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Abstract

Pangenomics is emerging as a powerful computational paradigm in bioinformatics. This field uses
population-level genome reference structures, typically consisting of a sequence graph, to mitigate refer-
ence bias and facilitate analyses that were challenging with previous reference-based methods. In this
work, we extend these methods into transcriptomics to analyze sequencing data using the pantranscrip-
tome: a population-level transcriptomic reference. Our novel toolchain can construct spliced pangenome
graphs, map RNA-seq data to these graphs, and perform haplotype-aware expression quantification of
transcripts in a pantranscriptome. This workflow improves accuracy over state-of-the-art RNA-seq map-
ping methods, and it can efficiently quantify haplotype-specific transcript expression without needing to
characterize a sample’s haplotypes beforehand.

Introduction

Transcriptome profiling by RNA-seq has matured into a standard and essential tool for investigating
cellular state. Bioinformatics workflows for processing RNA-seq data vary, but they generally begin by
comparing sequencing reads to the sequence of a reference genome or reference transcriptome [1–4]. This
is an expedient method that makes it practical to analyze the large volume of data produced by modern
high-throughput sequencing.

Reference-based methods also have costs. When a sample’s genome differs from the reference, bioin-
formatics tools must account for the resulting mismatches between the sequencing data and the reference.
This results in reduced ability to correctly identify reads with their transcript-of-origin, with larger ge-
nomic variation leading to a greater reduction in accuracy. This is the problem known as reference
bias [5].

Computational pangenomics has emerged as a powerful methodology for mitigating reference bias.
Pangenomics approaches lean heavily on abundant, publicly-available data about common genomic vari-
ation for certain species (notably including humans). These methods incorporate population variation
into the reference itself, usually in the form of a sequence graph [6, 7]. Mapping tools for pangenomic
references have demonstrated reduced reference bias when mapping DNA reads [8–10]. This in turn facil-
itates downstream tasks that are frustrated by mapping biases, such as structural variant calling [11,12].

The sequence graph formalism used in pangenomics has an additional attractive feature for RNA-seq
data: it can represent splice junctions with little modification. Without this benefit, RNA-seq mappers
for conventional references must make use of sometimes elaborate algorithmic heuristics to align over
known splice junctions [2,13]. Alternatively, they can map to only known isoforms, but this technique has
difficulty estimating mapping uncertainty due to the re-use of exons across isoforms [14]. There is also
evidence that population information can reduce reference bias problems that are particular to RNA-seq
data. Accounting for population variation at splice-site motifs has been shown to aid in identifying novel
splice sites [15].

The current methodological landscape in pangenomics is ripe to be extended to pantranscriptomics:
using populations of reference transcriptomes to inform transcriptomic analyses. There is some precedent
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in a few existing transcriptomic methods that have used sequence graphs. AERON [16] uses splicing
graphs and GraphAligner [17] to identify gene fusions. ASGAL [18] uses splicing graphs to identify
novel splicing events. Finally, the pangenomic aligner HISAT2 [19] has its origins in the RNA-seq aligner
HISAT [20], and it retains many of HISAT’s features for RNA-seq data. The performance of HISAT2
for pantranscriptomic mapping has not yet been characterized in published literature.

One transcriptomic analysis that is particularly prone to reference bias is allele-specific expression
(ASE). ASE seeks to identify differences in gene expression between the two copies of a gene in a
diploid organism. These differences are indicative of various biological processes, including cis-acting
transcriptional regulation, nonsense-mediated decay, and genomic imprinting [21, 22]. The differences
are identified by measuring the ratio between RNA-seq reads containing each allele of a heterozygous
variant. However, the reads containing the non-reference allele are systematically less mappable because
of reference bias, which can lead to both degraded and illusory signals of ASE [23]. Several approaches
have been developed to deal with reference bias for ASE detection. Some methods filter out biased
sites [24]. Others can mitigate bias at the read mapping stage, but require variant calls, often with
phasing, for the individual being analyzed [25–27]. The variant information is either incorporated into
the mapping algorithm to reduce reference bias or used to create a sample-specific diploid reference
to map against. phASER phases called genotypes using read-backed and population-based phasing to
produce estimates of haplotype-specific gene expression [28].

Pantranscriptomic approaches using existing haplotype panels for inferring haplotype-specific ex-
pressions have also been developed. AltHapAlignR maps reads to the linear reference genome and
seven alternative HLA haplotypes to infer haplotype-specific transcript expression in the HLA region [29].
HLApers first aligns reads against all known HLA haplotypes to estimate the most likely haplotypes and
then infers haplotype-specific gene expression [30]. However, both of these pantransciptomic approaches
are limited to smaller genomic regions.

In this work, we present a novel bioinformatics toolchain for whole genome pantranscriptomic analysis,
which consists of additions to the vg toolkit and a new standalone tool, rpvg. First, the vg rna tool
can combine genomic variation data and transcript annotations to construct a spliced pangenome graph.
Next, vg mpmap can align RNA-seq reads to these graphs with high accuracy. Finally, rpvg can use
the alignments produced by vg mpmap to quantify haplotype-specific transcript expression. Moreover,
the information about population variation that is embedded in the pantranscriptome reference makes it
possible to do so without first characterizing the sample genome, and without restricting focus to SNVs.

Results

Haplotype-aware transcriptome analysis pipeline

In short, our pipeline works as follows (see Methods for a more detailed description). First, we construct
a spliced pangenome graph using vg rna, a method developed as part of the vg toolkit [8]. vg rna adds
splice junctions from a transcript annotation into a pangenome graph as edges and then labels the paths
in the graph that correspond to transcripts (Figure 1a). Simultaneously, vg rna constructs a set of
haplotype-specific transcripts (HSTs) from the transcript annotation and a set of known haplotypes by
projecting the transcript paths onto each haplotype. vg rna uses the Graph Burrows-Wheeler Transform
(GBWT) to efficiently store the HST paths allowing the pipeline to scale to a pantranscriptome with
millions of transcript paths [31]. Next, RNA-seq reads are mapped to the spliced pangenome graph using
vg mpmap, a new splice-aware graph mapper in the vg toolkit that can align across both annotated
and unannotated splice junctions (Figure 1b). vg mpmap produces multipath alignments that capture
the local uncertainty of an alignment to different paths in the graph (Supplementary Figure 1). Lastly,
the expression of the HSTs are inferred from the multipath alignments using rpvg (Figure 1c). rpvg
uses a nested inference scheme that first samples the most probable underlying haplotype combinations
(e.g. diplotypes) and then infers the HST expression using expectation maximization conditioned on the
sampled haplotypes.

RNA-seq mapping benchmark

We compared vg mpmap against three other mappers: STAR [2], HISAT2 [19] and vg map [8]. STAR
and HISAT2 can both use splicing information to guide mapping, but of the two only HISAT2 is able
to also utilize genomic variants. vg map is not a splice-aware mapper, but it is still able to map to
spliced pangenome graphs, which contain both splicing and genomic variation edges.
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Figure 1: Diagram of haplotype-aware transcriptome analysis pipeline
The three major steps in the pipeline. a vg rna adds splice junctions derived from a transcript anno-
tation to a pangenome graph to create a spliced pangenome graph. It simultaneously creates a pantran-
scriptome composed of a set of haplotype-specific transcripts (HSTs) using a panel of known haplotypes
(not shown). b vg mpmap aligns RNA-seq reads to subgraphs of the spliced pangenome graph repre-
sented as a multipath alignment. c rpvg uses the alignments from mpmap to estimate the expression
of the HSTs in the pantranscriptome.

We used two different references for the comparison: the standard reference genome with added splice
junctions (spliced reference) and a spliced pangenome graph containing both splice junctions and variants
(spliced pangenome graph). For STAR only the spliced reference was used.

Simulated sequencing data

Paired-end reads were simulated from HSTs derived from the GENCODE transcript annotation set [32]
and the NA12878 haplotypes from the 1000 Genomes Project (1000GP) [33]. vg sim was used to sim-
ulate the reads using reads from the ENCODE project (ENCSR000AED replicate 1) to parameterize
the noise model [34,35]. Fragment length distribution parameters used in the simulation were estimated
from the same reads using RSEM [1]. The CEU population was excluded from the spliced pangenome
graph as NA12878 is from that population, and we wanted to estimate performance for a new individual,
who may not be as closely-related to the 1000GP populations. We simulated the HSTs with uniform
expression rather than trying to match a previous expression profile, which could bias expression towards
easily-mappable transcripts.

Using the set of simulated reads we first compared the overall mapping performance of each method.
Figure 2a shows the mapping sensitivity and accuracy (log-scale) for different mapping quality thresh-
olds. An alignment was considered correct if it covered 90% of the true reference sequence alignment.
The graph alignments from vg map and vg mpmap were projected to the reference sequence for this
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Figure 2: Mapping benchmark using RNA-seq data from NA12878
RNA-seq mapping results comparing vg mpmap and three other methods using simulated and real Illu-
mina data (“vg sim (ENC, uniform)” and “ENCSR000AED” in Supplementary Table 4 and 3, respec-
tively). Solid and dashed lines show the results using a spliced pangenome graph and spliced reference,
respectively. a Mapping accuracy and sensitivity for different mapping quality thresholds (colored num-
bers) using simulated data. An alignment is considered correct if it covers 90% of the true reference
sequence alignment. b Mean fraction of mapped reads supporting the non-reference allele for variants of
different lengths in simulated data. Negative lengths correspond to deletions and positive to insertions.
The colored numbers are the mean fraction for SNVs. c Mapping rate using real data. The shaded bars
show the mapping rate for all alignments and the solid bars for only alignments with a mapping quality
above 0. d Pearson correlation between Illumina and Iso-Seq exon coverage using real data as a function
of mapping quality threshold. Exons are defined by the Iso-Seq alignments. e Number of read pairs
mapped per second per thread using real data. The mapping times were estimated using 16 threads on
a AWS m5.4xlarge instance. f Maximum memory usage for mapping in gigabytes using real data.

comparison. As can be seen in Figure 2a, vg mpmap achieves both a high sensitivity and accuracy,
while the other methods either had a lower accuracy or sensitivity. The results also show that the spliced
pangenome graph generally improves mapping performance.

To evaluate the method’s ability to align over unannotated splice junctions, we repeated the experi-
ment on a spliced pangenome graph (spliced reference for STAR) created from an annotation set with
20% of the transcripts missing (Supplementary Figure 2). This number was based on recent estimates
of the fraction of novel transcripts in a sample using long reads [36]. As expected, the performance of
vg map decreases dramatically since it can only align over splice junctions represented in the graph. vg
mpmap’s performance decreased markedly more on the downsampled annotation compared to STAR
and HISAT2 using the 90% threshold (Supplementary Figure 2a). This is likely due to its more conser-
vative approach to finding novel splice-junctions that require a high-scoring alignment in order for a new
junction to be statistically significant. Indeed, when using a threshold of 70%, the mapping accuracy vg
mpmap increases to a value higher than STAR and HISAT2 even when they use the complete transcript
set (Supplementary Figure 2b).

Next, we looked at whether using a variant-aware approach reduces reference bias. Figure 2b shows
the mean fraction of reads mapped to the alternative allele for different allele lengths. Negative values
correspond to deletions and positive values to insertions. When using the spliced reference genome, all
methods exhibit a bias towards the reference allele, with vg map and mpmap showing less bias than the
other methods. Using the spliced pangenome graph results in substantially reduced bias for all methods.
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The mapping results were corroborated by an alternate correctness criterion based on aligning within
100 bases of the correct position on the paths in the graph (Supplementary Figure 3).

The set of simulated reads used for the mapping evaluation was not used to optimize the develop-
ment and parameters of vg map and mpmap. Supplementary Figure 4a shows the results on the dataset
that was used for optimization, which used RNA-seq data from Tilgner et al. [37] to parameterize the
read simulation. The sensitivity and accuracy estimates for mpmap are quite similar between the two
datasets indicating that mpmap is not overfit to the training data. The performance of all the other
methods was generally worse on the training data.

Real sequencing data

We used the same read set from the ENCODE project that was used to parametrize the simulations to
benchmark the methods on real data. We first looked at the fraction of aligned reads for each method
(Figure 2c). vg mpmap was able to map more reads overall than any of the other methods. HISAT2
achieved a higher mapping rate for mappings with mapping quality greater than 0, but seemingly at the
cost of low specificity (Figure 2a). Using the spliced pangenome graph did not have a notable influence
on the mapping rates.

Ground-truth alignments are not available for real data, so we use a proxy based on Pacific Biosciences
(PacBio) Iso-Seq read mappings instead. Specifically, we compare to Iso-Seq read alignments generated
by the ENCODE project (ENCSR706ANY) from the same cell line as the Illumina reads. Since the cell
line is the same, we expect the transcript expression to be similar. Moreover, long reads can generally
be mapped more confidently than short reads. Thus, higher correlation in coverage between short read
mappings and the Iso-Seq mappings should be indicative of more accurate short read mappings in the
aggregate. Figure 2d shows the estimated Pearson correlation in the coverage of each exon as a function
of mapping quality threshold. As can be seen, both vg map and mpmap achieves higher correlation
than STAR and HISAT2, with the spliced pangenome graph resulting in even higher correlation for
both. The graph alignments from vg map and mpmap were projected to the reference genome for this
analysis.

Finally, we compared the methods’ mapping speed and memory usage. Figure 2e shows the number of
read pairs mapped per second per thread. Conversion from SAM to BAM was included in the HISAT2
time estimate to be more comparable to the output type of the other methods. vg mpmap’s increase in
accuracy does not come for free; it is between 3.6 and 5.2 times slower than HISAT2, depending on the
graph. However, it is 9.4 times faster than vg map on the spliced pangenome graph. vg mpmap uses
slightly more memory than STAR (Figure 2f).

We also compared the mapping performance of the different methods on the real RNA-seq data from
Tilgner et al. [37] and CHM13 RNA-seq data from the T2T consortium (Supplementary Figure 4b,c
and 5). Similar overall tendencies are observed using these datasets. It is important to mention that the
CHM13 data was used during the development of vg mpmap, and the other set was used to optimize
the parameters of vg map and vg mpmap.

Haplotype-specific transcript quantification

We compared rpvg to three other transcript quantification methods: Kallisto [3], Salmon [4] and
RSEM [1]. We stress that none of these methods were developed to work on pantranscriptomes with
millions of HSTs. However, they serve as a point of reference for what accuracy is achievable without
new methods development. The simulated data was generated by vg sim, largely as described for the
mapping benchmark. The only difference was that, rather than simulating transcripts with uniform ex-
pression, we simulated according to an expression profile that was estimated by RSEM using the same
ENCODE reads. Three different pantranscriptomes were generated for the evaluation using different
sets of 1000GP haplotypes (Supplementary Table 2): 1) all European haplotypes excluding the CEU
population (Europe (excl. CEU)) 2) all haplotypes excluding the CEU population (Whole (excl. CEU))
and 3) all haplotypes (Whole). The CEU population was excluded for the same reason as in the mapping
benchmark: because NA12878 is part of this population, and we wanted to evaluate the realistic setting
in which a sample is not as well represented by the haplotype panel. In addition, we created a sample-
specific transcriptome consisting of NA12878 HSTs (Sample-specific (NA12878)). This transcriptome
corresponds to the ideal case where a sample’s haplotypes are known beforehand.
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Figure 3: Haplotype-specific transcript quantification benchmark using RNA-seq data from
NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg against three other methods
using simulated and real Illumina data (“vg sim (ENC, RSEM)” and “ENCSR000AED” in Supplemen-
tary Table 4 and 3, respectively). Solid lines with circles are results using a pantranscriptome generated
from 1000 Genomes Project (1000GP) European haplotypes excluding the CEU population. Dashed lines
with triangles and squares are results using a pantranscriptome generated from all 1000GP haplotypes
without and with the CEU population, respectively. a Sensitivity and precision of whether a transcript
is correctly assigned nonzero expression for different expression value thresholds (colored numbers for
“Whole (excl. CEU)” pantranscriptome) using simulated data. Expression is measured in transcripts
per million (TPM). b Number of expressed transcripts from NA12878 haplotypes shown against the
number from non-NA12878 haplotypes for different expression value thresholds (colored numbers) using
real data. c Fraction of transcript expression (in TPM) assigned to NA12878 haplotypes for differ-
ent pantranscriptomes using simulated (left) and real (right) data. d Mean absolute relative difference
(MARD) between simulated and estimated expression (in TPM) for different pantranscriptomes using
simulated data. MARD was calculated using either all HSTs in the pantranscriptome (solid bars) or
using only the NA12878 HSTs (shaded bars). “Sample-specific (NA12878)” is a personal transcriptome
generated from 1000GP NA12878 haplotypes.

We first looked at the method’s ability to accurately predict whether an HST was correctly expressed
or not. Figure 3a shows the sensitivity and precision of whether a transcript is correctly expressed or
not using simulated data. The results were stratified by different expression thresholds up to a value of
10 TPM (transcripts per million). Note that we were not able to run RSEM on the two largest pan-
transcriptomes used in the figure. rpvg exhibits a mucher higher precision and sensitivity than the other
tools for all pantranscriptomes. Over 97.4% of the HSTs with an expression value of at least 1 TPM are
correctly predicted to be expressed by rpvg using the “Whole (excl. CEU)” pantranscriptome. Impor-
tantly, only a minor difference is observed between the pantranscriptomes without the CEU population
(excl. CEU) and the whole pantranscriptome (Whole), which contains NA12878. This could be explained
by the fact that less than 2% of HSTs are on average unique to a specific sample when compared to
all samples in other populations using the 1000GP data (Supplementary Figure 6). This suggests that
haplotype panels like the 1000GP are a good alternative when a sample’s haplotypes are not available,
although there are always limits to panel diversity, and some samples will be less well-represented by a
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1000GP pantranscriptome.
We also evaluated the accuracy of the HST expression estimation using real sequencing data (Fig-

ure 3b). Since we do not know which transcripts are expressed in real data, we focus instead on the
haplotype estimation. Sample NA12878’s haplotypes are known to a reasonably high degree of certainty.
Thus, we can indirectly measure accuracy by asking whether the HSTs that are estimated to be ex-
pressed are in fact from NA12878. Similar to the simulated data, Figure 3b shows that rpvg predicts
markedly fewer HSTs from non-NA12878 haplotypes than both Kallisto and Salmon. Using the
“Whole (excl. CEU)” pantranscriptome, rpvg predicted 2,836 HSTs from non-NA12878 haplotypes to
have an expression value of at least 1 TPM, while Salmon and Kallisto predicted 25,790 and 26,779,
respectively.

Next, we compared the fraction of transcript expression (in TPM) that was attributed to NA12878
haplotypes. This is shown in Figure 3c for both simulated (left bars) and real (right bars) data. We see
that rpvg attributes more than 98.9% and 93.1% of the expression to NA12878 haplotypes when using
simulated and real data, respectively. Furthermore, the figure shows that rpvg’s prediction accuracy
only decreases slightly when the size of the pantranscriptome increases from 2.5M HSTs in “Europe
(excl. CEU)” to 11.6M in “Whole (excl. CEU)”.

We compared how well the different methods could predict the correct expression value. Figure 3d
shows the mean absolute relative difference (MARD) between the expression values of the simulated
reads and the estimated values. The solid bars are MARD values when using all HSTs in the pantran-
scriptomes, and the shaded bars are when comparing the NA12878 HSTs only. Note that these bars are
the same for the sample-specific set, which consists of only NA12878’s HSTs. On the sample-specific set,
rpvg performs comparably to the other methods. However, as the size of the pantranscriptome grows,
the increase in MARD on the NA12878 transcript set is considerably less for rpvg relative to the other
methods. When looking at the whole transcript set in each pantranscriptome (solid bars), rpvg has the
lowest MARD. The much lower values compared to the NA12878 transcript set can be explained by the
large number of unexpressed HSTs in the full pantranscriptomes.

We also compared the expression values using Spearman correlation (Supplementary Figure 7). This
metric supported overall similar conclusions, albeit with Kallisto and RSEM performing comparably
to rpvg when using the pantranscriptomes but restricting focus to NA12878’s haplotypes. This suggests
that Kallisto and RSEM accurately rank these transcripts’ expression but do not accurately estimate
the absolute quantity.

To show the advantage of the multipath alignment format when inferring HST expression we repeated
the evaluation using single-path alignments as input to rpvg (Supplementary Figure 8). The single-
path alignments were created by finding the best scoring path in each multipath alignment. For all
pantranscriptomes and datasets, rpvg gave the best results using the multipath alignments.

Similarly to the mapping benchmark, we also evaluated rpvg on RNA-seq data from the CHM13
cell line and NA12878 RNA-seq data from Tilgner et al. [37] (Supplementary Figure 9 and 10). Overall,
similar conclusions can be drawn using these data. It is important to mention that both datasets were
used to optimize the parameters of rpvg.

Discussion

The pace of development in the field of eukaryotic pangenomics has surged in recent years. Improvements
in sequencing technology have made it practical to characterize the genomes of increasingly many samples.
As a result, pangenomes made from tens to hundreds of reference-quality genome assemblies have been
constructed for several agricultural organisms [38–40], and similar efforts are underway for humans by
the Human Pangenome Reference Consortium and others [41]. Simultaneously, the bioinformatics tools
to do pangenomic analyses have matured to the point of practicality for many applications [11, 42, 43].
Moving forward, we anticipate that pangenomic methods will continue to expand to inform increasingly
many areas of genomics [44].

In this work, we have presented one step in this expansion: generalizing transcriptomics into pantran-
scriptomics. Our novel bioinformatics pipeline provides a full stack of tools for pantranscriptomic anal-
ysis. It can construct pantranscriptomes, map RNA-seq reads to these pantranscriptomes, and quantify
transcription with haplotype-resolution. The construction takes advantage of efficient pangenome data
structures, the mapping achieves a desirable balance of accuracy and speed, and the quantification can
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infer haplotype-specific transcript expression even when the sample’s haplotypes are not known before-
hand.

Some downstream use cases are already apparent. This pipeline can be used to characterize genotypes
and haplotypes in coding regions from RNA-seq data, giving access to the exact transcript sequences
in a sample’s transcriptome. It also can be used to study causes of haplotype-specific expression, such
as imprinting, nonsense-mediated decay, and cis-regulation. In both cases, this pipeline increases the
information that is available from RNA-seq data without paired genomic sequencing. This will enable
low-cost study designs and deeper reanalyses of existing data.

Of course, our pipeline also has limitations. We have developed it to have good performance on
pantranscriptomes constructed from phased variant calls. This is presently the most available data
resource for constructing pangenomes. However, as increasingly many haplotype-resolved assemblies are
produced, we predict that the emphasis in pangenomics will shift to pangenome graphs constructed from
whole genome alignments. Constructing these graphs is currently an area of active research [45, 46].
Such graphs have more complicated topologies, often involving complex cyclic motifs. Experience leads
us to believe that pantranscriptomic tools will require further methods development to use these data
resources effectively.

Our pipeline is optimized for short-read RNA-seq data. The higher-error long-read RNA-seq tech-
nologies developed more recently require specifically-tailored algorithms for efficient analysis [36, 47].
Pantranscriptomic analyses of long-read RNA-seq data will likewise require further development, al-
though the pipeline described here could serve as a platform for this development. Nevertheless, the
cost-effectiveness of short-read sequencing virtually ensures that it will remain an important part of the
sequencing landscape into the near future.

Our pipeline also relies on having a comprehensive pantranscriptome that contains many of the
sample’s haplotype-specific transcripts. The pantranscriptomes used in this study (based on the 1000
Genome Project) provided good results in the two samples analyzed, but this performance may not
extend to samples from other populations. Here—and throughout pangenomics—there is a compelling
case to improve the completeness of data resources through more diverse sampling.
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Methods

Sequencing data, transcript annotations and variation databases

GENCODE v29 (primary assembly) was used as a transcript annotation set [32]. All transcripts with
either the mRNA start NF or mRNA end NF tag were removed in order to only keep confirmed full-
length transcripts. Furthermore, a transcript subset containing 80% of the GENCODE transcripts was
created by randomly removing 34,490 of the 172,449 transcripts in the annotation. The fraction removed
was based on recent estimates of the fraction of novel transcripts in a sample using long reads [36].

Genomic variants on GRCh38 from the 1000 Genomes Project (1000GP) were downloaded from EBI
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/)
[33]. The variants were first normalized using bcftools [48] and four different sets containing variants
from differently-sized collections of samples were created (Supplementary Table 1). Two of these sets
were constructed so as to not include variants unique to the CEU population. This was because we
benchmarked the pipeline on NA12878, who is from this population, and we wanted our evaluations to
cover one of the intended use-cases for the pipeline: sequencing a new sample from a population that is
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not represented in the reference haplotype panel. For all of the variant sets except the sample-specific set
(where allele frequency was not relevant), the intronic and intergenic variants were further filtered using
bcftools, keeping only variants with an alternative allele frequency of at least 0.002 or 0.001 depending
on the set. This was done to decrease the complexity of the graph in regions where fewer reads are
expected to map. The GRCh38 (primary assembly) reference genome used throughout the study was
downloaded from Ensembl (ftp://ftp.ensembl.org/pub/release-94/fasta/homo_sapiens/dna/).

A list of all sequencing data used can be found in Supplementary Table 3.

Spliced pangenome graph construction

We developed a method in the vg toolkit, vg rna, for constructing spliced pangenome graphs from a
transcript annotation and an existing pangenome graph. vg rna begins by identifying the path in the
graph that corresponds to each exon in the annotation. This process is facilitated by indexes in the vg
toolkit that can efficiently query graph locations of positions on the linear reference. These exon paths
can start or end internally in a node rather than only at boundaries between nodes, as with other paths
in vg. Next, vg rna divides nodes as necessary to expose exon boundaries as node boundaries and then
adds edges (splice-junctions) to the graph connecting adjacent exons within each transcript. The tran-
script paths are then labeled in the resulting spliced pangenome graph. Lastly, the spliced pangenome
graph’s node ID space is compacted and reordered in topological order to make graph compression more
efficient [49].

In addition to the spliced pangenome graphs, vg rna was also used to construct exon-only splicing
graphs. vg rna creates these graphs by removing all nodes and edges from a spliced pangenome graph
that were not covered by a transcript path. Different combinations of transcript annotations (full and an
80% random subset) and variant sets (Supplementary Table 1) were used as input to create the graphs
used in the mapping and expression inference evaluation.

Pantranscriptome construction

In addition to constructing spliced pangenome graphs, vg rna can simultaneously generate pantran-
scriptomes consisting of haplotype-specific transcripts (HSTs) created from transcript and haplotype
annotations. It creates pantranscriptomes by projecting the reference transcript paths onto haplotypes
paths that are either labeled in the graph or indexed using the Graph Burrows-Wheeler transform
(GBWT) [31]. The GBWT is a succinct data structure for efficiently storing thousands of paths in a
graph, such as haplotypes or transcripts. If nodes are split during the spliced pangenome graph construc-
tion (see above), vg rna first updates the haplotypes in the input GBWT. Next, the flanking positions
of the exon boundaries on the reference chromosome path are located in the graph. These positions
are used as anchors for projecting exons between the reference and haplotype paths. Anchoring on the
positions adjacent to exon boundaries allows for genomic variation at the distal ends of exons.

Depending on whether the haplotype paths are labeled in the graph or stored in a GBWT, the
projection is performed differently. For haplotype paths that have been labeled in the graph, we first
locate all paths that contain both anchor nodes for each exon in a transcript. Next, for each located exon
anchor pair we then follow the haplotype path between the two anchors to create the projected haplotype-
specific (HS) exon path. HST paths are then created by combining all HS exon paths that are projected
to the same haplotype. Only complete transcripts where all exons are successfully projected are kept.
A projection will fail if there is variation at the anchor position in the target haplotype. Finally, HST
transcripts that are identical are collapsed, producing a set of unique HSTs for each reference transcript.
Since the number of pre-collapsed HSTs can be as large as the number of haplotypes, the algorithm is
not suitable for large haplotype sets. For these, the GBWT-based algorithm, described below, is a better
choice.

A broadly similar approach is used when the haplotype paths are stored in a GBWT. However, it
differs in how the projected exons paths are constructed and combined. To find all possible haplotype
paths between two exon anchors, we use a depth-first search (DFS). The search is initialized at the start
anchor and traverses all possible paths in the graph starting from that anchor. Each explored exon path
in the DFS (branch) is queried against the GBWT index and is terminated if it is not a subpath of any
haplotypes in the index. Furthermore, a branch is also terminated if it is not possible to reach the end
anchor node by any of the haplotypes consistent with the exon path. This is determined by examining
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whether any of the haplotypes containing the exon path also contain the end anchor node. The output
from the search is a list of unique projected HS exon paths and the set of haplotypes consistent with
each of them. The final HST paths are constructed one exon at a time by connecting HS exon paths that
share at least one haplotype for each transcript. Because all the HS exon paths are unique this procedure
will always result in a set of only unique HST paths and thus it is not necessary to collapse identical
paths. This attribute makes the approach using the GBWT scale well with the number of haplotypes,
as it can take advantage of the fact that haplotypes are often identical locally.

A list of all pantranscriptomes created for this study including the transcript annotations and vari-
ant sets used as input can be seen in Supplementary Table 2. The HSTs were written both as nucleotide
sequences in FASTA format and as paths to a GBWT. A bidirectional GBWT, where each path is stored
in both directions, was also created. rpvg uses this index to decrease computation time when reads
are not strand-specific. For each GBWT, a corresponding r-index was further constructed. This index,
based on the original r-index by Gagie et al., significantly decreases the computation time it takes to
query path IDs in the GBWT [50].

Read simulation model

Simulated reads were generated using vg sim, a read simulator in the vg toolkit that is designed primarily
for next-generation sequencing (NGS) reads. Its model consists of three components: a Markov model for
base quality strings, a path frequency model, and a fragment length model (when sampling paired-end
reads).

The model for base quality strings is fit to replicate the base quality strings in a user-provided FASTQ.
A separate Markov transition distribution is fit for each base position in the read. The state of each
Markov distribution consists of two components: the Phred base quality at that base and whether that
base is an N. If a paired-end FASTQ is provided, vg sim will fit a separate model for each read end.
In addition, the first states of each read in the pair are modeled with a single joint distribution, which
allows for some dependence between the quality of both reads in the pair. The probabilities of the
Markov transitions and the initial states are estimated by their empirical frequency in the FASTQ.

vg sim determines the base sequence of each read by following random walks through the pangenome
graph. These walks may optionally be restricted to specific paths through the graph. Importantly for
this study, the simulation can be restricted to the paths of transcripts in a spliced pangenome graph. The
sampling frequency of a transcript path is proportional to the product of its length and its expression
value measured in transcripts per million (TPM), as determined by a user-provided expression profile.
Once the path has been chosen, the starting location of the read is selected uniformly at random along the
transcript. The sequence of the walk is then extracted, and sequencing errors are introduced according
to the probability distribution implied by the base quality string. A user-specified fraction of these errors
are produced as indel errors rather than substitution errors.

When simulating paired-end sequencing, the fragment length is modeled with a normal distribution.
The user provides the mean and standard deviation for this distribution. Both reads are sampled from a
single walk through the graph with length equal to a sampled fragment length. If the sampled fragment
length is longer than the path it is being sampled from, the fragment length is truncated to the path
length. If the sampled fragment length is shorter than the read length, the read is truncated to the
fragment length.

Simulating RNA-seq reads from haplotype-specific transcripts

Reads were simulated from haplotype-specific transcript (HST) paths derived from the haplotypes of
NA12878 in the 1000 Genomes Project (1000GP) and the GENCODE transcript annotation. The cor-
responding spliced pangenome graph (including the paths) was created using vg rna. Identical HSTs
were not collapsed, so that reads could be simulated from each haplotype independently.

In total, we created four different simulated read sets (Supplementary Table 4): two sets each training
with the SRR1153470 and ENCSR000AED read sets. For each training data set, one set of reads was
simulated with an expression profile derived from the training data, and the other set was simulated
with uniform expression across transcripts. The read sets with uniform expression were used to evaluate
mapping, whereas the sets with data-based expression were used to evaluate expression inference. For
the simulated read sets with data-derived expression, the reads were first mapped using Bowtie2 [14]
with default parameters and then expression-quantified using RSEM [1], also with default parameters.
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To ensure balanced expression between the two haplotypes for all transcripts, only transcripts that
were successfully projected to both haplotypes were given a positive expression. The fragment length
distribution mean and standard deviation estimated by RSEM was used to parameterize the fragment
length distribution in vg sim. For all four read sets, we simulated 25M 101 base-pair read pairs from
each haplotype with an indel probability error of 0.001 and the base quality distribution trained on 10M
randomly sampled read-pairs of the training data. The read-pairs were sampled using seqtk [51].

Mapping and multipath alignment with vg mpmap

Like most read mappers, vg mpmap’s mapping algorithm is designed using the “seed-cluster-extend”
paradigm. First, it locates exact matches “seeds” between the read and the graph. Next, the seeds are
“clustered”’ together to identify regions of the graph that the read could align to. Finally, the seeds
are “extended” into an alignment of the entire read. Because these operations occur in the context of a
pangenome graph, they use several specialized algorithms and indexes.

Seeding

vg mpmap seeds alignments with maximal exact matches (MEMs) against the graph, which it finds
using a GCSA2 index [52]. MEMs are exact matches between an interval of the read and a walk in the
graph such that the match cannot be extended further in either direction at that location in the graph.
The MEMs are found using a two-stage algorithm, which has also been described previously [8].

In the first stage, the algorithm finds super-maximal exact matches (SMEMs), which are MEMs for
which the read interval is not contained within the read interval of any other MEM (Supplementary
Algorithm 1). This algorithm also relies on a longest common prefix (LCP) array, which allows navi-
gation upward in the implicit suffix tree that the GCSA2 encodes. The second stage of the algorithm
finds the minimally-more-frequent MEMs of each SMEM, subject to a minimum length (Supplementary
Algorithm 3). These are the longest MEMs that are shorter than the SMEM but have their read interval
contained in the SMEM’s read interval. This stage also relies on the GCSA2 index.

Clustering

The clustering algorithm in vg mpmap is built around the distance index described in [53]. In brief, this
index can query the minimum distance between two positions in the pangenome graph by expressing
the distance as the sum of a small number of precomputed distances. This is accomplished by taking
advantage of the common topological features of pangenome graphs, namely that they tend to contain
long chains of bubble-like motifs that result from genomic variation. These features are captured in the
graph’s “snarl decomposition”, in which a snarl is one of these bubble-like motifs [54].

The clustering algorithm begins by constructing a directed acyclic graph (DAG) in which the nodes
correspond to MEM seeds. The edges are added whenever 1) there is a path connecting two seeds in
the graph, and 2) the seeds are collinear along the read. Note that the collinearity criterion guarantees
acyclicity. We use the distance index to determine the existence of a path that connects the seeds in
the graph, and the edges are also labeled by the distance. Edges that are much longer than the read
length are not added; this avoids treating distal elements on the same chromosome as part of the same
cluster. In addition, we accelerate this process using Algorithm 3 from [53], which partitions seeds into
equivalence classes based on the distance between them. The equivalence relation is the transitive closure
of the relation of being connected by a path of length less than d, which is a tunable parameter. By
choosing d correctly, we can ensure that all of the edges we would include occur between seeds in the
same equivalence class. This significantly reduces the number of distance queries we need to perform.

Once the DAG of seeds has been constructed, we approximate the contribution of each seed and edge
to the score of an alignment that contains them. Seeds are scored as if they are a short alignment of
matches, and edges between seeds may be scored as an insertion or deletion if the distance in the graph
does not match the distance on the read. These values serve as node and edge weights. We then use
dynamic programming to compute the heaviest path defined by the node and edge weights within each
connected component of the DAG and take the seeds along this path as a candidate cluster. Clusters
are passed through to the next stage of the algorithm if their weight is within a prespecified amount of
the heaviest-weight cluster, subject to a hard limit on the total number of clusters.
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Multipath alignments

Most existing sequence-to-graph aligners, including vg map, produce an alignment of the sequence to
a particular path through the graph. vg mpmap uses a different alignment formalism, which we call a
multipath alignment. In a multipath alignment, the sequence can diverge and reconverge along different
paths through the graph (Supplementary Figure 1). Thus, the read can align to a full subgraph rather
than to a single path. This allows the alignment object to carry within itself the alignment uncertainty at
known variants or splice-junctions. This information can be used in downstream inference applications,
including rpvg.

More formally, a multipath alignment of read R is itself a digraph with the following properties:

1. Each node corresponds to an alignment of some substring of R to a path in the pangenome

2. An edge between u and v exists only if u and v align adjacent substrings of R to adjacent paths in
the pangenome.

3. Every source-to-sink path through the multipath alignment can be concatenated into a complete,
valid alignment of R to a path in the pangenome.

It is worth noting that multipath alignments are acyclic by construction, since the nodes can be
partially ordered by the read interval that they align. vg mpmap additionally annotates each node’s
partial alignment with its alignment score. The alignment score of any particular sequence-to-path
alignment expressed in the multipath alignment can be computed efficiently by simply adding the partial
alignments scores along the path.

While sequence alignments have well-established optimization criteria, there is no such criterion for
optimizing the topology of a multipath alignment. In lieu of one, we adopt heuristics that are motivated
by the common topological features of pangenome graphs. Our high-level strategy is to use exact match
seeds to anchor alignments. We then use dynamic programming to align between seeds and within sites
of variation in the graph, which we identify using the snarl decomposition of the pangenome graph. Using
a multiple-traceback algorithm, we can then obtain alignments to different paths through the graph as
necessary.

Anchoring alignments

To use a cluster of exact match seeds to anchor a multipath alignment, it is first necessary to compute
the reachability relationships between the seeds. This is a non-trivial problem.

We begin by converting the local graph around a cluster into a directed acyclic graph using an
algorithm that has been described previously [8]. In brief, we identify small feedback arc sets within
each strongly-connected component using the Eades-Lin-Smyth algorithm [55], and then we duplicate
the strongly-connected component with the feedback arcs linking successive copies. Using dynamic
programming over the DAG as we construct it, we can preserve all cyclic walks up to some prespecified
length, which is based on the read length.

After creating the DAG, we inject the seeds into the new graph. Since the DAG conversion algorithm
can expand the node space of the original graph, seeds can now correspond to multiple locations in the
DAG. In this case, we duplicate the seeds to all of the corresponding locations in the DAG. We then use
a three-stage algorithm that computes the transitive reduction of a graph in which the nodes correspond
to seeds, and two seeds have an edge between them if they are collinear along the read and reachable
within the pangenome graph (Supplementary Algorithm 4).

1. Compute the reachability relationships between the seeds, ignoring collinearity on the read.

2. Rewire the reachability edges between the seeds to respect collinearity on the read.

3. Compute the transitive reduction of the resulting graph.

This algorithm is designed to have linear run time in the number of seeds and the size of the DAG,
but only in the typical case where the seeds line up along a walk through the pangenome graph. In the
general case, the run time can be quadratic.
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Dynamic programming with multiple traceback

The alignments between anchors (i.e. the vertices in the transitively reduced DAG) are computed using
a banded implementation of partial order alignment [56]. The alignments of the read tails past the end
of anchors are computed using a SIMD-accelerated POA implementation from the gssw library.

We use a specialized traceback algorithm to obtain the alignments to multiple paths through the
pangenome graph from a single dynamic programming problem (Supplementary Algorithm 8). Instead
of the optimal alignment, the algorithm returns the k highest-scoring alignments. We choose k to be
the number of paths through the subgraph we are aligning to, subject to a hard maximum. The key
insight behind the algorithm is that the next highest-scoring traceback can be determined by checking
local properties of the dynamic programming matrix while computing the highest-scoring traceback.
In addition, for each anchor that crosses a snarl, we remove the interior of snarl before performing
alignments. This way, the multiple traceback algorithm can align to multiple paths at sites of variation.

Quantifying mapping uncertainty

The method that vg mpmap uses to compute mapping quality is largely shared with vg map (see [8]
Supplementary Note). As in vg map, base qualities are incorporated into alignment scores (essentially
downweighting low-quality bases), and the alignment scores are subsequently used to compute a mapping
quality. The formulas used to compute mapping quality rely on the conversion of alignment scores into
the log-likelihood of a hidden Markov model (HMM), as described in [57] and [58].

vg mpmap also uses a concept of a mapping’s “multiplicity” to model errors introduced by the
mapping algorithm itself. In particular, at certain points in the algorithm, we enforce hard caps on
certain algorithmic behaviors, such as the number of alignments that will be attempted, in order to
prevent excessive run time. If we run up against these hard caps, we expect that not all high-scoring
alignments will be found. We incorporate this information into the mapping quality formula by treating
alignments as if multiple equivalent alignments actually were found. For example, if we attempted
alignments for 10 of 30 promising clusters and found 1 high-scoring alignment, we would estimate its
multiplicity to be 3. That is, we estimate that there are a total of 3 alignments that are equally high-
scoring, including the ones that we did not find. We then compute the mapping quality as if 2 additional
copies of the alignment had been found.

Multiplicities allow vg mpmap to aggregate information about sources of algorithmic inaccuracy
over different steps in the algorithm. The central entities in each step of the mapping algorithm (seeds,
clusters, alignments, and pairs) are each associated with a multiplicity. These multiplicities follow
particular combining rules between successive steps of the algorithm. When combining orthogonal pieces
of information (seeds in a cluster, or single-end alignments in a paired alignment), the new entity receives
the minimum of its constituents’ multiplicities. When layering on a new source of algorithmic uncertainty
(typically a further hard cap), an entity’s multiplicity is multiplied by its estimated multiplicity in that
step of the algorithm.

Determining statistical significance

vg mpmap uses a frequentist hypothesis test to assess the statistical significance of a read alignment.
The test statistic that we use is the alignment score. The null hypothesis is that the alignment score was
obtained by a uniform random sequence of the same length as the read. By default, we set the type-I
error rate to 0.0001. If an alignment score’s p-value is not significant at this level, the alignment is still
reported, but its mapping quality is set to 0.

Modeling the null hypothesis of the test is not entirely straightforward. In general, we expect higher
local alignment scores from longer reads or larger pangenome graphs. However, there are subtleties. A
large pangenome graph may consist of many repeats of the same sequence so that its effective size is
smaller than its total sequence length. Alternatively, a small pangenome graph may have a complex
topology that admits a combinatorially large set of walks. For these reasons, we take an empirical
approach that fits a model to match the pangenome graph. At the start of every mapping run, we map
a sample of uniform random sequences of varying lengths. The resulting alignment scores are used to fit
the parameters of a distribution using maximum likelihood, and those parameters are regressed against
the read length. The regression allows us to query the p-value for a read of any length.

The parametric distribution we use can be derived as the maximum of ν independent, identically
distributed (i.i.d.) exponential variables with rate λ. This distribution has the following probability
density function:
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f(x|λ, ν) = λν(1− e−λx)ν−1e−λx. (1)

The fitting algorithm alternates between maximizing the likelihood with respect to each of the two
parameters with the other fixed until convergence. ν is fit using the Newton-Raphson method, and λ is
fit using golden-section search.

The motivation for this model is that the length of the match starting at position of a uniform random
sequence (the read) and position of a fixed sequence (the reference) is approximately Geometric(1/4),
assuming the two sequences are relatively long. The optimal local alignment score is closely related to the
longest match at any position on the read sequence to any position on the pangenome graph. Moreover,
most of these matches have only weak dependence on each other, so the i.i.d. approximation is reasonable.
We use an exponential distribution because it closely approximates a geometric distribution and is easier
to fit.

Paired-end mapping

vg mpmap has several features designed to take advantage of the paired-end sequencing reads produced
by Illumina sequencers. At the beginning of each paired-end mapping run, vg mpmap uses a sample of
the first 3,000 uniquely mapped pairs to fit parameters of a fragment length distribution. The distance
between the reads in each pair is computed with the distance index. Non-uniquely mapped pairs are
buffered and then remapped after the fragment length distribution has been fit.

The fragment distribution is modeled as a normal random variable with mean µ and variance σ2. We
use a method of moments estimator for a truncated normal distribution so that the parameter estimation
is robust to possible mismappings. In particular, we discard the largest and smallest 1−γ

2 N fragment
length measurements (default γ = 0.95). This procedure makes the estimator insensitive to a sufficiently
small fraction of outliers. The remaining γN measurements correspond to a sample from a truncated
normal distribution with the same µ and σ2. The following estimators can be derived using method of
moments on this truncated normal distribution:

µ̂ = x̄ (2)

σ̂2 = s2
(

1− 2αφ(α)

γ

)−1
, (3)

where x̄ and s2 are the empirical mean and variance among the retained γN measurements, and
α = Φ−1

(
1−γ
2

)
is the left truncation point on a standard normal distribution.

When mapping paired-end reads, the clustering stage of the algorithm adds an additional step. First,
each read in the pair’s seeds are clustered as in the single-end algorithm. Next, the clusters from the two
reads are paired by checking which pairs imply a fragment length within 10 standard deviations of the
mean, as estimated by the algorithm in the previous section. The implied fragment length connecting
two clusters is estimated using the distance index, with the position of a cluster taken to be the position
of its longest seeds. Pairs of clusters are prioritized by a sum of an estimated alignment score (interpreted
as a log-likelihood) and the log-likelihood of the normal distribution that we model the fragment length
distribution with.

The heuristics used for read mapping inevitably fail in some cases. When mapping paired-end reads,
it sometimes happens that the heuristics fail on only one of the two reads of a fragment. When this
occurs, it is sometimes possible to “rescue” the alignment of the other read by aligning it to the region
of the pangenome graph where we expect to find it relative to the mapped read.

vg mpmap employs this strategy whenever the pair clustering procedure fails to produce a pair of
clusters consistent with the fragment length distribution, or when all of the clustered alignment pairs
have at least one end without a statistically significant alignment. We also perform a limited number of
rescues even when a consistent cluster pair is found, provided that there are clusters of at least one of
the ends that are equally as promising as the one in the cluster pair. This helps improve the calibration
of mapping qualities. We place a hard cap on the number of rescues performed to control run time. The
fraction of eligible rescues that were actually performed becomes a component in the multiplicity of an
alignment, as described previously.

The multipath alignment algorithm is slightly different when computing rescue alignments. This is
necessary because there are no exact match seeds to use as anchors. Instead, we first perform a single
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path alignment using gssw. Then we remove any sections of the alignment that lie inside snarls, and
realign those segments of the read as when connecting anchors in the standard multipath alignment
algorithm.

Spliced alignment

Because spliced pangenome graphs include annotated splicing events as edges, it is usually unnecessary
to use specialized alignment algorithms to obtain spliced alignments. However, even for well-annotated
genomes, transcript annotations are incomplete, especially for lowly-expressed transcripts. Thus, it is still
important to be able to produce spliced alignments. vg mpmap includes a spliced alignment algorithm
but applies it conservatively: only when the primary alignment includes a long soft-clip on at least one
end. A long soft-clip is suggestive that the clipped end of the read might align to a part of the graph that
was too distant to be included in the primary seed cluster, as would be expected with an unannotated
splice event.

The spliced alignment algorithm begins by finding candidate regions to align the clipped read end to.
These regions are selected by scanning over secondary mappings, unaligned seed clusters, and unclustered
seeds. To be considered, they each must 1) roughly correspond to the clipped end of the read, and 2) be
reachable from the primary alignment by some path in the graph. Reachability is determined using the
minimum distance index. Candidates are excluded if they are too distant from the primary alignment
(default 500 kbp).

Next, the spliced alignment algorithm looks for splice motifs near the ends of the pair of splice
candidates. If any pair of canonical splice site dinucleotides are found on any path from the two ends,
the intervening sequence is aligned as if the two splice sites were joined by an edge in the graph. Splice
motifs are penalized by their log-frequency, as given by Burset, et al. [59]. A spliced alignment is deemed
to be statistically significant if the increase in score relative to the unspliced primary alignment would
have been sufficient to be a statistically significant mapping for the entire read. The spliced alignment
algorithm is repeated until no statistically significant spliced alignments are discovered.

RNA-seq mapping evaluation

We compared vg mpmap’s performance at mapping RNA-seq data against the vg toolkit’s existing
graph alignment method vg map [8] and two state-of-the-art RNA-seq mapping tools, HISAT2 [19]
and STAR [2]. Graph indexes and genomes were created for each tool using default parameters, with
mpmap and map sharing the XG and GCSA index. The mapping compute and memory usage of each
tool were estimated using 16 threads on an m5.4xlarge AWS instance. All mappers were run with de-
fault or recommended parameters for RNA-seq data. The SRR1153470 and CHM13 data were used to
optimize the parameters of vg map and vg mpmap.

We evaluated mapping accuracy on simulated reads using two different methodologies to ensure the
robustness of our conclusions. One methodology was based on basewise overlaps along the linear refer-
ence genome, and the other was based on distances along transcript and reference paths in the graph.

For the overlap-based evaluation the graph alignments were first projected to the reference paths
using vg surject in spliced alignment mode. Briefly, surject takes a set of graph-aligned reads and
re-aligns them to all nearby reference paths in the graph, producing a BAM file with the reads aligned
to the reference sequences. The re-alignment is only performed on the parts of the alignment that do not
already follow the reference paths. A read was considered correctly mapped if 70% or 90% (depending
on the evaluation) of the bases of the simulated true reference alignment were covered by the estimated
alignment. The true reference alignments were generated using the transcript position of each read
provided by vg sim and the NA12878 haplotype-specific transcript reference alignments. The latter
were created by projecting the transcript paths to the reference sequences using vg surject in spliced
alignment mode. Due to sequencing artifacts, the ends of reads will occasionally consist of such low-
quality bases as to be practically random. Aligners that decide to softclip these uninformative bases
would be penalized in this overlap-based evaluation. We therefore decided to trim all bases at both
ends of an alignment (including the true alignments) that had a phred base quality score below 3. All
alignments for which more than half of the sequence was trimmed were discarded from the evaluation so
that the percent overlap could be estimated more confidently.

We used the vg gampcompare tool for the distance-based evaluation. The truth set in this evalua-
tion was the true graph alignments produced by vg sim. In short, vg gampcompare finds the minimum
possible distance between the start position of an estimated alignment and the true alignment across
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all reference and transcript paths in the graph. Before running gampcompare, HISAT2 and STAR’s
BAM format alignments were converted into graph alignments (GAM format) using vg inject, which
translates linear reference alignments into alignments against the path of the reference in a graph. An
alignment was considered correct if its start position was within 100 bp of the start position of the true
alignment along the path of the reference or any transcript path.

Reference bias was quantified using simulated reads, by counting the number of reads that overlapped
variants with a mapping quality value of at least 30. For this analysis we used the reference-based
alignments (projected alignments for vg map and vg mpmap). In order to treat different variant types
and lengths equally, we computed the read count for each variant as the average read count across the
variant’s two breakpoints. Reads simulated from each haplotype were counted separately and only vari-
ants with at least 20 reads across both alleles combined were used to quantify reference bias. Complex
variants that were not classified as SNVs, simple deletions or simple insertions were skipped.

When benchmarking using real reads, truth alignments are not available. Instead, we used a proxy
measure of aggregate mapping accuracy based on long read mappings from the same cell line. The long
reads are easier to map confidently, and we expect the cell line to have similar transcript expression
across replicates. Thus, higher correlation between the coverage of short read mappings and the cov-
erage of long read mappings is suggestive of higher accuracy. For long read data, we used NA12878
PacBio Iso-Seq alignments generated by the ENCODE project (Supplementary Table 3). The cleaned
Iso-Seq alignments of four replicates were first merged and secondary alignments and alignments with
a quality below 30 were filtered using samtools [60]. These filtered alignments were then compared
to the short-read RNA-seq alignments by calculating the Pearson correlation of the average exon read
coverage between the two. Exons were defined using the Iso-Seq alignments by first converting them to
BED format and then merging overlapping regions using bedtools [61].

We measured memory and compute time for all mappers using the Unix time utility. The reads per
second statistic was computed by dividing the number of reads by the product of the wall clock time
and the number of threads. This is a somewhat biased measurement, since it includes the one-time start
up computation that does not scale with the number of reads. However, the magnitude of this bias is
small, and it tends to disfavor vg mpmap, which has the longest start up of the tools we evaluated.

All secondary alignments were filtered in all evaluations using samtools. Reference alignments
in BAM format were sorted and indexed, also using samtools. The SeqLib library was used in the
evaluation scripts to parse the alignments and calculate overlaps [62].

Haplotype-specific transcript quantification

We developed rpvg as a general tool for inferring the most likely paths and their abundance from a set
of mapped sequencing reads. In this study we used rpvg to quantify the expression of haplotype-specific
transcripts (HSTs) in a pantranscriptome. rpvg’s algorithm consist of four main steps:

1. Find read alignment paths that align to HST paths

2. Cluster alignment paths and HST paths

3. Calculate alignment path probabilities

4. Infer haplotypes and expression from probabilities

A graphical overview can be seen in Supplementary Figure 11.

Finding alignment paths

The first step of rpvg is to parse each alignment and find all alignment paths that align to (i.e. follow)
at least one HST path in the pantranscriptome GBWT index (Supplementary Figure 11a). An alignment
path is the set of nodes a read alignment follows in the graph. For single-path alignments there is only
one alignment path, but for multipath alignments there can be many. We will here focus on multipath
alignments, since a single-path alignment is merely the simpler case when a multipath alignment only
contains a single path.
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Multipath alignments are represented as a graph, and thus the objective is to find all paths through
this graph that also exist as subpaths in the GBWT. In other words we want to find all possible align-
ments that the read can have to all HST in the pantranscriptome. This search would normally scale
linearly in the number of HSTs overlapping the read, but the GBWT allows us to query all HSTs that
contain the same subpath. Therefore, HSTs that are locally identical will be queried together, taking
advantage of the fact that haplotypes are markedly more similar locally than globally.

rpvg uses a depth-first-search (DFS) through the multipath alignment graph to find all alignment
paths. A branch in the search is terminated if its alignment path is not present as a subpath in the
GBWT. A DFS is initialised at each source node in the alignment graph. We terminate any alignment
path early where it is not possible to reach a score of 20 below the current highest scoring path, assuming
perfect scoring for the remainder of the alignment.

The topology of the multipath alignment graphs is determined by heuristics. In some cases these
heuristics fail, resulting in multipath alignments that do not cover all possible alignment paths. This
can result in incorrect downstream expression estimates as a read might be missing an alignment path
to the correct HST. To overcome this, rpvg allows alignment paths to be shortened in order to be made
consistent with an HST path. More specifically, the DFS can start and end up to four bases inside the
read (excluding soft-clipped bases). The score of partial alignment paths are penalized proportionally to
the number of non-matched bases at each end, adjusted for their quality.

The output from the DFS is one set of alignment paths for each multipath alignment. Next, rpvg
labels a set as low scoring if the highest scoring alignment path in the set is less than 0.9 times the
optimal quality-adjusted alignment score, which is the score an alignment would get if it consisted of
only matches. The sets labeled as low scoring are treated as being incorrect; they may be misalignments,
or originate from an HST not in the input pantranscriptome. The labeled sets are later used when
calculating the noise probability.

For paired-end reads, one additional step is needed: combining the alignment paths of each read to
create a set of alignment paths for the whole fragment. First a set of alignment paths is generated for
each alignment in the pair as described above. Next, rpvg attempts to combine each start (first read)
alignment path with each of the end (second read) alignment paths. If the fragments are not strand-
specific and the pantranscriptome GBWT is not bidirectional, rpvg then repeats the process using the
reverse complement of the fragment.

The procedure to combine the two alignment paths differs depending on whether they overlap or
not. If they do overlap, a single combined alignment path is created for the fragment by merging the
two while requiring that the path of overlapping portions matches perfectly. If they are separated by an
insert, the start alignment path is extended using a DFS following the HST paths. If the search reaches
one of the start nodes for an end alignment path, a new fragment alignment path is created by merging
the search and end alignment path. The new fragment alignment path is only kept if it follows at least
one HST path in the pantrancriptome. The search is terminated if all start nodes in the end alignment
paths have been visited and they are not part of a cycle. An alignment path is discarded if its length is
above µ+ 5σ, where µ and σ are the mean and standard deviation of the fragment length distribution.
These parameters are either supplied by the user or parsed from the input alignments (the vg aligners
write the parameters they estimated to the alignment file). The score of the resulting fragment alignment
path is calculated as the sum of the scores of the two read alignment paths. The mapping quality is
calculated as the minimum across the two reads.

The final output from the search is a set of alignment paths and the HSTs that each path aligns to
for each read or fragment. For simplicity, in the following, we will use the term “fragment” to denote
both a single-end read and a set of paired-end reads.

Clustering transcript paths

HST paths that do not share any fragments are independent, and therefore their expression can be
inferred separately. In contrast, the expression of HST paths that share alignments must be inferred
jointly. Accordingly, rpvg identifies clusters of HST paths that share alignment paths from the same
fragment. By dividing the inference problem into these smaller, independent clusters, computation and
memory can be considerably reduced.

The clustering algorithm works by first constructing an undirected graph where vertices correspond
to HST paths and edges correspond to HST paths being observed in the same set of fragment alignment
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paths. All connected components in this graph (clusters) are then located using breadth-first-search. All
fragments are assigned to their respective clusters based on the HST paths that their alignment paths
align to.

Calculating alignment path probabilities

For each fragment, the probability of it originating from each of the HSTs in its cluster is calculated by
rpvg using the alignment path scores, lengths and mapping quality (Supplementary Figure 11b). First
the probability ε that the fragment was not from any of the HST in the cluster is calculated using the
mapping quality q:

ε = max
(
εmin, 10−q/10

)
, (4)

where εmin is the minimum noise probability. The motivation behind having a minimum is that mapping
qualities are generally less reliable at higher values. The minimum noise probability is 10−4 for all
fragments except those that were labeled as low scoring, for which it is 1. Now, let A be the set of
alignment paths (i.e. alignments) for this fragment. For each alignment path a ∈ A, the likelihood of it
being the correct path is calculated using its score sa and length `a:

L(a) = φ

(
`a − µ
σ

)
exp (λsa) , (5)

where φ is the standard normal density function, λ is a scaling factor that converts the alignment score
into the log-likelihood of a pair-HMM [58], and µ and σ are the mean and standard deviation of the
fragment length distribution modeled using a normal distribution. For paired reads, these parameters
are estimated from the alignment path lengths across all fragments that have 1) a mapping quality of
at least 30, and 2) the same length for all alignment paths. The fragment length distribution is omitted
from the equation when the fragments are single-end reads. With this likelihood, we can compute the
posterior probability that the fragment originated from a given HST. Let the set of all HST paths in the
cluster be denoted by T , and let the set of HST paths an alignment path a is consistent with be denoted
by Ta. The probability that the fragment (or alignment A) originated from an HST is calculated as:

pt = (1− ε) · P (t|A) = (1− ε) · P (A|t)P (t)∑
t∈T P (A|t)P (t)

(6)

with

P (A|t) ∝ max
a∈A

{
L(a)˜̀
t

if t ∈ Ta
0 otherwise

(7)

Here, ˜̀t is the effective transcript length for t calculated as ˜̀t = `t − µ`t . In turn, µ`t is the mean of the
fragment length distribution truncated to [1, `t]. A similar approach is used in Salmon [4]. The effective
transcript length accounts for the fact that fragments cannot be sequenced from all positions due to the
size of the fragment. If the fragments are single-end reads, the fragment length distribution parameters
used to calculate the effective length must be supplied by the user. The prior over HSTs P (t) is taken
to be uniform. If the HST probability pt is below 10−8, it is truncated to 0 to reduce storage.

We denote the set of all fragment probabilities in a cluster as F and the probabilities for a fragment i as
Fi = (ε,p), where p is the vector of probabilities over all T HSTs in the cluster. Many fragments will have
very similar probabilities and can thus be collapsed to save computation resources and memory [4, 63].
To do this we collapse two fragment probabilities Fi and Fj if they satisfy both of:

∣∣εi − εj∣∣ < 10−8 (8)∣∣∣pit − pjt ∣∣∣ < 10−8, ∀t ∈ T (9)

We also associate each set of collapsed fragments with c, the number of collapsed fragments in the
set. The resulting set E of tuples (ε,p, c) is subsequently used to infer the expression of the HSTs in the
pantranscriptome.
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Inferring haplotype-specific transcript expression

rpvg quantifies the expression of the HSTs in the pantranscriptome using a nested inference scheme
(Supplementary Figure 11c). This is done independently for each cluster. First, the distribution over
diplotypes (i.e. pairs of haplotypes) is inferred. A haplotype combination is then sampled from this dis-
tribution and expression is inferred conditioned on the sampled haplotypes. This procedure is repeated
multiple times to account for the uncertainty in the haplotype estimates. In the following, we will assume
the sample is diploid, but the equations and algorithms generalize to any ploidy.

The marginal distribution over diplotypes is approximated by assuming the haplotypes are identical
for all transcripts in a cluster. The motivation behind this approximation is that most clusters cover
only a small region (e.g. gene) of the genome. However, this approximation can break down when there
are partial haplotypes or recombination events in the cluster. Using the transcript and haplotype origin
table provided by vg rna, the HSTs in the cluster are first grouped by their haplotype origin. Note
that since an HST can be consistent with more than one haplotype it can also belong to multiple groups.
Next, groups with the same set of HSTs are collapsed resulting in a set of unique haplotype groups.

Now let us denote the set of haplotype groups as H, with each group h ∈ H consisting of a set of
HSTs. The objective is to infer the distribution over diplotypes d = {h1, h2} conditioned on the set of
collapsed fragment probabilities E. The probability of a diplotype is defined as:

P (d|E) = P ({h1, h2}|E) ∝ P (h1)P (h2)
∏

(ε,p,c)∈E

(
ε+

1− ε
2

(P (p|h1) + P (p|h2))

)c
(10)

and

P (p|h) =
1
n

∑
t∈h pt∑

k∈H
1
n

∑
t∈k pt

∝
∑
t∈h

pt (11)

where the prior probability of each haplotype group P (h) is proportional to the number of haplotypes in
the group, and n is the number of transcripts in the cluster ( 1

n and 1
2 amount to an approximation that

expression is uniform across all transcripts and the two haplotypes, respectively). This model is inspired
by similar haplotyping models used in Platypus and other genotypers [64–66].

The distribution over diplotypes is inferred by calculculating P (d|E) for all pairs of haplotype groups
h ∈ H. To reduce the space of haplotype combinations that need to be evaluated, rpvg uses a branch-
and-bound-like algorithm, where diplotypes containing an improbable haplotype group are not evaluated.
Instead, the probability of all diplotypes containing an improbable haplotype group is set to 0. A
haplotype group h is labeled to be improbable if its optimal diplotype probability P ({h, ho}|E) is s · 104

times lower than the current highest evaluated probability, where s is the number of diplotypes sampled
in the next step in the inference. The optimal diplotype probability is defined as

P ({h, ho}|E) ∝ P (h)
∏

(ε,p,c)∈E

(
ε+

1− ε
2

(
P (p|h) + max

ho∈H
(P (p|ho))

))c
(12)

This value serves as an upper bound on the probability of any diplotype containing h.

Using the inferred distribution over diplotypes the expression of the HSTs in the cluster is inferred.
First a diplotype is sampled from the distribution P (d|E) and all HSTs that are consistent with at least
one of the haplotypes in the diplotype are collected. We denote this HST subset Ts ⊆ T and define the
likelihood over the expression values α as

L(α) =
∏

(ε,p,c)∈E

(∑
t∈Ts

αtpt

)c-ε
, (13)

where c-ε is the noise-adjusted fragment count: c-ε = c(1− ε). To find the (local) maximum likelihood
estimate of the expression values a expectation maximization (EM) algorithm is used. The algorithm
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iterates between assigning fractional fragment counts to the HSTs and updating the expression values.
This is a well known algorithm that is used by many other transcript quantification tools [1, 3, 4, 63].
The expression values are initialized uniformly and the EM algorithm is run until convergence or for a
maximum of 10,000 iterations. The algorithm is considered converged if

∣∣αit − αi−1t

∣∣
αit

≤ 0.001, ∀t ∈ Ts : αt ≥ 10−8 (14)

for 10 consecutive iterations, where i is the index of the current iteration. This criteria is inspired by the
one used by Kallisto [3] and Salmon [4]. All expression values below 10−8 of the maximum likelihood
estimate are truncated to 0. The diplotype sampling and EM steps are repeated 1,000 times to propagate
the uncertainty over diplotypes into the HST expression estimates. Since the EM algorithm is deter-
ministic, the same expression values are inferred for the same diplotype. We therefore only need to run
the EM step once for each uniquely sampled diplotype, which can considerably reduce computation time.

The final output of rpvg is the haplotype probability and estimated expression value for each HST
in the pantrancriptome. The probability is calculated as the fraction of diplotype samples which in-
cluded the HST. The expression reported is the average across all diplotype samples (including samples
where the HST’s expression is zero due to its haplotype being absent from the diplotype).

Transcript quantification evaluation

We compared rpvg’s quantification accuracy against three other transcript quantification tools: Kallisto,
Salmon and RSEM. Haplotype-specific transcript indexes for Kallisto, Salmon and RSEM were
built from the HST sequence FASTA files generated by vg rna. Salmon indexing was run with du-
plicates kept and, on the real data, the reference genome was given as a decoy. The Bowtie2 mapper
was used in RSEM with the maximum number of alignments per read increased to 1,000. The tran-
script expression was estimated using default parameters for all methods, except for the real data where
strand-specific inference was enabled. Kallisto and Salmon were run without bias correction as it did
not provide a clear advantage on the “Europe (excl. CEU)” pantranscriptome using the SRR1153470
reads (data not shown). RSEM was only run on the NA12878 sample-specific transcriptome and the
“Europe (excl. CEU)” pantranscriptome, as it did not scale to the two largest pantranscriptomes.

rpvg was run using default parameters and with two different types of alignments inputs: the stan-
dard multipath alignments from vg mpmap and single-path alignments generated by finding the best
scoring path in the multipath alignments using vg view. The fragment length distribution parameters
estimated by vg mpmap were given as input to rpvg when using the single-path alignments as they
are lost from the alignment file during the conversion. rpvg was run with a ploidy of 2 for all read
sets, including CHM13. For the simulated data, the exon-only splicing graphs were used when mapping
the reads using vg mpmap. These graphs are more comparable to the transcriptomes that the other
methods use for (pseudo)-alignment. For the real data, we used the whole spliced pangenome graphs.
All HSTs with a haplotype probability below 0.8 were filtered from the rpvg output. The SRR1153470
and CHM13 read data was used to optimize the parameters of rpvg.

For the SRR1153470 and ENCSR000AED data, which are both NA12878 cell lines, we compared the
quantified HSTs to the NA12878’s haplotypes from the 1000 Genomes Project data. We considered an
HST consistent with these haplotypes if it matched the sequence of one of the two possible NA12878
haplotype versions of the transcript. The haplotyping performance of each method was then estimated
by comparing the number and fraction of quantified HSTs with positive expression that were consistent.

We used transcripts per million (TPM) to measure expression. For the simulated data we re-calculated
the TPM value for all methods. The reason was that we wanted to ensure that there was no bias towards
RSEM, which was used to estimate the expression profile employed by vg sim to parameterize the HST
expression values. The TPM value depends on the effective transcript length, which is not calculated in
the same manner for each method. Therefore, if this is not corrected, methods that estimate the effective
transcript length more similarly to RSEM will have an advantage that does not depend on their ability
to predict correct expression values. The true fragment length distribution parameters and the effective
transcript length approach employed by rpvg (similar to Salmon) was used when re-calculating the
TPM values.
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The method’s ability to predict the correct expression value was evaluated using the simulated data
for which the true expression is known. The true expression values were calculated from a table provided
by vg sim, which indicates the transcript of origin for each read. The simulated TPM values were cal-
culated in the same manner as described above. We used both Spearman correlation and mean absolute
relative difference (MARD) to quantify concordance between estimated and true expression.

The CHM13 cell line is effectively haploid, so only a single HST is expected to exist for each tran-
script. We used this feature of the data to measure the haplotype inference performance of each method
on the T2T CHM13 data. We defined each HST as either major or minor. Major HSTs were defined
as the highest expressed haplotype for each transcript; the rest were defined as minor. The fraction of
expression from minor HSTs is a lower bound on the fraction of incorrectly inferred transcript expres-
sion. Accordingly, we used the number of major and minor transcripts that each method predicted to
be expressed to compare their haplotype inference performance.

Code and data availability

A list of the versions used of each method is available as Supplementary Table 5. All bash scripts
with exact command-lines used to generate the results are available at the following GitHub repository:
https://github.com/jonassibbesen/vgrna-project-paper. This includes log files, references to the
Docker containers used to run the methods and links to the raw simulated sequencing data used in
the evaluation. Furthermore, all created spliced pangenome graphs and pantranscriptome haplotype-
specific transcript sets are available for download at the repository for use in other projects. All custom
C++, Python and R scripts used for the evaluation and plotting are available at https://github.com/
jonassibbesen/vgrna-project-scripts.
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