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Abstract 15 

Understanding the origins of biodiversity has been an aspiration since the days of early 16 

naturalists. The immense complexity of ecological, evolutionary and spatial processes, 17 

however, has made this goal elusive to this day. Computer models serve progress in many 18 

scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models 19 

are comparatively less developed. We present a general, spatially-explicit, eco-evolutionary 20 

engine with a modular implementation that enables the modelling of multiple macroecological 21 

and macroevolutionary processes and feedbacks across representative spatio-temporally 22 

dynamic landscapes. Modelled processes can include environmental filtering, biotic 23 

interactions, dispersal, speciation and evolution of ecological traits. Commonly observed 24 

biodiversity patterns, such as ,  and  diversity, species ranges, ecological traits and 25 

phylogenies, emerge as simulations proceed. As a case study, we examined alternative 26 

hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth’s 27 

Cenozoic era. We found that a carrying capacity linked with energy was the only model variant 28 

that could simultaneously produce a realistic LDG, species range size frequencies, and 29 

phylogenetic tree balance. The model engine is open source and available as an R-package, 30 

enabling future exploration of various landscapes and biological processes, while outputs can 31 

be linked with a variety of empirical biodiversity patterns. This work represents a step towards 32 

a numeric and mechanistic understanding of the physical and biological processes that shape 33 

Earth’s biodiversity. 34 

Keywords 35 

biodiversity, eco-evolution, latitudinal diversity gradient, mechanistic model, modelling 36 

framework  37 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436109doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436109
http://creativecommons.org/licenses/by/4.0/


gen3sis: engine for eco-evolutionary biodiversity modelling 

3 
 

Introduction  38 

Ecological and evolutionary processes have created various patterns of diversity in living 39 

organisms across the globe [1]. Species richness varies across regions, such as continents 40 

[2, 3], and along spatial and environmental gradients [4, 5], such as latitude [6, 7]. These well-41 

known patterns, derived from the observed multitude of life forms on Earth, have intrigued 42 

naturalists for centuries [1, 8, 9] and stimulated the formulation of numerous hypotheses to 43 

explain their origin [e.g. 1, 6, 7, 10, 11-15]. Ecologists and evolutionary biologists have 44 

attempted to test and disentangle these hypotheses [16], for example via models of 45 

cladogenesis [17] or correlative spatial analyses [18, 19]. However, to this day, a mechanistic 46 

understanding of ecological, evolutionary and geodynamical spatial dynamics driving diversity 47 

patterns remains elusive [20, 21]. 48 

The complexity of interacting ecological, evolutionary and spatial processes limits our ability 49 

to formulate, test and apply the mechanisms forming biodiversity patterns [22, 23]. 50 

Additionally, multiple processes act and interact with different relative strengths across spatio-51 

temporal scales [20]. Current research suggests that allopatric [24-26] and ecological [22] 52 

speciation, dispersal [27] and adaptation [28] all act conjointly in interaction with the 53 

environment [29, 30], producing observed biodiversity patterns [31]. Comprehensive 54 

explanations of the origin and dynamics of biodiversity must therefore consider a large number 55 

of biological processes and feedbacks [32], including species’ ecological and evolutionary 56 

responses to their dynamic abiotic environment, acting on both ecological and evolutionary 57 

time scales [20, 33]. Consequently, biodiversity patterns can rarely be explained by a single 58 

hypothesis, as the expectations of the various contending mechanisms are not clearly 59 

asserted [20, 34]. 60 

A decade ago, a seminal paper by Gotelli and colleagues [35] formulated the goal of 61 

developing a “general simulation model for macroecology and macroevolution” (hereafter 62 

computer models). Since then, many authors have reiterated this call for a broader use of 63 
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computer models in biodiversity research [20, 36, 37]. With computer models, researchers can 64 

explore with simulations the implications of implemented hypotheses and mechanisms and 65 

evaluate whether emerging simulated patterns are compatible with observations. Several case 66 

studies have illustrated the feasibility and usefulness of computer models in guiding intuition 67 

for the interpretation of empirical data [24, 26, 38-42]. Moreover, models have reproduced 68 

realistic large-scale biodiversity patterns, such as along latitude [25, 43, 44], by considering 69 

climate and geological dynamics [24, 26, 42], and population isolation by considering dispersal 70 

ability and geographic distance [24-26, 38-42]. For example, computer models were used to 71 

examine how oceans’ paleogeography influenced biodiversity dynamics in marine ecosystems 72 

[24, 41-43]. Nevertheless, the potential of computer models to enlighten the mechanisms 73 

underlying biodiversity patterns remains largely untapped. 74 

Macroevolutionary studies have highlighted that patterns emerging from simulations are 75 

generally sensitive to the mechanisms implemented, and to the landscapes upon which those 76 

act [24, 25, 42, 43]. Systematically comparing and exploring the effects of mechanisms and 77 

landscapes, however, is often hindered by the lack of flexibility and idiosyncrasies of existing 78 

models. Most models implement, and thus test, only a limited set of evolutionary processes 79 

and hypotheses. Many models are designed for specific and therefore fixed purposes 80 

including spatial and temporal boundaries, ranging from the global [24, 25] to continental [26] 81 

or regional scale [39, 40], and in time, from millions of years [39, 40, 42, 43] to thousands of 82 

years [25, 26]. Moreover, previous eco-evolutionary population models were developed to test 83 

a fixed number of mechanisms [24, 25, 35, 40, 42, 44-50]. The diverse input and output 84 

formats and limited code availability [51], as well as the different algorithmic implementations, 85 

have reduced interoperability between hitherto available models. Biological hypotheses and 86 

landscapes should be compared within a common and standardized platform with the 87 

modularity required for flexible explorations of multiple landscapes and processes [35]. 88 

Increased generality is thus a desirable feature of computer models that aim to explore the 89 

mechanisms and landscapes that shape biodiversity in dynamic systems such as rivers [52], 90 
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oceans [41, 42], islands [39, 40, 53] and mountains [54, 55], or across gradients such as 91 

latitude [20, 25, 43]. 92 

Here, we present a modelling engine that offers the possibility to explore eco-evolutionary 93 

dynamics of lineages under a broad range of biological processes and landscapes. Simulated 94 

species populations occupy a spatial domain (hereafter site) bounded by a combination of 95 

geological, climatic and ecological factors. The sites occupied by a species define the species’ 96 

realized geographic range (hereafter species range) [56]. The engine then tracks species 97 

populations over time, which can change as a result of dynamic environments, as well as 98 

species dispersal ability, ecological interactions, local adaptation and speciation. The initial 99 

species range and the criteria for speciation, dispersal, ecological interactions and trait 100 

evolution are adjustable mechanisms, allowing the integration of a wide range of hypotheses 101 

within the model. Given the flexibility of modifying both mechanisms and landscapes, we 102 

consider the engine a general tool and named it “general engine for eco-evolutionary 103 

simulations” (hereafter gen3sis). We highlight the potential of gen3sis as a flexible tool to gain 104 

inferences about the underlying processes behind biodiversity patterns by tackling a long-105 

standing topic in evolutionary ecology: the latitudinal diversity gradient (LDG) [20]. We 106 

implement three alternative hypotheses proposed to explain the LDG [20]: (i) time for species 107 

accumulation [57-60], (ii) diversification rates i.e. depending on temperature [61, 62], and 108 

ecological limits i.e. depending on energetic carrying capacity [63, 64]. We compare simulation 109 

results to empirical distribution and phylogenetic patterns of major tetrapod clades (i.e. 110 

mammals, birds, amphibians and reptiles).   111 
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Engine principles and scope 112 

Gen3sis is a modelling engine, developed for formalizing and testing multiple hypotheses 113 

about the emergence of biodiversity patterns. The engine simulates the consequences of 114 

multiple customizable processes and landscapes responsible for the appearance (speciation) 115 

and disappearance (extinction) of species over evolutionary time scales. Speciation and 116 

extinction emerge from ecological and evolutionary mechanisms dependent on dispersal, 117 

species interactions, trait evolution and geographic isolation processes. Customizable eco-118 

evolutionary processes, which interact with dynamic landscapes, make it possible to adjust for 119 

various macro-eco-evolutionary hypotheses about specific taxonomic groups, ecosystem 120 

types or processes. We made the engine openly available to the research community in an R-121 

package to catalyse an interdisciplinary exploration, application and quantification of the 122 

mechanisms behind biodiversity dynamics. The R statistical programming language and 123 

environment [65] is widely used for reproducible and open-source research, and since its 124 

origins it has been used for handling and analysing spatial data [66]. Gen3sis follows best 125 

practices for scientific computing [67], including high modularization; consistent naming, style 126 

and formatting; single and meaningful authoritative representation; automated workflows; 127 

version control; continuous integration; and extensive documentation. 128 

Gen3sis operates over a grid-based landscape, either the entire globe or a specific region. 129 

The landscape used as input is defined by the shape of the colonizable habitat (e.g. land 130 

masses for terrestrial organisms), its environmental properties (e.g. temperature and aridity) 131 

and its connectivity to dispersal (e.g. the influence of barriers, such as rivers and oceans for 132 

terrestrial organisms). Gen3sis simulates species’ population range dynamics, traits, 133 

diversification and spatial biodiversity patterns in response to geological, biological and 134 

environmental drivers. Using a combined trait-based and biological species concept, gen3sis 135 

tracks the creation, dynamics and extinction of species ranges, which are composed by a set 136 

of sites occupied by species populations. Eco-evolutionary dynamics are driven by user-137 
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specified landscapes and processes, including ecology, dispersal, speciation and evolution 138 

(Figure 1). Below we explain the gen3sis inputs, the configurations (including eco-evolutionary 139 

processes), and the landscapes defining the computer model, as well as user-defined outputs 140 

(Figure 1 C–F) 141 

Inputs and initialization 142 

Gen3sis has two input objects which define a particular model (Figure 1). These inputs are: (i) 143 

a dynamic landscape (Figure 1 A), which is further divided into environmental variables and 144 

distance matrices; and (ii) a configuration (Figure 1 B), in which the user can define initial 145 

conditions, biological functions and their parameter values, as well as technical settings for 146 

the model core. 147 

148 

Figure 1. Schematic of the main components of the computer model: (A, B) model inputs, 149 

including the spatio-temporal landscape objects and the configuration file; (C–F) model 150 

outputs, including present and past species ranges, phylogenetic relationships among 151 

species, and the ecological traits of species; (G) model engine containing the mechanics; and 152 

(H) empirical data applicable for model validation.  153 
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Landscape 154 

The landscape objects (Figure 1 A) form the spatio-temporal context in which the processes 155 

of speciation, dispersal, evolution and ecology take place. Landscape objects are generated 156 

based on temporal sequences of landscapes in the form of raster files, which are summarized 157 

in the form of two classes. The first landscape class contains: (i) the geographic coordinates 158 

of the landscape sites, (ii) the corresponding information on which sites are generally suitable 159 

for a clade (e.g. land or ocean), and (iii) the environmental conditions (e.g. temperature and 160 

aridity). The landscape may be simplified into a single geographic axis [e.g. 68] for theoretical 161 

experiments, or it may consider realistic configurations aimed at reproducing real local or 162 

global landscapes [24, 69, 70]. The second landscape class defines the connectivity of the 163 

landscape, used for computing dispersal and consequently isolation of populations. By default, 164 

the connection cost between occupied sites is computed for each time-step from the gridded 165 

landscape data based on haversine geographic distances. This can be modified by a user-166 

defined cost function in order to account for barriers with different strengths (e.g. based on 167 

elevation [69], water or land) or even to facilitate dispersal in specific directions (e.g. to account 168 

for currents and river flow directions). The final connection costs are stored as sparse distance 169 

matrices [71]. Distance matrices, containing the connection costs, are provided at every time-170 

step as either: (i) a pre-computed full distance matrix, containing all habitable sites in the 171 

landscape (faster simulations but more storage required); or (ii) a local distance matrix, 172 

computed from neighbouring site distances up to a user-defined range limit (slower 173 

simulations but less storage required).  174 
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Configuration 175 

The configuration object (Figure 1 B) includes the customizable initialization, observer, 176 

speciation, dispersal, evolution and ecology functions. These six functions define a 177 

configuration applied in the simulation engine (Table 1). The possibility to customize these 178 

functions confers the high flexibility of gen3sis in terms of including a wide range of 179 

mechanisms, as illustrated by three configurations presented in a case study (Note S1, Table 180 

S1). Additionally, the configuration object lists the model settings, including: (i) whether a 181 

random seed is used, allowing simulation reproducibility; (ii) start and end times of the 182 

simulation; (iii) rules about aborting the simulation, including the maximum global or local 183 

species number allowed; and (iv) the list of ecological traits considered in the simulation. One 184 

or multiple traits can be defined, which should correspond to those used in the ecology 185 

function. Moreover, the initialization function creates the ancestor species at the start of the 186 

simulation. Users can define the number of ancestor species, their distribution within the 187 

ancient landscape and their initial trait values. With the observer function, changes over time 188 

in any abiotic or biotic information of the virtual world can be recorded by defining the outputs 189 

that are saved at specified time-steps. Outputs can be saved and plotted in real-time as the 190 

model runs. The core biological functions (i.e. speciation, dispersal, evolution and ecology) 191 

are presented below.  192 
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Core functions and objects 193 

The states of the computer model are updated in discrete time-steps. At each time-step, the 194 

speciation, dispersal, evolution and ecology functions are executed sequentially (Figure 2). 195 

Speciation and extinction emerge from interactions across core functions. For example, 196 

speciation events are influenced by speciation function as well as by the ecology and dispersal 197 

functions that interact in a dynamic landscape, ultimately dictating populations’ geographic 198 

isolation. Likewise, global extinctions depend on local extinctions, which are influenced by the 199 

dispersal, evolution and ecology functions that dictate adaptation and migration capacity. 200 

Internally, the computer model defines core objects of the simulations: species abundances; 201 

species trait values; the species divergence matrix between all populations for each species; 202 

and the phylogeny of all species created during the simulation. In the following sections, we 203 

describe the core processes in gen3sis, as well as their inputs and outputs. For a summary 204 

see Table 1.  205 

Running a simulation in gen3sis consists of the following steps: (i) Read in the configuration 206 

object, prepare the output directories, load the initial landscape (Figure 2 A) and create the 207 

ancestor specie(s) (using the initialization function create_ancestor_species). (ii) Run the main 208 

loop over the landscape time-steps. At every time-step, the engine loads the appropriate 209 

landscape, removes all sites that became uninhabitable in the new time-step, and executes 210 

the core functions as defined by the configuration object (Figure 2 B). (iii) At the end of every 211 

time-step, gen3sis saves the species richness, genealogy and, if desired, the species, 212 

landscape and other customized observations that are defined in the observer function (e.g. 213 

summary statistics and species pattern plots). Core functions are modifiable and can account 214 

for a wide range of mechanisms, as illustrated in the case study (Notes S1 and S2). 215 

Conversely, functions can be turned off, for example in an ecologically neutral model. For a 216 

pseudo-code of gen3sis see Note S3. 217 
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218 

Figure 2. Schematic example of the gen3sis engine simulation cycle of one species’ 219 

populations over a landscape evolution example containing highlands (yellow), lowlands 220 

(green) and a river acting as a barrier (blue). (A) Landscape. A time series of landscapes is 221 

used as input, with the landscape being updated after every time-step of the simulation cycle, 222 

i.e. after the ecology process. (B) Model core processes. First, the speciation process 223 

determines the divergence between geographic clusters of populations that are not connected 224 

and splits the clusters into new species if a threshold is reached. In this illustration, divergence 225 

between clusters of fox populations was not sufficient to trigger speciation. Second, in the 226 

dispersal process, the species spreads within a landscape to reachable new sites. In this 227 

illustration, the river limits dispersal. Third, the evolution process can modify the value of the 228 

traits in the populations. In this illustration, two fox populations show trait evolution in their 229 

ability to cope with the local environment (i.e. red and white fox populations). Fourth, the 230 

ecology process recalculates the abundance of the species in each site based on the abiotic 231 

condition and co-occurring species, possibly resulting in local extinctions. In this illustration, 232 
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the red fox was unsuited to the lowlands while the white fox survived in the highlands. 233 

Speciation and extinction events emerge from multiple simulation cycles of customizable 234 

processes. 235 

Table 1. Presentation of the core functions of speciation, dispersal, ecology and evolution 236 

implemented in gen3sis. The computation of core functions is customizable in the 237 

configuration object. Shown are input objects that are combined to generate updated 238 

outputs. The table corresponds to the mechanisms presented in Figure 2 B.  239 

 
Objective Input Computation Output 

Speciation 

 Determines the 
divergence 
between 
geographic 
clusters of 
populations within 
a species; 
determines 
cladogenesis. 
 

Species divergence 
matrix; species trait 
matrix; species 
abundance matrix; 
landscape values; 
distance matrix. 

Divergence between 
geographically isolated clusters of 
populations increases over time 
while (re-)connected clusters 
decrease down to zero; speciation 
happens when the divergence 
between two clusters is above the 
speciation threshold, but can also 
consider trait differences. 

Updated 
species 
divergence 
matrix; new 
species if 
speciation 
occurred; 
updated 
genealogy 
table. 

Dispersal 

 Determines the 
colonization of 
vacant sites. 

Species trait matrix; 
species abundance 
matrix; landscape 
values; distance 
matrix. 

Species disperse according to a 
unique value or a distribution of 
dispersal values. 

Updated 
species 
abundance 
matrix. 

Evolution 

 Determines the 
change of species 
traits in each site, 
anagenesis. 

Species trait matrix; 
species abundance 
matrix; landscape 
values; geographic 
clusters; distance 
matrix. 

Traits might change for each 
species in the populations of 
occupied sites. 

Updated 
species trait 
matrix. 

Ecology 

 Determines the 
species 
abundance in 
each site. 

Species trait matrix; 
species abundance 
matrix; landscape 
values; genealogy. 

Change the species abundance, 
based on landscape environmental 
values and species co-
occurrences; changes species trait 
values. 

Updated 
species 
abundance 
matrix. 
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Speciation 240 

Core. The speciation function iterates over every species separately, registers populations’ 241 

geographic occupancy (species range), and determines when geographic isolation between 242 

population clusters is sufficient to trigger a lineage-splitting event of cladogenesis. A species’ 243 

range can be segregated into spatially discontinuous geographic clusters of sites and is 244 

determined by multiple other processes. The clustering of occupied sites is based on the 245 

species’ dispersal capacity and the landscape connection costs. Over time, disconnected 246 

clusters gradually accumulate incompatibility (divergence), analogous to genetic 247 

differentiation. Disconnected species population clusters that maintain geographic isolation for 248 

a prolonged period of time will result in different species after the differentiation threshold Ϟ is 249 

reached (modelling Dobzhansky-Muller incompatibilities [72]). These clusters become two or 250 

more distinct species, and a divergence matrix reset follows. On the other hand, if geographic 251 

clusters come into secondary contact before the speciation occurs, they coalesce and 252 

incompatibilities are gradually reduced to zero. 253 

Non-exhaustive modification possibilities. A customizable speciation function can further 254 

embrace processes that modulate speciation. Increased divergence values per time-step can 255 

be constant for all species or change depending on biotic and abiotic conditions, such as faster 256 

divergence between species occupying higher temperature sites [62], or they can be 257 

dependent on population size [73] or other attributes [74]. The function also takes the 258 

ecological traits as input, thus allowing for ecological speciation [22], where speciation 259 

depends on the divergence of ecological traits between – but not within – clusters [75]. 260 

Dispersal 261 

Core. The dispersal function iterates over all species populations and determines the 262 

connectivity between sites and the colonization of new sites in the grid cell. Dispersal 263 

distances are drawn following a user-defined dispersal function and then compared with the 264 

distance between pairs of occupied and unoccupied sites. A unique dispersal value can be 265 
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used (deterministic connection of sites) or dispersal values can be selected from a specified 266 

distribution (stochastic connection of sites). If the occupied to unoccupied site connection cost 267 

is lower than the dispersal distance, the dispersal is successful. If populations in multiple origin 268 

sites manage to colonize an unoccupied site, a colonizer is selected randomly to seed the 269 

traits for the newly occupied site. 270 

Non-exhaustive modification possibilities. A customizable dispersal function enables the 271 

modelling of different dispersal kernels depending on the type of organism considered. 272 

Dispersal values can be further linked with: the ecology function, for instance trade-off with 273 

other traits [76], e.g. dispersal versus competitive ability [77]; and the evolution function 274 

allowing dispersal to evolve, resulting in species with different dispersal abilities [78]. 275 

Evolution 276 

Core. The evolution function determines the change in the traits of each population in 277 

occupied sites of each species. Traits are defined in the configuration object and can evolve 278 

over time for each species’ populations. The function iterates over every population of a 279 

species and modifies the trait(s) according to the specified function. Any number of traits, 280 

informed at the configuration object, can evolve (e.g. traits related to dispersal, niche or 281 

competition). 282 

Non-exhaustive modification possibilities. A customizable evolution function takes as input 283 

the species abundance, species trait, species divergence clusters and the landscape values. 284 

In the function it is possible to define which traits evolve and how they change at each time-285 

step. In particular, the frequency and/or amount of change can be made dependent on 286 

temperature [79], ecological traits [80], or abundances [81], while the directions of change can 287 

follow local optima or various evolutionary models, including Brownian motion [82] and 288 

Ornstein–Uhlenbeck [83]. 289 
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Ecology 290 

Core. The ecology function determines the abundance or presence of populations in occupied 291 

sites of each species. Thus, extinction processes derive from ecology function interactions 292 

with other processes and landscape dynamics. The function iterates over all occupied sites 293 

and updates the species population abundances or presences on the basis of local 294 

environmental values, updated co-occurrence patterns and species traits. 295 

Non-exhaustive modification possibilities. A customizable ecology function takes as input 296 

the species abundance, species trait, species divergence and clusters, and the landscape 297 

values. Inspired by classic niche theory [10, 15, 84], the function can account for various niche 298 

mechanisms, from simple environmental limits to complex multi-species interactions. It is 299 

possible, for example, to include a carrying capacity for the total number of individuals or 300 

species [21] or competition between species based on phylogenetic or trait distances [26], 301 

based on an interaction currency [85], or further constrained by a functional trade-off [76]. 302 

  303 
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Outputs and comparisons with empirical data 304 

The computer model delivers a wide range of outputs that can be compared with empirical 305 

data (Figure 1, Table 2). Gen3sis is therefore suitable for analysing the links between 306 

interacting processes and their multidimensional emergent patterns. By recording the time and 307 

origin of all speciation events, as well as trait distributions and abundance throughout 308 

evolutionary history, the simulation model records the information required to track the 309 

dynamics of diversity and the shaping of phylogenetic relationships. The most common 310 

patterns observed and studied by ecologists and evolutionary biologists, including species 311 

ranges, abundances and richness, are emergent properties of the modelled processes (Table 312 

2). All internal objects are accessible to the observer function, which is configurable and 313 

executed during simulation runs. This provides direct simulation outputs in a format ready to 314 

be stored, analysed and compared with empirical data. Given the flexibility of gen3sis, it is 315 

possible to explore not only parameter ranges guided by prior knowledge available for a given 316 

taxonomic group, but also variations in landscape scenarios and mechanisms (Figure 3). 317 

Furthermore, validating modelled outputs with multiple empirical patterns is recommended 318 

[20, 23, 35]. Gen3sis generates multiple outputs, which can be compared with empirical data 319 

using simulation rankings or acceptance criteria [23, 35, 86]. 320 

 321 

  322 
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Table 2. List of outputs from the gen3sis computer model, both direct and indirect, that can be 323 

compared with empirical data. Direct outputs are the species abundance matrix, species trait 324 

matrix and phylogeny, while indirect outputs result from various combinations of the direct 325 

outputs. The computations of indirect outputs rely on other packages available in the R 326 

environment [65]. 327 

  Scale 

Pattern Spatial Temporal 

 - I + - I + 

Metric Example local regional global present past 
deep 
past 

Alpha diversity 

() 

Local species richness follows marked spatial gradients, 
such as along latitude (LDG, Ricklefs in [87]). Species 
richness is further correlated across scales when the 
regional species pool size is positively associated with local 
species richness [e.g. 4, 88]. 

* * * * * * 

Beta diversity 

() 

Species turnover is marked along both spatial and 
environmental gradients [89, 90] and can display sharp 
boundaries forming biogeographic domains [91]. 

 * * * * * 

Gamma 

diversity () 

Regional difference in species richness, for instance across 
biogeographic regions with comparable climates, such as the 
continental temperate region of North America versus Asia 
[92]. 

  * * * * 

Species 
abundance, 
frequency and 
range 

Assemblages are generally composed of a few very 
abundant species and many rare species [93, 94]. A few 
species tend to occupy many sites, while most are very rare 
and have a restricted range size [95].  

* * * * * * 

Species 
ecological niche 
width distribution 

Niche width is heterogeneous across species [96, 97], and 
narrow niche width leads to higher speciation [98]. * * * * * * 

Trait 
evolutionary 
rates 

Ecological traits and niches generally evolve slowly so that 
closely related lineages have similar traits and niches, 
coined as niche conservatism [58].  

* * * * * * 

Species 
diversification 
rates 

Species diversification rate varies over time and across 
clades [99-101]. * * *  * * 

Topological and 
temporal 
phylogenetic 
properties 

Empirical phylogenetic trees typically display a topological 
signature [102] and have more divided branching over time, 
with marked prevalence of a recent branching distribution 
[103].  

* * *  * * 

Phylogenetic 

alpha () and 

beta () diversity 

Local communities can show either phylogenetic over-
dispersion or clustering compared with the regional pool 
[104]; greater geographic distances correspond to increased 

phylogenetic  diversity across biogeographic barriers [105]; 
decay in phylogenetic similarity with increasing geographic 
distance [106].  

* * *  * * 

Functional alpha 

() and beta () 
diversity 

Local assemblages represent a subset of the regional 
functional diversity; functional traits show a typical turnover 
spatially, often along environmental gradients [107]. 

* * * * * * 

  328 
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Case study: The emergence of the LDG from 329 

environmental changes of the Cenozoic. 330 

Context 331 

The LDG is one of Earth’s most iconic biodiversity patterns, but the underlying mechanisms 332 

remain largely debated [20, 61, 62, 97, 98, 108-110]. Many hypotheses have been proposed 333 

to explain the formation of the LDG [20], and these generally agree that a combination of 334 

biological processes and landscape dynamics has shaped the emergence of the LDG [20]. 335 

Hypotheses can be generally grouped into three categories [20]: (i) time for species 336 

accumulation, (ii) variation in diversification rates, and (iii) variation in ecological limits [Table 337 

1 in 20].  338 

Tropical environments can be used to exemplify these three hypothesis categories: First, the 339 

times for species accumulation propose that since tropical environments are older, they should 340 

have more time for species accumulation, without assuming further specific ecological or 341 

evolutionary mechanisms [57-60]. Second, higher temperatures in the tropics increase 342 

metabolic and mutation rates, which could lead to faster reproductive incompatibilities among 343 

populations and higher speciation rates compared with colder environments [61, 62]. Third, 344 

the tropics are generally more productive than colder environments and greater resource 345 

availability can sustain higher abundances, and therefore a larger number of species can 346 

coexist there [63, 64, 111, 112].  347 

We implemented one model for each of these hypotheses and simulated the spread, 348 

speciation, dispersal and extinction of terrestrial organisms over the Cenozoic. We evaluated 349 

whether the emerging patterns from these simulated mechanisms correspond to the empirical 350 

LDG, phylogenetic tree imbalance and range size frequencies computed from data of major 351 

tetrapod groups, including mammals, birds, amphibians and reptiles (Figure 3). 352 
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 353 

354 

Figure 3. Schematic representation of the case study showing the model design with two 355 

landscapes (i.e. L1 and L2) and configurations of three models (i.e. M0, M1 and M2) (Table 356 

S1), and model evaluation and test, based on multiple patterns including: LDG, range size 357 

distributions and phylogenetic balance. Selection criteria were based on empirical data from 358 

major tetrapod groups, i.e. mammals, birds, amphibians and reptiles (Table 3). 359 

Input landscapes 360 

The Cenozoic (i.e. 65 Ma until the present) is considered key for the diversification of the 361 

current biota [113] and is the period during which the modern LDG is expected to have been 362 

formed [114]. In the Cenozoic, the continents assumed their modern geographic configuration 363 

[24]. Climatically, this period was characterized by a general cooling, especially in the 364 

Miocene, and ended with the climatic oscillations of the Quaternary [115]. We compiled two 365 

global paleoenvironmental landscapes (i.e. L1 and L2) for the Cenozoic at 1° and ~170 kyr of 366 

spatial and temporal resolution, respectively (Note S1, Animations S1 and S2). To account for 367 

uncertainties on paleo-reconstructions on the emerging large-scale biodiversity patterns, we 368 
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used two paleo-elevation reconstructions [116, 117] associated with two approaches to 369 

estimate the paleo-temperature of sites (Note S1). L1 had temperatures defined by Köppen 370 

bands based on the geographic distribution of lithologic indicators of climate [54]. L2 had 371 

temperature defined by a composite of benthic foraminifer isotope records over time [118] and 372 

along latitude for specific time periods [119-125]. An aridity index ranging from zero to one 373 

was computed based on the subtropical arid Köppen zone for both landscapes [54]. For details 374 

see Note S1.  375 

Hypothesis implementation 376 

We implemented three hypotheses explaining the emergence of the LDG as different gen3sis 377 

models. The models (i.e. M0, M1 and M2) had distinct speciation and ecological processes 378 

(Figure 3, Note S1, Table S1). All simulations were initiated with one single ancestor species 379 

spread over the entire terrestrial surface of the Earth at 65 Ma, where the temperature optimum 380 

of each population matched local site conditions. Since we focused on terrestrial organisms, 381 

aquatic sites were considered inhabitable and twice as difficult to cross as terrestrial sites. 382 

This approximates the different dispersal limitation imposed by aquatic and terrestrial sites. 383 

The spherical shape of the Earth was accounted for in distance calculations by using 384 

haversine geodesic distances. Species disperse following a Weibull distribution with shape 2 385 

or 5 and a scale of 550, 650, 750 or 850, resulting in most values being around 500–1500 km, 386 

with rare large dispersal events above 2000 km. The evolution function defines the 387 

temperature niche optimum to evolve following Brownian motion. Temperature niche optima 388 

are homogenized per geographic cluster by an abundance-weighted mean after ecological 389 

processes happen. We explored three rates of niche evolution, with a standard deviation 390 

equivalent to ±0.1°C, ±0.5°C and ±1°C. 391 

  392 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436109doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436109
http://creativecommons.org/licenses/by/4.0/


gen3sis: engine for eco-evolutionary biodiversity modelling 

21 
 

M0. In the implementation of the time for species accumulation, the ecology function defines 393 

the species population abundance, where the abundance increases proportionally to the 394 

distance between the population temperature niche optimum and the site temperature (Note 395 

S1). Clusters of populations that accumulated differentiation over Ϟ = 12, 24, 36, 48 and 60 will 396 

speciate, corresponding to events occurring after 2, 4, 6, 8 and 10 myr of isolation, 397 

respectively. The divergence rate between isolated clusters was kept constant (i.e. +1 for 398 

every 170 kyr of isolation). Model M0, assuming time for species accumulation, acted as a 399 

baseline model. This means that all mechanisms present in this model were the same for M1 400 

and M2 if not specified otherwise.  401 

M1. In the implementation of the diversification rates, the speciation function applies a 402 

temperature-dependent divergence between population clusters [61, 62]. Species in warmer 403 

environments accumulate divergence between disconnected clusters of populations at a 404 

higher rate (Note S1). The rate of differentiation increase was the average site temperature of 405 

the species clusters to the power of 2, 4 or 6 plus a constant. This created a differentiation 406 

increase of +1.5 for isolated clusters of a species at the warmest range and +0.5 at the coldest 407 

range for every 170 kyr of isolation (Note S1, Figure S1). Using Ϟ = 12, 24, 36, 48 and 60, this 408 

corresponds to a speciation event after 1.3, 2.7, 4.0, 5.3, 6.7 myr and after 4, 8, 12, 16, 20 409 

myr for the warmest and coldest species, respectively. 410 

M2. In the implementation of the ecological limits, the ecology function includes a carrying 411 

capacity k of each site that scales with area energy and aridity in the ecology function [112, 412 

126]. The theory of carrying capacity proposes that energy limits abundances and therefore 413 

determines how many of each species can coexist in a given place [21, 112]. If the sum of all 414 

species abundances in a site is above k, species abundances are randomly reduced across 415 

species until k is reached. We explored low and high k values using a k power-law scaling of 416 

2 and 3. 417 
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Exploration of model parameters  418 

For each model (i.e. M0, M1 and M2) in combination with each landscape (i.e. L1 and L2), we 419 

explored a range of conservative model parameters in an interactive modelling cycle (Figure 420 

3). In addition, we explored dispersal distributions and parameters ranging in realized mean 421 

and 95% quantiles between less than a single cell, i.e. ~50 km for a landscape at 4°, and more 422 

than the Earth’s diameter, i.e. ~12’742 km (Figure S2). Trait evolution frequency and intensity 423 

ranged from zero to one. We ran a full factorial exploration of these parameter ranges at a 424 

coarse resolution of 4° (i.e. M0 n=480, M1 n=720, M2 n=480) and compared these to empirical 425 

data. Simulations considered further: (i) had at least one speciation event; (ii) did not have all 426 

species becoming extinct; (iii) had fewer than 50’000 species; or (iv) had fewer than 10’000 427 

species cohabiting the same site at any point in time (Note S1). After parameter range 428 

exploration, we identified realistic parameters and ran a subset at 1° for high-resolution outputs 429 

(Figure 4). 430 

Correspondence with empirical data 431 

In order to explore the parameters of all three models and compare their ability to produce the 432 

observed biodiversity patterns, we used a pattern-oriented modelling (POM) approach [23, 433 

86]. POM compares the predictions of each model and parameter combination with a number 434 

of diagnostic patterns from empirical observations. In our case, we used the LDG slope, tree 435 

imbalance and range size frequencies as diagnostics patterns (Figure 3, Note S1). The POM 436 

approach allows a calibration and model comparison based on high-level diagnostic patterns, 437 

avoiding the hurdles of defining explicit (approximate) likelihood functions [127]. The POM 438 

approach requires the specification of a range for each pattern under which observation and 439 

prediction are accepted, hence when a simulation satisfactorily reproduces empirical 440 

observations. Unless POM is coupled with an explicit probabilistic model [127], the limits for 441 
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acceptance must be decided by the modeller based on their understanding of the data [23, 442 

86].  443 

To generate the empirical values for these patterns, we obtained distribution data on 25’941 444 

species [128-130], following [131], and phylogenetic data on 18’978 species [5, 132-135], 445 

following [136] for major tetrapod groups, i.e. terrestrial mammals, birds, amphibians and 446 

reptiles (Note S1). LDG is given by the percentage of species loss per latitudinal degree and 447 

measured by the slope of a linear regression on normalized species richness against absolute 448 

latitude. β-statistics [31] was used for phylogenetic tree imbalance in ultrametic trees, following 449 

[102]. Species ranges decrease (SRD) in km2 is given by the percentage of species loss per 450 

species range and is measured by the slope of a linear regression of range size distributions. 451 

Empirical values of LDG, β and SRD were: mammals (LDG=5.1%, β=-0.4, SRD=2.3*103%), 452 

birds (LDG=1.5%, β=-1.3, SRD=6.5*107%), amphibians (LDG=3.9%, β=-0.7, SRD=0.11%) 453 

and reptiles (LDG=1.5%, β=-0.8, SRD=5.3*103%). Based on these values, we used the 454 

following acceptance criteria: (i) LDG between 5.4% and 1.1%, (ii) tree shape statistic β 455 

between -1.4 and -0.3, and (iii) range size frequencies with a decrease in the number of large-456 

range species with a tolerance of 5% [93-95] (Note S1). 457 

Simulations results and synthesis 458 

We found that model M2 was the best match for all the empirical patterns individually, and the 459 

only model able to pass all acceptance criteria (Table 3). Although all three models were able 460 

to reproduce the LDG, M2 was superior in explaining the LDG, phylogenetic tree imbalance 461 

and species range size frequencies simultaneously (Table 3). Most simulations of model M2 462 

(67%) resulted in a decrease in species richness at higher latitudes, indicating that the LDG 463 

emerged systematically under M2 mechanisms (Figure S3, Tables S2, S3 and S4). Increasing 464 

the spatial resolution of the simulations (n=12) resulted in an increase in  richness and 465 

computation time and a slight decrease of the LDG (Figure S5), which was associated with a 466 
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disproportionally larger number of sites towards higher latitudes, which also affects population 467 

connectivity and therefore speciation rates [137]. We then selected the best matching 468 

simulation of M2 in L1 at 1° (n=12) that predicted realistic biodiversity patterns (Figure 4, 469 

Animation S4), The emerging LDG (i.e. 4.6% of species loss per latitudinal degree) closely 470 

matched empirical curves, with good agreement for mammals (Pearson r=0.6), birds (r=0.57), 471 

amphibians (r=0.57) and reptiles (r=0.38) (Note S1, Figure 4C, Figure S6). Finally, we found 472 

that the support for M2 over M0 and M1 was consistent across the two alternative landscapes 473 

L1 and L2 (Figure S3, Table S4). 474 

Our sensitivity analyses of parameters further provided information about the role of dispersal 475 

and ecological processes in shaping the LDG (Note S1, Table S2 and S3). In particular, our 476 

results indicate that an increase in the scaling factor of carrying capacity with energy k resulted 477 

in a steeper LDG slope, which is in agreement with findings from previous studies [21, 61, 478 

112, 126]. Similarly, increasing the time for divergence consistently led to lower species 479 

richness and flattened the LDG slope so that the tropics accumulated diversity more slowly, 480 

but changes in speciation rates were less likely to drive large-scale biodiversity patterns [110]. 481 

Saupe and colleagues [25] showed that simulations with poor dispersal are better at 482 

representing the observed strong LDG in tetrapods. In agreement with their results, our 483 

parameter explorations indicated that dispersal correlated negatively with LDG [25], and 484 

simulations with lower dispersal parameters agreed better with the data (Note S1). While 485 

previous case studies [25, 26, 44] have been carried out to investigate the formation of the 486 

LDG using computer models, they used a shorter timeframe (i.e. below 1 Ma) and/or explored 487 

few mechanisms, i.e. simplified landscape or single acceptance criteria [24, 41, 42, 110]. 488 

Beyond this illustrative case study, future analyses could combine multiple mechanisms in 489 

relation to additional biodiversity patterns in order to investigate the most likely combination of 490 

mechanisms shaping the intriguing LDG pattern.  491 

 492 
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493 

Figure 4. Illustration of one global simulation of the speciation, dispersal and extinction of 494 

lineages over the Cenozoic, starting with a single ancestor species and imposed energetic 495 

carrying capacity (M2 in L1). (A) Images of the Earth land masses through time, used as input 496 

for the simulation. (B) Selected emerging patterns: evolutionary dynamics; phylogeny; and 497 

present richness. (B.1) Evolutionary dynamics:  richness (log10 scale) through time (blue line) 498 
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and diversification rate. (B.2) Phylogeny showing the distribution of the temperature optima 499 

for all extant species. (B.3) Present distribution of simulated  biodiversity globally, which 500 

indicates locations of biodiversity hotspots. For the empirical match see Figure S3. (C) Model 501 

correspondence with empirical data of terrestrial mammals, birds, amphibians and reptiles for 502 

the LDG, measured as the standardized and area-scaled mean species number per latitudinal 503 

degree. 504 

Table 3. Model acceptance table with pattern descriptions and details of acceptance derived 505 

from empirical data. Percentages of accepted simulations (for both landscapes) are shown for 506 

each model and acceptance parameter and the combination of all acceptance patterns. 507 

Acceptance M0 M1 M2 

Pattern Description and empirical acceptance (n=480) (n=720) (n=480) 

LDG 

Percentage of species loss per latitudinal degree 
from linear regression slope. 
Accept LDGs between 5% and 1% 

34% 36% 42% 

Phytogenic 
balance 

The imbalance of a phylogenetic tree is measured 
by the value that maximizes the likelihood in the 
β-splitting model [138]. 
Accept phylogenies with β between -1.4 and -0.3 

58% 51% 66% 

Range 

Range size distributions.  
Accept only distributions that show a consistent 
frequency decrease towards large-ranged species 
with a tolerance of 5% 

0% 0% 5% 

Combined  
Simulations passing all criteria above with at least 
100 species alive at the present. 

0% 0% 1% 

  508 
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Discussion 509 

Understanding the emergence of biodiversity patterns requires the consideration of multiple 510 

biological processes and abiotic forces that potentially underpin them [20, 26, 35, 36]. We 511 

have introduced gen3sis, a modular, spatially-explicit, eco-evolutionary simulation engine 512 

implemented as an R-package, which offers the possibility to explore ecological and 513 

macroevolutionary dynamics over changing landscapes. Gen3sis generates commonly 514 

observed diversity patterns and, thanks to its flexibility, enables the testing of a broad range 515 

of hypotheses (Table 4). It follows the principle of computer models from other fields [139-516 

141], where mechanisms are implemented in a controlled numeric environment and emerging 517 

patterns can be compared with empirical data [23]. The combination of exploring patterns 518 

emerging from models and matching qualitatively and quantitatively the model outputs to 519 

empirical data should increase our understanding of the processes underlying global 520 

biodiversity patterns. 521 

Using a case study, we have illustrated the flexibility and utility of gen3sis in modelling multiple 522 

eco-evolutionary hypotheses in global paleo-environmental reconstructions (Figures 3 and 4). 523 

Our findings suggest that global biodiversity patterns can be modelled realistically by 524 

combining paleo-environmental reconstructions with eco-evolutionary processes, thus moving 525 

beyond pattern description to pattern reproduction [35]. Nevertheless, in our case study we 526 

only implemented a few of the standing LDG hypotheses [20, 34]. Multiple macroecological 527 

and macroevolutionary hypotheses still have to be tested, including the role of stronger biotic 528 

interactions in the tropics than in other regions [142], and compared with more biodiversity 529 

patterns [20]. Considering multiple additional biodiversity patterns will allow a more robust 530 

selection of models. Apart from the global LDG case study, we propose an additional case 531 

study (Note S2, Figure S7) illustrating how gen3sis can be used for regional and theoretical 532 

studies, such as investigations of the effect of island ontology on the temporal dynamics of 533 

biodiversity [39, 143]. Further, illustrations associated with the programming code are offered 534 
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as a vignette of the R-package, which will support broad application of gen3sis. Altogether, 535 

our examples illustrate the great potential for exploration provided by gen3sis, promising future 536 

advances in our understanding of empirical biodiversity patterns. 537 

Verbal explanations of the main principles underlying the emergence of biodiversity are 538 

frequently proposed but are rarely quantified or readily generalized across study systems [20]. 539 

We anticipate that gen3sis will be particularly useful for exploring the consequences of 540 

mechanisms that so far have mostly been verbally defined. For example, the origins of 541 

biodiversity gradients have been associated with a variety of mechanisms [7], but these 542 

represent verbal abstractions of biological processes that are difficult to evaluate [20]. 543 

Whereas simulation models can always be improved, their formulation implies formalizing 544 

process-based abstractions via mechanisms expected to shape the emergent properties of a 545 

system [144]. Specifically, when conveying models with gen3sis, decisions regarding the 546 

biological processes and landscapes must be formalized in a reproducible fashion. By 547 

introducing gen3sis, we encourage a standardization of configuration and landscape objects, 548 

which will facilitate future model comparisons. This standardization offers a robust framework 549 

for developing, testing, comparing, and applying the mechanisms relevant to biodiversity 550 

research. 551 

Studying multiple patterns is a promising approach in disentangling competing hypotheses 552 

[20, 86]. A wide range of biodiversity dimensions can be simulated with gen3sis (Table 2), 553 

which – after appropriate sampling [145] – can serve in a multi-dimensional comparison with 554 

empirical data, i.e. a time series of species abundance matrices and trait matrices, as well as 555 

a phylogeny. These output objects are compatible with most R-packages used for community 556 

or phylogenetic analyses. Hence, the model outputs can be linked to packages computing 557 

diversification rates [146], community phylogenetics [147], or functional diversity [148]. The 558 

comparison of simulation outputs with empirical data requires a systematic exploration of 559 

processes, when formulating models, and parameter values [e.g. 149]. First, a set of 560 

mechanisms and/or a range of reasonable parameter values are explored, for instance 561 
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dispersal distances from measurements in a specific clade [150] and/or evolutionary rates 562 

[151]. A range of simulation outputs can then be evaluated quantitatively by studying the range 563 

of models and parameter values that produce the highest level of agreement with multiple 564 

types of empirical data, using for example a pattern-oriented modelling approach [86]. For 565 

each model, patterns are evaluated given an acceptance criteria [e.g. 40]. A multi-scale and 566 

multi-pattern comparison of simulations with empirical data can be completed to evaluate a 567 

model’s ability to simultaneously reproduce not only one, but a diverse set of empirical patterns 568 

across multiple biodiversity dimensions. 569 

The quality of the outputs of simulation models such as gen3sis hinges on accurate 570 

reconstructions of past environmental conditions [3, 42]. Although recent studies using realistic 571 

landscapes and computer models reproduced biodiversity patterns over a time scale spanning 572 

the Quaternary [25, 26, 44], many speciation and extinction events shaping present diversity 573 

patterns date back before the glaciation, and few studies have covered deep-time dynamics 574 

[24, 41, 42, 131]. Deep-time landscape reconstructions are still generally lacking but are 575 

increasingly becoming available [116, 118]. Here, we used available paleo-elevation models 576 

[116, 117] and paleoclimate indicators [54, 118-125, 152-154] to generate input landscapes 577 

to explore the formation of the LDG and account for uncertainties and limitations. For instance, 578 

we represented Quaternary climatic oscillation using ~170 kyr time-steps, which correspond 579 

to a coarser temporal scale compared with the frequency of oscillations, and thus do not 580 

account for shorter climatic variation effects on diversity patterns [25, 26, 44]. We also did not 581 

consider ice cover, that can mask species’ habitable sites, which probably explains the the 582 

mismatch between simulated and empirical LDG patterns below 50° (Figure 4C). Moreover, 583 

paleo indicators of climate from Köppen bands have major limitations, and the temperature 584 

estimation derived in our case study can suffer from large inaccuracies. Lastly, extrapolation 585 

of the current temperature lapse rate along elevation might lead to erroneous estimates, 586 

especially in terms of the interaction with air moisture [155], which was not further investigated 587 

here. Hence, the presented case study represents a preliminary attempt for illustrative 588 
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purposes. Further research is required to generate more accurate paleolandscapes, and 589 

research in biology should improve empirical evidence and our understanding of mechanisms. 590 

We expect that gen3sis will support exciting interdisciplinary research across the fields of 591 

geology, climatology and biology to understand the shaping of biodiversity. 592 

Table 4. A non-exhaustive list of expected applications of gen3sis. Given the flexibility and the 593 

range of outputs produced by the engine, we expect that gen3sis will serve a large range of 594 

purposes, from testing a variety of theories and hypotheses to evaluating phylogenetic 595 

diversification methods. 596 

Use Examples from Figure 1 

Testing phylogenetic inference methods, 
including diversification rates in 
phylogeographic reconstructions. 

Infer diversification rate in gen3sis simulated 
phylogenies (E) and compare with a known 
diversification in gen3sis (A, B & G). 

Providing biotic scenarios for past 
responses to geodynamics. 

Based on model outputs (C–F) and 
comparisons with empirical data (H), select 
plausible models (B). 

Testing paleo-climatic and paleo-
topographic reconstructions using 
biodiversity data. 

Based on model outputs (C–F) and 
comparisons with empirical data (H), select 
plausible landscape(s) (A). 

Comparing expectations of different 
processes relating to the origin of 
biodiversity; generating and testing 
hypotheses. 

Compare models (A, B & G) with outputs (C–F) 
and possibly how well outputs match empirical 
data (H). 

Comparing simulated intra-specific 
population structure with empirical 
genetic data. 

Compare simulated divergence matrices with 
population genetic data. 

Forecasting the response of biodiversity 
to global changes (e.g. climate or 
fragmentation). 

Extrapolate plausible and validated models (A, 
B & G) on landscapes under climate change 
scenarios (A). 

Investigating trait evolution through 
space and time. 

Combine past and present simulated species 
traits (F) and distributions (C, D) with fossil and 
trait data (H). 

Modelling complex systems in space and 
time in unconventional biological 
contexts in order to investigate eco-
evolutionary processes in fields 
traditionally not relying on biological 
principles. 

Model eco-evolutionary mechanisms (A, B & 
G) in an unconventional eco-evolutionary 
context. 

  597 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2021.03.24.436109doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436109
http://creativecommons.org/licenses/by/4.0/


gen3sis: engine for eco-evolutionary biodiversity modelling 

31 
 

Conclusions 598 

Here we have introduced gen3sis, a modular simulation engine that enables exploration of the 599 

consequences of ecological and evolutionary processes and feedbacks on the emergence of 600 

spatio-temporal macro-eco-evolutionary biodiversity dynamics. This modelling approach 601 

bears similarity with other computer models that have led to significant progress in other fields, 602 

such as climatology [139], cosmology [140] and conservation [141]. We showcase the 603 

versatility and utility of gen3sis by comparing the ability of three alternative mechanisms in two 604 

landscapes to generate the LDG while accounting for other global biodiversity patterns. 605 

Besides the LDG, frontiers on the origins of biodiversity involve [16]: (i) quantifying speciation, 606 

extinction and dispersal events [114]; (ii) exploring adaptive niche evolution [26, 44]; and (iii) 607 

investigating multiple diversity-dependence and carrying capacity mechanisms [21, 111, 112]. 608 

Further exploration possibilities may include: (iv) revealing the mechanisms behind age-609 

dependent speciation and extinction patterns [102, 108, 156]; (v) contrasts between terrestrial 610 

and aquatic ecosystems [16]; and (vi) calculations of uncertainty resulting from climatic and 611 

geological dynamics [e.g. 24, 25, 26, 41, 42]. Gen3sis can support these research frontiers as 612 

a general tool for formalizing and studying existing theories associated with the origin of 613 

biodiversity, testing new hypotheses against data, and making predictions about future 614 

biodiversity trajectories (Table 4). Openly available as an R-package, gen3sis has the potential 615 

to catalyse interdisciplinary biodiversity research. We call for the formation of a community of 616 

ecologists, biologists, mathematicians, geologists, climatologists and scientists from other 617 

fields around this class of eco-evolutionary simulation models in order to unravel the 618 

processes that have shaped Earth’s biodiversity.  619 
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Availability 620 

Gen3sis is implemented in a mix of R and C++ code, and wrapped into an R-package. All 621 

high-level functions that the user may interact with are written in R, and are documented via 622 

the standard R / Roxygen help files for R-packages. Runtime-critical functions are 623 

implemented in C++ and coupled to R via the Rcpp framework. Additionally, the package 624 

provides several convenience functions to generate input data, configuration files and plots, 625 

as well as tutorials in the form of vignettes that illustrate how to declare models and run 626 

simulations. The software, under an open and free GPL3 license, can be downloaded from 627 

CRAN at https://CRAN.R-project.org/package=gen3sis. The development version, open to 628 

issue reporting and feature suggestions, is available at https://github.com/project-Gen3sis/R-629 

package. Supporting information, such as notes, scritps, data, figures and animations, are 630 

available at https://github.com/ohagen/SupplementaryInformationGen3sis, facilitating full 631 

reproducibility. 632 
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naturgemälde der tropenländer, auf beobachtungen und messungen gegründet. 662 
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Supporting Information captions  1092 

Animations 1093 

Animation S1 Reconstructed dynamic landscape L1 (i.e. world 65 Ma) with the 1094 

environmental values used for the main case study. 1095 

Animation S2 Reconstructed dynamic landscape L2 (i.e. world 65 Ma) with the 1096 

environmental values used for the main case study. 1097 

Animation S3 Theoretical dynamic landscape (i.e. theoretical island) with the environmental 1098 

values used for the supplementary case study. 1099 

Animation S4 Dynamic simulated biodiversity patterns (i.e. M2 L1 world from 65 Ma to the 1100 

present). The map shows the  diversity and the top and right graphs indicate the richness 1101 

profile of longitude and latitude, respectively. 1102 

Figures 1103 

Figure S1 Divergence increase per time-step 𝑑𝑖 against the normalized occupied niche of 1104 

isolated populations for models (A) M0 and M2, which assume temperature-independent 1105 

divergence; and (B) M1, which assumes temperature-dependent divergence, where 1106 

divergence relates to the mean of the realized temperature with three different 𝑑𝑝𝑜𝑤𝑒𝑟 1107 

values. 1108 

Figure S2 Non-exhaustive probability density functions of the explored dispersal parameters 1109 

in a Weibull distribution with shape ɸ of 1, 2 and 5 and Ψ of 550, 650, 750 and 850. 1110 

Figure S3 Frequencies of simulated normalized LDG slope (histogram) with empirical LDG 1111 

for four main groups (dashed grey line) and acceptance range (red line). Frequencies for 1112 
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models (A) M0, (B) M1, (C) M2 with total frequency and frequency discriminated for each 1113 

landscape, i.e. L1 and L2. 1114 

Figure S4 Correlation of model parameters and three emerging patterns for all models and 1115 

landscapes (A) M0 L1, (B) M0 L2, (C) M1 L1, (D) M1 L2, (E) M2 L1, and (F) M2 L2. 1116 

Emerging patterns: (i) phylogeny beta is the phylogenetic tree imbalance statistic measured 1117 

as the value that maximizes the likelihood in the β-splitting model; (ii) range quant 0.95% is 1118 

the value of the 95% quantile of the species range area distribution and; (iii) LDG slope is 1119 

the slope of the linear regression of species richness.  1120 

Figure S5 Effects of grid cell size on simulations of M2 L1. (A) Correlation of grid cell, LDG 1121 

slope and other summary statistics. (B) Simulated LDG slope and grid cell size, showing a 1122 

significant effect of spatial resolution on LDG slope. 1123 

Figure S6 Normalized richness of (A) selected simulation, (B) terrestrial mammals, (C) birds, 1124 

(D) amphibians and (E) reptiles, with Pearson correlation values for comparisons between 1125 

simulated and empirical data. 1126 

Figure S7 Results of the island case study showing (A) landscape size and environmental 1127 

dynamics and (B) results of three experiments (i.e. lower, equal and higher trait evolution 1128 

compared with the temporal environmental variation). The time series in (B) shows  1129 

richness (log10 scale) on theoretical oceanic islands, following the geomorphological 1130 

dynamics of islands. Thick lines indicate the average of the replicates, whereas thin lines 1131 

indicate SD envelopes (n=30 for each trait evolutionary rate scenario). The dashed grey 1132 

vertical bar crossing the entire plot indicates the period in which the island reaches its 1133 

maximum size. 1134 
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Notes 1135 

Note S1 Global case study: emergence of the LDG from environmental changes of the 1136 

Cenozoic. 1137 

Note S2 Island case study: does trait evolution impact biodiversity dynamics?  1138 

Note S3 Gen3sis pseudo-code. 1139 
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