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Abstract 25 

During animal evolution, de novo emergence and modifications of pre-existing transcriptional 26 

enhancers have contributed to biological innovations, by implementing gene regulatory 27 

networks. The Drosophila melanogaster bric-a-brac (bab) complex, comprising the tandem 28 

paralogous genes bab1-2, provides a paradigm to address how enhancers contribute and co-29 

evolve to regulate jointly or differentially duplicated genes. We previously characterized an 30 

intergenic enhancer (named LAE) governing bab2 expression in leg and antennal tissues. We 31 

show here that LAE activity also regulates bab1. CRISPR/Cas9-mediated LAE excision reveals 32 

its critical role for bab2-specific expression along the proximo-distal leg axis, likely through 33 

paralog-specific interaction with the bab2 gene promoter. Furthermore, LAE appears involved 34 

but not strictly required for bab1-2 co-expression in leg tissues. Phenotypic rescue experiments, 35 

chromatin features and a gene reporter assay reveal a large “pleiotropic” bab1 enhancer (termed 36 

BER) including a series of cis-regulatory elements active in the leg, antennal, wing, haltere and 37 

gonadal tissues. Phylogenomics analyses indicate that (i) bab2 originates from bab1 duplication 38 

within the Muscomorpha sublineage, (ii) LAE and bab1 promoter sequences have been 39 

evolutionarily-fixed early on within the Brachycera lineage, while (iii) BER elements have been 40 

conserved more recently among muscomorphans. Lastly, we identified conserved binding sites 41 

for transcription factors known or prone to regulate directly the paralogous bab genes in diverse 42 

developmental contexts. This work provides new insights on enhancers, particularly about their 43 

emergence, maintenance and functional diversification during evolution.44 
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Author summary 45 

Gene duplications and transcriptional enhancer emergence/modifications are thought having 46 

greatly contributed to phenotypic innovations during animal evolution. However, how 47 

enhancers regulate distinctly gene duplicates and are evolutionary-fixed remain largely 48 

unknown. The Drosophila bric-a-brac locus, comprising the tandemly-duplicated genes bab1-49 

2, provides a good paradigm to address these issues. The twin bab genes are co-expressed in 50 

many tissues. In this study, genetic analyses show a partial co-regulation of both genes in the 51 

developing legs depending on tissue-specific transcription factors known to bind a single 52 

enhancer. Genome editing and gene reporter assays further show that this shared enhancer is 53 

also required for bab2-specific expression. Our results also reveal the existence of partly-54 

redundant regulatory functions of a large pleiotropic enhancer which contributes to co-regulate 55 

the bab genes in distal leg tissues. Phylogenomics analyses indicate that the Drosophila bab 56 

locus originates from duplication of a dipteran bab1-related gene, which occurred within the 57 

Brachycera (true flies) lineage. bab enhancer and promoter sequences have been differentially-58 

conserved among Diptera suborders. This work illuminates how transcriptional enhancers from 59 

tandem gene duplicates (i) differentially interact with distinct cognate promoters and (ii) 60 

undergo distinct evolutionary changes to diversifying their respective tissue-specific gene 61 

expression pattern. 62 

  63 
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Introduction 64 

Gene duplications have largely contributed to create genetic novelties during evolution (1, 2). 65 

Intra-species gene duplicates are referred to as “paralogs”, which eventually diverged 66 

functionally during evolution in a phylogenetic manner. Gene family expansion has facilitated 67 

phenotypic innovation through (i) acquisition of new molecular functions or (ii) the subdivision 68 

of the parental gene function between the duplicate copies (3-5). Phenotypic novelties are 69 

thought having originated mainly from evolutionary emergence or modifications of genomic 70 

Cis-Regulatory Elements (CREs) or modules, most often dubbed as “enhancer” regions, which 71 

regulate gene transcription in a stage-, tissue- and/or cell-type-specific manner (6-10). How 72 

CRE (enhancers) within gene complexes (i) are distinctly interacting with their cognate 73 

promoters and (ii) are differentially (co-)evolving remain largely unknown.  74 

The Drosophila melanogaster bric-a-brac (bab) locus comprises two tandemly-duplicated 75 

genes (Fig 1A), bab1-2, which encode paralogous transcription factors sharing two conserved 76 

domains: (i) a Bric-a-brac/Tramtrack/Broad-complex (BTB) domain involved in protein-77 

protein interactions, and (ii) a specific DNA-binding domain (referred to as BabCD, for Bab 78 

Conserved Domain), in their amino(N)- and carboxyl(C)-terminal moieties, respectively (11). 79 

Bab1-2 proteins are co-expressed in many tissues (11, 12). In the developing abdominal 80 

epidermal cells, within so-called histoblast nests, they jointly regulate directly yellow 81 

expression in a sexually-dimorphic manner, thus controlling adult male versus female body 82 

pigmentation traits (13-16). bab1-2 co-expression in the developing epidermal histoblast nests 83 

is partially governed by two CREs which drive reporter gene expression (i) in a monomorphic 84 

pattern in the abdominal segments A2-A5 of both sexes (termed AE, for “Anterior Element”), 85 

and (ii) in a female-specific pattern in the A5-A7 segments (DE, for “Dimorphic Element”) (Fig 86 

1A) (14, 17). In addition to controlling male-specific abdominal pigmentation traits, bab1-2 are 87 

required, singly, jointly or in a partially-redundant manner, for embryonic cardiac development, 88 
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sexually-dimorphic larval somatic gonad formation, salivary glue gene repression, female 89 

oogenesis, wing development as well as distal leg (tarsal) and antennal segmentation (11, 13, 90 

17-24). In addition to abdominal AE and DE, two other bab enhancers, termed CE and LAE 91 

(see Fig 1A), have been characterized, which recapitulate bab2 expression in embryonic cardiac 92 

cells and developing tarsal as well as distal antennal cells, respectively (17, 21, 25).  93 

Adult T1-3 legs, on the pro-, meso- and meta-thoraces, respectively, are derived from distinct 94 

mono-layered epithelial cell sheets, organized as sac-like structures, called leg imaginal discs 95 

(hereafter simply referred to as leg discs) (26-28). Upon completion of the third-instar larval 96 

stage (L3), each leg disc is already patterned along the proximo-distal (P-D) axis through 97 

regionalized expression of the Distal-less (Dll), Dachshund (Dac) and Homothorax (Hth) 98 

transcriptional regulators in the distal (center of the disc), medial and proximal (peripheral) 99 

regions, respectively (26). The five (ts1-5) tarsal and the single pretarsal (distalmost) segments 100 

are patterned through genetic cascades mobilizing transcription factors, notably the distal 101 

selector protein Dll and the tarsal Rotund protein as well as nuclear effectors of Notch and 102 

Epidermal Growth Factor Receptor (EGFR) signaling, i.e., Bowl and C15, respectively (26, 103 

27).  104 

While both bab genes are required for dimorphic abdominal pigmentation traits and somatic 105 

gonad specification (13, 22), only bab2 is critical for tarsal segmentation (11). While bab1 loss-106 

of-function legs are apparently wild-type, a null allele (babAR07) removing bab2 (and bab1) 107 

activities causes segmental transformation along the P-D leg axis, notably sex comb teeth in 108 

tarsal segments ts2-3 of male forelegs, normally only found in ts1, as well as ts2-5 tarsal fusions 109 

in both genders (11). While the two bab genes are co-expressed within ts1-4 cells, bab2 is 110 

expressed more proximally than bab1 in ts1, and in a graded manner along the P-D leg axis in 111 

ts5 (11, 29). We previously showed that bab2 expression in distal leg (and antennal) tissues is 112 

governed by a 567-bp-long CRE/enhancer (termed LAE for “Leg and Antennal Enhancer”) 113 
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which is situated between the bab1-2 transcription units (Fig 1A) (17, 25). However, LAE 114 

enhancer contribution to bab1-2 co-regulation in the developing distal legs remains to be 115 

investigated in tarsal segments ts3-4 where expression levels of both paralogous BTB-BabCD 116 

proteins are the highest (see Fig 1B) (11).  117 

Here, we show that bab1 expression in the developing distal leg also depends on the Rotund, 118 

Bowl and C15 proteins, three transcription factors known to regulate directly bab2 expression, 119 

by binding to dedicated LAE sequences (17, 25). LAE excision by CRISPR/Cas9-mediated 120 

genome editing indicates that this enhancer is partly involved in bab1-2 co-regulation and, more 121 

unexpectedly, is also required for their differential expression along the P-D leg axis. 122 

Additionally, we show that LAE acts redundantly with a large enhancer signature region 123 

(termed BER), located within the bab1 transcription unit, which is bound by dedicated 124 

transcription factors involved in diverse developmental processes and thus BER is prone to act 125 

as a “pleiotropic” enhancer region. Our phylogenomics analyses indicate that LAE and bab1 126 

promoter sequences have been fixed early on during dipteran evolution, well before bab1 127 

duplication. Conversely, BER and bab2 promoter sequences have been fixed much later. Lastly, 128 

within D. melanogaster BER, we identified conserved binding sites for many transcriptional 129 

regulators known or prone to regulate bab1 and/or bab2 expression in the developing leg and 130 

antenna, but also in wing, haltere, mesodermal and gonadal tissues. This work illuminates how 131 

transcriptional enhancers from tandem gene duplicates (i) differentially interact with distinct 132 

cognate promoters and (ii) undergo distinct evolutionary changes to diversifying their 133 

respective tissue-specific gene expression pattern. 134 

 135 

Results 136 

The tandem bab1-2 gene paralogs are co-regulated in the developing distal leg  137 
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In addition to the distal selector homeodomain (HD) protein Distal-less, we and others have 138 

previously shown that the C15 HD protein (homeoprotein) as well as Rotund and Bowl Zinc-139 

Finger (ZF) transcription factors (TFs) bind dedicated sequences within LAE to ensure precise 140 

bab2 expression in four concentric tarsal rings within the leg discs (Fig 1B) (17, 25). bab1-2 141 

are co-expressed in ts2-4 tarsal segments, while bab2 is specifically expressed in ts5 and more 142 

proximally than bab1 in ts1, both in a graded manner along the P-D leg axis (Fig 1C and S1A 143 

Fig) (11). Given bab1-2 co-expression in ts1-4, we first asked whether C15, rotund and bowl 144 

activities are also controlling bab1 expression in the developing distal leg. To this end, we 145 

compared Bab1 expression with that of a X-linked LAE-GFP (or LAE-RFP) reporter gene 146 

faithfully reproducing the bab2 expression pattern there (17, 25), in homozygous mutant leg 147 

discs for a null C15 allele or in genetically-mosaic leg discs harboring rotund or bowl loss-of-148 

function mutant cells (Fig 1D-F). 149 

C15 is specifically activated in the distalmost (center) part of the leg disc giving rise to the 150 

pretarsal (pt) segment (see Fig 1B) (30, 31). We have previously shown that the C15 151 

homeoprotein down-regulates directly bab2 to restrict its initially broad distal expression to the 152 

tarsal segments (25). Bab1 expression analysis in a homozygous C15 mutant leg disc revealed 153 

that both bab1 and LAE-RFP (bab2) are similarly de-repressed in the pretarsus (Fig 1, compare 154 

panels C-D).  155 

In contrast to C15, rotund expression is restricted to the developing tarsal segments (32) and 156 

the transiently-expressed Rotund ZF protein contributes directly to bab2 up-regulation in 157 

proximal (ts1-2) but has no functional implication in distal (ts3-5) tarsal cells (17). 158 

Immunostaining of genetically-mosaic leg discs at the L3 stage revealed that bab1 is cell-159 

autonomously down-regulated in large rotund mutant clones in ts1-2, but not in ts3-4 segments 160 

(Fig 1E), as it is the case for LAE-GFP reflecting bab2 expression. Lastly, we examined whether 161 

the Bowl ZF protein, a repressive TF active in pretarsal but not in most tarsal cells, is down-162 
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regulating bab1 expression there (33), like bab2 (25). Both bab1 and LAE-RFP (bab2) appeared 163 

cell-autonomously de-repressed in bowl loss-of-function pretarsal clones (Fig 1F).  164 

In addition to loss-of-function, we also conducted gain-of-function experiments for bowl and 165 

rotund. Bowl TF gain-of-function was achieved by down-regulating lines which encodes a 166 

related but antagonistic ZF protein (i) destabilizing nuclear Bowl and is specifically expressed 167 

in the tarsal territory (33). As previously shown for LAE-GFP (and bab2) expression, nuclear 168 

Bowl stabilization in the developing tarsal region appears sufficient to down-regulate cell-169 

autonomously bab1 (S1C Fig). Prolonged expression of the Rotund protein in the entire distal 170 

part of the developing leg disc, i.e., tarsal in addition to pretarsal primordia, induces ectopic 171 

bab1 expression in the presumptive pretarsal territory, albeit with some differences with bab2 172 

expression (S1B Fig, differentially-expressing cells are indicated with arrows), thus suggesting 173 

differential sensitivity of the two gene duplicates to Rotund TF levels (see discussion).  174 

Taken together, these data indicate that the C15, Bowl and Rotund transcription factors, 175 

previously shown to interact physically with specific LAE sequences and thus to regulate 176 

directly bab2 expression in the developing distal leg, are also regulating bab1 expression there. 177 

These results suggest that the limb-specific intergenic LAE enhancer activity regulates directly 178 

both bab genes. 179 

 180 

LAE activity regulates both bab1 and bab2 gene paralogs along the proximo-distal leg axis 181 

To test the role of LAE in regulating bab1-2, we deleted precisely the LAE sequence through 182 

CRISPR/Cas9 genome editing (see Materials and Methods) (Fig 2A). Two independent 183 

deletion events (termed ∆LAE-M1 and -M2; see S2 Fig for deleted DNA sequences) were 184 

selected for phenotypic analysis. Both are homozygous viable and give rise to fertile adults with 185 

identical fully-penetrant distal leg phenotypes, namely ectopic sex-comb teeth on ts2 (normally 186 
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only found on ts1) tarsal segment in the male prothoracic (T1) legs (Fig 2B), which are typical 187 

of bab2 hypomorphic alleles (11). The ∆LAE-M1 allele was selected for detailed phenotypic 188 

analyses and is below referred to as bab∆LAE.  189 

First, we quantified bab1 and bab2 mRNAs prepared from dissected wild-type and homozygous 190 

bab∆LAE mutant leg discs. As shown in Fig 2C, both mRNAs were detected in mutant discs, 191 

although bab1 levels were two times lower than wild-type. Second, Bab1-2 expression patterns 192 

were analyzed in homozygous bab∆LAE leg discs (Fig 3). To identify leg cells that should 193 

normally express bab2, we used the X-linked LAE-GFP reporter. In homozygous bab∆LAE 194 

mutant leg discs, bab2 specific expression (see Fig. 1B) is no longer observed (Fig 3B-C), while 195 

Bab1-2 shared expression is very low in ts3-4 to undetectable in ts1-2. Nevertheless, residual 196 

bab1-2 co-expression in homozygous bab∆LAE mutant discs indicates that additional cis-197 

regulatory region(s) within the bab locus act(s), at least partly, redundantly with the LAE 198 

enhancer.   199 

Taken together, our data indicate that LAE enhancer activity is (i) required for bab1-2 co-200 

expression in the two proximal-most tarsal segments, particularly ts1, (ii) dispensable for their 201 

co-expression in ts3-4, suggesting the presence of redundant cis-regulatory information and (iii) 202 

critically required for bab2-specific tarsal expression both proximally and distally. Thus, LAE 203 

activity governs both shared and paralog-specific expression of the bab1-2 gene duplicates. 204 

 205 

LAE paralog-specific activity requires the bab2 core promoter  206 

Whereas enhancer emergence has been proposed to account for acquisition of novel tissue- or 207 

paralog-specific functions for gene duplicates (34-36), LAE regulatory function provides an 208 

example of a single enhancer responsible both for shared and differential expression of two 209 

tandemly-repeated gene paralogs. Previously tested LAE reporter constructs fused bab2 core 210 
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promoter sequences to the minimal Hsp70 promoter region (pHsp70) (17, 25). To examine the 211 

contribution of the bab2 promoter to LAE activity we compared the expression of two LAE 212 

reporters containing (LAE-RFP) or not (LAE-pHsp70only-GFP) the bab2 promoter sequence 213 

(Fig 3D). Strikingly, the LAE-pHsp70only-GFP reporter was no longer activated in RFP+ 214 

(bab2-expressing) ts1 and ts5 cells (Fig 3E; see white brackets and arrows). These data indicate 215 

that bab2-specific regulation by LAE activity requires the bab2 core promoter sequences. 216 

 217 

In addition to the intergenic LAE, other leg-specific enhancer elements are present within 218 

the bab1 first intron 219 

Since LAE appeared dispensable for bab1-2 co-expression in ts3-4 cells, our data suggested the 220 

existence of other redundant cis-regulatory elements, presumably located also within the bab 221 

locus. On one side, a X-linked Bacterial Artificial Chromosome (BAC) construct, 222 

BAC26B15ZH2A, encompassing the bab2 gene and downstream intergenic sequence including 223 

LAE (see Fig 4A), could rescue (i) Bab2 expression in the tarsal primordium and (ii), distal leg 224 

phenotypes detected in homozygous animals for the null allele babAR07 (17). On the other side, 225 

a BAC26B15 construct (BAC26B15∆LAE ZH2A) inserted at the same genomic landing site and 226 

specifically lacking LAE sequence did not (Fig 4B-D). These results confirmed that (i) in 227 

absence of redundant cis-regulatory information, LAE is essential for bab1-2 expression in the 228 

tarsal segments and (ii) the cis-information redundant with LAE is located outside the genomic 229 

region covered by BAC26B15. 230 

To identify limb-specific redundant cis-regulatory information within the bab complex, we first 231 

tested the capacity of another BAC, BAC69B22, which overlaps bab1 and lacks LAE (see Fig 232 

4A), to restore Bab1 expression in babAR07 mutant leg discs. As shown in Fig 4E-F, the X-linked 233 

BAC69B22ZH2A could restore bab1 expression in ts2-4, indicating that it contains cis-regulatory 234 
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information redundant with LAE activity in these segments. To test the capacity of BAC69B22 235 

sequences to also regulate bab2 expression in ts2-4, we placed BAC69B22ZH2A across 236 

BAC26B15∆LAEZH2A, to allow pairing-dependent trans-interactions (i.e., transvection) between 237 

the two X chromosomes in females. This configuration partially restored Bab2 expression in 238 

ts2-4 cells from babAR07 mutant L3 leg discs, albeit in salt and pepper patterns (Fig 4G), 239 

diagnostic of transvection effects (37).  240 

From these data, we predicted the existence of cis-regulatory information within the 69B22 241 

chromosomal interval capable to drive some bab1-2 expression in distal leg tissues and acting 242 

redundantly with the LAE enhancer. 243 

 244 

Chromatin features predict limb-specific cis-regulatory elements within bab1  245 

Next, we sought to identify cis-regulatory information acting redundantly with LAE by taking 246 

advantage of available genome-wide chromatin features and High-throughput chromosome 247 

conformation Capture (Hi-C) experiments performed from L3 eye-antennal and/or leg discs 248 

(Fig 5). bab1-2 are indeed co-expressed in distal antennal cells within the composite eye-249 

antennal imaginal disc (11). A topologically-associating domain covering the entire bab locus 250 

was detected in Hi-C data from eye-antennal discs (Fig 5A and S3A Fig) (38), revealing 251 

particularly strong interactions between bab1-2 promoter regions.  252 

We then used published genome-wide data from Chromatin Immuno-Precipitation (ChIP-Seq), 253 

Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-Seq) and Assay for 254 

Transposase-Accessible Chromatin (ATAC-Seq) experiments (38-41), looking for active 255 

enhancer marks (H3K4me1 and H3K27Ac) and nucleosome-depleted chromatin regions (thus 256 

accessible to transcription factors). Active enhancer signatures are mainly associated with a 257 

~15-kb-long genomic region that we termed BER, for “bab1 Enhancer Region”, encompassing 258 
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the bab1 promoter, first exon and part of its first intron (Fig 5B, lanes 1-2 and 5-6, respectively; 259 

see also S3B Fig for peak calling data). Note that LAE is also accessible to transcription factors 260 

and carries H3K4me1 marks, consistently with enhancer activity in distal antennal cells (17).  261 

To more precisely locate putative enhancer element(s) within BER, we analyzed previously-262 

published ChIP-Seq data from L3 leg discs (42) for binding sites for Dll, Sp1 and Hth proteins, 263 

known to regulate bab1 and/or bab2 expression in the developing legs (17, 42-44). Strong Dll 264 

binding is detected throughout BER, including over the bab1 promoter (Fig 5B, lane 10; see 265 

also S3B Fig). In leg discs, Dll binding is detected over 8 out of 10 Open Chromatin Subregions 266 

(OCS) within BER (Fig 6C and S3B Fig) and six of those eight are also bound by Sp1 ZF 267 

protein. Of note, all nucleosome-depleted (i.e., OCS) BER subregions in the leg are also 268 

accessible in the eye-antennal discs (40) (Fig 5B, compare lanes 2 and 9, and Fig 6C, two upper 269 

lanes). Lastly, of six OCS sequences co-bound by Dll and Sp1, four are also bound by Hth 270 

protein (Fig 5B, lane 8, and Fig 6C, bottom lane). FAIRE-Seq data indicate that, in addition to 271 

LAE, only OCS7 is nucleosome-depleted in the leg and eye-antennal discs but not the wing 272 

and/or haltere discs (Fig 5B, lanes 13, 16, 18, and Fig 6C, four upper lines; see also S3B Fig). 273 

Importantly, ventral limb-specific OCS7 is co-bound by Dll, Sp1 and Hth transcription factors 274 

(Fig 6C). Thus, within the entire bab locus, only LAE and BER OCS7 are specifically bound 275 

by transcriptional regulators in the developing leg and antenna. 276 

In summary, data mining indicates that BER includes a cluster of enhancer elements bound by 277 

Dll and Sp1 in leg discs and thus are good candidates for acting redundantly with LAE in 278 

regulating bab genes in a ventral limb-specific manner.  279 

 280 

BER includes multiple cis-regulatory elements active in diverse developmental contexts 281 
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To further ascribe regulatory roles to BER subregions, we took advantage of a systematic 282 

analysis of Gal4 reporter lines (45). Out of six lines containing BER fragments (Fig 6B), only 283 

two, 73C11 and 73C05, overlapping OCS1-3, are active in the leg and eye-antennal discs 284 

(FlyLight database; (http://flweb.janelia.org/cgi-bin/flew.cgi; S4B Fig). Nevertheless, none 285 

reproduce the bab1/2 leg or antennal expression patterns in four or two concentric distal rings, 286 

respectively. These and other published data from reporter constructs including bab1 first intron 287 

sequences (14)  indicate that OCS1-7 (see Fig 6B) are not sufficient to properly drive bab1/2 288 

expression in the developing legs and suggest the requirement of additional BER elements, 289 

particularly the bab1 promoter region (i.e., OCS9). This hypothesis is consistent with binding 290 

of the known bab1-2 leg regulators Dll and Sp1 throughout BER, in addition to LAE (Fig 5, 291 

lane 10; and S3B Fig). 292 

The 73C05 BER fragment also drives reporter gene expression in the wing, haltere and genital 293 

discs (S4 Fig, panels E and H-J) in patterns strikingly similar to those described for bab2 (11, 294 

44). Consistently, FAIRE- and ChIP-Seq data from haltere discs indicate respectively that 295 

OCS1-3 are nucleosome-free and bind the Ultrabithorax (Ubx) Hox-type homeoprotein known 296 

to activate directly bab2 expression in haltere tissues (Fig 5B, lanes 16-17, and Fig 6C) (46, 297 

47). Furthermore, ChIP-Seq data from whole L3 larvae (modENCODE), showed binding over 298 

the entire BER region of the Hox Abd-B genital selector (Fig5B, lane 20)  (48). Lastly, BER 299 

includes (i) nucleosome-depleted sequences governing expression in adult muscles and bound 300 

by the mesodermal transcription factors Mef2, Slp1 and Tinman in late embryos (14, 49) as 301 

well as (ii) a sequence element (overlapping OCS5) which confers enhancer activity in ovarian 302 

somatic cells (50) (see Fig 6D).  303 

Taken together, our data indicate that BER sequences drive bab1-2 expression in developing 304 

limbs but also in other tissues such as wing, haltere, genitalia and mesoderm. Moreover, owing 305 

to the presence of binding sites for transcription factors known to regulate bab gene expression 306 
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in these respective tissues, spread out over the whole BER sequence, the latter is thus proposed 307 

to act as a pleiotropic enhancer region. 308 

 309 

Cross- and auto-regulations among the bab genes 310 

Bab proteins interact with A/T-rich DNA sequences through their BabCD DNA-binding 311 

domain, including binding sites within their own locus (51). We therefore tested whether the 312 

Bab1-2 proteins autoregulate and/or cross-regulate their own expression. Previous data 313 

indicated that Bab2 protein expression is unaffected in bab1 loss-of-function mutants (11). 314 

Given that protein null bab2 alleles are not available, we used RNA interference coupled to 315 

flip-out (FO) Gal4 expression to down-regulate clonally bab2 expression within developing 316 

legs, and examine LAE-RFP and bab1 expression in mosaic L3 leg discs (Fig 7). Strikingly, 317 

both LAE-RFP and bab1 were up-regulated cell-autonomously in most tarsal mitotic clones 318 

(n=17/20) (Fig 7, panels A-A”). Moreover, bab2 down-regulation in proximal-most RFP+ ts1 319 

cells (expressing only bab2) activated cell-autonomously bab1, in addition to up-regulating 320 

LAE-RFP expression (Fig 7, white arrows in panels B-B”). These results suggested to us that 321 

the bab2 paralog specifically down-regulates its own expression through partial repression of 322 

LAE enhancer activity. To confirm these observations, we generated mutant clones for the 323 

babAR07 null allele, lacking both bab2 and bab1 activities. A slight cell-autonomous LAE-GFP 324 

reporter up-regulation could be observed in all examined babAR07 clones (detected with anti-325 

Bab2 antibodies; n>20) (Fig 7, panels C-C”), independently of their size and position within 326 

bab2-expressing tarsal cells (see white arrows and arrowheads).  327 

Altogether, we conclude that bab2 down-regulates its own expression, likely via partial 328 

repression of LAE activity, thus ensuring appropriate levels of both paralogous BTB-BabCD 329 

transcription factors in distal leg tissues, and most likely in other appendages as well. 330 
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 331 

The bab gene complex arose from bab1 duplication in the Muscomorpha infraorder 332 

The different levels of cis-regulatory element redundancy within the bab locus led us to trace 333 

back the evolutionary origin of the bab duplication found in D. melanogaster (Dmel). To start, 334 

we identified proteins orthologous to Dmel Bab1 or Bab2, i.e., displaying an N-terminal BTB 335 

associated to a C-terminal BabCD domain (collectively referred to as BTB-BabCD proteins) 336 

(11) within highly diverse dipteran species (see Fig 8A). Two distinct BTB-BabCD proteins 337 

strongly related to Dmel Bab1 and Bab2, respectively, were identified in the Muscomorpha 338 

(higher flies, also known as Cyclorrhapha) superfamily, both within the Schizophora (in 339 

Calyptratae, such as Musca domestica and Glossina morsitans, and in Acalyptratae, particularly 340 

among Drosophilidae) and Aschiza subsections (Fig 8A-B and Supplementary data). In 341 

contrast, a single BTB-BabCD protein could be identified in evolutionarily-distant dipteran 342 

species within (i) the brachyceran Asilomorpha and Stratiomyomorpha superfamilies (such as 343 

Proctacanthus coquilletti and Hermetia illucens, respectively), collectively referred to as 344 

Orthorrhapha; (ii) the Nematocera suborder families (with rare exceptions, in Psychodomorpha 345 

and Bibionomorpha, see below); (iii) other Insecta orders (e.g., Coleoptera, Hymenoptera and 346 

Lepidoptera), and in crustaceans (e.g., Daphnia pulex) (see Supplementary data). 347 

To analyze the phylogenetic relationships between these different Bab-related proteins, their 348 

primary sequences were aligned and their degree of structural relatedness examined through a 349 

maximum likelihood analysis. As expected from an ancient duplication, muscomorphan Bab1-350 

2 paralogs cluster separately, while singleton asilomorphan BTB-BabCD proteins are more 351 

related to muscomorphan Bab1 than Bab2 (Fig 8B and S5 Fig), indicating that muscomorphan 352 

bab2 originated from bab1 duplication.  353 
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Interestingly, contrary to most nematocerans, two or even three bab1 paralogs are present in 354 

the fungus gnat Coboldia fuscipes (Psychodomorpha) and the gall midge Mayetiola destructor 355 

(Bibionomorpha), respectively. Significantly, M. destructor and C. fuscipes bab1 paralogs (i) 356 

cluster separately in our phylogenetic analysis (Fig 8B and S5 Fig) and (ii) two are arrayed in 357 

the same chromosomal contexts for both species (S6 Fig), indicating that they have likely been 358 

generated through independent gene duplication processes in the Bibionomorpha and 359 

Psychodomorpha, respectively. 360 

Taken together, and updating a previous work (13), our phylogenomics analysis (summarized 361 

in Fig 9B-C) indicates that a single ancestral bab gene related to bab1 has been duplicated to 362 

give rise to bab2 within the Muscomorpha (Cyclorrhapha) infraorder.   363 

 364 

LAE sequences have been fixed in the Brachycera, thus predating bab1 duplication 365 

Having traced back the bab gene duplication raised the question of the evolutionary origin of 366 

the LAE enhancer, which regulates both bab1 and bab2 expression (17) (this work). We have 367 

previously shown that LAE includes three subsequences highly-conserved among twelve 368 

reference Drosophilidae genomes (52), termed CR1-3 (for Conserved Regions 1 to 3; see S7A 369 

Fig and Supplementary data), of which only two, CR1 and 2, are critical for tissue-specificity 370 

(17, 25). The 68 bp CR1 includes contiguous binding sites for Dll and C15 homeoproteins, 371 

while the 41 bp CR2 comprises contiguous binding sites for Dll as well as the ZF protein Bowl 372 

(S7 Fig, panels B and C, respectively) (17, 25).  373 

To trace back the LAE evolutionary origin, we then systematically searched for homologous 374 

CR1-3 sequences (>50% identity) in dipteran genomes. Importantly, conserved LAE sequences 375 

have not been yet reported outside drosophilids. Small genomic regions with partial or extensive 376 

homologies to the CR1 (encompassing the C15 and Dll binding sites) and CR2 (particularly the 377 
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Dll and Bowl binding sites) could be detected in all examined Brachycera families but not in 378 

any nematoceran (Fig 9B and S7B-C Fig). Contrary to closely-associated CR1-2 homologous 379 

sequences, no CR3-related sequence could be identified nearby, in any non-Drosophilidae 380 

species. Significantly, homologous LAE sequences are situated (i) in between the tandemly-381 

duplicated paralogs in muscomorphan species for which the entire bab locus sequence was 382 

available to us, suggesting an evolutionarily-conserved enhancer role, or (ii) 20 kb upstream of 383 

the bab1-related singleton in the asilomorphan P. coquilletti (see Fig 9C). 384 

Taken together, as summarized in Fig 9A-C, these data suggest that a LAE-like enhancer with 385 

CR1- and CR2-related elements emerged early on in the Brachycera suborder, 180-200 million 386 

years ago, and has been since fixed within or upstream the bab locus in the Muscomorpha and 387 

Asilomorpha infraorders, respectively. 388 

 389 

Like LAE elements, bab1 promoter sequences have been fixed early on in the Brachycera  390 

Given their differential interplay with the long-lasting LAE enhancer, we next analyzed the 391 

evolutionary conservation of Dmel bab1-2 promoter core sequences (Fig 9B and S8 Fig). Both 392 

bab promoters are TATA-less. Whereas bab1 has a single transcriptional initiator (Inr) element 393 

(TTCAGTC), its bab2 paralog displays tandemly-duplicated Inr sequences (ATTCAGTTCGT) 394 

(53, 54) (S8 Fig). Both promoters display 64% sequence identity over 28 base pairs, including 395 

Inr (TTCAGT) and downstream putative Pause Button (PB; consensus CGNNCG) sequences 396 

(55) (see S8A Fig). These data suggested that (i) the duplication process having yielded bab2 397 

included the ancestral bab1 promoter and (ii) PolII pausing ability previously shown for bab2 398 

promoter (56-58) probably also occurs for bab1 promoter.  399 

Homology searches revealed that bab1 promoter sequences have been strongly conserved in 400 

the three extant Muscomorpha families and even partially in some asilomorphans (e.g., P. 401 
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coquellitti), for which a bab1-related singleton gene is present (Fig 9B and S8B Fig). In striking 402 

contrast to bab1, sequence conservation of the bab2 promoter could only be detected among 403 

some Acalyptratae drosophilids (Fig 9B and S8C Fig). In agreement with a fast-evolutionary 404 

drift for bab2 promoter sequences, the duplicated Inr is even only detected in Drosophila group 405 

species. 406 

Taken together, these evolutionary data (summarized in Fig 9B) indicate that, likewise for the 407 

LAE enhancer, bab1 promoter sequences have been under strong selective pressure among the 408 

Brachycera, both in the Muscomorpha and Asilomorpha infraorders, while paralogous bab2 409 

promoter sequences diverged rapidly among muscomorphans. 410 

 411 

Unlike LAE, other bab CRE sequences have not been conserved beyond the 412 

Muscomorpha 413 

The broad LAE sequence conservation led us to also trace back the evolutionary origins of the 414 

pleiotropic BER enhancer region as well as the cardiac CE, abdominal anterior AE and 415 

sexually-dimorphic DE cis-regulatory elements (see Fig 9). Sequences homologous to half of 416 

the BER OCS subregions could be detected among the 12 reference Drosophilidae genomes 417 

(52), in Calyptratae schizophorans and even in the Muscomorpha Aschiza subsection (e.g., 418 

OCS3) (S10-18 Fig). Unlike the LAE enhancer, homologous BER sequence elements (except 419 

the bab1 promoter) could not be detected in non-muscomorphan families. Cardiac CE and 420 

abdominal DE are even less conserved given that related sequences could be only detected 421 

within schizophoran (excepted in Calyptratae) (Fig 9B and S9 Fig, panels B and C, 422 

respectively), whereas abdominal AE sequences could be only identified among drosophilids 423 

(Supplementary data) but not in aschizan, asilomorphan and nematoceran bab loci.  424 
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In conclusion, contrary to the LAE enhancer which among the Diptera emerged early on in the 425 

Brachycera suborder, other so-far identified bab cis-regulatory sequences have not been 426 

conserved beyond the Muscomorpha infraorder. Thus, as summarized in Fig 9B, and unlike the 427 

long-lasting brachyceran LAE (CR1-2) sequences, these data suggest that other enhancer 428 

sequences have been fixed within the Muscomorpha concomitantly (BER) or even after (CE, 429 

DE and AE) the bab2 paralog emergence. Moreover, as expected for a pleiotropic enhancer 430 

region, BER sequence conservation allowed us to predict binding sites for transcription factors 431 

known, or so far unsuspected, prone to regulate directly the two bab genes in many distinct 432 

developmental contexts, and which are presented hereafter.  433 

 434 

Predictive TF combinatorial code governing bab gene expression in diverse tissues 435 

We gathered our data from TF binding site evolutive conservation (described in Supplementary 436 

data and S10-19 Fig) with ChIP-Seq experiments from the literature (GEO datasets; see 437 

Materials and Methods) (Fig 5B and S3B Fig). Associated with our precise knowledge of bab 438 

locus enhancer sequences and with previous genetic data also gained from the literature, our 439 

compilation presented in Fig. 10 allows to propose new models for the TF code involved in 440 

Dmel bab locus regulation: (i) It provides new insights into limb-specific bab1/2 regulation 441 

proposing additional direct regulators such as Sp1 in the legs, Hth in the antenna, Scalloped 442 

(Sd) in the wing and Ubx in the haltere (ChIP-Seq data shown in S3 Fig); (ii) It suggests that 443 

BER also acts as an enhancer region for bab gene regulation in other developmental contexts 444 

and that common TF sets (notably Abd-B together with Dsx) are acting through distinct cis-445 

regulatory elements within BER to drive bab gene expression in distinct tissues (e.g., in 446 

abdominal histoblast nests versus genitalia); (iii) It proposes a direct Bab2 binding on LAE for 447 

bab gene auto- and cross regulation (tested above); (iv) Finally, analysis of sequences conserved 448 
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among brachyceran bab loci identified predicted binding sites for more broadly-expressed 449 

transcriptional regulators, i.e., GAF, Pho and CTCF (directly interacting with BER OCS; see 450 

Fig 5B, lanes 3, 14 and 19, respectively, as well as S3 Fig for GAF), as well as Eip93F, 451 

Eip74EF, Chinmo, all related to chromatin organization whose putative roles in bab locus 452 

regulation are discussed hereafter. 453 

 454 

Discussion 455 

In this work, we have addressed the issue of the emergence and functional diversification of 456 

enhancers and promoters from two tandem gene duplicates. Using the Drosophila bab locus as 457 

a model, we showed that the paralogous genes bab1-2 originate from an ancient bab1 458 

duplication in the Muscomorpha/Cyclorrhapha. The early-fixed brachyceran bab1 LAE has 459 

been co-opted lately to regulate also bab2 expression. Furthermore, this unique enhancer is also 460 

responsible for paralog-specific bab2 expression along the P-D leg axis presumably through 461 

privileged interactions with the bab2 promoter. Finally, LAE regulates only some aspects of 462 

bab1-2 expression in the developing limbs because redundant information has emerged within 463 

a large pleiotropic enhancer driving bab1 and/or bab2 expression in highly-diverse tissues, by 464 

binding common sets of developmental transcription factors. This work brings some cues about 465 

(i) how a single enhancer can drive specificity among tandem gene duplicates, (ii) how 466 

enhancers evolutionary adapt with distinct cognate gene promoters, and (iii) which functional 467 

links can be predicted between dedicated transcription factors and chromatin dynamics during 468 

development. 469 

  470 

A shared enhancer differentially regulating two tandem gene paralogs through distinct 471 

promoter targeting specificities  472 
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Here, we have shown that a single enhancer, LAE, regulates two tandem gene paralogs at the 473 

same stage and in the same expression pattern. How can this work?  It has been proposed that 474 

enhancers and their cognate promoters are physically associated within phase-separated nuclear 475 

foci composed of high concentrations of TFs and proteins from the basal RNA polymerase II 476 

(PolII) initiation machinery inducing strong transcriptional responses (59, 60). Our Hi-C data 477 

from eye-antennal discs show a strong interaction between bab1-2 promoter regions (Fig 5), 478 

suggesting that both bab promoters could be in close proximity within such phase separated 479 

droplets, thus taking advantage of shared transcriptional regulators and allowing concerted gene 480 

regulation. In contrast, no strong chromosome contacts could be detected between LAE and 481 

any of the two bab promoter regions, indicating that this enhancer is not stably associated to 482 

the bab2 or bab1 promoter in the eye-antennal disc (where only the antennal distal part 483 

expresses both genes). It would be interesting to gain Hi-C data from leg discs, in which the 484 

bab1-2 genes are much more broadly expressed.  485 

In addition to be required for bab1-2 co-expression in proximal tarsal segments, we showed 486 

here that the LAE enhancer is also responsible for paralog-specific bab2 expression along the 487 

proximo-distal leg axis. While it has been proposed that expression pattern modifications occur 488 

through enhancer emergence, our present work indicates that differential expression of two 489 

tandem gene paralogs can depend on a shared pre-existing enhancer (i.e., LAE). How this may 490 

work? Relative to its bab1 paralog, bab2 expression extends more proximally within the Dac-491 

expressing ts1 cells (44) and more distally in the ts5 segment expressing  nuclear Bowl protein, 492 

whereas both Dac and Bowl proteins have been proposed to act as bab2 (and presumably bab1) 493 

repressors (25, 33, 61). CRISPR/Cas9-mediated LAE excision allowed us to establish that this 494 

enhancer is critically required for paralog-specific bab2 leg expression proximally and distally, 495 

in ts1 and ts5 cells, respectively. In this context, we and others have previously proposed that 496 

transiently-expressed Rotund activating TF may antagonize Bowl (and eventually Dac) 497 
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repressive activity to precisely delimit bab2 expression among ts1 cells (17, 61). Given that 498 

bab1-2 are distinctly expressed despite being both regulated by Bowl and Rotund, we propose 499 

that paralog-specific LAE activity depends on privileged interactions with bab2 promoter 500 

sequences (discussed below). Thus, we speculate that the bab2 promoter responds to Rotund 501 

transcriptional activity differently from its bab1 counterpart. Consistent with this view, ectopic 502 

Rotund expression reveals differential regulatory impacts on the two bab gene promoters (S1B 503 

Fig). Genetic together with Hi-C experiments indicate that this could occur through specific 504 

interactions between LAE-bound TFs (e.g., Rotund) and dedicated proteins within the PolII 505 

pre-initiation complex stably-associated to the bab2 core promoter. We envision that the LAE-506 

bound ZF protein Rotund, the chromatin-remodeling ZF protein GAF (for GAGA-associated 507 

Factor) and the PolII-associated TFIID subunit TAF3, the latter known to interact physically 508 

with GAF and Bab2 BTB proteins (62, 63), are parts of the underlying promoter targeting 509 

molecular mechanism. 510 

In this context, despite that sequence homologies between both promoters (consistent with an 511 

ancient duplication event mobilizing the ancestral bab1 promoter) are still detectable, it is 512 

significant that the bab2 promoter evolves much faster than its bab1 counterpart. While the 513 

bab1 promoter sequence has been strongly conserved among brachycerans, predating bab2 514 

gene emergence in the Muscomorpha, the bab2 promoter sequence has only been fixed recently 515 

among Drosophilidae, notably through the Initiator (Inr) sequence duplication, indicating very 516 

fast evolutionary drift after the gene duplication process which yielded the bab2 paralog. We 517 

envision that this evolutionary ability has largely contributed to allow novel expression patterns 518 

for bab2, presumably through differential enhancer-promoter pairwise interplay. 519 

 520 

Differential evolutionary conservation of tissue-specific versus pleiotropic enhancers 521 
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Our comprehensive phylogenomics analyses from highly diverse Diptera families indicate that 522 

the bab gene complex has been generated through tandem duplication from an ancestral bab1-523 

related gene singleton within the Muscomorpha (Cyclorrhapha), about 100-140 years ago. This 524 

result contrasts with published data reporting that the duplication process having yielded the 525 

tandem bab genes occurred much earlier in the Diptera lineage leading to both the Brachycera 526 

(true flies; i.e., with short antenna) and Nematocera (long horned “flies”, including mosquitos) 527 

suborders (13). In fact, tandem duplication events implicating the bab locus did occur in the 528 

Bibionomorpha, as reported (13)), and even in the Psychodomorpha with three bab1-related 529 

gene copies (Figure 8 and S6 Fig), but our phylogenetic analysis supports independent events. 530 

Thus, within the Diptera, the ancestral bab1 singleton had a high propensity to duplicate locally. 531 

In this study, we have shown a strong evolutionary conservation of LAE subsequences among 532 

brachycerans, notably its CR2 element containing Dll and Bowl binding sites (S7C Fig). This 533 

conservation suggests a long-lasting enhancer function in distal limb-specific regulation of 534 

ancestral singleton bab1 genes. In striking contrast, BER sequence conservation could only be 535 

detected among extant muscomorphan bab loci. We assume that during evolution large 536 

pleiotropic enhancers may better assimilate binding sites for gene-specific transcription factors, 537 

thus generating regulatory novelties in distinct imaginal discs.  538 

Gene duplication is a major source to generate phenotypic innovations during evolution, 539 

through diverging expression and molecular functions, and eventually from single gene copy 540 

translocation to another chromosomal site. Emergence of tissue-specific enhancers not shared 541 

between the two gene duplicates, as well as of “shadow” enhancers, have been proposed to be 542 

evolutionary novelty sources (64) (6). Our work indicates that the presumably long-lasting 543 

brachyceran LAE enhancer has recently been co-opted in drosophilids to allow differential bab 544 

gene expression. Conversely, the large BER region has apparently accumulated regulatory 545 
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sequence elements bound by diverse tissue-specific transcription factors (e.g., Dll, Hth, Abd-B 546 

and Dsx) acting in different cellular contexts.  547 

 548 

A pleiotropic enhancer region overlapping with a PcG-response element  549 

ChIP-Seq analysis for histone H3 modifications (H3K4me3, H3K27Ac and H3K4me1 550 

enhancer/promoter marks; H3K27me3 chromatin repressive mark) from eye-antennal discs has 551 

revealed the pleiotropic BER enhancer region but also an overlapping repressive PcG 552 

(Polycomb Group family) domain, indicating that BER encompasses a bivalent chromatin 553 

domain, while another one is detected over the bab2 promoter region. A dual enhancer/silencing 554 

function for PcG-Response Element (PRE) during embryogenesis has recently been established 555 

genome-wide (65), and the authors have proposed that reuse of enhancer regulatory elements 556 

by PcG proteins may help fine-tune gene expression and ensure the timely maintenance of cell 557 

identities throughout development. More recently, we have shown widespread enhancer-PcG 558 

domain interplay during developmental gene activation through chromatin looping in eye-559 

antennal discs (38). Altogether these data suggest that the bab1-2 genes might be poised for 560 

activation throughout the eye-antennal disc, and possibly other imaginal discs as well.  561 

The Pleiohomeotic (Pho) protein is a DNA-binding PcG complex recruiter, critical for gene 562 

silencing maintenance during development (66). Pho interaction with several BER subregions, 563 

as detected in ChIP-Seq experiments from L3 tissues, as well as the presence of many 564 

evolutionarily-conserved predicted Pho binding sites, support a role for Pho in PcG repression 565 

throughout BER. We thus propose that Pho-containing PcG repressive complex bound at PREs 566 

within the bab bivalent locus is counteracted by one or several tissue-specific transcriptional 567 

activators identified in this work, which remain(s) to be characterized.  568 
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In this context, it is significant that in the eye-antennal disc, the ZF protein CTCF, acting 569 

redundantly with other chromatin insulator proteins, strongly interacts directly with the two 570 

flanking regions of the TAD covering the bab locus and also with several BER OCSs (Fig 5B). 571 

Significantly, two of these predicted CTCF interacting sites overlap with putative optimal 572 

binding sites for the PcG-recruiter Pho (S18-19 Fig). These data suggest that the CTCF 573 

architectural protein and the PcG-recruiter Pho may functionally interact to regulate the bab 574 

locus chromosome topology. Interestingly, the human Pho homolog (YY1) is a structural 575 

enhancer-promoter looping regulator (67) and orchestrates, together with the CTCF protein, a 576 

3D chromatin looping switch during early neural lineage commitment (68). To our knowledge, 577 

functional relationships between CTCF and Pho proteins have not been investigated genome-578 

wide in Drosophila. 579 

 580 

Dynamic bric-a-brac locus chromatin accessibility during development 581 

Recent data indicate that chromatin accessibility is dynamic during Drosophila larval 582 

development, being triggered by the ecdysone hormone (69). Dynamic enhancer activity and 583 

chromatin accessibility have been proposed to be regulated by the ecdysone-induced Eip93F 584 

(Ecdysone-induced protein 93F, also called E93) transcriptional regulator (70). ChIP data from 585 

early pupal wings indicate that Eip93F binds many BER OCS as well as the bab1 promoter 586 

region (70). Consistently, many putative Eip93F binding sites are present in these BER 587 

subregions and several have been conserved beyond Drosophilidae (Fig 10C). Interestingly, the 588 

human Eip93F homolog interacts with CtBP through a conserved motif (71), and Drosophila 589 

CtBP is known to recruit diverse chromatin-modifying complexes, notably to participate in 590 

Pho-mediated PcG recruitment to PREs (72). Thus, Eip93F binding to BER cis-regulatory 591 

elements may impact the proposed dual PcG activity at the bab locus. In addition to Eip93F, 592 
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BER regulatory sequences include many evolutionarily-conserved putative binding sites for the 593 

Eip74EF protein (Fig 10C), another ecdysone-induced TF, including one which overlaps with 594 

a conserved putative Pho binding site, suggesting again functional correlation between 595 

Ecdysone regulation and PcG activity.  596 

Lastly, the cis-regulatory landscape within the bab locus (i.e., AE, DE, CE, LAE and BER) 597 

includes one or several evolutionarily-conserved predicted binding sites for the Chinmo BTB-598 

ZF protein participating to developmental timing, notably through interplay with ecdysone 599 

signaling (73, 74). Consistently, ChIP-Seq experiments from embryos (ModENCODE data; 600 

http://www.modencode.org/) indicate Chinmo binding to BER sequences (75). Intriguingly, the 601 

Chinmo ZF protein is an additional BTB-containing TF prone to regulate directly the bab genes, 602 

possibly through molecular partnerships with the chromatin organizer GAF (another BTB-ZF 603 

protein interacting directly with both bab promoter regions; Fig 5B and S3 Fig) and the twin 604 

Bab BTB-BabCD proteins themselves. Thus, Chinmo implication in chromatin organization 605 

and enhancer activity within the bab locus undoubtedly deserves to be investigated. 606 

In summary, the bab locus offers a good paradigm to investigate molecularly in great details 607 

how chromatin structure, particularly higher-order chromosome organization, impacts on 608 

transcriptional memory during development and selective enhancer-promoter interplay in 609 

diverse tissular contexts. Indeed, our comprehensive predictive combinatorial code for tissue-610 

specific, as well as broadly-expressed architectural transcription factors (e.g., CTCF, Pho and 611 

GAF) regulating two tandem gene paralogs, offers the opportunity to dissect underlying 612 

molecular mechanisms, which are prone to be conserved during animal evolution and thus to 613 

be of broad biological significance. 614 

 615 

Material sand Methods 616 
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Fly stocks, culture and genetic manipulations 617 

D. melanogaster stocks were grown on standard yeast extract-sucrose medium. The vasa-618 

PhiC31 ZH2A attP stock (kindly provided by F. Karch) was used to generate the LAEpHsp70-619 

GFP reporter lines and the BAC69B22 construct as previously described (17). LAE-GFP and 620 

LAE-RFP constructs (including both Hsp70 and bab2 core promoters) inserted on the ZH2A 621 

(X chromosome) or ZH86Fb (third chromosome) attP landing platforms, and displaying 622 

identical expression patterns, have been previously described (17, 25). C152/TM6B, Tb1 stock 623 

was kindly obtained from G. Campbell. Mutant mitotic clones for null alleles of bowl and 624 

rotund were generated with the following genotypes: y w LAE-GFP; DllGal4EM2012, UAS-625 

Flp/+; FRT82B, Ub-RFP/FRT82B rn12 (i.e., rn mutant clones are RFP negative; Fig 1E) and y 626 

w LAE-RFP; DllGal4EM2012, UAS-Flp/+; Ub-GFP, FRT40A/bowl1 FRT40A (i.e., bowl mutant 627 

clones are GFP negative; Fig 1F), respectively. Rotund protein gain-of-function within the Dll-628 

expressing domain was obtained with the following genotype: y w LAE-GFP; DllGal4EM2012; 629 

UAS-Rn1/+. The DllEM212-Gal4 line was provided by M. Suzanne, while the UAS-Rn1 line was 630 

obtained from the Bloomington stock center. “Flip-out” (FO) mitotic clones over-expressing 631 

dsRNA against lines were generated by 40 mn heat shocks at 38°C, in mid-late L2 to early-mid 632 

L3 larvae of genotypes: y w LAE-RFP hsFlp; UAS-dsRNAlines/pAct>y+>Gal4, UAS-GFP (i.e., 633 

FO clones express GFP in S1C Fig). Mutant mitotic clones for the null babAR07 allele were 634 

generated by 30 mn heat shocks at 38°C, in early first to late second-instar larvae of genotypes: 635 

y w LAE-GFP, hsFlp; FRT80B/babAR07, FRT80B. FO mitotic clones over-expressing dsRNA 636 

against bab1 or bab2 were generated by 40 mn heat shocks at 38°C, in early to early-mid L3 637 

larvae of genotypes: y w LAE-RFP hsFlp; UAS-dsbab2 /Pact>y+>Gal4, UAS-GFP  and y w 638 

LAE-RFP, hsFlp; Pact>y+>Gal4, UAS-GFP/+; UAS-dsbab1/+ (i.e., FO clones express GFP 639 

in Fig 7). UAS-dsRNA stocks used to obtain interfering RNA against lines (#40939), bab1 640 

(#35707) and bab2 (#37260) were obtained from the Bloomington stock Center.  641 
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 642 

Immuno-histochemistry and microscopy 643 

Leg discs were dissected from wandering (late third instar stage) larvae (L3). Indirect immuno-644 

fluorescence was carried out as previously described (17) using a LEICA TCS SP5 or SPE 645 

confocal microscope. Rat anti-Bab2 (11), rabbit anti-Bab1 (14), rabbit ant-Dll (76), rabbit anti-646 

Bowl (61), and rabbit anti-C15 (31) antibodies were used at 1/2000, 1/500, 1/200, 1/1000 and 647 

1/200, respectively. 648 

 649 

CRISPR/Cas9-mediated chromosomal deletion 650 

Guide RNAs (gRNAs) were designed with CHOPCHOP at the Harvard University website 651 

(https://chopchop.cbu.uib.no/). Four gRNA couples were selected that cover two distinct 652 

upstream and downstream LAE positions: TGCGTGGAGCCTTCTTCGCCAGG or 653 

TGGAGCCTTCTTCGCCAGGCCGG; and TATACTGTTGAGATCCCATGCGG or 654 

TTAGGCGCACATAAGGAGGCAGG (the PAM protospacer adjacent motif sequences are 655 

underlined), respectively. Targeting tandem chimeric RNAs were produced from annealed 656 

oligonucleotides inserted into the pCFD4 plasmid, as described in 657 

(http://www.crisprflydesign.org/). Each pCFD4-LAE-KO construct was injected into 50 Vasa-658 

Cas9 embryos (of note the vasa promoter sequence is weakly expressed in somatic cells). F0 659 

fertile adults and their F1 progeny, with possible somatic LAE-deletion events and candidate 660 

mutant chromosomes (balanced with TM6B, Tb), respectively, were tested by polymerase chain 661 

reactions (PCR) with the following oligonucleotides:  AGTTTTTCATCCCCCTTCCA and 662 

GTATTTCTTTGCCTTGCCATCG (predicted wild-type amplified DNA: 2167 base pairs).  663 

 664 
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Quantitative RT-PCR analysis 665 

T1-3 leg imaginal discs were dissected from homozygous white1118 and bab∆LAE-M1 late L3 666 

larvae in PBS 0.1% Tween. 50 discs of each genotype were collected and frozen in nitrogen. 667 

Total messenger RNAs were purified using RNeasy kit (Qiagen) and reverse transcribed by 668 

SuperScript II (ThermoFisher). bab1, bab2 or rp49 cDNA levels were monitored by 669 

quantitative PCR using the following oligonucleotides: Bab1Fw: 670 

CGCCCAAGAGTAACAGAAGC; Bab1Rev: TCTCCTTGTCCTCGTCCTTG; Bab2Fw: 671 

CTGCAGGATCCAAGTGAGGT; Bab2Rev: GACTTCACCAGCTCCGTTTC; RP49Fw: 672 

GACGCTTCAAGGGACAGTATCTG; RP49Rev: AAACGCGGTTCTGCATGAG. A 673 

Wilcoxon test was performed to evaluate the difference between samples. 674 

 675 

Homology searches, sequence alignments and phylogenetic analyses  676 

Homology searches were done at the NCBI Blast site (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 677 

Protein or nucleotide sequence alignments were done using MAFFT (Multiple Alignment using 678 

Fast Fourier Transform) (https://mafft.cbrc.jp/alignment/server/). Phylogenetic relationships 679 

were inferred through a maximum likelihood analysis with W-IQ-Tree 680 

(http://iqtree.cibiv.univie.ac.at/) and visualized with the ETE toolkit 681 

(http://etetoolkit.org/treeview/). 682 

 683 

Transcription factor binding prediction 684 

DNA binding predictions were done using the motif-based sequence analysis tool TomTom 685 

from the MEME suite (http://meme-suite.org/tools/tomtom) and the Fly Factor Survey database 686 

(http://mccb.umassmed.edu/ffs/). 687 
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 688 

Gene expression omnibus datasets 689 

The following gene expression omnibus (GEO) datasets were extracted from the NCBI website 690 

(https://www.ncbi.nlm.nih.gov/gds/): GSE59078; GSM1261348; GSM1426265; GSE126985; 691 

GSM3139658; GSM948715; GSE113574; GSM948718; GSM948717; GSE38594; 692 

GSM948720; GSM948716; GSM659162; GSM948719; GSE102339; GSE50363. 693 

 694 

Hi-C and histone tail mark analyses from L3 eye-antennal imaginal discs 695 

Hi-C and histone mark ChIP-Seq analyses from L3 eye-antennal discs have been recently 696 

published in (38). 697 
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Figure 1Bourbon et al

Fig 1. C15, rotund and bowl all regulate both bab1 and bab2. (A) Schematic view of the Dmel bab locus
on the 3L chromosomal arm (Chr3L). The tandem bab1 (blue) and bab2 (red) transcription units (filled boxes
and broken lines represent exons and introns, respectively), the previously known CRE/enhancers are
depicted by filled dots (abdominal DE and AE in dark and light orange, respectively; leg/antennal LAE in
dark green and cardiac CE in purple), and the telomere and centromere directions are indicated by arrows. (B)
A scheme depicted C15, Bowl and Rn TF activities in regulating bab2 expression as a four-ring pattern
within the developing distal leg, is shown. (C) Medial confocal view of a wild-type L3 leg disc. Merged Bab1
(blue) and Bab2 (red) immunostainings, as well as each marker in isolation in (C’) and (C”), respectively, are
shown. Positions of bab2-expressing ts1-5 cells and the pretarsal (pt) field are indicated in (C”). Brackets
indicate paralog-specific expression in proximalmost and distalmost bab2-expressing cells. (D) Distal
confocal view of a homozygous C152 mutant L3 leg disc expressing LAE-RFP. Merged Bab1
immunostaining (in blue) and RFP fluorescence (red), and each marker in isolation in (D’) and (D”), are
shown. Bab2-expressing mutant pt cells are circled with a dashed line in (D’) and (D”). (E) Medial confocal
view of a mosaic L3 leg disc expressing LAE-GFP and harboring rotund mutant clones. Merged Bab1 (blue)
immunostaining, GFP (green) and RFP (red) fluorescence, as well as each marker in isolation in (E’), (E”)
and (E”’), respectively, are shown. Mutant clones are detected as black areas, owing to the loss of RFP. The
respective ts1-5 fields are indicated in (E). White and yellow arrows indicate bab1 (bab2) still- and non-
expressing rotund-/- clones, respectively. (F) Distal confocal view of a mosaic L3 leg disc expressing LAE-
RFP and harboring bowl mutant clones. Merged Bab1 (blue) immunostaining, RFP (red) and GFP (green)
fluorescence, as well as a higher magnification of the boxed area for each marker in isolation in (F’), (F”) and
(F”’), respectively, are shown. Mutant clones are detected as black areas, owing to the loss of GFP. White
arrows indicate pretarsal bowl-/- clones ectopically expressing both bab1 and LAE-RFP (bab2).
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Figure 2Bourbon et al

Fig 2. LAE is not critically required for tarsal segmentation and for overall bab2 expression in the leg disc. (A)
Schematic view of the Dmel bab locus on the 3L chromosomal arm (Chr3L). The tandem bab1 and bab2 transcription
units (filled boxes and broken lines represent exons and introns, respectively), the intergenic LAE enhancer (in green), as
well as the telomere and centromere directions, are depicted as in Fig 1A, except that both genes are depicted in grey. The
small CRISPR/Cas9-mediated chromosomal deficiency (bab∆LAE) is shown in beneath (deleted LAE is depicted as a
broken line). (B) Photographs of wild-type and homozygous bab∆LAE T1 distal legs from adult males. The regular sex-
comb (an array of about 10 specialized bristles on the male forelegs) on distal ts1 is indicated with asterisks, while ectopic
sex-comb bristles on distal ts2 from the mutant leg (right) is indicated by an arrow. Note that the five tarsal segments
remain individualized in homozygous bab∆LAE mutant legs. (C) Overall bab1-2 expression from wild-type and
homozygous bab∆LAE L3 leg discs, as determined from reverse transcription quantitative PCR analyses. The bab1-2
expression levels were quantified relative to rp49 mRNA abundance.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436949doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436949
http://creativecommons.org/licenses/by/4.0/


Figure 3Bourbon et al

Fig 3. LAE is mostly critically required for paralog-specific bab2 expression in the developing distal legs. (A-
C) Medial (A-B) and distal (C) confocal views of wild-type (A) and homozygous babDLAE mutant (B and C) L3 leg
discs expressing LAE-GFP. Merged GFP fluorescence (green), Bab1 (blue) and Bab2 (red) immunostainings, as
well as the two latter in isolation in (A’-C’) and (A”-C”), respectively, are shown. Brackets indicate positions of
paralog-specific expression in proximalmost (ts1) and distalmost (ts5) bab2-expressing (GFP+) cells. Green
asterisks in (B’-B”) and (C’-C”) indicate weaker expression of both bab paralogs in GFP+ ts2 cells. (D) Modular
structures of the LAE-pHsp70onlyGFP and LAE-RFP reporter constructs. GFP (green box) and RFP (red box) open-
reading frames (ORFs) have been fused with ORFs for the Transformer (Tra) nuclear localization signal (NLS) and
the histone H2B, respectively (see white boxes). The SV40 polyadenylation signal region is boxed in grey. The
Dmel LAE sequence is boxed in blue. The classical non-heat-inducible basal Hsp70 promoter sequence is boxed in
black, while the bab2 core promoter sequence is depicted in orange. Note that both promoters are juxtaposed in the
LAE-RFP construct. (E) LAE activity requires functionally the bab2 promoter to ensure paralog-specific expression
in the developing legs. A lateral confocal view of merged GFP (green) and RFP (red) fluorescence, as well as each
marker in isolation in (E’) and (E”), respectively, of the distal part of an early pupal leg expressing both the LAE-
pHsp70onlyGFPZH2A and LAE-RFPZH86Fb reporter constructs (depicted in (D)), are shown. Brackets indicate tarsal
RFP+ cells expressing bab2 in a paralog-specific manner, which never express the LAE-pHsp70onlyGFPZH2A

reporter which lacks bab2 core promoter sequences (see white arrows).
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Figure 4Bourbon et al

Fig 4. bab1 includes partially-redundant limb-specific cis-regulatory information. (A) Chromosomal
deficiency and BAC constructs covering the bab locus. The tandem gene paralogs and intergenic LAE are
depicted as shown in Fig. 1A, except that bab2 is depicted in pink instead of red. The babAR07 3L
chromosomal deficiency is shown in beneath, with known deleted portion indicated by a dashed line. Note
that the breakpoints have not been precisely mapped. The two overlapping BAC constructs 69B22 and
26B15, as well as a mutant derivative of the latter specifically-deleted for LAE, are shown further in
beneath. (B-G) Medial confocal views of wild-type (B-E) and homozygous babAR07 mutant (C-D and F-G)
L3 leg discs, harboring singly or combined X-linked BAC construct(s) shown in (A), as indicated above
each panel. Bab2 (pink) and Bab1 (blue) immunostainings are shown. Positions of bab1- and bab2-
expressing ts1-4 cells are indicated. Note stochastic bab2 expression in (G).
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Figure 5Bourbon et al

Fig 5. A topologically-associating domain encompasses the bab locus in the eye-
antennal disc and genome-wide chromatin features identify an enhancer signature
region (BER) within bab1. (A) Hi-C screenshot of a 160 kb region covering the Dmel bab
gene complex. Score scale is indicated on the right (yellow to dark blue from positive to
negative). (B) ATAC-, FAIRE- and/or ChIP-Seq profiles from L3 eye-antennal (ED), leg,
wing and haltere discs as well as from adult pharate appendages (leg, wing and haltere) and
from whole larval tissues, as indicated on the left side. As referred in the main text, lanes are
numbered on the right side. ChIP-Seq peak calling data are shown in lanes 8, 17-18.
Otherwise, normalized open chromatin, histone H3 post-translational modifications and TF
binding profiles are shown. Positions of the tandem bab1-2 genes are indicated on the
bottom. The respective locations of the BER and LAE sequences are highlighted with
vertical dashed lines. Of note, according to normalized FAIRE-Seq signals, LAE is not fully
accessible in the pharate T3 leg (see grey arrow in lane 12). Strongest CTCF ChIP-Seq
signals are indicated by horizontal black arrows (lane 3).
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Figure 6Bourbon et al

Fig 6. BER behaves as a composite pleiotropic enhancer. (A) The BER enhancer signature region includes the abdominal
AE enhancer. Organization of the Dmel bab locus, with the tandem gene paralogs as depicted as in Fig. 2A. The characterized
enhancers are depicted by filled dots (abdominal DE and AE in dark and light orange, respectively; leg/antennal LAE in dark
green and cardiac CE in purple). BER is boxed in light green. The genomic portions of the overlapping 69B22 and 26B15 BAC
constructs are shown in beneath. (B) Transgenic lines covering BER identify cis-regulatory elements driving reporter gene
expression in diverse larval imaginal tissues. Genomic fragments covered by relevant Janelia Farm FlyLight reporter lines [77]
and the DE- and/or AE-containing PB-c17 and PB-c29 genomic constructs, described in [14], are shown above a scheme of the
BER region. bab1 protein coding and 5’-untranslated sequences within the first exon are filled or hatched in dark grey,
respectively, while the intronic region is in light gray. The AE sequence is in orange, as depicted in (A). FlyLight reporter lines
driving reporter expression in diverse imaginal discs (see S4 Fig) are filled in light green. (C) BER includes open chromatin
sequences (OCS) and is bound by Dll, Sp1, Hth TFs in diverse developing appendages (leg, eye-antenna, wing and haltere).
OCS and TF-bound sequences are depicted by filled grey/black boxes. Numbers refer to OCSs detected in the leg discs (see
main text). The black boxes represent OCSs detected in the eye-antennal (EA) and leg but not in wing and haltere discs. OCS
and Dll or Sp1-bound regions, as determined from peak calling (FAIRE-Seq GSE38727 and ChIP-Seq GSE113574 GEO
dataset series, respectively), are from [40] and [42], respectively. ChIP-Seq data for Hth are from [78]. (D) BER includes
pleiotropic cis-regulatory elements (CREs). Locations of predicted CREs (see text) are indicated by light green boxes. The
hatched part of the predicted leg/antennal CRE is inferred from data obtained with the PB-c17 construct reported in [14].
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Figure 7Bourbon et al

Fig 7. Auto- and cross-regulation among the two bab paralogs in the developing legs. (A) Distal
confocal view of a L3 leg disc expressing LAE-RFP and harboring flip-out (FO) clones expressing
interfering RNA against bab2. Merged RFP (red) and GFP (green) fluorescence, as well as the former in
isolation and under two distinct signal magnification (A’ and A”), are shown. A FO clone (GFP+) within
LAE-RFP (bab2)-expressing ts4 cells is circled with a dashed line (see arrow). (B) Proximal confocal view
of a L3 leg disc expressing LAE-RFP and harboring FO clones expressing interfering RNA against bab2.
Merged Bab1 (blue) immunostaining, RFP (red) and GFP (green) fluorescence, as well as the two formers
in isolation, in (B’) and (B”), respectively, are shown. Note that a single-cell FO clone (GFP+), within LAE-
RFP (bab2)-expressing ts1 cells, is sufficient to upregulate bab1 (see arrows). (C-D) L3 leg (C) and eye-
antennal (D) discs expressing LAE-GFP and harboring mutant clones for the protein null allele babAR07.
Merged Bab2 (red) immunostaining and GFP (green) fluorescence as well as the latter in isolation under
two distinct signal magnifications (C’-C” and D’-D”), are shown. Tiny and larger clones (Bab2 negative)
are circled with dashed lines (arrowheads and arrows, respectively).
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Figure 8Bourbon et al

Fig 8. Phylogenetic relationships among dipteran bab paralogs and orthologs. (A) Dipteran families studied
in this work. Species abbreviations are described in Supplementary data. (B) Phylogenetic relationships of the
bab paralogs and orthologs inferred from a maximum likelihood consensus tree constructed from 1000 bootstrap
replicates. Support values (percentage of replicate trees) are shown in red. Scale bar represents substitution per
site. Clustered positions of bab2 paralogs and bab1 paralogs/orthologs are shown in pink and light blue,
respectively.
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Figure 9Bourbon et al

Fig 9. Conservation of enhancer/promoter sequences and evolutionary history of the bab locus among the
Brachycera. (A) Organization of the Dmel bab gene paralogs and enhancers. The locus is depicted as in Fig 1A,
except that bab2 is represented in pink instead of red. (B) Evolutionary conservation of the bab gene paralogs,
enhancers and promoters among diverse dipterans. Infraorders, sections, subsections and superfamilies are
indicated on the left, arranged in a phylogenetic series from the “lower” Nematocera to the “higher” Brachycera
suborders. Presence of bab1 and/or bab2 paralogs and conservation of enhancer and promoter sequences are
indicated by filled or hatched boxes colored as depicted in (A). (C) Evolutionary scenario for the bab locus within
the Brachycera suborders. A scheme depicting chromosomal fate of an ancestral bab1-like gene which gives rise
to derived extant orthorrhaphan singletons (Asilomorpha) and Muscomorpha-specific paralogous (Calyptratae and
Acalyptratae) genes. Locations of conserved enhancer sequences are shown, as depicted in (A).
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Figure 10Bourbon et al

Fig 10. A comprehensive predictive tissue-specific TF code governing bab paralog expression. (A) Organization of
the Dmel bab gene paralogs and enhancers, as depicted in Fig 9A. Expression tissue specificities conferred by each
enhancer are shown in beneath. (B) BER structural and chromatin state organizations. The bab1 first exon is hatched.
OCS regions (see Fig 6C), as defined in leg tissues; are represented by light green boxes. The abdominal AE CRE (not
detected in FAIRE-Seq data from leg and eye-antennal discs) is depicted as a light orange box. (C) Evolutive
conservation of predicted TF binding sites within Dmel bab cis-regulatory sequences. Site conservation among and
beyond drosophilids of transcriptional regulators involved in tissue-specific morphogenetic processes, cell signaling,
developmental timing and chromatin organization. Predicted/validated TF site numbers are indicated within colored or
hatched boxes reflecting their relative conservation are indicated in beneath. Experimentally-validated direct bab
regulators are colored according to their well characterized bound-enhancer sequences (see A).
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Sequence conservation between paralogous Bab1/2 proteins among muscomorphans. The four-
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Four letter abbreviations for investigated species

Dmel: Drosophila melanogaster
Dsim: Drosophila simulans
Dsec: Drosophila sechellia
Dyak: Drosophila yakuba
Dere: Drosophila erecta
Dsuz: Drosophila suzukii
Drho: Drosophila rhopaloa
Dele: Drosophila elegans
Dbip: Drosophila bipectinata
Dana: Drosophila ananassae
Dper: Drosophila persimilis
Dpse: Drosophila pseudoobscura
Dwil: Drosophila willistoni
Dvir: Drosophila virilis
Dmoj: Drosophila mojavensis
Dgri: Drosophila grimshawi
Tmin: Themira minor
Tdal: Teleopsis dalmanni
Blat: Bactrocera latifrons
Ccap : Ceratitis capitata
Mdom: Musca domestica
Scal: Stomoxys calcitrans
Lcup: Lucilia cuprina
Preg: Phormia regina
Chom: Cochliomyia hominivorax
Pmac: Paykullia maculata
Gbre: Glossina brevipalpis
Gmor: Glossina morsitans
Edim: Eristalis dimidiata
Mabd: Megaselia abdita
Cpat: Condylostylus patibulatus
Cmol: Chrysotimus molliculus
Pcoq: Proctacanthus coquilletti
Ddia: Dasypogon diadema
Hfus: Holcocephala fusca
Hill: Hermetia illucens
Bval: Beris vallata
Mdes: Mayetiola destructor
Cfus: Coboldia fuscipes
Ppat: Phlebotomus papatasi
Llon: Lutzomyia longipalpis
Agam: Anopheles gambiae
Aaeg: Aedes aegypti
Dpul: Daphnia pulex
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Bab1 sequence conservation among muscomorphans  (Part1)
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Bab1 sequence conservation among muscomorphans  (Part2)
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Bab2 sequence conservation among muscomorphans  (Part1)
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Bab2 sequence conservation among muscomorphans  (Part2)
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Sequence conservation between Bab1/2 paralogs (Part1)
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Sequence conservation between Bab1/2 paralogs (Part2)
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Sequence conservation between Bab1/2 paralogs (Part3)
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Sequence conservation between Bab1/2 paralogs (Part4)
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Sequence conservation between Bab1/2 paralogs (Part5)
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BEROCS1 sequence conservation among Drosophilidae (Part1)
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BEROCS1 sequence conservation among Drosophilidae (Part2)
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