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Abstract 

Recently, a neuroscientific approach has revealed that humans understand 

language while subconsciously predicting the next word from the preceding 

context. Most studies on human word prediction have investigated the 

correlations between brain activity while reading or listening to sentences on 

functional magnetic resonance imaging (fMRI) and the predictive difficulty of 

each word in a sentence calculated by the N-gram language model. However, 

because of its low temporal resolution, fMRI is not optimal for identifying the 

changes in brain activity that accompany language comprehension. In addition, 

the N-gram language model is a simple computational structure that does not 

account for the structure of the human brain. Furthermore, it is necessary for 

humans to retain information prior to the N-1 word in order to form a contextual 

understanding of a presented story. Therefore, in the present study, we 

measured brain activity using magnetoencephalography (MEG), which has a 

higher temporal resolution than fMRI, and calculated the prediction difficulty of 

words using a long short-term memory language model (LSTMLM), which is 
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based on a neural network inspired by the structure of the human brain and has 

longer information retention than the N-gram language model. We then 

identified the brain regions involved in language prediction during Japanese-

language speech listening using encoding and decoding analyses. In addition to 

surprisal-related regions revealed in previous studies, such as the superior 

temporal gyrus, fusiform gyrus, and temporal pole, we also found relationships 

between surprisal and brain activity in other regions, including the insula, 

superior temporal sulcus, and middle temporal gyrus, which are believed to be 

involved in longer-term, sentence-level cognitive processing. 
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1. Introduction  

 In recent years, a neuroscientific approach has revealed that humans are 

always predicting what will happen next (Clark, 2013). This principle also applies 

to language comprehension, a process during which humans understand language 

while subconsciously predicting the next word from the preceding context 

(DeLong et al., 2005; Dikker et al., 2010).  

In recent neuroscientific research of human word prediction, 

experiments have been conducted under natural conditions of reading (Wehbe et 

al., 2014) or listening to (Brennan et al., 2012; Willems et al., 2016) stories or 

speeches instead of under strictly controlled conditions with intermittent visual 

stimuli. Most studies have investigated the correlation between brain activity 

while reading or listening to sentences on functional magnetic resonance imaging 

(fMRI) and the predictive difficulty of each word in a sentence determined by the 

N-gram language model (Russo et al., 2020; Willems et al., 2016). However, 

because of its low temporal resolution, fMRI is not optimal for identifying the 

changes in brain activity accompanying language comprehension. In particular, it 
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is more difficult to assess brain activity during comprehension of languages that 

consist of short words, such as Japanese, using fMRI than languages with longer 

words, such as English or other European languages. Methods that measure 

neuroelectrical activity, including magnetoencephalography (MEG) and 

electroencephalography (EEG), have higher temporal resolutions than fMRI, and 

are more suitable for detecting activity related to language processing in an 

ecologically valid context.  

The N-gram language model has been used for natural language 

processing, including machine translation, and is known for its high accuracy and  

low computational cost. This model is also often used in neurolinguistic research 

to study language processing in the human brain. However, the N-gram language 

model involves a simple computational structure that does not account for the 

structure of the human brain, implying it may be inappropriate to use in this 

context. Furthermore, the N-gram language model calculates the predictive 

difficulty of each word based on information from the word, N-1, which occurs 

before the word one before. Humans, however, must retain information from prior 
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to the N-1 word in order to form a contextual understanding of a presented story. 

Therefore, it is questionable if this model has validity for evaluating language 

processing in the human brain.  

In contrast, the long short-term memory language model (LSTMLM) is 

based on a neural network inspired by the structure of the human brain, and it can 

be used to calculate the difficulty of prediction based on long-term past 

information. Therefore, the LSTMLM may be more suitable than the N-gram 

language model for understanding the human brain during neurolinguistic 

research. 

 In the present study, we measured brain activity using MEG, which has 

a higher temporal resolution than fMRI, and calculated the prediction difficulty 

using the LSTMLM, which retains information longer than the N-gram language 

model. We then identified the brain regions involved in language prediction 

during Japanese-language speech listening using encoding and decoding analyses 

(Fig. 1). To our knowledge, this is the first study to use MEG and the LSTMLM 

to investigate language processing in the human brain. 
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Fig. 1. Experimental and data analysis design. We used 201 Japanese speeches 

from a database called the Corpus of Spontaneous Japanese (CSJ). For the 

magnetoencephalography (MEG) experiment, the 10 study participants listened 

to four of these speeches. Using this data, the source signal while listening to 

speeches was estimated. For language processing, the transcripts of each speech 

were first divided into long unit words (LUWs). The LUWs of the remaining 197 

speeches were then inputted into the long short-term memory language model 

(LSTMLM) as training data, while the four speeches used in the MEG 

experiments were inputted as test data, with estimation of the surprisal for each 

LUW of the speeches used in the experiments. The relationships between MEG 

source signals and surprisal values were then investigated using encoding and 

decoding analyses. LSTM, long short-term memory 

 

1.1. Language Model 

 The N-gram language model, which has been widely used in previous 
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studies, is based on the Markov assumption that the probability of a word's 

occurrence does not depend on the preceding word but only on the most recent 

N-word. The probability of the t-th word occurrence 𝑝(𝑤!) is expressed by the 

following formula:  

  𝑝(𝑤!) = 𝑝(𝑤!|𝑤!"($"%), … , 𝑤!"%)                (1) 

Although the N-gram language model has a low computational cost and high 

accuracy, it is difficult to account for the meaning of sentences and the 

relationships between words using this model because each computation is 

independent. In addition, unknown word combinations not included in the 

training data cannot be calculated by the N-gram language model; therefore, a 

large amount of data needs to be trained. 

 Recently, an LSTMLM (Sundermeyer et al., 2012), which uses long 

short-term memory (LSTM) with a recurrent neural network (RNN) architecture, 

has been introduced as a practical language model for artificial intelligence 

research. LSTMLM has a recursive structure and predicts the next word by 

representing words as vectors and continuously synthesizing the information from 
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one step earlier in the hidden layer of each step. Therefore, in principle, the 

information from all preceding words is kept chronologically, and the probability 

of the occurrence of a word is calculated based on this long-term information. 

LSTMLM is generally said to be superior to the N-gram language model for word 

prediction accuracy and adaptation to unknown words (Jozefowicz et al., 2016). 

Furthermore, when humans understand a sentence while subconsciously 

predicting the next word, they must incorporate information not only from the 

preceding few words but also from entire sentences that appeared previously; that 

is, in context. Therefore, the LSTMLM may be a more human-like model than the 

N-gram language model.  

 

1.2. Surprisal 

 One indicator of a word's prediction difficulty is its surprisal. The 

surprisal is a measure of the unexpectedness of a target word, and it is used in 

machine translation and other natural language processing applications. The 

surprisal of the t-th word is calculated using the following formula:  
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  𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙(𝑤!) = − log 𝑝(𝑤!|𝑤%, …	 , 𝑤!"%)                (2) 

This formula indicates that when the probability of the occurrence of an observed 

word is high (easy to predict), the surprisal is low, and, when the probability of 

the occurrence of an observed word is low (difficult to predict), the surprisal is 

high. The surprisal is considered to be a measure of the context-dependent 

cognitive load (Hale, 2001; Levy, 2008), and it has been found to correlate with 

the amplitude of the event-related potential (ERP) of MEG during sentence 

comprehension (Lau et al., 2009).  

 

1.3. Encoding and Decoding Analyses 

 In this study, we conducted two types of analyses: encoding and decoding. 

These analyses are both designed to reveal the role of specific brain regions in 

language processing; however, they differ in the information that they target 

(Naselaris et al., 2011). Encoding analysis predicts brain activity from external 

stimuli or behavior, revealing how this activity is represented in each voxel. On 

the other hand, decoding analysis predicts external stimuli or behavior from brain 
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activity, thereby revealing the roles of specific brain regions by examining the 

information represented by the activity of multiple voxel patterns.  

It is important to analyze brain mechanisms using approaches that target 

different types of information. For example, in the field of vision research, one 

study used encoding analysis to predict fMRI activity while looking at a specific 

image (Kay et al., 2008), while another study used decoding analysis to identify 

the direction of a stimulus at which the subject was looking based on fMRI activity 

patterns in the primary visual cortex (Kamitani and Tong, 2005). In word 

comprehension research, one study used encoding analysis to predict fMRI 

activity while reading a specific word (Mitchell et al., 2008), while another study 

used decoding analysis to reveal the congruency of fMRI activity patterns while 

bilingual listeners listened to the same word across different languages (Correia 

et al., 2014). While encoding analysis has primarily been used in previous MEG 

studies of language processing (Gwilliams et al., 2016), decoding analysis has 

been used less frequently.  

 Therefore, in this study, we conducted both an encoding analysis to 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

predict MEG signals from the surprisal and a decoding analysis to predict the 

surprisal from MEG signals.  
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2. Methods 

2.1. Participants and Data Acquisition 

 We recruited 13 healthy participants for this study; however, one of these 

participants was excluded because he fell asleep during the experiments, and 

another two were excluded because of improper measurements. Therefore, we 

included data from 10 participants (five females, mean age 20.89±1.9 years [M 

± SD]) for further analysis. Written informed consent was obtained from all 

participants, and the study was approved by the Ethics Committee of the National 

Rehabilitation Center for Persons with Disabilities in Japan.  

 We collected MEG data with a 204-channel axial gradiometer and a 102-

channel axial magnetometer system (Elekta Ltd., Helsinki, Finland) at the 

National Rehabilitation Center for Persons with Disabilities in Japan. The signals 

were measured at a sampling frequency of 1000 Hz. At the time of measurements, 

three markers (nasion and left and right canals) were attached to the participant's 

head to determine the position of the head with respect to the MEG sensor.  
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2.2. Experimental Procedure and Stimulus Materials 

 For these experiments, participants were asked to listen to four speeches 

while brain activity was measured using MEG. These four speeches were selected 

from 201 manually labeled Japanese speeches from the "Corpus of Spontaneous 

Japanese (CSJ)" (Maekawa, 2003) created by the National Institute for Japanese 

Language and Linguistics. These speeches did not overlap in theme and consisted 

of a fast female speech, a slow female speech, a fast male speech, and a slow male 

speech. Each speech was approximately 10 min in length (12:46, 8:41, 11:14, and 

10:18). While in the MEG scanner, participants listened to the speeches via 

earphones and were instructed to simultaneously look at a blank screen. The four 

speeches were presented in a random order to each participant, and the 

participants were allowed to take breaks inside the MEG scanner between 

speeches. Participants were informed in advance that they would be asked to 

answer five simple comprehension questions after listening to each speech and 

were required to listen carefully to the speeches to understand their content. The 

comprehension questions were presented as text on the screen, and participants 
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were required to indicate whether the questions were correct or incorrect based 

on the speech content by pushing buttons on the response pad with the middle 

and index fingers of their left hand.  

 

2.3. Language Processing 

 We estimated the number of words that appeared in the four speeches 

used in the MEG experiments. The transcript of each speech was divided into long 

unit words (LUWs), which involves the division of phrases into content and 

function words, with the surprisal predicted for each LUW. We estimated surprisal 

using the neural language model proposed by Van Schijndel and Linzen (2018), 

which is based on LSTM. This model consists of an embedding layer, two hidden 

layers, and an output layer, with 200 units for each layer (Fig. 2). The LUWs were 

vectorized in the embedding layer and inputted into the hidden LSTM layer. In 

this hidden LSTM layer, information from the hidden layer one step earlier and 

input information from that point were combined and sent to the output layer of 

that step, as well as to the hidden layer of the next step to calculate the hidden 
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state. In the output layer, the softmax function computed the probability of the 

occurrence of the next LUW. We used cross-entropy for loss function and 

perplexity, the inverse of probability, to evaluate the model. The following 

parameters were set to default values: the number of steps for backpropagation 

through time (BPTT) was set to 35, the batch size was set to 20, the learning rate 

was set to 20, and the dropout ratio was set to 0.2. The epoch size for each piece 

of training data was set to 40; however, training was stopped early if the validation 

loss remained the same for three consecutive epochs.  

 For training, the 197 CSJ speeches not used in the MEG experiments 

were utilized. These speeches were transcribed and divided into LUWs in the 

same manner as the speeches used in the MEG experiments. Of these, 95% (187 

speeches; 351,018 LUWs in total) were used as training data, and the remaining 

5% (10 speeches; 18,330 LUWs in total) were used as validation data. Each of the 

four speeches used in the MEG experiments were then entered into the trained 

model, and the surprisal per LUW of each speech was estimated.  

 For comparison, we also attempted to train a trigram language model, or 
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a language model with three-word N-grams, using the same data.  

 

 
Fig. 2. Structure of the long short-term memory language model (LSTMLM). 

𝑤'"%	is the (n-1)-th long unit word (LUW), and each LUW is converted to a 

vector in the embedding layer and then inputted to the hidden layer, which is then 

combined with the hidden state ℎ'"% sent from the (n-2)-th hidden layer, and 

the hidden state ℎ' is calculated. The hidden state ℎ' is sent to both the (n-1)-

th output layer and the n-th hidden layer. In the output layer, the probability 

𝑝(𝑤'|ℎ') of the n-th LUW occurring up to the (n-1)-th LUW is calculated using 

the softmax function. 

 

2.4. MEG Data Preprocessing 

 We used Python 3.7 and the Eelbrain module 

(https://pythonhosted.org/eelbrain/) for preprocessing and analysis of the MEG 
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data according to the Eelbrain pipeline. For all raw data, a Maxwell filter (Taulu 

and Kajola, 2005) was applied to remove magnetic noise, and a 1‒40-Hz bandpass 

filter was applied. We then performed an independent component analysis (ICA) 

of data from each speech and each participant and reconstructed the signal, 

leaving only those components with a cumulative explained variance of less than 

99%.  

 In order to create epochs, we identified the onset of each LUW from the 

speech data. Each epoch was determined to start at 200 ms after the onset of each 

LUW, with a window size of 400 ms. As a result, the total number of epochs in the 

four speeches was 7,966. The data in each epoch were downsampled to 100 Hz; 

therefore, the number of bins in each epoch was 40.  

 Next, we estimated the source signal. To reconstruct the position of the 

MEG sensor relative to the FreeSurfer average brain (CorTechs Labs Inc., Lajolla, 

CA), the transformation from the marker positions of each participant to the 

reference points of the average brain were applied to the MEG sensor position. 

We then created an ico-4 source space consisting of 5,124 vertices and calculated 
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the activity at each vertex, i.e., the source signal, using noise normalization with 

the dynamical Statistical Parametric Mapping (dSPM) method (Dale et al., 2000). 

Orientation was constrained to only estimate the current flow orthogonal to the 

cortical surface. Therefore, the sign of the estimates indicated the direction of the 

current relative to the cortical surface, and a positive sign represented the signal 

from the source to the cortical surface.  

 

2.5. Encoding Analysis 

 We regressed the MEG source signals from the surprisal estimated using 

the LSTMLM and estimated the brain regions correlated with the magnitude of 

the surprisal. We ran spatiotemporal permutation cluster tests (Maris and 

Oostenveld, 2007) using the TwoStageTest in Eelbrain. The spatiotemporal 

permutation cluster tests consisted of three stages (Fig. 3). In the first stage, the 

MEG source signal sequences of the 7,966 epochs were fitted by a linear 

regression model for each subject at each of the 5,124 vertices and at each of the 

40 time points within the epoch, with 7,966 corresponding surprisal value 
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sequences as independent variables using ordinary least squares. As a result, the 

regression coefficient, beta, at each source and at each time point was obtained 

for each participant. In the second stage, 10 beta values at each source and at each 

time point for all participants were tested using the one-sample t-test to determine 

if they were significantly different from zero. This analysis resulted in a t-value 

and p-value for each source and each time point, which were then used to 

construct a 5124 × 40 spatiotemporal map for each subject. In the third stage, a 

permutation cluster test was run. First, a cluster was defined as a group of points 

on the map whose spatiotemporally adjacent points had t-values with a p-value of 

< .05. The points in a cluster were required to have t-values with the same polarity, 

and clusters with different polarities were identified as separate regions. If the 

cluster consisted of at least 10 sources with two consecutive time points, the t-

values within that cluster were summed to yield the cluster statistics. For 

comparison with these cluster statistics, permutation statistics were calculated for 

each cluster by randomly selecting the same number of points as that cluster from 

the 5124 × 40 spatiotemporal map and summing the t-values of these points. This 
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process was repeated 10,000 times for that cluster, and the number of times the 

cluster statistic was below the permutation statistic, divided by 10,000, was 

defined as the corrected p-value for that cluster. Clusters with a corrected p-value 

of < .05 were considered to be significant clusters.  
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Fig. 3. Summary of spatiotemporal permutation cluster tests. These tests 

consisted of three stages. In the first stage, the regression coefficient beta between 

the surprisal and the magnetoencephalography (MEG) source signal at each 

source and at each time point were obtained for each participant. In the second 

stage, a one-sample t-test was performed to determine whether a subjectʼs beta 

was different from zero at each time point and at each source, and a t-map was 

created. In the third stage, spatiotemporally adjacent points with p-values of < .05 

on this t-map were combined to form clusters. Then, for each cluster, cluster-t, 

which was the sum of the t-values in the cluster, and the permutation-t, which was 

the sum of the t-values randomly extracted from the same number of points in the 

cluster, were compared 10,000 times as a permutation t-test. The number of times 

that the permutation-t was greater than the cluster-t divided by 10,000 was 

defined as the corrected p-value for that cluster. 

 

2.6. Decoding Analysis 

 We estimated the brain regions responsible for surprisal-related 

information processing using the decoding method. That is, we reconstructed the 

data from multiple MEG source signals and identified regions with high regression 

accuracy. For the decoding analysis, the MEG source signals were downsampled 

to 50 Hz after preprocessing. Therefore, the data in each 400-ms epoch, which 

started 200 ms after LUW onset, had 20 time points. The cortex was then divided 

into 68 regions based on the 'Desikan-Killiany' cortical atlas (Desikan et al., 2006), 
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and each region was decoded separately. For regression, we used the LASSO 

regression model (alpha = 0.01), which is a linear model with the addition of an 

L1 regularization term. Scikit-learn (https://scikit-learn.org), a Python library for 

machine learning, was used for standardization and model fitting. The root mean 

square error (RMSE) was used to evaluate the model. Regression of the surprisal 

at each time point in the epoch was performed for each region, and the features 

were defined as the activity of all MEG sources at the time point included within 

the corresponding region. For each region, the activity was standardized over all 

sources, epochs, and time points to have a mean of 0 and a variance of 1. Cross-

validation was repeated five times, with 80% of the 7,966 epochs used as training 

data and 20% used as test data, with the average of five RMSE values considered 

to be the regression accuracy. The integral value calculated by the LSTM was set 

as the training label for the regression model. The regression accuracies were then 

averaged for every 100 ms (every five time points). For comparison, surprisal 

labels were randomized among epochs, and the surrogate regression accuracies 

were calculated. These surrogate accuracies were then averaged every 100 ms. 
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This process was repeated 100 times for each cross-validation for a total of 500 

iterations.  

 To identify regions where the regression accuracy of the original data was 

significantly higher than the regression accuracy of the surrogate data, we 

performed two statistical analyses. The first was a paired-samples t-test that 

compared the mean accuracy of 500 pieces of surrogate data with the regression 

accuracy of the original data for the 10 participants in each region to determine if 

the original regression accuracy was significantly higher than the mean surrogate 

accuracy. Multiple comparisons were corrected by the false discovery rate (FDR) 

using the Benjamini-Hochberg (BH) method (Benjamini and Hochberg, 1995), 

and regions with a corrected p-value of < .01 were defined as having a significant 

difference. The second statistical analysis was a one-sample t-test to determine 

whether the actual accuracy was significantly different than the surrogate accuracy 

distribution for each region in each participant. The BH method was used to 

correct for multiple comparisons. A region where greater than 90% of participants 

had a corrected p-value of < .05 was defined as having a significant difference. 
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Regions that demonstrated significance using both of these statistical analyses 

were defined as having significantly higher regression accuracy.   
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3. Results 

3.1. Language Processing 

 The LSTM training was completed in the 9th epoch. The value of the 

validation perplexity was 137.00. We independently inputted each of the four 

speeches used in the experiment into this trained model and predicted the 

surprisal for each LUW (Fig. 4). The average magnitude and standard deviation 

(SD) of the surprisal was 6.97±5.51.  

 We also attempted to train the trigram language model using the same 

data from the 197 speeches; however, the validation perplexity value was 

230666.94; that is, learning did not converge because of the small data size. 
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Fig. 4. Example surprisal prediction results using the long short-term memory 

language model (LSTMLM). We predicted surprisal for each long unit word 

(LUW) for the four speeches used in the experiments. The average magnitude 

and standard deviation of the surprisal was 6.97±5.51. 

 

3.2. Encoding Analysis 

 In the encoding analysis, 145 clusters were formed (Fig. 5). Among these, 

three clusters showed corrected p-values less than 1% in the permutation t-test, 

which examined the correlation between the surprisal values and MEG source 

activity. The first of these clusters contained a part of the left insula; the left 

supramarginal gyrus (SMG); the left temporal pole; the region around the left 

superior temporal gyrus (STG), including the transverse temporal gyrus (TTG); 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.25.436887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.25.436887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

and the region around the left fusiform gyrus (FuG), including the entorhinal 

cortex and the parahippocampal gyrus (PHG) (corrected p < .005) (Fig. 6-A). 

The second was a left hemispheric cluster containing the region around the left 

inferior frontal gyrus (IFG), including the pars opercularis, pars triangularis, pars 

orbitalis, and the orbitofrontal cortex (OFC), as well as the left frontal operculum 

(FOP), which is adjacent to the insula and located ventrally and medially to the 

pars opercularis and pars triangularis (corrected p < .005) (Fig. 6-B). The third 

was a right hemispheric cluster contralateral to the second cluster containing the 

right IFG and the right FOP (corrected p < .005) (Fig. 6-C). In these strongly 

correlated regions, the peak correlation occurred at 300 ms after the start of the 

LUW in each case.  
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Fig. 5. Spatiotemporal maps of clusters formed in the encoding analysis. In total, 

145 clusters were generated. The red regions are clusters with positive 

correlations between surprisal values and magnetoencephalography (MEG) 

source activities, and the blue regions are those with negative correlations. 
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Fig. 6. Clusters with a corrected t-value less than 1% in the permutation t-test. 

(A) A left hemispheric cluster generated with 216 sources and a time range of 

200‒600 ms after the onset of LUWs. In this cluster, there was a strong positive 

correlation (cluster t-value = 8623.47, corrected p-value = 0.001). This cluster 

consisted of a part of the left insula, the left supramarginal gyrus (SMG), the left 

temporal pole, the region around the left superior temporal gyrus (STG), and the 
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region around the left fusiform gyrus (FuG). (B) A left hemispheric cluster 

generated with 128 sources and a time range of 200‒540 ms after the onset of 

LUWs. In this cluster, there was a negative correlation (cluster t-value = -5828.21, 

corrected p-value = 0.003). This cluster consisted of the region around the left 

inferior frontal gyrus (IFG) and the left frontal operculum (FOP). (C) A right 

hemispheric cluster generated with 169 sources and a time range of 200‒560 ms 

after the onset of LUWs. In this cluster, there was a negative correlation (cluster 

t-value = -4445.93, corrected p-value = 0.005). This cluster consisted of the 

region around the right IFG and the right FOP. 

 

3.3. Decoding Analysis 

 In the encoding analysis, there were many regions where correlations 

peaked at 300 ms after the start of a LUW and disappeared between 500 and 600 

ms. Therefore, for the decoding analysis, we analyzed three time ranges, 200‒300 

ms, 300‒400 ms, and 400‒500 ms after the onset of a LUW.  

 First, decoding analysis was performed for the 200‒300-ms time range. 

A paired-samples t-test was conducted for all participants to compare whether the 

regression error of the original data was significantly smaller than the mean 

regression error of the surrogate data, with the left insula, left medial orbital 

frontal cortex (mOFC), left SMG, left STG, and right isthmus-cingulate cortex 
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(ICC) showing significance at the 1% level (Fig. 7-A, B). Additionally, a one-

sample t-test was conducted to compare whether the regression error of the 

original data was significantly smaller than the regression error of the surrogate 

data for each subject. The bilateral insula, bilateral postcentral gyrus (PoG), left 

Banks superior temporal sulcus (BanksSTS), left STG, left SMG, and right 

precentral gyrus (PrG) (Fig. 7-C, D) were found to have significant differences 

in more than nine participants (90% of total participants). Regions with 

significant differences using both of these statistical analyses were defined as 

having a significantly higher regression accuracy in that time range. Therefore, 

for the time range of 200‒300 ms, three regions, including the left insula, left STG, 

and left SMG, were determined to have significantly higher regression accuracies 

(Fig. 10-A).  
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Fig. 7. Results of the decoding analysis for each region in the 200‒300-ms time 

range. (A) The regression error of the original data and the mean regression error 

of the surrogate data in the time range of 200‒300 ms was plotted for each subject. 

The paired-samples t-test for all subjects compared whether the regression error 

of the original data was significantly smaller than the mean regression error of the 

surrogate data. *regions with a corrected p-value of < .05 and ** regions with a 

corrected p-value of < .01. (B) The t-value for each region in the paired-samples 

t-test. (C) Number of subjects with a corrected p-value of < .05 on the one-sample 
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t-test comparing whether the regression error of the original data was significantly 

smaller than the regression error of the surrogate data for each subject. The 

regions where more than 90% of subjects (above the pink line) had a corrected p-

value of < .05 were defined as regions with significant differences in the one-

sample t-test. (D) Subject mean and variance of t-values in the one-sample t-test. 

 

 Next, decoding analysis was performed for the 300‒400-ms time range. 

In this analysis, the bilateral insula, bilateral PHG, bilateral PoG, bilateral 

posterior cingulate cortex (PCgG), bilateral PrG, left BanksSTS, left lingual gyrus 

(LgG), left middle temporal gyrus (MTG), left paracentral lobule (PCL), left STG, 

left SMG, left TTG, right caudal anterior cingulate cortex (CaudalACC), right 

FuG, right pars triangularis, and right rostral middle frontal gyrus (RostralMFG) 

(Fig. 8-A, B) were found to be significantly different using the paired-samples t-

test. Additionally, the bilateral insula, bilateral PrG, bilateral STG, left BanksSTS, 

left meddle temporal, left SMG, and left TTG were found to have significant 

differences in more than nine participants using the one-sample t-test (Fig. 8-C, 

D). Therefore, the regions with significant differences using both of these 

statistical analyses were the bilateral insula, bilateral PrG, bilateral STG, the left 
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BanksSTS, the left MTG, the left SMG, and the left TTG (Fig. 10-B).  
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Fig. 8. Results of the decoding analysis for each region in the time range of 300‒

400 ms. (A) The regression error of the original data and the mean regression 

error of the surrogate data in the time range of 300‒400 ms were plotted for each 

subject. The paired-samples t-test for all subjects compared whether the 

regression error of the original data was significantly smaller than the mean 

regression error of the surrogate data. *Regions with a corrected p-value of < .05 

and ** regions with a corrected p-value of < .01. (B) The t-value for each region 

in the paired-samples t-test. (C) The number of subjects with a corrected p-value 
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of < .05 in the one-sample t-test comparing whether the regression error of the 

original data was significantly smaller than the regression error of the surrogate 

data for each subject. Regions where more than 90% of the total subjects (above 

the pink line) had a corrected p-value of < .05 were defined as regions with 

significant differences in the one-sample t-test. (D) Subject mean and variance of 

t-values in the one-sample t-test. RMSE, root mean square error. 

 

 Next, decoding analysis was performed for the 400‒500-ms time range. 

In this analysis, the left BanksSTS, left PoG, left superior parietal lobule (SPL), 

left STG, left SMG, right PrG, and right RostralMFG were found to have 

significant differences using the paired-samples t-test (Fig. 9-A, B). However, in 

the one-sample t-test, no regions were found to have significant differences in 

more than nine participants (Fig. 9-C, D). Therefore, there was no region where 

both of these statistical analyses showed significant differences, indicating there 

were no regions where the regression accuracy was significantly higher in this time 

range.  
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Fig. 9. Results of the decoding analysis for each region in the time range of 400‒

500 ms. (A) The regression error of the original data and the mean regression 

error of the surrogate data in the time range of 400‒500 ms were plotted for each 

subject. The paired-samples t-test for all subjects compared whether the 

regression error of the original data was significantly smaller than the mean 

regression error of the surrogate data. *Regions with a corrected p-value of < .05 

and ** regions with a corrected p-value of < .01. (B) The t-value for each region 

in the paired-samples t-test. (C) Number of subjects with a corrected p-value of 
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< .05 in the one-sample t-test comparing whether the regression error of the 

original data was significantly smaller than the regression error of the surrogate 

data for each subject. Regions where more than 90% of the total subjects (above 

the pink line) had a corrected p-value of < .05 were defined as regions with 

significant differences in the one-sample t-test. (D) Subject mean and variance of 

t-values in the one-sample t-test. 

 

 Figure 10 shows the regions with significantly higher regression 

accuracies based on the decoding analysis for each time range.  
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Fig. 10. Regions where significant differences were found using both the paired-

samples t-test and the one-sample t-test; that is, regions where the regression 

accuracy by decoding was determined to be significantly higher than the 

regression accuracy by surrogate. (A) Regions with significance at 200‒300 ms 

after the start of a long unit word (LUW). (B) Regions with significance at 300‒

400 ms after the start of a LUW. 
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4. Discussion 

 In order to identify the brain mechanisms involved in human language 

prediction, this study measured brain activity during Japanese-language speech 

listening using MEG and examined its relationship with the surprisal predicted 

using the LSTMLM. For this study, we used two types of analyses: encoding and 

decoding. Some regions demonstrated significant differences using both types of 

analyses, including the left insula, left STG, and left SMG. On the other hand, 

some regions showed significant differences using either only encoding or 

decoding analyses (Table 1). In the encoding analysis, the left temporal pole, left 

FuG, bilateral IFG, and bilateral FOP showed significant differences. For the 

decoding analysis, the right insula, right STG, bilateral PrG, left TTG, left MTG, 

and left BanksSTS showed significant differences.  

 

Table 1. Regions where significant differences were found in the encoding and/or 

decoding analyses. For the encoding analysis, regions with a corrected p-value of 

< .001 are represented as **, and regions with a corrected p-value of < .005 are 

represented as *. For the decoding analysis, regions where more than 90% of 

subjects had a corrected p-value of < .05 on the one-sample t-test and where there 

were significant differences in the paired-samples t-test, a corrected p-value of 
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< .01 in the paired-samples t-test is indicated as **, and regions with a corrected 

p-value of < .05 are indicated as *. All regions determined to have significant 

differences using both types of statistical analyses in the 200‒300-ms time range 

were also included in the 300‒400-ms time range. For the 400‒500-ms time range, 

there were no regions where both statistics showed significant differences. 

Therefore, this table only shows the decoding results for the 300‒400-ms time 

range. BanksSTS, Banks superior temporal gyrus; FOP, frontal operculum; FuG, 

fusiform gyrus; IFG, inferior frontal gyrus; MTG, middle temporal gyrus; PrG, 

precentral gyrus; SMG, supramarginal gyrus; STG, superior temporal gyrus; TTG, 

transverse temporal gyrus 
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 The regions that showed significant differences using both types of 

analyses were the left insula, the left STG, and the left SMG. These regions 

showed positive correlations between surprisal values and MEG source signals in 

the encoding analysis and also showed significantly higher regression accuracies 

at 200‒300 ms and 300‒400 ms after the onset of a LUW in the decoding 

analysis.  

The left SMG is believed to be involved in comprehension of all types 

of language stimuli, including reading and listening. Previous studies have 

shown that the left SMG is activated more significantly when listening to or 

reading a story than when experiencing a nonverbal control stimulus (Bemis and 

Pylkkänen, 2013; Lindenberg and Scheef, 2007). The left SMG is also associated 

with phonological processing and has been shown to facilitate auditory memory 

and enable longer-term memory of musical pitches through stimulation and 

activation of the transcranial direct-current stimulation (tDCS) (Schaal et al., 

2017). Therefore, the increased activity identified in the left SMG in this study 
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may be due to the increased information-processing costs associated with 

language comprehension caused by the appearance of unpredicted LUWs.  

The STG is composed of the primary and secondary auditory cortices 

and is believed to be responsible for phonological processing associated with 

speech understanding (Hickok and Poeppel, 2000). In particular, the left STG, 

which is a language-related area, is believed to be responsible for auditory short-

term memory, language comprehension, and phonological processing 

(Buchsbaum et al., 2001; Leff et al., 2009). In addition, there have been positive 

correlations identified between STG activity measured by fMRI and the surprisal 

calculated by the N-gram language model during story listening. In a previous 

study, the STGʼs activity was modulated by how well input words fit their 

predictions (Willems et al., 2016), and our results replicated the findings of this 

previous study.  

The insula has been shown to be involved in several important 

processes, including auditory attention allocation, auditory adjustments to new 

stimuli, temporal processing, phonological processing, and auditory-visual 
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integration. The left insula, in particular, is more involved in phonological word 

processing (Bamiou et al., 2003). Bilateral insula have been reported to be 

activated when listening to sentences that are not semantically valid (i.e., some 

of the words in the sentence are changed to inappropriate words), thus 

supporting semantic information processing at the sentence level (Friederici et 

al., 2003). Bilateral insula are also associated with risk and reward prediction 

errors in gambling tasks (Preuschoff et al., 2008). Therefore, the activation of 

the left insula identified in this study may have been caused by increases in 

phonological and semantic processing loads caused by the appearance of 

unexpected LUWs or by the encoding of prediction errors.  

 Some regions only showed significant differences in the encoding 

analysis (i.e., a significant correlation between surprisal and MEG source 

signals), including the left temporal pole, left FuG, bilateral IFG, and bilateral 

FOP. In particular, the left temporal pole and the left FuG showed positive 

correlations between surprisal and MEG source signals. The temporal pole 

region performs social and emotional processing, and the left temporal pole, in 
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particular, has been closely associated with semantic memory (Olson et al., 

2007). The left FuG is called the visual word form area (VWFA) (Cohen et al., 

2000) and is responsible for the perception of visual word forms (Vinckier et al., 

2007). 

In addition, the inferior temporal sulcus, which is adjacent to the 

VWFA, has been shown to be involved in both visual and auditory word form 

comprehension (Cohen et al., 2004). The left temporal pole, left FuG, and STG 

have been shown to be positively correlated with brain activity during story 

listening measured on fMRI and the surprisal calculated by the N-gram language 

model . Our results replicate the findings of this previous study.  

In the present study, bilateral IFG and FOP showed negative 

correlations between surprisal and MEG source signals. The IFG is responsible 

for syntactic processing and performs computations to predict grammatical 

structures (Friederici et al., 2006). The IFG has also been shown to be involved 

in sentence-level semantic processing and language-related working memory, 

with this region being significantly activated when listening to sentences during 
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a task in which participants had to judge whether successive sentences had the 

same meaning (Dapretto and Bookheimer, 1999; Friederici, 2002). The FOP 

evaluates input elements for the grammatical structure predicted by the IFG 

(Friederici et al., 2006). Furthermore, this region is related to semantic 

processing of words, and its activity becomes stronger based on the weakness of 

the connections between adjacent words (Friederici, 2020). The relationship 

between surprisal and activity in the regions identified in this study is probably 

related to the fact that the surprisal can account for both semantic information at 

the sentence level and information on the connections between neighboring 

words when using the LSTMLM.  

 Some regions only showed significant differences in the decoding 

analysis (i.e., the original prediction accuracy was significantly higher than the 

surrogate prediction accuracy), including the right insula, right STG, bilateral 

PrG, left TTG, left MTG, and left BanksSTS. In a previous MEG study, the left 

BanksSTS and left MTG were shown to be significantly more activated during a 

visual reading task when reading a story than when reading a random word list. 
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Thus, these regions are more strongly related to long-term cognitive processing 

at the sentence level than to short-term cognitive processing at the word level 

(Brennan and Pylkkänen, 2012). Although bilateral PrG are classified as part of 

the primary motor cortex, their activity has been shown to vary in relation to 

speech perception (Pulvermüller et al., 2006). The left TTG is classified as the 

primary auditory cortex and is implicated in pitch processing and in the learning 

of verbal pitch (Wong et al., 2008). The insula and STG, regions where 

significant left hemispheric differences were identified using both types of 

analyses in this study, also showed significant differences in the right hemisphere 

in the decoding analysis. The right insula and the right STG play similar roles to 

their counterparts in the left hemisphere by supporting semantic information 

processing at the sentence level (Friederici et al., 2003) and by phonological 

processing associated with speech understanding (Hickok and Poeppel, 2000). 

Thus far, encoding analysis has more commonly been used in linguistic 

research than decoding analysis. Therefore, identification of the relationships 

between surprisal and brain activity in the additional regions identified in this 
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study is an advantage of using decoding analysis. However, because the 

LSTMLM was used to estimate surprisal in this study, we cannot simply 

compare our results with previous studies that used the N-gram language model 

to estimate surprisal. Therefore, we cannot definitively determine whether the 

observed differences were an effect of the LSTMLM or the decoding analysis. 

Since the decoding analysis was performed independently for each region in this 

study, it is clear that information related to surprisal was processed as activity 

patterns in each of these regions of the brain. However, we did not examine the 

functional connectivity between regions. Human cognitive function is not the 

result of independent activity in a single brain region but rather the functional 

connectivity of multiple regions as a network. (Bressler and Menon, 2010). In 

order to clarify whether these new regions are directly related to surprisal or are 

secondary activities, it will be necessary to examine how these regions are 

connected to other surprisal-related regions and how they function as networks.  

 In terms of the temporal response in brain activity, the encoding 

analysis showed an increase in activity, with a peak at 300 ms after the onset of a 
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LUW. The decoding analysis showed higher prediction accuracies of a larger 

number of regions in the 300‒400-ms time range than in the 200‒300-ms time 

range, with no regions showing significant decoding accuracies at 400‒500 ms 

after the onset of a LUW. It is possible that this temporal response pattern 

corresponds with the N400, a negative brain activity measured on the scalp at 

about 400 ms after a linguistic stimulus. The N400 is known to have access to 

semantic memory (Kutas and Federmeier, 2000). It has also been shown that the 

magnitude of the surprisal correlates with the amplitude of the N400 measured 

on the scalp using EEG (Fitz and Chang, 2019). In addition, the N400 observed 

in MEG source signals has been shown to originate from the left STG at 

approximately 250 ms after the onset of stimulation and to gradually spread 

(Kutas and Federmeier, 2011). In this studyʼs decoding analysis, significant 

differences were found in a small number of regions in the left hemisphere in the 

time range of 200‒300 ms, while significant differences were found in a broader 

range of regions, including the right hemisphere, in the 300‒400-ms time range. 

This finding implies that the N400 occurred in the left hemisphere and spread to 
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a broader region. 

 We believe the language model used in this study was relatively valid 

because significant differences were found in regions suggested by previous 

studies. Moreover, the N-gram language model was not able to learn surprisal 

values using data from this study, while the LSTMLM was able to learn the 

surprisal values to some extent. Therefore, the LSTMLM was able to estimate 

the surprisal with a smaller amount of data, demonstrating its effectiveness at 

performing these estimations. However, the dataset for this study was small, 

even for the LSTMLM, and it is therefore difficult to claim that this model was 

able to achieve sufficient accuracy. Huge data sets, such as sentences from news 

articles, are generally used in language-model training; however, we did not use 

these types of datasets in this study because the speeches used in this 

experiment were spoken, and, therefore, training with a written language dataset 

could have resulted in a wording bias. Also, since humans generally listen to 

spoken language in their daily lives, there should be more spoken language than 

written language in training data. Therefore, a large dataset of spoken Japanese 
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should be used as training data for models designed to represent language 

processing in the human brain; however, the dataset used in the present study is 

currently the largest one available. In order to clarify the relationship between 

surprisal and brain activity, future studies should enrich the spoken language 

dataset for training data and should develop language models that can be trained 

with smaller amounts of data. However, in studies of the human brain, it is 

important to avoid language models that ignore the structure of the human brain 

even if they do improve the accuracy of the language model because these types 

of models cannot accurately represent language processing. 

 This study had several limitations. First, the number of participants was 

only 10, which is a smaller sample size than in similar MEG studies (Armeni et 

al., 2019: 25 participants). Also, we used the FreeSurfer average brain to adjust 

the MEG sensor positions instead of MRI structural images for each participant. 

Therefore, we could not account for individual differences in brain structure, 

and the accuracy of the signal source estimation was therefore questionable. 

Next, in the decoding analysis, we performed Lasso regression for each region; 
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however, we did not examine which sources were selected as features after 

regularization and how many of them were used in each region. In addition, the 

number of sources contained in each pre-regularized region were different. 

Therefore, we cannot exclude the possibility that the regression accuracy was 

affected by too many or too few features in each region.  

 In future studies, it will be necessary to compare language models with 

identical experimental paradigms to clarify whether the results of this study were 

the effect of the LSTMLM or the decoding analysis. In addition, it will be 

necessary to understand the broader network of the language prediction 

mechanism in order to investigate the functional connectivity between regions 

and not just in individual regions.  
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5. Conclusion 

 In order to investigate the brain mechanisms involved in human 

language prediction, this study clarified the relationship between the surprisal 

estimated by the LSTMLM and MEG source signals while listening to Japanese 

speech using encoding and decoding analyses. In addition to surprisal-related 

regions revealed in previous studies, such as the STG, FuG, and temporal pole, 

we also identified relationships between surprisal and brain activity in other 

regions, including the insula, STS, and MTG, which are believed to be engaged 

in longer-term, sentence-level cognitive processing. 
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