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The development of highly scalable single cell transcriptome technology has resulted in the creation of thousands of 4 
datasets, over 30 in the retina alone. Analyzing the transcriptomes between different projects is highly desirable as 5 
this would allow for better assessment of which biological effects are consistent across independent studies. 6 
However it is difficult to compare and contrast data across different projects as there are substantial batch effects 7 
from computational processing, single cell technology utilized, and the natural biological variation. While many 8 
single cell transcriptome specific batch correction methods purport to remove the technical noise it is difficult to 9 
ascertain which method functions works best. We developed a lightweight R package (scPOP) that brings in batch 10 
integration methods and uses a simple heuristic to balance batch merging and celltype/cluster purity. We use this 11 
package along with a Snakefile based workflow system to demonstrate how to optimally merge 766,615 cells from 12 
34 retina datsets and three species to create a massive ocular single cell transcriptome meta-atlas. This provides a 13 
model how to efficiently create meta-atlases for tissues and cells of interest. 14 
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Introduction 19 

A plethora of single-cell transcriptome studies in the retina 20 

The retina contains a multitude of cell types that, in total, are responsible for turning light information into 21 

signal for the brain to interpret as vision. Very briefly, the photoreceptors (rods and cones) are responsible for 22 

capturing the photons. The retinal pigmented epithelium (RPE) behind the photoreceptors physically support the 23 

rods and cones by processing byproducts of the visual cycle. Müller glia serve as support cells for the neurons. The 24 

retinal bipolar cells transmit the electrical signal from the photoreceptors to the retinal ganglion cells. Horizontal and 25 

amacrine regulate and help interpret signals from the photoreceptors. The signal is relayed via the retinal ganglion 26 

projections through the optic stalk to the brain (for review see1). Since 2000 many groups have investigated gene 27 

expression in small numbers of individual cells of the retina.2–5 28 
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The recent introduction of lower cost and high throughput single cell sequencing technology has led to an 29 

explosion of research across many fields. As of early 2021, over 40 million cells have been sequenced across over 30 

1,200 studies and the average size of each study starting in 2020 is over 100,000 cells.6 The retina was used as the 31 

source tissue in one of the earliest works in the high throughput single cell transcriptomics field.7 As of late 2020, 32 

over a twenty published studies, cumulatively containing over a million cells, have used single cell technology to 33 

profile cell type specific gene expression patterns, cell fate trajectory, tissue and cell differentiation, and disease 34 

perturbation across multiple mammalian species.7–29 35 

While the gene - cell count tables are generally made available in repositories like the Gene Expression 36 

Omnibus (GEO), there are no requirements to uniformly process the data. This means the count tables cannot be 37 

used in cross-study comparisons as even small differences in the computational pipeline (aligner, transcriptome 38 

reference, etc.) create study-specific effects. This issue can be addressed only by re-quantifying the data in a uniform 39 

computational environment. Fortunately, due to the continued development of computationally light-weight gene 40 

quantification tools in the single-cell space (e.g kallisto bustools, alevin-fry), re-quantification does not require 41 

massive compute and time resources.30,31 42 

Still, even after re-quantification under identical computational conditions there remain study specific batch 43 

effects due to the diversity in single cell technologies used and variation in tissue handling and processing across 44 

each scientific group. The single cell community has recognized that removal of these technical (also referred to as 45 

batch) effects is a critical issue and have independently developed many tools, though it remains unclear which tools 46 

and parameters are optimal for a particular dataset.32–43 47 

The projectable meta-atlas 48 

We propose that by re-processing publicly available raw single cell transcriptome data in a consistent 49 

bioinformatic framework and optimally using batch correction tools we can create a meta-atlas of retina single cell 50 

transcriptomes. As there are thousands of possible permutations of single cell tools, references, and parameter 51 

choices, we create our meta-atlas (which we refer to as the single cell Eye in a Disk or scEiaD) by benchmarking 52 

integration outcomes across multiple important single cell RNA-seq processing parameters (batch removal method, 53 

number of hyper-variable genes (HVGs), clustering resolution, etc.). The benchmarking system we developed uses a 54 

wide variety of metrics that combine in the R package scPOP (single-cell Pick Optimal Parameters). The scEiaD 55 
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will be of utility to two communities. First, the ocular community who can both search scEiaD for gene expression 56 

across many dimensions (e.g. cluster, cell type, study) and project their own single cell data onto scEiaD for 57 

comparison and rich automatic cell labelling. Second, the computational community can use this very large, well-58 

curated dataset to test algorithms for compute efficiency and performance in a diverse environment. As we believe 59 

data re-use is a powerful and efficient approach to facilitate discovery, we provide our meta-atlas code-base, the 60 

meta-atlas in several data formats, and propose general guidelines to optimally create custom meta-atlases. 61 

Results 62 

We identify 33 ocular scRNA datasets across 3 species 63 

The first step in building a meta-atlas is identifying studies to draw the data from. We identified ocular 64 

single cell RNA sequencing (scRNA) studies by querying PubMed, the Sequence Read Archive (SRA), and the 65 

European Nucleotide Archive (ENA) for the inclusive terms “retina”, “single cell”, “scRNA”, “ocular”, “eye”, 66 

“transcriptome.” We then hand filtered the results to only keep ocular and normal (non-perturbed or mutagenized) 67 

data from single cell RNA-seq technology. On December 2020 we identified 33 deposited datasets that have been 68 

published in 27 publications (Figure 1). To provide a non-ocular reference we also downloaded the raw sequence 69 

data from the Tabula Muris project for re-processing. In cases where the fastq file from the SRA was not processed 70 

properly, we acquired the bam files (SRA or personal correspondence) and re-extracted the fastq. After downloading 71 

all the data we had 11 TB across 2470 fastq file sets. 72 
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73 

Figure 1: a. Schematic of the retina with major cell types delineated b. Simplified directed workflow of major steps 74 
in scEiaD creation from raw counts to gene counts, benchmarking optimal integration methods (SnakePOP) to 75 
produce batch corrected latent dimensions (Latent Dims), then downstream analysis outputs like clustering, 76 
differential gene testing (Diff Testing), and 2D UMAP visualization. c. Counts of published papers and batches 77 
(unique biological samples) for each scRNA technlogy, split by organism d. Cell type counts extracted from 78 
published studies for the more common retina cell types, split by species. Count of study accessions for each species 79 
overlaid on bar plot. 80 

Transcriptome quantification across multiple technologies 81 

Droplet and well based scRNA-seq technologies require different quantification approaches as the former82 

have UMI and multiple cells are quantified within a single file. We wrote a Snakemake based pipeline83 

(SnakeQUANT, see methods) to quantify and merge both droplet and well based technologies into a single matrix84 

for downstream processing. For well based data we perform both gene and isoform level quantification; for droplet85 

base technologies we quantify both exonic and intronic gene-level expression to facilitate calculation of RNA86 

velocity. In total we quantify 6.7e+10 molecules, finding 1.1e+10 unique molecules with a mean pseudoalignment87 

rate of 66.5%. Across the 766,615 cells (post QC) we have an average of 3,410 RNA counts across 978 unique genes88 

(see Supplemental File kallisto_stats.tsv and splicing_stats.tsv for more details). 89 

1,204,269 cells before quality control 90 

Gene-level counts were quantified with the kallisto bustools pseudo-aligner for both the droplet and well91 

based samples. After empty droplet removal, we had 1,204,269 cells. We then removed cells which had more than92 

4

 

es 

er 

ine 

rix 

let 

A 

nt 

es 

ell 

an 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 28, 2021. ; https://doi.org/10.1101/2021.03.26.437190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437190


 5

10% mitochondrial reads across all gene counts or fewer than 200 unique genes quantified. After these standard 93 

quality control steps we were left with 790,072 cells (Supplemental Figure 1). 94 

A core objective of many scRNA based studies is labeling the cell types. As this information is crucial to 95 

assess dataset integration and provide an accurate reference for user querying, we extracted individual cell labels 96 

with a combination of inspecting the GEO web site, supplemental information from the publication, web resources 97 

(e.g. a web app was created for the paper), and personal correspondence. After normalizing cell type name 98 

nomenclature, we obtained labels for 375,966 cells across 33 cell types (Supplemental Table 1). 99 

Running 11 tools in a Snakemake-based system 100 

Disentangling the technical and biological effects when integrating multiple datasets is crucial. We define 101 

batch as each unique biological sample and assume each study is at least one unique sample. We studied the 102 

metadata and methods of each study to identify the unique biological samples. Within the current scEiaD data set we 103 

identified 86 batches across 34 deposited datasets in 26 published papers. 104 

A wide variety of methods have been written for scRNA-seq integration. As we were uncertain which 105 

would perform the best, we ran 11 tools with a commonly used set of key parameters like number of hyper variable 106 

genes (HVG), size of latent dimensional space, and the number of nearest neighbors for the louvain clustering 107 

algorithm. The Snakemake system was used to automate the running of the wide variety of tools. In total 5,591 jobs 108 

were run to quantify gene expression and build the unified Seurat objects (SnakeQUANT) and 2,446 jobs were run 109 

to assess integration performance (SnakePOP). 110 

The two key metrics which have to be balanced in order to optimize integration performance are cell type 111 

or cluster purity (where different cell types or clusters should be homogenous) and batch mixing (the same cell types 112 

should be similar across independent studies). While these can be visually assessed by looking at marker gene 113 

expression across the 2D UMAP projection, it is more rigorous and scalable to quantify these diametrically opposed 114 

characteristics. 115 

scPOP wraps several different methods for measuring integration performance. 116 

Multiple methods have been proposed to quantitatively evaluate batch correction. Some of these metrics 117 

evaluate the concordance between sets of labels, while other compute distances between the individual data points of 118 
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a given set of labels. While any one of these methods can be useful, we propose that calculating and evaluating them 119 

in tandem provides greater accuracy for dataset integration. We developed the R package scPOP, a lightweight, low 120 

dependency R package which brings together the Local Simpson Index (LISI), Average Silhouette Width (ASW), 121 

Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) metrics from the R packages Harmony, 122 

kBET and aricode, respectively. The LISI and ASW were used to measure batch mixing (where lower is better), cell 123 

type mixing (higher is better), and cluster mixing (higher is better). NMI and ARI were used to assess the 124 

consistency of cell type to cluster assignment (where 1 is perfect correspondence between cluster and cell type). 125 

To visualize the interplay between batch mixing and cell type distinction we plot the batch mixing LISI 126 

score (which has been multiplied by -1) on the y-axis (higher is better) against the cluster LISI on the x-axis (higher 127 

is better). The best performer on both metrics will be in the top right corner (Supplemental Figure 2a). In the same 128 

manner we plot the silhouette metric (Supplemental Figure 2 b). To merge the different scores we define 129 

��������	 
 ∑����	�� where m is a metric (LISI by batch, LISI by cluster, LISI by cell type, silhouette by 130 

batch, silhouette by cluster, silhouette by celltype, NMI, and ARI). 131 

On one extreme we have ComBat, which merges together different batches very well, but also mixes 132 

together the distinct cell types (Figure 2a). The other extreme is not using any batch integration method, where you 133 

see very distinct groups of cells, but also each nearly study is has a distinct region in the UMAP (Figure 2b). In our 134 

scEiaD dataset we see that like ComBat, Harmony and CCA are weighed more towards batch mixing then cluster 135 

and cell type purity. Scanorama, fastMNN, and bbknn prioritize cleanly separating the clusters. With our scEiaD 136 

meta-atlas insct, trVAE, and magic do not perform particularly well in batch mixing or cluster purity. Across the 11 137 

integration methods we tested, scVI achieved the highest sumZScale for out scEiaD meta-atlas. 138 

Different normalization methods alter integration performance 139 

There are several normalization approaches that have been used or published. The “standard” approach that 140 

the popular analysis packages Seurat and anndata use by default is to, per cell, divide the counts by the sum counts 141 

for the cell, multiply by a scaling factor, then log transform. This helps make the count distribution more normal, 142 

which is an assumption that many algorithms require. In contrast, the scran normalization method groups cells into 143 

pools and normalizes across the pool summed counts instead of the individual cell counts. We also use the square 144 

root (sqrt) normalization which replaces the log transformation with a square root. Library size (libSize) 145 
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normalization omits the sqrt or log transformation. Finally some methods, like scVI, directly use the raw counts data146 

for modeling the data. 147 

As expected the libSize normalization which omits the log or square root scaling generally performs the148 

worst (Figure 2c). We see that the remaining normalization techniques alter the batch correction performance,149 

though the outcome differs across the different methods. We also see that changing the number of latent dimensions150 

(8 or 30) can occasionally dramatically change performance. These results demonstrate the importance of assessing151 

performance in a rigorous manner across many parameters. 152 

153 

Figure 2: a. Example of a method (combat) which has a high level of batch blending, but poor separation of cell 154 
types (colored by cell type). b. no batch correction cleanly separates cell types but does not mix batches (colored by 155 
study). c. sumZScale (higher is better) for each method across a variety of data normalizations. All methods shown 156 
here use 2000 HVG, louvain clustering, and 8 latent dimensions. Each color is a different method. d. Boxplot of 4 157 
different clustering resolutions for across 1000 to 10000 HVG numbers and 4 to 50 scVI latent dimensions. Open 158 
boxes are using scVI-standard and gray boxes are scVI-projection (human reference with the remaining data 159 
projected) 160 

Further optimization of scVI with grid search and projection 161 

To find the best set of parameters for scVI in out dataset we did a grid search across key parameters: HVG,162 

latent dimensions, and k nearest neighbors. Furthermore we used a recent advance in scVI capability (>= version163 
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0.8.0) adapted from scArches that allows one to build a reference model and query or project the new cells onto it.40 164 

We refer to this projectable model as “scVI-projection”, and the previous scVI model as “scVI-standard”. We built a 165 

scVI-projected model trained on human cells and then projected the mouse and macaque data onto it. We then 166 

compared scVI-projection against the against the previous scVI-standard across all the previously mentioned 167 

parameters. Using scPOP we first saw that the scVIprojection approach generally performed better than running 168 

scVI with all of the data (Figure 2d). We found the optimal overall parameters to be 5000 HVG, 8 latent dimensions, 169 

and with 5 k-nearest neighbors for the cluster finding. We also varied the UMAP projection values of nearest 170 

neighbors and minimum distance to qualitatively pick a 2D projection, selecting a minimum distance of 0.1 and 50 171 

nearest neighbors. 172 

High accuracy xgboost ML model built to label unknown cell types across all technologies 173 

To further study cell type specific expression patterning we needed to label the 414,106 unlabeled cells. 174 

Traditionally this is done by clustering the cells, then using cell type specific markers to label the clusters. However, 175 

as we had hundreds of thousands of expert labeled cells across 17 publications (Figure 1a) we built a xgboost-based 176 

machine learning model that used 2/3 of the labeled cells as a training set (see methods for more details) to train a 177 

cell type predictor for scEiaD input. The trained model was used to predict the cell type assignments for all cells in 178 

scEiaD. In this manner we both label most cells (cells which cannot assign a cell type with a probability above 0.5 179 

were left unlabeled) and correct a small number of probable mislabels in the truth set (Figure 3a). 180 

As a brief case study of our ML performance, we look at the cell type labels assigned to a Shekhar et 181 

al. study where they used SMART-seq on a retinal bipolar cell enriched population of cells21 . Even though our ML 182 

algorithm was trained only on droplet-based data, our algorithm labels most of this dataset as retinal bipolar cells, 183 

with the next most common cell types being amacrine. The same result was found by Shekhkar et al. (Supplemental 184 

Figure 3). To more generally evaluate performance we use the precision recall (PR) curve, which visualizes the 185 

ability of the model to precisely label known cells at a given confidence. The area under the PR curve (AUC) 186 

summarizes the effectiveness of the model across different cell types, with 1 being the highest performance. The 187 

xgboost model can predict rods, bipolar cells, and Müller glia with near perfect performance (Supplemental Figure 188 

4). Most of the remaining cell types can be predicted with an AUC over 0.9 Supplemental Table 2. Several of the 189 

precursor cell types (photoreceptor, AC/HC, and neurogenic) were labeled with lower confidence Supplemental 190 
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Table 3. The next most common labels for these cell types were either other precursor cells (e.g. 100 AC/HC191 

Precursors were labeled as Neurogenic) or the adjacent terminal cell type (e.g. 254 photoreceptor precursors were192 

labeled as cones). Other cell types that were challenging for the model to predict were the artery, choriocapillaris,193 

and vein. Artery, choriocapillaris, and vein are constructed from endothelial cells and we find that for all three of194 

these, endothelial was the second most common label. Overall, our xgboost based ML model shows strong accuracy195 

across the major cell types of the retina (overall AUC of 0.98). 196 

197 

Figure 3: a. Top genes that are differentially expressed across the major cell types of the retina (PR is short for 198 
Photoreceptor). Genes are colored by which cell type they are differentially expressed in. The dot size is 199 
proportional to the percentage of those cells that have detectable levels of the gene. The color of the dot is the log2 200 
scaled CPM expression. b. 2D UMAP projection of scEiaD, colored by cell type (Tabula Muris data is gray). Arrows 201 
are scvelo RNA velocity. Longer arrows are cells with higher velocity (relatively more unspliced transcripts). 202 
c. Facet plot that demonstrates how each major cell type of the retina is contained within a distinct space. 203 
d. Confusion matrix of cell type prediction performance of our xgboost labeller between predicted (x axis) and 204 
known (y axis) using data withheld from the machine learner. Most of the cell types are indeed labeled as their true 205 
type. e. Faceting of 2D UMAP by species and colored by cell type demonstrate how the major cell types of the retina 206 
share space with like cell types, despite being from mouse, human, and macaque. 207 
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ML cell type labels result in high study diversity for each cell type 208 

After ML projection of cell type labels from the original 375966 labels onto a total of 758278 cells we have 209 

substantially improved the number of studies per cell type. For example, we went from 8 human studies with labeled 210 

Müller Glia to 14 after labeling (Supplemental Table 4). Overall we go from an average of 4 studies per human cell 211 

type to 8 and 2 studies per mouse cell type to 8 after transferring the cell type labels. 212 

As another check on the quality of the cell type assignments, we ran the cell and cluster independent 213 

haystack gene search and pairwise differential expression tests between the predicted cell types (see methods for 214 

further details). We show the five most differentially expressed genes for each of the major retina cell types are 215 

consistent with known retinal cell markers (Figure 3a). As a simple metric to identify known and unknown genes 216 

relating to the cell type specific expression we search PubMed for the number of publications with two searches per 217 

gene. We expect most of the genes identified to be known in the literature. The first search is the more precise “gene 218 

AND cell type” (e.g. “PDE6H AND Cones”) and the second search is the more inclusive “gene AND retina” 219 

(e.g. “PDE6H AND Retina”). Of the 50 genes in (Figure 3a), 37 had one or more citations in the gene - cell type 220 

search (Supplemental File celltype_markers.tsv) and 45 had one or more citation in the inclusive search. The 50 221 

genes had a mean of 46 studies (with the inclusive gene by “retina” search). In contrast, 100 randomly chosen genes 222 

had a mean of 2 (wilcox test p < 1.44 x 10^-17). 223 

The scVI-based scEiaD UMAP projection blends batches and species while separating cell 224 
types 225 

The 2D UMAP projection of the scVI-calculated batch corrected 8 latent dimensional space blends the 33 226 

studies together while also maintaining distinct space for the 31 unique cell types. We also see good mixing across 227 

all the droplet and well based single cell technologies (Supplemental Figure 5). We see the neurogenic and 228 

progenitor populations from which the retinal cell types are derived near the center of the UMAP visualization. The 229 

photoreceptor precursors are adjacent to the neurogenic population and, as demonstrated by the RNA velocity 230 

dynamics, flow into the rods and cones. The amacrine and horizontal precursors (AC/HC) likewise flow from the 231 

neurogenic center into the mature amacrine and horizontal cells. 232 

The photoreceptors (cones and rods) of the retina which are responsible for color and low-light vision, 233 

respectively, are near each other in the UMAP space. The major remaining retina cell types, by proportion in the 234 
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mammalian eye are the Müller Glia, which are a glial cell type which help support the neurons of the retina. Next we 235 

have the neural cell types which transmit and help interpret the signals from the photoreceptors before they leave the 236 

retina via the optic stalk: the amacrine cells, retinal ganglia, horizontal, and bipolar cells. All of these cells are in 237 

well separated spaces in the UMAP. Finally we see across species that the major cell types overlap each other 238 

(Figure 3d). The macaque retina cells are not present in the precursor/neurogenic center of the UMAP as expected 239 

because only fully developed tissues were sampled in these data. 240 

While by eye the UMAP 2D projection generally blends together the three different species (macaque, 241 

mouse, human) in the UMAP visualization, we more rigorously tested this by changing the inputs to our xgboost cell 242 

type predictor machine learning system. We trained two new models: one with only human data and one with only 243 

mouse data. We then applied this model to the other two species to see whether the model trained on one species was 244 

generally transferable to another species. Again, both models (human only and mouse only) both proved to be highly 245 

accurate at predicting cell types in the other species with the terminal cell types (Supplemental Figure 6. 246 

Projection of outside data onto scEiaD demonstrates similarities and differences of iPSC 247 
and organoids to primary cells 248 

The hard work of creating this resource can be leveraged and extended by the wider community with a few 249 

relatively simple steps and modest compute requirements. Very briefly, if outside groups quantify their mouse or 250 

human scRNA with kallisto (bustools) and the same references (see methods), they can overlay their data on top of 251 

scEiaD by 1. installing scVI (version 0.9.0 or higher), 2. downloading our 13 megabyte scVI model, and 3. 252 

following the Jupyter notebook on Google colab that we provide as a live demo available from 253 

https://github.com/davemcg/scEiaD. We demonstrate the power of this approach in two ways. 254 

First, a wild-type retinal organoid dataset from Kallman et al was projected onto scEiaD.44 In the Google 255 

colab notebook we show how a subset of the reads from Kallman et al.’s SRR12130660 can be processed from the 256 

raw reads to a UMAP visualization in under 10 minutes. Indeed we see how organoid-based retinal cell types can be 257 

detected overlapping primary cells for RPCs, photoreceptors, amacrine cells, and retinal ganglion cells 258 

(Supplemental Figure 7). 259 

Finally, we demonstrate how the RPE derived from the Bharti iPSC differentiation process express 260 

canonical RPE markers of TTR and RPE65 but end up in a slightly different position in the UMAP projectionFigure 261 
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4a). Differential expression analysis (see methods) identified that vimentin is nearly exclusively expressed in the262 

iPSC-based RPE Figure 4b). This result is not surprising as Hunt et al. demonstrated that cultured and proliferating263 

RPE express high levels of vimentin45 and this same trend is seen in bulk RNA-seq from stem cell RPE and primary264 

RPE Supplemental Figure 8).46 265 

 266 

Figure 4: a. RPE distribution colored by study demonstrates how the most RPE are in two locations. iPSC-based 267 
RPE we provided are located more enriched in cluster 47. Tissue RPE more enriched in cluster 34 b. Violin plot of 268 
two functional RPE markers (TTR, RPE65) and vimentin (proliferating RPE marker) 269 

Methods 270 

Reproduciblity 271 

The set of Snakemake pipelines that takes in the raw fastq sequence and outputs the scEiaD is at272 

https://github.com/davemcg/scEiad.47 The publication commit is #9d3c5e1 Furthermore, the repository has been273 

deposited at Zenodo under 10.5281/zenodo.4638117 We will briefly discuss the pipeline choices, programs and274 

algorithms, and versions below. For the R packages, we provide package versions as the supplementary file275 

“R_session_info.txt” 276 

Quantification of gene counts 277 

Gene quantification is handled by the SnakeQUANT snakefile. First, we generated multiple quantification278 

indices to facilitate calculation of RNA velocity. For each droplet technology, we generated a separate set of279 

transcript sequences that contain both exonic and intronic sequences using the “get_velocity_files” function from the280 

R package BUSpaRse. The reference transcriptome annotation used to build sets of transcript sequences were the281 

Gencode “gencode.vM25.annotation.gtf.gz” and “gencode.v35.annotation.gtf.gz” for mouse and human,282 

respectively.48,49 Because the Macaca Fascicularis genome is less well annotated we used the Ensembl release 101283 
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genome and transcriptome annotation “Macaca_mulatta.Mmul_101.gtf.gz.”50 A single set of exonic transcript 284 

sequences was created for each species for all well techonologies. A kallisto quantification index was generated for 285 

each of these fastas using kallisto index (0.46.2).51 Well based samples were quantified using kallisto quant. For the 286 

relatively few single ended samples, the params “–single -l 200 -s 30” were used for kallisto quant. Otherwise the “–287 

bias” flag was added. For the droplet-based samples, we adapted the bustools workflow for generating spliced and 288 

unspliced count matricies. (0.39.4).52 289 

Intersection of gene names between mouse, macaque, and human 290 

To facilitate comparison of gene expression across species, where possible we converted mouse and 291 

macaque gene ids and names to human ones. We downloaded a mapping of orthologous genes between human, 292 

mouse, and macaque using the Ensembl BioMart web browser in November 2020. We identified 15,759 human 293 

genes that could be directly mapped to mouse and macaque orthologs. Genes present in mouse or macaque that were 294 

not found in human were not used for HVG gene selection, but were retained and used for differential gene 295 

expression. 296 

Custom macaque reference quantification 297 

As we noticed that several retina marker genes (e.g. NRL and CRX) had very low expression in the 298 

macaque data we quantified the scRNA data twice: once with the Ensembl reference and again with the same 299 

Gencode human reference used for the human data. We compared the gene-level counts for each cell and replaced 300 

the macaque gene count with the human counts if the human counts were greater than the macaque counts and, to 301 

prevent genes with very few total counts from being used, we required the counts greater than the first quartile of 302 

non-zero macaque gene expression. 303 

Remove empty droplets and further QC. 304 

After bustools count, we used R (3.6.2) to remove empty droplets. The BUSpaRse package was used to 305 

input the bustools counts mtx file. The DropletUtils package with the “barcodeRanks” function was used to 306 

automatically detect the inflection point in the barcode count ranks that delineates the likely empty droplets.53 We 307 

then removed cells with percent mitochondrial reads of >10%. After merging the individual count matrices into one 308 

sparse matrix, we created a Seurat version 3 object and removed cells with fewer than 200 detected unique genes, 309 

and for the droplet data, more than 3000 detected genes (these are likely to be doublets).32 310 
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Normalization and batch effect correction 311 

The following steps (normalization through benchmarking are handled by the SnakePOP pipeline) We 312 

tested several gene count normalization approaches as we were not certain which would produce an optimal 313 

outcome: standard (default Seurat, library size normalization, then log transform), sqrt (same, but with sqrt 314 

normalization), libSize (omit the log or sqrt normalization), scran, SCT from Seurat, and for scVI, no normalization 315 

(counts).54 Our R implementation of the normalization approaches as well as how we constructed the Seurat v3 316 

object can be found in the supplementary file “make_seurat_obj_functions.R” 317 

Batch normalization under a grid search procedure 318 

We tested scArches, bbknn, insct, magic, scVI, CCA, scanorama, harmony, fastMNN, combat, none against 319 

2000 HVGs, the different gene count normalization procedures discussed above, and both 8 and 30 outputted batch 320 

corrected latent dimensions. The latent dimensions are the input for clustering, the 2D UMAP visualization, and the 321 

xgboost machine learning to transfer cell type labels to unlabeled cells. We were unable to run every method 322 

successfully with every normalization method. Magic could not complete with the standard or libSize normalization. 323 

CCA could not complete with the libSize normalization. We also tried the DESC, liger, and Conos batch corrections 324 

methods but were unable to get them to work reliably so they were dropped. The batch correction step 325 

implementation can be found the supplementary file “merge_methods.R” and in the github repo 326 

(https://github.com/davemcg/scEiaD/blob/master/src/merge_methods.R). 327 

Clustering and UMAP 328 

Louvain-Jaccard clustering against the batch corrected latent dimensions used the Seurat implementation.55 329 

We tried the k-nearest neighbors (knn) parameters 5 and 7 (where 5 gives more clusters than 7). We also used the 330 

leiden algorithm as implemented by PARC with a resolution of 0.6 and 0.8 (higher results in more clusters).56,57 331 

These two resolutions were chosen as they roughly gave the same number of clusters at the Seurat Louvain-Jaccard 332 

approach with a knn 7. 333 

The UMAP visualization was calculated with the Seurat “RunUMAP” using the uwot R package.58 We 334 

tried min.dist parameters of 0.001, 0.1, and 0.3 and tried n.neighbors across 15, 30, 100, and 500. A smaller min.dist 335 

value gives “tighter” groupings while a higher number of n.neighbors uses a larger number of near cells to calculate 336 

the global positioning. 337 
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Benchmarking and scPOP 338 

We wrote the scPOP R package to unify the LISI and Silhouette metrics from Harmony and kBet, 339 

respectively, along with NMI and ARI.36,59 LISI and Silhouette require a dense matrix, which is a problem for our 340 

data as a 766615 cell by 8 latent dimension dense matrix cannot fit in out largest available memory node (1.5 TB). 341 

We down-sampled the dataset to ~100,000 cells, taking care to keep all rarer cell types for the LISI and Silhouette 342 

benchmarking. 343 

To merge these metrics into a balanced single score, we Z scale each and sum them. scPOP produces both 344 

tables and visualizations allowing the user to quickly see both the interplay of batch mixing and cluster/cell type 345 

separation and the overall performance. If a user wishes to prioritize batch mixing or cluster/cell type separation we 346 

let the user provide a custom batch/cluster-cell type scaling value (1 is the default). 347 

Multi-step doublet removal 348 

To identify probable doublets (more than one cell in a droplet) we ran DoubletDetect and scrublet and 349 

calculated the distribution of DoubletDetect and scrublet scores across all clusters and removed clusters with a score 350 

in both metrics greater than 4 standard deviations above the mean.60,61 This removed another 23,457 cells, leaving 351 

766,615 in total. 352 

xgboost based cell type model 353 

In order to identify cell types for the 361,456 unlabeledcells we designed a custom xgboost based cell type 354 

classifier. We took labeled data and split it into training (2/3) and test (1/3) sets, stratified by cell type. The input 355 

features used to train the model are the scVI latent dimensions, the total number of reads in each cell, the number 356 

genes detected in each cell, and the percent mitochondrial gene expression of each cell. We additionally generated 357 

features using the age of each sample by group sample into three developmental categories (Early Development, 358 

Late Development, and Adult) and then generated a one-hot encoded feature for each category. In order to speed up 359 

training times, we used the gpu implementation of the xgboost algorithm from the the xgboost python library. The 360 

model was trained using default parameters. The trained model had an overall macro and micro AUC score of 0.98 361 

and 0.99, respectively. This model was then used to identify labels for all cells. Unlabeled data was pre-processed 362 

identically to training data and fed into model to generate a vector of label probabilities for each cell. We selected 363 

the highest label probability for each cell, and required a minimum probability of 0.5 to assign a label to a cell. 364 
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For the organism specific xgboost ML we followed the above procedure, except that we combined Early 365 

RPCs, Late RPCs, and RPCs into one category and did not attempt to predict the non-retina cell types 366 

(e.g. fibroblasts) as there were very few labeled cells across all three organisms. 367 

Marker gene identification 368 

To identify marker genes across the CellType (predict) and cluster groups, we used the scran findmarkers 369 

(wilcox test) along with the singleCellHaystack algorithm. The scran findmarkers test runs a wilcox test in a 370 

pairwise manner (e.g. Rods vs all other cell types). It returns an overall p-value (and FDR) that assesses how well 371 

the gene is at separating the group of interest from all other cells. It also returns for each pair-wise comparison an 372 

area under the curve (AUC) score, where 1 is a perfect power to distinguish and 0 is no power. The 373 

singleCellHaystack algorithm uses a Kullback-Leibler divergence (D KL) measurement of the scVI lower 374 

dimensional space to identify genes with non-random distribution. A higher D KL score represents a gene with 375 

“specific” expression in the lower dimensional space and is used to calculate a FDR corrected p value against the 376 

full distribution of D KL values. We filtered to keep genes with scran FDR < 1, a mean AUC > 0.2, and a log10(D 377 

KL FDR) < -10000. No more than 50 genes for each cell type were retained (sorted by mean AUC). 378 

Calculation of RNA velocity 379 

RNA velocity calculations were with the velocriaptor wrapping of the scVelo python library.62 From the 380 

anndata objects generated by our Snakemake pipeline we calculated velocity across all genes. Genes without 381 

detectable velocity were dropped. The scVI generated latent space (instead of PCA) was used to calculate first and 382 

second order moments. The calculated moments were used to estimate RNA velocity. Differential velocity was 383 

tested between celltypes using pairwise wilcox rank sum tests. 384 

Conclusion 385 

Limitations 386 

The scVI model is first built the on human data. The mouse and macaque data are then projected (or 387 

queried) onto it with the scVI implementation of the scArches method. While this system works very well to 388 

integrate information between these three species, this approach may not scale to more distantly related species. 389 
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Another limitation is that discrepancies between cell type labels between different labs makes certain transitioning 390 

cell type labels a bit imprecise. One example is how the rods and photoreceptor precursor labels partially overlap. 391 

Though we attempted to ameliorate the issue by removing cell type labels in large disagreement with the consensus, 392 

some disagreements could propagate into our machine labeled cells type assignments. These issues may reflect 393 

labeling continuous processes with discrete labels. 394 

While scEiaD distinguishes the major cell types very well, some of the cell types contain many “sub types” 395 

- notably the amacrine cells have a huge variety in morphology with a recent study identifying over sixty different 396 

types of amacrine cells in mouse.29 At this time our batch corrected pan retina cell space does not precisely resolve 397 

these sub cell types with high resolution. We are actively working to “sub cluster” the cell types so we can robustly 398 

and reliably identify the high diversity of retinal cell types across the entire retina. 399 

The scEiaD is a unique ocular resource that provides a highly diverse, large N dataset with 400 
a relatively small amount of compute power 401 

We have assembled the largest ocular single cell transcriptome database to date. The rapid of advancement 402 

of algorithms to batch correct and process data continue to reduce the computational requirements to handle huge 403 

numbers of cells. The scVI batch correction step on around one million cells runs within a few hours on a GPU and 404 

150GB of memory. This places this crucial step within the capabilities of a moderately powerful computer or a cloud 405 

compute node. Further downstream processing can largely be done a computers with 64+ Gb of memory and a few 406 

hundred GB of disk space. We believe that our efforts can be replicated in any other tissue / system with a large 407 

number of independent studies by a small number of computational scientists following our general approach. We 408 

provide the completed analysis as both Scanpy (h5ad) and Seurat objects at https://github.com/davemcg/scEiaD. 409 

Benchmarking and quantitation of integration performance is crucial for meta-atlas 410 
studies 411 

We originally intended to use the Seurat CCA method to integrate the datasets. However, the long run-times 412 

of CCA and poor integration of our known cell types led us to benchmark more methods and parameters. After 413 

adding more integration methods we first attempted “hand-assess” the integration results by using the UMAP 2D 414 

projection view. This proved to scale poorly and this led use to curate some of the more useful benchmarking 415 

algorithms (NMI, ARI, silhouette, and LISI) that roughly matched our “hand-assessed” results into the scPOP R 416 
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package. While we chose the scVI algorithm, we strongly suggest any other groups attempting a similar meta-atlas 417 

construction chose a quantifiable set of criteria so optimal methods and parameters can be picked. 418 

Transfer of cell type labels from a smaller number of studies onto the remainining cells is a 419 
powerful way to increase diversity in a meta-atlas 420 

We first hand curated over 350,000 published cell type labels across 24 publications. With a xgboost 421 

algorithm using the latent dimensions, cell age classification (developing or matured), and the UMAP coordinates, 422 

we can very accurately label the remaining cells. Many other cell type labeling algorithms and systems exist for 423 

those groups less willing or able to tune a machine learning algorithm. For example, the developers of scVI also 424 

have a cell type label projection algorithm called scANVI. Whichever approach you use, taking a smaller number of 425 

high quality labels and projecting them onto the remaining cells is a powerful way to leverage community 426 

knowledge across a huge diverse dataset. 427 

Projection allows community knowledge to be leveraged by all 428 

Many retina atlases have been published to date. We argue that we have created the first atlas that is 429 

generally useful because 1. our dataset/atlas is several times larger than any other published set, 2. our data is 430 

available via download in several forms at https://github.com/davemcg/scEiaD, and crucially 3. we provide a 431 

Google colab/Jupyter notebook which exactly lays out how to use scVI to project (or query) outside data onto our 432 

scEiaD with minimum compute resources. We demonstrate concretely how this can work by showing how iPSC 433 

RPE can be queried onto the reference dataset to demonstrate both similarites and dissimilarities in their 434 

transcriptomes. 435 

Supplemental Information 436 

Tables 437 

CellType HS Published MF Published MM Published HS Transferred MF Transferred MM Transferred 

AC/HC Precursors 1,450 0 0 2,779 2 291 
Amacrine Cells 13,430 19,246 35,837 21,179 36,308 53,958 

Artery 167 0 0 0 0 0 
Astrocytes 1,102 0 39 1,699 64 326 

B-Cell 509 0 8,109 336 27 76 
Bipolar Cells 5,012 7,617 15,536 9,855 14,342 32,573 

Choriocapillaris 225 0 0 0 0 0 
Cones 3,242 694 4,705 6,844 1,107 18,509 

Endothelial 420 295 3,678 1,048 370 3,926 
Fibroblasts 1,632 0 221 2,037 16 3,477 
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CellType HS Published MF Published MM Published HS Transferred MF Transferred MM Transferred 

Horizontal Cells 5,282 163 1,719 9,033 259 8,501 
Macrophage 559 0 0 586 0 91 

Mast 101 0 0 216 0 177 
Melanocytes 259 0 0 323 1 3 

Microglia 425 154 25 829 206 978 
Monocyte 311 0 25 369 0 454 
Muller Glia 19,303 13,763 4,368 26,508 25,025 9,325 

Natural Killer 168 0 0 221 0 4 
Neurogenic Cells 2,166 0 8,314 5,255 12 28,811 

Pericytes 457 2,459 20 583 3,703 1,228 
PR Precursors 2,009 0 5,122 6,540 1 16,107 

Red Blood Cells 63 0 1,737 706 6 1,842 
Retinal Ganglion Cells 6,663 9,762 27,887 10,308 12,495 41,112 

Rod Bipolar Cells 392 0 9,837 600 0 11,838 
Rods 31,292 1,481 22,887 69,339 14,004 58,129 
RPCs 17,701 0 0 35,696 191 5,403 
RPE 369 0 0 573 27 1,501 

Schwann 288 0 0 501 5 284 
Smooth Muscle Cell 45 0 0 0 0 0 

T-Cell 1,075 0 4,335 1,238 24 49 
Unlabelled 101,950 53,641 235,058 1,119 1,074 6,144 

Vein 490 0 0 1,021 0 37 
Early RPCs 0 0 27,962 898 6 35,080 
Late RPCs 0 0 21,362 318 0 34,444 

Supplemental Table 1: Counts for cell type labels. Published are the author created labels from the 438 

published datasets. Transferred are the cell labels that were transferred by our xgboost-based machine learning 439 

model onto the entire scEiaD dataset. 440 

AUC Cell Type Study 

0.76 AC/HC_Precurs All 
0.71 AC/HC_Precurs SRP151023 
0.83 AC/HC_Precurs SRP223254 
0.99 Amacrine Cells All 
0.20 Amacrine Cells E-MTAB-7316 
1.00 Amacrine Cells EGAD00001006350 
0.97 Amacrine Cells SRP050054 
0.98 Amacrine Cells SRP075719 
0.98 Amacrine Cells SRP151023 
0.93 Amacrine Cells SRP158081 
1.00 Amacrine Cells SRP158528 
1.00 Amacrine Cells SRP194595 
0.72 Amacrine Cells SRP222001 
1.00 Amacrine Cells SRP222958 
0.98 Amacrine Cells SRP223254 
1.00 Amacrine Cells SRP255195 
0.97 Astrocytes All 
1.00 Astrocytes E-MTAB-7316 
0.97 Astrocytes EGAD00001006350 
0.94 Astrocytes SRP050054 
1.00 Astrocytes SRP255195 
0.97 B Cell All 
0.81 B Cell EGAD00001006350 
1.00 B Cell SRP131661 
0.41 B Cell SRP218652 
0.91 B Cell SRP257883 
0.98 Bipolar Cells All 
1.00 Bipolar Cells E-MTAB-7316 
1.00 Bipolar Cells EGAD00001006350 
0.97 Bipolar Cells SRP050054 
0.99 Bipolar Cells SRP075719 
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AUC Cell Type Study 

0.97 Bipolar Cells SRP151023 
0.94 Bipolar Cells SRP158081 
1.00 Bipolar Cells SRP158528 
1.00 Bipolar Cells SRP194595 
1.00 Bipolar Cells SRP222001 
1.00 Bipolar Cells SRP222958 
0.98 Bipolar Cells SRP223254 
1.00 Bipolar Cells SRP255195 
0.94 Cones All 
1.00 Cones E-MTAB-7316 
1.00 Cones EGAD00001006350 
0.96 Cones SRP050054 
0.71 Cones SRP151023 
0.88 Cones SRP158081 
0.97 Cones SRP158528 
1.00 Cones SRP194595 
1.00 Cones SRP222001 
0.47 Cones SRP222958 
0.97 Cones SRP223254 
0.90 Cones SRP255195 
0.98 Early RPCs All 
0.99 Early RPCs SRP158081 
0.97 Endothelial All 
0.98 Endothelial EGAD00001006350 
0.99 Endothelial SRP050054 
1.00 Endothelial SRP131661 
0.94 Endothelial SRP158528 
1.00 Endothelial SRP194595 
0.00 Endothelial SRP218652 
1.00 Endothelial SRP222958 
0.59 Endothelial SRP255195 
0.97 Fibroblasts All 
1.00 Fibroblasts EGAD00001006350 
0.95 Fibroblasts SRP050054 
0.99 Fibroblasts SRP131661 
0.53 Fibroblasts SRP218652 
0.99 Fibroblasts SRP257883 
0.96 Horizontal Cells All 
1.00 Horizontal Cells E-MTAB-7316 
1.00 Horizontal Cells EGAD00001006350 
0.97 Horizontal Cells SRP050054 
0.99 Horizontal Cells SRP151023 
0.79 Horizontal Cells SRP158081 
0.92 Horizontal Cells SRP158528 
1.00 Horizontal Cells SRP222001 
1.00 Horizontal Cells SRP222958 
0.98 Horizontal Cells SRP223254 
1.00 Horizontal Cells SRP255195 
0.97 Late RPCs All 
0.97 Late RPCs SRP158081 
0.70 Macrophage All 
0.58 Macrophage SRP218652 
0.97 Macrophage SRP257883 
0.83 Mast All 
0.92 Mast EGAD00001006350 
0.96 Mast SRP218652 
0.97 Melanocytes All 
1.00 Melanocytes EGAD00001006350 
0.00 Melanocytes SRP218652 
0.98 Melanocytes SRP257883 
0.96 Microglia All 
0.95 Microglia E-MTAB-7316 
1.00 Microglia EGAD00001006350 
0.96 Microglia SRP050054 
0.96 Microglia SRP158528 
1.00 Microglia SRP194595 
1.00 Microglia SRP222001 
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AUC Cell Type Study 

0.90 Microglia SRP222958 
1.00 Microglia SRP255195 
0.97 Monocyte All 
0.99 Monocyte EGAD00001006350 
0.99 Muller Glia All 
1.00 Muller Glia E-MTAB-7316 
1.00 Muller Glia EGAD00001006350 
1.00 Muller Glia SRP050054 
1.00 Muller Glia SRP075719 
0.80 Muller Glia SRP151023 
0.74 Muller Glia SRP158081 
1.00 Muller Glia SRP158528 
1.00 Muller Glia SRP194595 
1.00 Muller Glia SRP222001 
0.99 Muller Glia SRP222958 
0.99 Muller Glia SRP223254 
1.00 Muller Glia SRP255195 
0.89 Natural Killer All 
0.97 Natural Killer EGAD00001006350 
0.81 Neurogenic Cells All 
0.76 Neurogenic Cells SRP151023 
0.85 Neurogenic Cells SRP158081 
0.63 Neurogenic Cells SRP223254 
0.95 Pericytes All 
0.97 Pericytes EGAD00001006350 
0.98 Pericytes SRP158528 
0.14 Pericytes SRP218652 
0.98 Pericytes SRP257883 
0.69 Photoreceptor Precursors All 
0.48 Photoreceptor Precursors SRP151023 
0.91 Photoreceptor Precursors SRP158081 
0.40 Photoreceptor Precursors SRP223254 
0.98 Red Blood Cells All 
1.00 Red Blood Cells SRP131661 
0.96 Red Blood Cells SRP158081 
0.78 Red Blood Cells SRP257883 
0.99 Retinal Ganglion Cells All 
0.10 Retinal Ganglion Cells E-MTAB-7316 
1.00 Retinal Ganglion Cells EGAD00001006350 
1.00 Retinal Ganglion Cells SRP050054 
0.98 Retinal Ganglion Cells SRP151023 
0.93 Retinal Ganglion Cells SRP158081 
1.00 Retinal Ganglion Cells SRP158528 
1.00 Retinal Ganglion Cells SRP222958 
0.98 Retinal Ganglion Cells SRP223254 
1.00 Retinal Ganglion Cells SRP255195 
0.99 Rod Bipolar Cells All 
1.00 Rod Bipolar Cells EGAD00001006350 
1.00 Rod Bipolar Cells SRP075719 
0.99 Rods All 
1.00 Rods E-MTAB-7316 
1.00 Rods EGAD00001006350 
0.97 Rods SRP050054 
0.96 Rods SRP151023 
0.97 Rods SRP158081 
0.96 Rods SRP158528 
1.00 Rods SRP194595 
1.00 Rods SRP222001 
1.00 Rods SRP222958 
0.97 Rods SRP223254 
0.96 Rods SRP255195 
0.98 RPCs All 
0.99 RPCs SRP151023 
0.99 RPCs SRP223254 
0.94 RPE All 
1.00 RPE EGAD00001006350 
0.81 Schwann All 
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AUC Cell Type Study 

0.38 Schwann SRP218652 
1.00 Schwann SRP257883 
0.97 T Cell All 
0.98 T Cell EGAD00001006350 
0.99 T Cell SRP131661 
0.05 T Cell SRP218652 
0.99 T Cell SRP257883 
0.91 Vein All 
1.00 Vein SRP257883 

Supplemental Table 2: Area under the precision recall curve (AUC) for each cell type, split by study. The 441 

“All” study is the AUC score across all cells within the cell type 442 

CellType CellType_predict Count Ratio 

AC/HC Precursors AC/HC Precursors 1,248 0.86 
AC/HC Precursors Neurogenic Cells 100 0.07 
AC/HC Precursors Horizontal Cells 64 0.04 

Amacrine Cells Amacrine Cells 65,815 0.96 
Artery Endothelial 129 0.79 
Artery Vein 32 0.20 

Astrocytes Astrocytes 1,103 0.97 
B-Cell Endothelial 235 0.48 
B-Cell B-Cell 119 0.24 
B-Cell Vein 65 0.13 
B-Cell Fibroblasts 54 0.11 
B-Cell Macrophage 14 0.03 

Bipolar Cells Bipolar Cells 27,417 0.97 
Choriocapillaris Vein 140 0.64 
Choriocapillaris Endothelial 78 0.36 

Cones Cones 7,771 0.90 
Cones Rods 452 0.05 
Cones PR Precursors 265 0.03 

Early RPCs Early RPCs 26,654 0.96 
Early RPCs Neurogenic Cells 607 0.02 
Endothelial Endothelial 781 0.84 
Endothelial Pericytes 94 0.10 
Endothelial Vein 27 0.03 
Fibroblasts Fibroblasts 1,585 0.96 
Fibroblasts Vein 48 0.03 

Horizontal Cells Horizontal Cells 6,902 0.96 
Late RPCs Late RPCs 20,162 0.95 
Late RPCs Early RPCs 496 0.02 
Late RPCs Neurogenic Cells 458 0.02 

Macrophage Macrophage 443 0.80 
Macrophage T-Cell 83 0.15 
Macrophage Mast 14 0.03 

Mast Mast 90 0.92 
Mast RPCs 3 0.03 

Melanocytes Melanocytes 252 0.97 
Microglia Microglia 560 0.94 
Monocyte Monocyte 316 0.95 
Monocyte Microglia 7 0.02 
Muller Glia Muller Glia 36,671 0.98 

Natural Killer Natural Killer 150 0.90 
Natural Killer T-Cell 11 0.07 
Natural Killer B-Cell 4 0.02 

Neurogenic Cells Neurogenic Cells 9,061 0.87 
Neurogenic Cells RPCs 392 0.04 
Neurogenic Cells Late RPCs 339 0.03 
Neurogenic Cells Early RPCs 225 0.02 
Neurogenic Cells PR Precursors 223 0.02 

Pericytes Pericytes 2,771 0.95 
Pericytes Vein 96 0.03 
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CellType CellType_predict Count Ratio 

PR Precursors PR Precursors 6,377 0.90 
PR Precursors Cones 254 0.04 
PR Precursors Neurogenic Cells 230 0.03 
PR Precursors Rods 147 0.02 

Red Blood Cells Red Blood Cells 673 0.97 
Retinal Ganglion Cells Retinal Ganglion Cells 42,766 0.97 

Rod Bipolar Cells Rod Bipolar Cells 9,634 0.94 
Rod Bipolar Cells Bipolar Cells 589 0.06 

Rods Rods 53,731 0.97 
Rods PR Precursors 1,477 0.03 
RPCs RPCs 17,135 0.97 
RPE RPE 343 0.93 
RPE RPCs 13 0.04 

Schwann Schwann 220 0.77 
Schwann Fibroblasts 28 0.10 
Schwann Melanocytes 16 0.06 
Schwann Pericytes 12 0.04 

Smooth Muscle Cell Pericytes 38 0.84 
Smooth Muscle Cell Endothelial 7 0.16 

T-Cell T-Cell 923 0.86 
T-Cell Macrophage 91 0.09 
T-Cell Natural Killer 29 0.03 
Vein Vein 481 0.98 

Supplemental Table 3: Counts of cell type labels with our xgboost machine learning system (PredCellType) 443 

and the published cell type labels (TrueCellType). Ratio is calculated as CellType that were labeled as 444 

CellType_predict. Ratio < 0.05 were filtered out from view in the table.  445 

CellType HS Studies 
(published) 

MF Studies 
(published) 

MM Studies 
(published) 

HS Studies 
(transferred) 

MF Studies 
(transferred) 

MM Studies 
(transferred) 

AC/HC 
Precursors 2 0 0 4 1 3 
Amacrine 

Cells 8 1 5 11 1 15 

Artery 1 0 0 0 0 0 
Astrocytes 3 0 2 10 1 7 

B-Cell 3 0 1 8 1 8 
Bipolar Cells 8 1 4 11 1 14 

Choriocapillari
s 1 0 0 0 0 0 

Cones 8 1 3 11 1 16 
Endothelial 6 1 3 11 1 10 
Fibroblasts 3 0 2 9 1 11 
Horizontal 

Cells 7 1 3 10 1 11 

Macrophage 2 0 0 8 0 4 
Mast 2 0 0 9 0 3 

Melanocytes 3 0 0 7 1 2 
Microglia 6 1 2 13 1 10 
Monocyte 1 0 1 9 0 8 
Muller Glia 8 1 4 14 1 13 

Natural Killer 1 0 0 5 0 2 
Neurogenic 

Cells 2 0 1 5 1 7 

Pericytes 3 1 1 9 1 7 
PR Precursors 2 0 1 4 1 4 
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CellType HS Studies 
(published) 

MF Studies 
(published) 

MM Studies 
(published) 

HS Studies 
(transferred) 

MF Studies 
(transferred) 

MM Studies 
(transferred) 

Red Blood 
Cells 1 0 2 11 1 12 

Retinal 
Ganglion Cells 6 1 4 11 1 16 

Rod Bipolar 
Cells 1 0 2 7 0 9 

Rods 8 1 3 13 1 15 
RPCs 2 0 0 10 1 10 
RPE 2 0 0 7 1 7 

Schwann 2 0 0 8 1 3 
Smooth 

Muscle Cell 1 0 0 0 0 0 

T-Cell 3 0 1 7 1 7 
Unlabelled 15 1 18 11 1 16 

Vein 1 0 0 5 0 3 
Early RPCs 0 0 1 4 1 8 
Late RPCs 0 0 1 3 0 6 

Supplemental Table 4: Counts for number of studies with cell types labels before and after cell type label446 

transfer 447 

Figures 448 

 449 
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Supplemental Figure 1: The left bar delineates the number of cells for each organism - technology combination. The 450 
right bar specifies the number of each cells in each post QC category. In silico doublets were identified with scrublet451 
and DoubletDetector. 452 

 453 

Supplemental Figure 2: Performance of the various batch correction tools across various benchmarking metrics. 454 
For the LISI and Silhouette plots in A, B higher (y-axis) means better batch mixing and further to the right (x-axis) 455 
means better cluster purity. For the ARI and NMI metrics (which reflects how well cluster matches with cell type) in 456 
C, D, higher means a better score. 457 

 458 

Supplemental Figure 3: Our xgboost ML properly labels this Shekhar et al. RBC FAC sorted population as enriched 459 
in RBC 460 
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461 

Supplemental Figure 4: Precision recall curves for our xgboost cell type predictor model across each cell type 462 
predicted 463 
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464 

Supplemental Figure 5: Distribution of cell types across the 2D UMAP confirms that the cell types are being 465 
properly placed despite the wide variety of single sequencing platforms present. 466 
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 467 

Supplemental Figure 6: F1 scores (1 is perfect) of cell type prediction when using a human or mouse based xgboost 468 
cell type prediction model on other organisms (human, macaque, mouse). 469 

28
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470 

Supplemental Figure 7: Screen shot of Google colab notebook that demonstrates how to integrate external data into 471 
the scEiaD resource. We see in the screenshot how the organoid dataset contains many of the retinal cell types. 472 
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 473 

Supplemental Figure 8: Screenshot of eyeIntegration bulk RNA-seq meta-analysis of vimentin expression in different 474 
RPE tissue sources 475 
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