equal number of false negatives (orange line) and false positives (green line) was achieved, or 620 

whatever the user specified as the desired ratio. Compare with the threshold based on sparse 621 

predictions (vertical red line) at just those points which were annotated. (B) Same data as in (A) but 622 

plotted parametrically in threshold. The area under the curve is 0.97. 623 

 624 

Figure S3. Effect of deep-learning network parameters on trained model accuracy. Maximum F1 is 625 

relatively insensitive to 8-fold changes in batch size and the number of feature maps.  Larger batch sizes 626 

are more susceptible to overtraining, and fewer feature maps require longer training times and exhibit 627 

larger variability across repetitions. The learning rate was set such that accuracy on the validation data 628 

set had not plateaued until after at least a full epoch of the training data had been sampled (1e-6 for all 629 

models except 1e-7 for batch=32 features=64 and 1e-5 for batch=256 features=8). Eight-fold cross-630 
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validation of the smallest model (batch=32 features=8) can be done simultaneously on a single Nvidia 631 

1080Ti GPU with only a 29% slow down compared to training a single model. Using seven CPU cores 632 

instead of a GPU is only 6% slower for a single model. 633 

 634 

Figure S4. Recordings in different years display different noise characteristics. Recordings performed in 635 

2013 and 2019 were made using chambers of different sizes. We tested whether recordings made in 636 

2013 and 2019 differed systematically in their noise characteristics by training the deep learning 637 

network to recognize ambient sounds in recordings from these two years. UMAP projections of the 638 

ambient noise from each year mostly overlap in the input layer (A), but are strongly differentiated in the 639 

third hidden layer (B), implying that the classifier differentiated the two song types solely on the basis of 640 

ambient noise. 641 

 642 

Figure S5. Dependence of classifier performance on the number of labelled song events used for 643 

training. As few as 100 labelled song events resulted in performance approximately as high as songs 644 

events labelled with many more events. 645 

 646 

Figure S6.  Song types discovered for nine species of the D. nasuta species group. Phylogeny of the 647 

species examined is shown on the left, with the samples used for song analysis in the same color font as 648 

the songs shown on the right. One previous study had found one song type each for 6 of the species we 649 

studied and none for two of the species we studied. In contrast, we identified song in all species we 650 

studied, and from two to seven apparently distinct song types in different species. 651 

 652 
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Figure S7 Video. Videos illustrating the SongExplorer workflow can be found at the following YouTube 653 

channel: https://www.youtube.com/playlist?list=PLYXyXDkMwZip8x78RAyN6ee9NK42WBbKb 654 

 655 

Supplementary Audio Files: WAV files of the song types illustrated in Figure S5 are available on FigShare. 656 
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