1 2	α2δ-2 is Required for Functional Postsynaptic Calcium Channel Nanodomain Signaling
3	
4	Abbreviated Title: $\alpha 2\delta$ -2 organizes calcium signaling nanodomains
5	
6	Kathleen A. Beeson ^{1,2} , Gary L. Westbrook ³ , Eric Schnell ^{2,4*}
7	1 Neuroscience Graduate Program, Oregon Health & Science University, Portland,
8	OR, 97239; 2 Department of Anesthesiology and Perioperative Medicine, Oregon
9	Health & Science University, Portland, OR, 97239; 3 The Vollum Institute, Oregon
10	Health & Science University, Portland, OR, 97239; 4 Operative Care Division,
11	Portland VA Health Care System, Portland, OR, 97239
12	*Corresponding Author
13	Eric Schnell, MD, PhD
14	schneler@ohsu.edu
15	3710 SW US Veterans Hospital Rd, P3ANES
16	Portland, OR 97239
17	
18	Conflict of Interest Statement:

19 The authors declare no competing financial interests.

20 Acknowledgments:

21	This research was supported in part by the Department of Veterans Affairs,
22	Veterans Health Administration, Office of Research and Development, Biomedical
23	Laboratory Research and Development Merit Review Award I01-BX004938 (ES), a
24	Department of Defense CDMRP Award W81XWH-18-1-0598 (ES), NIH
25	T32NS007466 (KAB), NIH R01-NS080979 (GLW), and NINDS 1R21NS102948 (Ines
26	Koerner/ES). We would like to acknowledge the OHSU Advanced Light Microscopy
27	Center and imaging support from the NIH P30NS061800 (OHSU). The contents of
28	this manuscript do not represent the views of the U.S. Department of Veterans
29	Affairs or the United States Government.
30	

31 Abstract

32	$\alpha 2\delta$ proteins (<i>CACNA2D1-4</i>) are required for normal neurological function, although
33	the mechanisms whereby $\alpha 2\delta$ proteins control neuronal output remain unclear.
34	Using whole-cell recordings of mouse cerebellar Purkinje cells, we show that $\alpha 2\delta\mathchar`-2$
35	is required for coupling postsynaptic voltage-dependent calcium entry to effector
36	mechanisms controlling depolarization-induced suppression of excitation as well as
37	action potential afterhyperpolarization. Our findings indicate that $\alpha 2\delta\mbox{-}2$ is
38	necessary for the function of postsynaptic calcium signaling nanodomains.
39	

40

41 Introduction

42	Many intracellular signaling cascades are triggered by a common messenger:
43	calcium entering via voltage-gated Ca ²⁺ channels (VGCCs) on the plasma membrane.
44	Specificity of Ca ²⁺ -dependent signaling at the membrane depends on proximity of
45	VGCCs to effectors in functional "nanodomains," in which [Ca ²⁺] declines steeply
46	with distance from a VGCC (1). These nanodomains are critical for neuronal
47	function. For example, in Purkinje cells (PCs), depolarization-induced suppression of
48	excitation (DSE) is initiated via Ca ²⁺ -dependent endocannabinoid release that
49	mediates short-term presynaptic depression (2-4). Likewise, VGCC- K_{Ca} clusters,
50	expressed throughout PC somata and dendrites (5), generate the
51	afterhyperpolarization (AHP) following action potentials, ultimately setting
52	spontaneous spike rate (6, 7). Thus, molecules coupling VGCCs to effector-specific
53	signaling critically contribute to transduction of neuronal outputs.
54	Auxiliary VGCC $\alpha 2\delta$ proteins (<i>CACNA2D1-4</i>) contribute to VGCC membrane
55	trafficking in heterologous cells and neurons (8), and may play a role in presynaptic
56	VGCC coupling to vesicle release machinery (9). However, little is known about
57	auxiliary functions of $\alpha 2\delta$ outside of these contexts, and previous examination of
58	their postsynaptic roles suggest Ca ²⁺ -independent functions (10). Here we report
59	that in PCs, which abundantly and exclusively express $\alpha 2\delta$ -2 (11-13), loss of $\alpha 2\delta$ -2
60	(CACNA2D2) disrupts two disparate forms of postsynaptic VGCC nanodomain
61	signaling, demonstrating previously unappreciated roles for $lpha 2\delta$ proteins in VGCC-
62	effector coupling.

63 **Results**

64	At PC climbing fiber synapses, postsynaptic VGCC-mediated Ca ²⁺ entry
65	initiates retrograde endocannabinoid signaling, acutely reducing the probability of
66	presynaptic vesicle release - a form of plasticity known as depolarization-induced
67	suppression of excitation, or DSE (3, 4). Specificity of DSE signaling is achieved by
68	tight functional coupling of postsynaptic VGCCs with Ca ²⁺ -sensitive
69	endocannabinoid release machinery (14). Using whole-cell recordings of PCs in
70	acutely prepared brain slices from CACNA2D2 KO and WT littermate mice, we
71	investigated whether the absence of $\alpha 2\delta$ -2 affects this postsynaptic Ca^{2+}-dependent
72	signaling.
73	We held PCs at -70 mV in voltage-clamp mode during climbing fiber axon
74	stimulation and recorded evoked excitatory postsynaptic currents (EPSCs). In WT
75	PCs, DSE elicited with a 250 ms depolarizing step reduced the amplitude of regularly
76	evoked EPSCs by 25% (Fig 1A-E). In contrast, DSE was completely absent in KO PCs
77	(Fig 1B-E). The <i>ducky</i> mouse, which also lacks $\alpha 2\delta$ -2 protein, has a reported \sim 30%
78	decrease in PC somatic VGCC current density, which is thought to represent
79	decreased surface trafficking (15). As the degree of climbing fiber DSE is related to
80	the magnitude of Ca ²⁺ influx, it is possible that the reduced VGCC density prevented
81	DSE. Increasing the length of the depolarizing step enhances Ca^{2+} influx and DSE in
82	wildtype mice (2); however, a four-fold increase in depolarizing step duration still
83	failed to evoke DSE in $\alpha 2\delta$ -2 KO PCs (Fig 1D-F) .

Figure 1 Depolarization-Induced Suppression of Excitation (DSE) reduces climbing fiber-EPSC amplitude in WT but not $\alpha 2\delta$ -2 KO Purkinje cells.

- A) Schematic of whole-cell electrophysiological set-up. Purkinje cell (PC) is held at -70 mV using whole-cell voltage clamp while the innervating climbing fiber axon (red) is stimulated at 0.2 Hz (magenta arrows). After collection of baseline EPSCs, a depolarization step to 0 mV for a duration of 250 ms – 1s is delivered to the PC, and subsequent EPSCs are collected for >3 minutes.
- **B)** Overlay of peak-scaled EPSC traces from WT (black) and KO (blue) PCs during baseline stimulation (gray) and 5 s post-depolarization step of 250 ms duration (dotted line).
- **C)** EPSC amplitude timecourse from the representative experiment in B. Each point represents the average from two consecutive EPSCs at 0.2 Hz.
- **D)** Overlay of peak-scaled EPSC traces from WT (black) and KO (blue) PCs during baseline (gray) and 5 s post-depolarization step of 250 ms (dotted line), 500 ms (dashed line), and 1 s (solid line) duration.
- E) Summary of DSE timecourse from WT (black) and KO (blue) experiments using three different depolarization step durations: 250 ms (filled circle), 500 ms (triangle) and 1 s (open circle). Each point represents the average of two consecutive EPSCs at 0.2 Hz.
- **F)** Magnitude of EPSC depression normalized to baseline in WT (black) and KO (blue) after 250 ms (fine stripe), 500 ms (wide stripe) and 1 s (solid) depolarization steps. n = cells (orange number over bars); each experiment

from > 3 mice. One-way ANOVA comparison to average WT 250 ms response, Dunnett's correction for multiple comparisons; * p < 0.05, ** p < 0.01, *** p < 0.001.

84

85	As DSE was not rescued by increasing activation of VGCCs in KO PCs, we
86	hypothesized that functional coupling of Ca^{2+} influx to effector molecules was
87	disrupted in the absence of $\alpha 2\delta$ -2. To examine this possibility, we lowered [EGTA] in
88	our internal solution. As expected for WT PCs, decreasing [EGTA] from 10 mM to
89	either 2 mM or 0.2 mM resulted in more profound DSE magnitude, which increased
90	with longer voltage steps (Fig 2A-C), consistent with further diffusion of Ca^{2+} from
91	its point of entry.

Figure 2 Reduced intracellular [EGTA] reveals climbing fiber DSE in the $\alpha 2\delta$ -2 KO.

A, **D**) Overlay of peak-scaled EPSC traces from WT (black) and KO (blue) PCs during baseline stimulation (gray) and 5 s post-depolarization step of 250 ms

(dotted line), 500 ms (dashed line), and 1 s (solid line) duration using intracellular solution containing 2 mM (**A**) or 0.2 mM (**D**) EGTA.

B, E) Summary of DSE timecourse from WT (black) and KO (blue) experiments using a 2 mM (**B**) or 0.2 mM (**E**) EGTA internal solution and three different depolarization step durations: 250 ms (filled circle), 500 ms (triangle) and 1 s (open circle). Each point represents the average of two consecutive EPSCs at 0.2 Hz.

C, F) Magnitude of EPSC depression normalized to baseline in WT (black) and KO (blue) after 250 ms (fine stripe), 500 ms (wide stripe) and 1 s (solid) depolarization steps using a 2 mM (**C**) or 0.2 mM (**F**) EGTA intracellular solution. n = cells (orange number over bars); each experiment from > 3 mice. One-way ANOVA comparison to average WT 250 ms response, Dunnett's correction for multiple comparisons; * p < 0.05, ** p < 0.01, *** p < 0.001.

93	More notably, however, reduced Ca ²⁺ buffering restored DSE in KO PCs (Fig 2D-F),
94	indicating that signaling mechanisms involved in DSE expression remained intact.
95	As the reduced Ca ²⁺ buffering primarily affects the distance of Ca ²⁺ diffusion from its
96	source, these data indicate that rather than affecting Ca^2+ entry per se, $\alpha 2\delta$ -2 is
97	necessary for tight functional coupling between VGCCs and endocannabinoid
98	release.
99	To determine whether $\alpha 2\delta$ -2 affects coupling of other molecules to
100	postsynaptic VGCC nanodomains, we focused on Ca ²⁺ -dependent action potential
101	AHPs. In PCs, the AHP is mediated by BK-type K_{Ca} channels (16, 17), and regulates
102	sodium channel availability and PC firing rate (6, 18). To assess VGCC-K _{Ca} coupling,
103	we recorded spontaneous spiking in PCs from WT and KO mice during whole-cell
104	current-clamp recordings. In agreement with previous studies in the <i>ducky</i> mutant
105	(15, 19), tonic spike rate in α 2δ-2 KO PCs was reduced compared to WT (Fig 3A-B).
106	More importantly, the AHP amplitude of individual spike waveforms was

107 consistently smaller in $\alpha 2\delta$ -2 KO cells (**Fig 3C-D**), indicating reduced K_{Ca} channel

108 activation (7, 16). Other membrane properties were unchanged in KO PCs, including

109 the resting membrane potential, maximum and minimum membrane polarization

Figure 3 Spontaneous firing frequency, afterhyperpolarization (AHP) amplitude and Ca²⁺ coupling are reduced in the $\alpha 2\delta$ -2 KO.

A) Example traces of spontaneous action potentials in WT (black) and KO (magenta) PCs; scale = 50 mV, 0.5 s.

B) Summary of average spontaneous firing frequency in PCs. Student's unpaired t-test, p < 0.0001.

C) Average of 50 consecutive spontaneous action potentials from WT (0.5 mM EGTA, black; 5 mM EGTA gray) and KO (0.5 mM EGTA, magenta; 5 mM EGTA light purple) during tonic firing; scale = 10 mV, 2 ms. Gray dotted lines indicate V_{thres} as well as the minimum voltage during afterhyperpolarization (AHP). *Below*, enlarged overlay of traces to illustrate differences in V_{thres}-AHP amplitude; scale = 5 mV, 1 ms.

D) Summary of AHP amplitudes recorded after spontaneous action potentials using intracellular solution containing 0.5 mM EGTA or 5 mM EGTA. One-way

ANOVA comparison to average WT 0.5 mM EGTA response, uncorrected Fischer's LSD; * p < 0.05, ** p < 0.01, *** p < 0.001.

E) Correlation of AHP amplitude vs. resting membrane potential (V_m) in WT (black) and KO (magenta) PCs using 0.5 mM EGTA intracellular solution. Linear regression and 95% confidence interval; WT $R^2 = <0.002$; KO $R^2 = 0.393$.

F-I) Action potential waveform parameters in WT and KO PCs. No significant differences found for maximum dV/dt (**F**), minimum dV/dt (**G**), spike threshold (V_{thres}) (**H**) or spike height (**I**); unpaired Student's t-tests.

J) Phase plane plots of spontaneous spikes in WT (0.5 mM EGTA, black; 5 mM EGTA gray) and KO (0.5 mM EGTA, magenta; 5 mM EGTA light purple) PCs. Traces are aligned by threshold (V_{thresh}) for comparison; scale = 100 mV/ms, 20 mV. *Below*, enlarged inset to illustrate differences in AHP minimum amplitude between WT (arrows; 0.5 mM EGTA, black; 5 mM EGTA, gray) and KO (arrows; 0.5 mM EGTA, magenta; 5 mM EGTA, light purple); scale = 100 mV/ms, 5 mV.

K) Immunohistochemistry of WT and KO cerebellar slices stained for parvalbumin (PV; cyan) to indicate PC morphology, and the BK channel (magenta), which is involved in AHP generation; Scale 5 μ m. *Below*, merged image at 4x zoom to illustrate membrane localization of BK channels; Scale 2 μ m.

110

111	rates, spike threshold as well as spike height (Fig 3E-J), indicating that this effect
112	was limited to the K_{Ca} -mediated AHP. Additionally, there was no change in BK
113	membrane localization in PCs by immunohistochemistry (Fig 3K; Membrane BK
114	density: WT = 0.82 \pm 0.13, n = 4; KO = 0.75 \pm 0.08, n = 3; p = 0.7; Student's unpaired
115	t-test), consistent with normal BK expression and function found in other neurons in
116	ducky mice (20).
117	To determine whether K_{Ca} channels were functionally uncoupled from VGCC-
118	mediated Ca ²⁺ influx in KO mice, we dialyzed PCs with an increased EGTA
119	concentration (from 0.5 mM to 5 mM) sufficient to uncouple VGCC-BK signaling

120 (21). This additional Ca²⁺ buffering reduced the AHP amplitude in WT cells to the

121	same amplitud	les as the KO,	, and had no	effect on the	AHP in KO d	cells (Fig 3C-I)).
I4 I	Sume umpneud	co uo une no,	, una naa no	chiece on the			-

122 Thus, increased Ca²⁺ buffering uncoupled VGCC-K_{Ca} signaling in WT, but K_{Ca}

123 channels were already functionally uncoupled in the $\alpha 2\delta$ -2 KO.

124

125 **Discussion**

126 As a primary signal in neurons, precise spatiotemporal regulation of Ca²⁺ 127 influx is essential to maintain fidelity of Ca²⁺-dependent processes. Consequently, 128 the molecules controlling VGCC coupling to downstream effectors is critical to 129 neuronal function. Since their initial discovery as VGCC-associated molecules, 130 multiple lines of evidence suggest $\alpha 2\delta$ proteins are involved trafficking of VGCCs to 131 the plasma membrane (8). However, these conclusions were necessarily based on 132 heterologous expression systems, as most neurons express more than one $\alpha 2\delta$ 133 isoform. Thus, information of postsynaptic auxiliary VGCC roles of $\alpha 2\delta$ proteins in 134 neurons is limited. Because PCs selectively express only one isoform. $\alpha 2\delta$ -2 (11-13). 135 the *CACNA2D2* KO mouse provides an ideal model to examine roles for $\alpha 2\delta$ -2 136 proteins in functional VGCC-signaling in postsynaptic compartments. Our results 137 demonstrate that two distinct signaling mechanisms, DSE and K_{Ca} signaling, are 138 disrupted in $\alpha 2\delta$ -2 KO PCs, indicating a functional loss of postsynaptic VGCC 139 nanodomains (4, 5, 14, 21). 140 How does $\alpha 2\delta$ -2, a largely extracellular protein, mediate functional coupling

141 of VGCCs with intracellular effector proteins? It is possible that $\alpha 2\delta$ -2 directly

142	associates with other extracellular proteins involved in VGCC domains (8). As
143	endocannabinoid machinery resides at synapses (22), and $\alpha 2\delta$ proteins are
144	important for synapse formation (10-13), $\alpha 2\delta$ could potentially regulate VGCC
145	nanodomains by binding to presynaptic adhesion proteins. Another possibility is
146	that $\alpha 2\delta$ -2 localizes VGCCs to lipid rafts. Though VGCCs are abundant in non-lipid
147	raft membrane fractions where they are independent of $\alpha 2\delta$ -2, VGCCs and $\alpha 2\delta$ -2
148	colocalize in lipid rafts isolated from cerebellar homogenates (23). Intriguingly, DAG
149	lipase- α , the enzyme responsible for synthesis of endocannabinoids involved in DSE,
150	has also been isolated in lipid rafts (24), and mislocalization of VGCCs away from
151	lipid rafts might explain the reduced basal endocannabinoid tone at cerebellar
152	synapses in the <i>ducky</i> mutant (25). Our results provide clues for future work to
153	directly assay $\alpha 2\delta\mathchar`-2$ interacting proteins and subcellular localization of VGCCs in
154	PCs. The deficits in Ca ²⁺ -dependent signaling we observed may contribute to the
155	dramatic neurologic phenotypes in $\alpha 2\delta\mathcal{-}2$ KO mice. Future investigations of the
156	coupling roles of other $\alpha 2\delta$ isoforms in neurons will provide valuable insights into
157	how these proteins impact neurological functions across the brain.

158 Materials & Methods

159	<u>Animals</u> : <i>Cacna2d2</i> knockout mice (<i>Cacna2d2</i> ^{tm1Svi} , MGI = 3055290;
160	generously supplied by Drs. Sergey Ivanov and Lino Tessarollo) were obtained as
161	cryopreserved sperm and re-derived via <i>in vitro</i> fertilization on a C57BL/6J
162	background. Breeding mice were kept heterozygous, and genotyping was performed
163	as previously described (13). Mice were maintained in facilities fully accredited by
164	the Association for Assessment and Accreditation of Laboratory Animal Care and
165	veterinary care was provided by Oregon Health & Science University's Department
166	of Comparative Medicine. All animal care and experiments were performed in
167	accordance with state and federal guidelines, and all protocols were approved by
168	the OHSU Institutional Animal Care and Use Committee.
169	

170 <u>Slice Preparation and Electrophysiology</u>: Male and female mice were used between

the ages of p21-30. KO and WT littermates were deeply anesthetized and

transcardially perfused with ice-cold choline-based solution containing (mM): 125

173 choline-Cl, 2.5 KCl, 1.25 NaH₂PO₄, 0.44 ascorbate, 2 Na pyruvate, 3 3-myo-inositol,

174 10 D-glucose, 25 NaHCO₃, 7 MgCl₂, 0.5 CaCl₂ (osmolarity adjusted to 305 mOsm) and

equilibrated with 95% O_2 and 5% CO_2 gas mixture. Acute 300 μm sagittal slices

176 were cut from cerebellum using a vibratome (VT1200, Leica Microsystems), and

177 incubated for 30 minutes in standard artificial cerebral spinal fluid (aCSF) at 34°C.

178 <u>Voltage clamp recordings</u>: Whole-cell recordings were obtained using 1-3
 179 MΩ borosilicate glass pipettes filled with internal solution containing (in mM): 100

180	CsMeSO ₄ , 35 CsCl, 15 TEA-Cl, 1 MgCl ₂ , 15 HEPES, 2 ATP-Mg, 0.3 TrisGTP, 10
181	phosphocreatine, and 2 QX-314. A large batch of this internal base solution was
182	equally divided and 10, 2 or 0.2 mM EGTA was added to each third. All internals
183	were adjusted to pH 7.3 with CsOH and osmolarity to 293 mOsm. External solution
184	contained (in mM): 125 NaCl, 25 NaHCO ₃ , 1.25 NaH ₂ PO ₄ , 3 KCl, 25 Dextrose, 2 CaCl ₂ ,
185	1 MgCl $_2$ (osmolarity adjusted to 300 mOsm) and was continuously perfused via

186 roller pump.

PCs were identified and recorded as previously described (13). Briefly, PCs 187 188 were chosen from the vermis lobe VI, were identified by soma size and location in 189 the PC layer, and whole-cell patch-clamp recordings were obtained in voltage clamp 190 mode. Cell capacitance, series resistance and input resistance monitored in real time 191 using intermittent -10 mV voltage steps. Inhibition was blocked in all experiments 192 by 10 μM SR95531 (Tocris), and 0.2-0.5 μM NBOX (Tocris) was included to maintain voltage clamp of climbing fiber-mediated excitatory postsynaptic currents (EPSCs). 193 194 All voltage clamp recordings were performed at room temperature. Signals were 195 amplified with a MultiClamp 700B (Molecular Devices) amplifier and pipette 196 capacitance was compensated using MultiClamp software. Signals were low-pass 197 filtered at 6 kHz and sampled at 10 kHz, and digitized with a National Instruments 198 analog-to-digital board. All recordings were acquired and analyzed using IgorPro-199 based (Wavemetrics) software.

200 For DSE experiments, PCs were held at -70 mV while climbing fiber-mediated 201 EPSCs were evoked using a monopolar glass electrode in the granule cell layer. After

202	obtaining 2 minutes of baseline responses at 0.2 Hz, a depolarizing voltage step to 0
203	mV of 1 s, 500 ms or 250 ms duration was delivered to induce DSE, after which PCs
204	were returned to -70 mV and 0.2 Hz stimulation was continued. DSE plasticity is
205	acute, and most synapses recover back to baseline EPSC amplitudes within < 60
206	seconds (2). As a small amount of "run down" was routinely observed in the evoked
207	CF-mediated EPSC amplitude, DSE inclusion criteria required EPSC amplitudes to
208	return to 80% baseline within 2 minutes post-stimulation (opposed to "stepping" to
209	decreased amplitude without recovery). A minimum of 5 minutes were waited
210	between DSE inductions, and step length was randomized throughout experiment.
211	Series resistance was not compensated; cells with series resistance >10 M Ω , or a >2
212	$M\Omega$ change in series resistance over the course of the experiment were excluded.
213	For analysis, EPSC amplitudes were binned every 10 seconds (2 traces) and
214	normalized to the 1 minute of baseline immediately preceding the depolarizing step.
215	The 'DSE magnitude' (e.g. Figure 2E) is based on the average of EPSC amplitude 5
216	and 10 s after the depolarizing step. Example traces shown are from 5 s after the
217	depolarizing step. A minimum of 3 mice per genotype were used for each
218	manipulation, with no more than 2 cells/treatment coming from one mouse. For
219	data presentation, EPSC traces were off-line box-filtered at 1 kHz in Igor64 software.
220	Current clamp recordings: For spontaneous spike experiments, internal
221	solution contained (in mM): 120 KCH $_3$ SO $_3$, 10 HEPES, 10 NaCl, 2 MgCl $_2$, 0.5 EGTA, 4
222	ATP-Mg, 0.3 Tris-GTP, and 14 phosphocreatine, pH 7.35 adjusted with KOH
223	(osmolarity adjusted to 293 mOsm). A stock of EGTA solution was added to aliquots

224	of internal, to increase [EGTA] to 5mM as needed. Synaptic inhibition was achieved
225	with 10 μM SR95531 (Tocris) and 10 μM NBQX (Tocris), and recordings were made
226	at 36°C using an in-line heater. PCs in whole-cell mode from vermis lobe VI were
227	first held in voltage clamp mode to monitor access series and input resistance
228	before switching to current clamp. Changes in access were corrected with bridge
229	balance using Multiclamp software. For increased action potential waveform
230	resolution, some current clamp experiments were sampled at 50 kHz.
231	Spontaneous spikes from tonically firing PCs with < 400 pA holding current
232	and < 10 MOhm series were analyzed using the Igor64 Neuromatic tools. Firing
233	frequency data was collected from 10 seconds of recording, which yielded $\sim \! 100 -$
234	500 spikes. Action potential properties were assessed by averaging 50 consecutive
235	spikes. Afterhyperpolarization (AHP) amplitude was measured as the difference
236	between the threshold voltage ($V_{\rm thres}$ = depolarization rate >10 V/s) and the
237	minimum voltage reached within 5 ms of spiking. All current clamp data was taken
238	at least 3 minutes after break-in to allow time for internal solution to dialyze. Spike
239	traces were box filtered for data visualization, and phase plane plots were made
240	using Igor64.

Immunohistochemistry: Immunohistochemistry was performed as described (13).
Briefly, p21 WT and KO mice were deeply anesthetized and transcardially perfused
with ice-cold PBS followed by 4% paraformaldehyde (PFA)-PBS. Following
decapitation, brains were removed and fixed overnight in 4% PFA-PBS, and stored

246	in PBS at 4°C. Sagittal cerebellar slices were made at 50 μm thickness using a
247	vibratome, and slices containing vermis lobe VI were permeabilized for 1 hr with
248	0.4% Triton-PBS with 10% normal horse serum at RT. Slices were stained with goat
249	anti-Parvalbumin (Swant #PVG-213; 1:1000) and mouse anti-BK (Neuromab #73-
250	022; 1:500) overnight at 4°C. Corresponding fluorescently labeled secondaries
251	(Invitrogen; 1:500) were applied after rinsing 3x in PBS, and slices were mounted
252	on glass cover slips using Fluoromount G (Sigma-Aldrich).
253	BK membrane expression was imaged using 63x oil immersion lens on a
254	LSM980 microscope with ZEN software. ${\sim}7~\mu m$ z-stack images of primary PC
255	dendrites were acquired at 0.15 μm intervals using the PV channel at 4.5 x zoom
256	with 680 x 680 pixel resolution. Airyscan images were processed using default
257	settings in ZEN. Quantification of membrane localized BK puncta was done by a
258	separate researcher, blinded to genotype, using the most transverse section of
259	dendrite from each z-stack. For presentation, images were processed in Fiji/ImageJ,
260	illustrating 0.45 μm maximum projections, and the panel was assembled using
261	Adobe Photoshop.

<u>Statistics:</u> The data were tested for normality using Shapiro-Wilk test. Data from
male and female mice were grouped. The difference in magnitude of DSE between
the WT 250 ms depolarization step condition and other groups were compared
using a one-way ANOVA with Dunnett's correction for multiple comparisons. For
current clamp data, student's unpaired t-tests were used for spike frequency

268	comparison between WT and KO. In current clamp experiments using 5 mM EGTA,
269	only AHP amplitude was significantly different (all other measures not shown). For
270	this data, a one-way ANOVA with Fisher's LSD was used to compare all groups to
271	WT 0.5 mM condition. All electrophysiology experiments utilized at least 3 animals
272	per genotype, where n = # cells. For immunohistochemistry of BK membrane
273	density measurements, 2-4 images per animal were averaged (n = mice), and an
274	unpaired t-test was used for comparison. Data were graphed in Prism GraphPad
275	version 8 and are reported as the mean \pm SEM. *p<0.05, **p<0.01, ***p<0.001.

7	7	6
2	/	U

References

277

Nakamura Y, Reva M, DiGregorio DA. Variations in Ca(2+) Influx Can Alter
 Chelator-Based Estimates of Ca(2+) Channel-Synaptic Vesicle Coupling Distance. J
 Neurosci. 2018;38(16):3971-87.

Brenowitz SD, Regehr WG. Calcium dependence of retrograde inhibition by
 endocannabinoids at synapses onto Purkinje cells. The Journal of Neuroscience.
 2003;23(15):6373-84.

Brown SP, Safo PK, Regehr WG. Endocannabinoids inhibit transmission at
granule cell to Purkinje cell synapses by modulating three types of presynaptic
calcium channels. J Neurosci. 2004;24(24):5623-31.

4. Kreitzer AC, Regehr WG. Retrograde Inhibition of Presynaptic Calcium Influx
by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells. Neuron.
2001;29:10.

Indriati DW, Kamasawa N, Matsui K, Meredith AL, Watanabe M, Shigemoto R.
Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels
in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with
calcium-activated potassium channels. J Neurosci. 2013;33(8):3668-78.

294 6. Raman IM, Bean BP. Ionic Currents Underlying Spontaneous Action
295 Potentials in Isolated Cerebellar Purkinje Neurons. Journal of Neuroscience.
296 1999;19(5):12.

297 7. Womack MD, Chevez C, Khodakhah K. Calcium-activated potassium channels
298 are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons.
299 J Neurosci. 2004;24(40):8818-22.

B. Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of
synaptic neurotransmitter release. Nat Rev Neurosci. 2020;21(4):213-29.

302 9. Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. alpha2delta expression
303 sets presynaptic calcium channel abundance and release probability. Nature.
304 2012;486(7401):122-5.

305 10. Eroglu C, Allen NJ, Susman MW, O'Rourke NA, Park CY, Ozkan E, et al.
306 Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor
307 responsible for excitatory CNS synaptogenesis. Cell. 2009;139(2):380-92.

308 11. Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleicher L, Varney MA, et
309 al. Differential distribution of voltage-gated calcium channel alpha-2 delta

310 (alpha2delta) subunit mRNA-containing cells in the rat central nervous system and
311 the dorsal root ganglia. J Comp Neurol. 2005;491(3):246-69.

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genomewide atlas of gene expression in the adult mouse brain. Nature.

314 2007;445(7124):168-76.

315 13. Beeson KA, Beeson R, Westbrook GL, Schnell E. alpha2delta-2 Protein
316 Controls Structure and Function at the Cerebellar Climbing Fiber Synapse. J
317 Neurosci. 2020;40(12):2403-15.

318 14. Brenowitz SD, Best AR, Regehr WG. Sustained elevation of dendritic calcium
319 evokes widespread endocannabinoid release and suppression of synapses onto
320 cerebellar Purkinje cells. J Neurosci. 2006;26(25):6841-50.

321 15. Donato R, Page KM, Koch D, Nieto-Rostro M, Foucault I, Davies A, et al. The
322 ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell
323 activity and altered gene expression. J Neurosci. 2006;26(48):12576-86.

324 16. Edgerton JR, Reinhart PH. Distinct contributions of small and large
325 conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol.
326 2003;548(Pt 1):53-69.

327 17. Niday Z, Bean BP. BK channel regulation of after-potentials and burst firing in
328 cerebellar Purkinje neurons. J Neurosci. 2021.

329 18. Womack M, Khodakhah K. Active Contribution of Dendrites to the Tonic and
330 Trimodal Patterns of Activity in Cerebellar Purkinje Neurons. The Journal of
331 Neuroscience. 2002;22(24):10603-12.

Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the
precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat
Neurosci. 2006;9(3):389-97.

335 20. Fell B, Eckrich S, Blum K, Eckrich T, Hecker D, Obermair GJ, et al.

alpha2delta2 Controls the Function and Trans-Synaptic Coupling of Cav1.3 Channelsin Mouse Inner Hair Cells and Is Essential for Normal Hearing. J Neurosci.

338 2016;36(43):11024-36.

339 21. Fakler B, Adelman JP. Control of K(Ca) channels by calcium340 nano/microdomains. Neuron. 2008;59(6):873-81.

341 22. Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M.

342 Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated

343 retrograde signaling and its physiological contribution to synaptic modulation in the

344 striatum. J Neurosci. 2007;27(14):3663-76.

345 23. Davies A, Douglas L, Hendrich J, Wratten J, Tran Van Minh A, Foucault I, et al.
346 The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in

347 cerebellum: implications for localization and function. J Neurosci.

348 2006;26(34):8748-57.

349 24. Rimmerman N, Hughes HV, Bradshaw HB, Pazos MX, Mackie K, Prieto AL, et

al. Compartmentalization of endocannabinoids into lipid rafts in a dorsal rootganglion cell line. Br J Pharmacol. 2008;153(2):380-9.

Wang X, Whalley BJ, Stephens GJ. The du(2J) mouse model of ataxia and
absence epilepsy has deficient cannabinoid CB(1) receptor-mediated signalling. J
Physiol. 2013;591(16):3919-33.