1 Effects of domestication on neophobia: A comparison between the domesticated Bengalese

- 2 finch (Lonchura striata var. domestica) and its wild ancestor, the white-rumped munia
- 3 (Lonchura striata)
- 4
- 5 Kenta Suzuki^{a,c,d,e}*, Maki Ikebuchi^{c,d,e}, Hiroko Kagawa^{b,c,d,e}, Taku Koike^c, Kazuo Okanoya^{b,c,d,e}
- ⁶ ^a Faculty of Health Sciences, Nihon Institute of Medical Science, Moroyama-machi 350-0435,
- 7 JAPAN
- 8 ^b Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo,
- 9 Meguro-ku, Tokyo 153-8902, JAPAN
- ¹⁰ ^c Laboratory for Biolinguistics, RIKEN Brain Science Institute (BSI), Wako, Saitama 351-0198,

11 JAPAN

- 12 ^d Okanoya Emotional Information Project, Exploratory Research for Advanced Technology
- 13 (ERATO), Japan Science and Technology Agency (JST), Wako, Saitama 351-0198, JAPAN
- ^e Cognition and Behavior Joint Research Laboratory, RIKEN Center for Brain Science (CBS), Wako,
- 15 Saitama 351-0198, JAPAN
- 16 *Corresponding author: Faculty of Health Sciences, Nihon Institute of Medical Science, 1276
- 17 Shimogawara, Moroyama-machi, Iruma-gun, Saitama 350-0435, JAPAN. Tel.: +81-49-294-9000,
- 18 Fax: +81-49-294-9009.

19 E-mail address: kentszk@gmail.com (K. Suzuki).

20 ABSTRACT

21	Bengalese finches (Lonchura striata var. domestica) have more complex song traits than their wild
22	ancestors, white-rumped munias (Lonchura striata). Domesticated finches are likely able to allocate
23	more resources to song development rather than allocating resources to mechanisms aimed at coping
24	with predation, which are no longer needed under domesticated conditions. Here, we aimed to
25	examine the effects of changes in selection pressure due to domestication on the behaviour of
26	Bengalese finches and to contemplate the possible evolutionary mechanisms underlying these
27	changes. To do so, we compared neophobic responses to novel-object conditions as an assessment of
28	reactions to potential predators. We studied groups of Bengalese finches and white-rumped munias
29	and found that Bengalese finches were more likely to eat the food provided to them under
30	novel-object conditions. Bengalese finches had a shorter latency time to eat, and this latency time
31	was less affected by the novel object in the case of Bengalese finches compared to white-rumped
32	munias. Therefore, Bengalese finches have reduced neophobic responses due to domestication. The
33	behavioural strategies of white-rumped munias appear to be more suitable for natural environments,
34	which include unpredictable risks, whereas Bengalese finches have likely adapted their behaviour to
35	the conditions of artificial selection.
36	
37	Keywords: Bengalese finch (Lonchura striata var. domestica); Domestication; Neophobia;

38 Neophobic response; White-rumped munia (Lonchura striata)

39 Abbreviations

40 BF, Bengalese finch; WRM, white-rumped r	nunia.
---	--------

41

42 **1. Introduction**

43	The Bengalese finch (BF, Lonchura striata var. domestica) is a domesticated variety of the
44	wild white-rumped munia (WRM, Lonchura striata), which was imported from China to Japan
45	approximately 250 years ago (Washio, 1996; Okanoya, 2004a; Svanberg, 2008). BFs sing
46	phonologically and syntactically complex songs, as opposed to the stereotypical simple songs sung
47	by WRMs (Honda and Okanoya, 1999; Okanoya, 2004a, b). The complex songs of BF have not
48	been selected artificially (Washio, 1996). Complex song as a high-quality sexual trait is
49	believed to have evolved through the domestication process in BFs (Okanoya, 2004a, b). WRMs are
50	thought to experience strong natural selection pressures in wild environments. Conversely,
51	domesticated BFs experience safe and resource-rich conditions under human-controlled rearing
52	conditions (i.e., no environmental perturbations, no predation, abundant food, and low risk of
53	parasitism and injury). Thus, we hypothesised that the relaxation of natural selection pressures and
54	the presence of artificial selection may have led BFs to allocate fewer resources to behaviours
55	associated with efforts for survival and more to efforts associated with reproduction.
56	Domestication results in species being removed from many natural selection pressures;

57	however, domesticated species are exposed to artificial selection pressures exerted by their captive
58	environments and by humans (Fox, 1968; Boice, 1973; Ratner and Boice, 1975; Price, 1984). This
59	change in selection pressure results in changes in physiological and behavioural traits (Hale, 1969;
60	Price, 1984, Künzl and Sachser, 1999; Lepage et al., 2000). Domesticated species have reduced
61	behavioural expressions related to ontogenetic survival, such as fear responses (Desforges and
62	Wood-Gush, 1975; Schütz et al., 2001; Campler et al., 2009), and have enhanced behavioural traits
63	that are not directly related to survival, such as sexual and reproductive behaviours (Künzl and
64	Sachser, 1999). Therefore, these behavioural changes have been a major target of domestication
65	effects.
66	In natural environments, birds must be vigilant of unpredictable risks such as predation
66 67	In natural environments, birds must be vigilant of unpredictable risks such as predation when foraging or eating; this is particularly important while approaching novel conditions such as
67	when foraging or eating; this is particularly important while approaching novel conditions such as
67 68	when foraging or eating; this is particularly important while approaching novel conditions such as novel places, objects, and food items. Neophobia is the aversion that an animal displays while
67 68 69	when foraging or eating; this is particularly important while approaching novel conditions such as novel places, objects, and food items. Neophobia is the aversion that an animal displays while approaching novel conditions (Greenberg, 2003). In birds, the most well-established behavioural
67 68 69 70	when foraging or eating; this is particularly important while approaching novel conditions such as novel places, objects, and food items. Neophobia is the aversion that an animal displays while approaching novel conditions (Greenberg, 2003). In birds, the most well-established behavioural responses to novel conditions (neophobic responses) are the reactions to potential predators
67 68 69 70 71	when foraging or eating; this is particularly important while approaching novel conditions such as novel places, objects, and food items. Neophobia is the aversion that an animal displays while approaching novel conditions (Greenberg, 2003). In birds, the most well-established behavioural responses to novel conditions (neophobic responses) are the reactions to potential predators (Greenberg, 1990). In the wild, the presence of unpredictable risks is considered to enhance induced

75	effects of	changes	in selecti	on pressure	due to	domestication	on the	behaviour	of BFs.	and to

- contemplate the evolutionary mechanisms underlying these effects, we compared neophobic
- responses to novel conditions in BFs and their wild ancestors, WRMs. To the best of our knowledge,
- this is the first study that evaluates neophobia in Bengalese finches and white-rumped munias, which
- also explores the evolutionary mechanisms of behavioural changes in domesticated animals,
- 80 including the evolution of complex songs through human self-domestication.
- 81

82 **2. Materials and methods**

83 2.1 Birds used in this study

84	Seventy BFs and 60 WRMs were used in the experiment. All the birds were sexually
85	mature. BFs ($n = 10$) were bought from local suppliers and others ($n = 60$) were bred in our
86	laboratory. WRMs were captured in the wild in Taiwan. These captured birds were reared for
87	more than a year in our laboratory before being used in this study. Birds were housed in a
88	group of 8 (one group of WRM) or 10 per cage resulting in us using seven groups of BFs and six
89	groups of WRMs for our experiments. Sex ratios of the birds that made up the groups were different
90	for each cage (BF-1 and WRM-1: all females, BF-2, 3 and WRM-2: all males, BF-4, 5 and WRM-3,
91	4: 50% of each sex, BF-6, 7 and WRM-5, 6: 6 males and 4 females). Birds were housed in stainless
92	steel cages ($370 \times 415 \times 440$ mm) within an animal-rearing room at RIKEN Brain Science Institute

93	(BSI) and given finch seed mixture, shell grit, and vitamin-enhanced water <i>ad libitum</i> . The light
94	cycle was kept constant at 14 h light and 10 h dark. The room was maintained at an ambient
95	temperature of approximately 25 °C, with a humidity of 50 %. The birds were acclimatized for at
96	least four months to the animal-rearing room before performing the experiments. All experimental
97	procedures and the housing conditions of the birds were approved by the Animal Experiments
98	Committee at RIKEN (#H20-2-231, #H22-2-217), and all the birds were cared for in accordance
99	with the Institutional Guidelines of RIKEN for experiments using animals.
100	
101	2.2 Novel-object experiment
102	Before the experiment, each group of birds was transferred from their home cage in the
103	animal-rearing room to a testing cage (with the same dimensions and characteristics as the home
104	cage) in a sound-proof box. To avoid the effects of isolation stress, experiments were conducted
105	using the same groups of birds that were housed together during keeping. The test cage was
106	equipped with two wooden perches and with food and water. Experiments were conducted under two
107	conditions: the control (non-object) condition and the novel-object condition. Experiments were
108	carried out under the different conditions on different days. New food and water were provided at the
109	beginning of the experiments. Under the novel-object condition, a novel object (a small toy dog,

recorded for 60 min using a video camera. We quantified the number of groups of birds that ate food

112	during the observation period (at least one bird in the group) and the latency time (the time that
113	passed before first birds started eating the food) under both conditions. If the birds did not approach
114	or eat the food during the test period, the latency time of the birds was set at the maximum time
115	(3600 s). All groups were used only once under both conditions. All tests were conducted between
116	13:00 and 15:00 to avoid other factors that could affect our results, such as diurnal changes in
117	activity, hunger, and hormone levels.
118	
119	2.3 Statistical analyses
120	The numbers of groups of BFs and WRMs that ate the food during the observation period
121	were compared with Fisher's extract test. The latency times to start eating the food are represented as
122	the mean \pm standard error of the mean (SEM). The latency times in BFs and WRMs were analysed
123	using a repeated measures two-way analysis of variance (ANOVA) (birds \times conditions) with
124	post-hoc Bonferroni/Dunn tests. The difference in the effect of the novel object on the latency times
125	(calculated as the latency times under the novel-object conditions - the latency times under control
126	conditions) between BFs and WRMs were analysed by an unpaired <i>t</i> -test with a Welch's correction.
127	Values of $p < 0.05$ were considered significant. We used three different statistical software packages
128	for analyses. Statistical analyses were performed using R statistical software (version 4.03, R

- 129 Foundation for Statistical Computing, Vienna, Austria) for Fisher's extract test, Stat View software
- 130 (version 5, SAS Institute Inc., Cary, NC, USA) for repeated measures 2-way ANOVA with post-hoc
- 131 Bonferroni/Dunn tests, and GraphPad Prism software (version 4, GraphPad Software Inc., San
- 132 Diego, CA, USA) for *t*-tests with a Welch's correction.
- 133

```
134 3. Results
```

135 3.1 Responses of BFs and WRMs to novel objects

136	We examined the effects of domestication on behavioural responses to novel objects in
137	BFs and WRMs. Under control conditions, all groups of birds (both BFs and WRMs) ate the food at
138	some point during the observation time (BFs: 7/7, 100 %; WRMs: 6/6, 100 %). Thus, there were no
139	differences between BFs and WRMs ($p = 1.00$). However, under the novel-object conditions, six of
140	the seven groups of BFs (6/7, 85.7 %) ate the food at some point during the observation time,
141	whereas none of the WRMs groups ate the food $(0/6, 0 \%)$. Therefore, there were significant
142	differences between BFs and WRMs ($p < 0.01$). In BFs, there were no significant differences in the
143	number of groups that ate the food between the control and novel-object conditions ($p > 0.90$).
144	However, WRMs were significantly less likely to eat the food under the novel-object conditions ($p <$
145	0.01).

147 3.2 Latency times in BFs and WRMs to start eating food under control and novel-object conditions

148	The latency times to start eating the food were compared between BFs and WRMs (Fig.
149	1). Under the control conditions, the latency times were 25.6 ± 9.0 s for BFs and 159.0 ± 46.7 s for
150	WRMs. Under the novel-object conditions, the latency times were 1204.9 ± 524.9 s for BFs, but
151	none of the WRMs approached the food within the observation time (3600.0 \pm 0.0 s). The latency
152	times was significantly affected by the birds (BF or WRM, $F(1, 11) = 16.9, p < 0.01$), conditions
153	(novel object or control, $F(1, 11) = 69.4$, $p < 0.0001$), and interactions (birds × conditions, $F(1, 11)$
154	= 12.7, $p < 0.01$). Latency times to eat were significantly shorter in BFs than in WRMs regardless of
155	the presence or absence of novel objects (control conditions: $p < 0.05$, novel-object conditions: $p < 0.05$
156	0.01). In both species, the latency times were extended by the presence of the novel object (BFs: $p <$
157	0.05, WRMs: $p < 0.0001$), and the extended times were significantly longer in WRMs than those in
158	BFs (BFs: 1379.3 ± 530.7 s, WRM: 3441.0 ± 46.7 s; <i>t</i> = 3.87, <i>p</i> < 0.01).
159	

160 **4. Discussion**

161	We compared responses to novel conditions in BFs and their wild ancestor, WRMs, and
162	examined the effects of changes in selection pressure due to domestication. Our findings indicate
163	that these two birds responded differently to novel-object conditions. BFs had significantly lower
164	neophobia levels (more groups of BFs ate the food, and BFs had shorter latency times to eat under

165	novel-object conditions) than those of their wild ancestors, the WRMs. The novel objects extended
166	the latency times to eat in both birds, but latency times were significantly longer in WRMs than
167	those in BFs. Therefore, it is likely that BFs have reduced neophobic responses due to domestication.
168	Under control conditions, the proportion of the groups that ate the food was the same in BFs and
169	WRMs. However, BFs ate the food sooner than WRMs. It is probable that the WRMs were more
170	cautious about the experimental situation (the soundproof box is different from the WRMs' normal
171	environment). In a previous report, male WRMs had higher faecal corticosterone concentrations than
172	those in male BFs (Suzuki et al., 2012; 2014a, b). Therefore, WRMs are considered to have a higher
173	level of baseline vigilance than that in BFs. This strain difference with respect to vigilance seems to
174	have been further increased under novel-object conditions.
175	Our results are similar to those of a previous study that found that domesticated ducks
176	(Anas platyrhynchos var. domesticus) had lower levels of neophobia than those of wild mallards
177	(Anas platyrhynchos) (Desforges and Wood-Gush, 1975). In addition, laboratory mice (Mus
178	musculus) had lower levels of neophobia than those in wild mice (Meddock and Osborn, 1968). In a
179	comparison of dogs (Canis lupus familiaris) and wolves (Canis lupus), dogs had lower levels of
180	neophobia than those in wolves, but dogs had an overall lower interest in novel objects (Moretti et
181	al., 2015). In the present study, BFs showed a fear response to novel objects and were considered to

183	This study was conducted using groups of birds, and, as such, there may have been a social
184	effect. Because it was difficult to identify individuals in this study, the analysis was conducted as a
185	group-by-group comparison, and it was therefore not possible to take into account the differences in
186	the responses of each individual. Wolves and dogs spend more time approaching a novel object in
187	groups than as individuals, so risk sharing may increase vigilance (Moretti et al., 2015). Since this
188	experiment was conducted using groups, there may have been an effect of risk sharing. Responses to
189	novel objects may also be influenced by the identities of the group members. In the Gouldian finches
190	(Chloebia gouldiae), shy birds took more risks when they were paired with bold partners, and bold
191	birds took fewer risks when they were paired with shy partners (King et al., 2015). Therefore, in
192	experiments conducted using groups, individual differences may be reduced, and more of the
193	characteristics of the groups may be expressed. Conversely, in experiments conducted using
194	individuals, there is a high possibility that individual differences will be noticeable. Future studies on
195	BFs and WRMs should take into consideration the reactions of each individual bird to novel-object
196	conditions. In a previous study, we compared the tonic immobility response, which can be used as a
197	measure of fear responses, between individual BFs and WRMs and found that BFs had lower fear
198	responses (Suzuki et al., 2013). Therefore, we believe that the fear response is lower in BFs than that
199	in WRMs, even on an individual basis.
200	In this study, the effects of sex ratio and environmental or rearing conditions (bought from

201	local supplier, wild-caught, or bred in the laboratory) were ruled out because the groups in the cages
202	were neither separated by sex nor by environmental or rearing conditions. Moreover, previous
203	studies have shown that sex and environmental or rearing conditions of the white-rumped munia
204	(captive-born, bought from a supplier, or captured) did not affect the fear response (tonic immobility
205	reactions) (Suzuki et al., 2013). Additionally, the conditions under which Bengalese finches and
206	white-rumped munias were bred or reared did not affect the corticosterone levels, which is known to
207	affect fear responses (Suzuki et al., 2012). All the munias used in this experiment were wild-caught;
208	however, differences in rearing conditions have not been an issue in previous experiments.
209	Therefore, the magnitude of the impact of these factors is small, but it must be considered in future
210	research.
210 211	research. In summary, this is the first study that evaluates neophobia in Bengalese finches and
211	In summary, this is the first study that evaluates neophobia in Bengalese finches and
211 212	In summary, this is the first study that evaluates neophobia in Bengalese finches and white-rumped munias. Our results suggest that the domestication process led to differences in the
211 212 213	In summary, this is the first study that evaluates neophobia in Bengalese finches and white-rumped munias. Our results suggest that the domestication process led to differences in the responses of BFs and WRMs to novel conditions. The behavioural strategies of WRMs seem to be
211212213214	In summary, this is the first study that evaluates neophobia in Bengalese finches and white-rumped munias. Our results suggest that the domestication process led to differences in the responses of BFs and WRMs to novel conditions. The behavioural strategies of WRMs seem to be suitable for the natural environment, which includes unpredictable risks, whereas BFs might have
 211 212 213 214 215 	In summary, this is the first study that evaluates neophobia in Bengalese finches and white-rumped munias. Our results suggest that the domestication process led to differences in the responses of BFs and WRMs to novel conditions. The behavioural strategies of WRMs seem to be suitable for the natural environment, which includes unpredictable risks, whereas BFs might have adapted their behaviours to the conditions of captivity and artificial selection. BFs are likely able to

- 219 of other domesticated species.
- 220

221 Acknowledgements

- 222 We thank members of the Biolinguistics team (RIKEN BSI, Saitama, Japan) for animal
- 223 care. This study was supported by RIKEN BSI and Japan science and technology agency (JST) the
- 224 exploratory research for advanced technology (ERATO) research funding.
- 225
- 226 **Declarations of interest**
- 227 None
- 228

229 Author contributions

- 230 Kenta Suzuki: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
- 231 Visualization, Writing original draft; Maki Ikebuchi: Conceptualization; Hiroko Kagawa:
- 232 Conceptualization, Writing review & editing; Taku Koike: Data curation, Investigation; Kazuo
- 233 **Okanoya:** Conceptualization, Funding acquisition, Supervision, Writing review & editing.

234

235 Funding

This work was supported by JSPS KAKENHI [grant numbers 15K14581, 17H06380,
20H00105] to KO.

238

- 239 **References**
- 240
- 241 Boice, R., 1973. Domestication. Psychol. Bull. 80, 215–230. https://doi.org/10.1037/h00348.

- 243 Brown, G.E., Demers, E.E., Goldman, J.A., Singh, A., Chivers, D.P., Ferrari, M.C., 2020.
- 244 Unpredictable risk enhances induced neophobia in northern red-bellied dace. Anim. Behav. 168,
- 245 121–127. https://doi.org/10.1016/j.anbehav.2020.08.012.
- 246
- 247 Campler, M., Jöngren, M., Jensen, P., 2009. Fearfulness in red junglefowl and domesticated White
- Leghorn chickens. Behav. Processes 81, 39–43. https://doi.org/10.1016/j.beproc.2008.12.018.
- 249
- 250 Desforges, M.F., Wood-Gush, D.G.M., 1975. A behavioural comparison of domestic and mallard
- 251 ducks. Habituation and flight reactions. Anim. Behav. 23, 692-697.
- 252 https://doi.org/10.1016/0003-3472(75)90145-1.
- 253
- EXAMPLE 254 Fox, M.W., 1968. The influence of domestication upon behavior of animals. in: Fox, M.W. (Ed),
- 255 Abnormal behaviour in animals. Saunders, Philadelphia, London, pp. 64–76.
- 256

257 Greenberg, R.S., 1990. Ecological plasticity, neophobia, and resource use in birds. Stud. Avian Biol.

258 13, 431–437.

259

- 260 Greenberg, R.S., 2003. The role of neophobia and neophilia in the development of innovative
- 261 behaviour of birds. in: Reader, S.N. and Laland, K.N. (Eds), Animal innovation. Oxford university
- 262 press, NY, pp. 175–196.

263

Hale, E.B., 1969. Domestication and the evolution of behaviour. in: Hafez, E.S.E. (Ed) The

265 Behaviour of Domestic Animals, 2nd Edition. Baillière, Tindall and Cassell, London, pp. 22–42.

- 267 Honda, E., Okanoya, K., 1999. Acoustical and syntactical comparisons between songs of the
- 268 white-backed munia (Lonchura striata) and its domesticated strain, the Bengalese finch (Lonchura
- 269 striata var. domestica). Zool. Sci. 16, 319–326. https://doi.org/10.2108/zsj.16.319.
- 270
- 271 King, A.J., Williams, L.J., Mettke-Hofmann, C., 2015. The effects of social conformity on Gouldian
- 272 finch personality. Anim. Behav. 99, 25–31. https://doi.org/10.1016/j.anbehav.2014.10.016.
- 273
- 274 Künzl, C., Sachser, N., 1999. The behavioral endocrinology of domestication: A comparison

- 275 between the domestic guinea pig (Cavia apereaf.porcellus) and its wild ancestor, the cavy (Cavia
- 276 aperea). Horm. Behav. 35, 28–37. https://doi.org/10.1006/hbeh.1998.1493.
- 277
- 278 Lepage, O., Øverli, Ø., Petersson, E., Järvi, T., Winberg, S., 2000. Differential stress coping in wild
- and domesticated sea trout. Brain Behav. Evol. 56, 259–268. https://doi.org/10.1159/000047209.
- 280
- 281 Meddock, T.D., Osborn, D.R., 1968. Neophobia in wild and laboratory mice. Psychonom. Sci. 12(5),
- 282 223–223. https://doi.org/10.3758/BF03331280.
- 283
- 284 Moretti, L., Hentrup, M., Kotrschal, K., Range, F., 2015. The influence of relationships on
- 285 neophobia and exploration in wolves and dogs. Anim. Behav. 107, 159-173.
- 286 https://doi.org/10.1016/j.anbehav.2015.06.008.
- 287
- 288 Okanoya, K., 2004a. Song syntax in Bengalese finches: proximate and ultimate analyses. Adv. Stud.
- 289 Behav. 34, 297–346. https://doi.org/10.1016/S0065-3454(04)34008-8.
- 290
- 291 Okanoya, K., 2004b. The Bengalese finch: a window on the behavioral neurobiology of birdsong
- 292 syntax. Ann. N. Y. Acad. Sci. 1016, 724–735. https://doi.org/10.1196/annals.1298.026.

293

- 294 Price, E.O., 1984. Behavioral aspects of animal domestication. Q. Rev. Biol. 59, 1-32.
- 295 https://doi.org/10.1086/413673.

296

- 297 Ratner, S.C., Boice, R., 1975. Effects of domestication on behaviour. in: Hafez, E.S.E. (ed), The
- behaviour of domestic animals, third ed., Williams & Wilkins, Baltimore, pp. 3–19.
- 299
- 300 Schütz, K.E., Forkman, B., Jensen, P., 2001. Domestication effects on foraging strategy, social 301 behaviour and different fear responses: a comparison between the red junglefowl (Gallus gallus) and 302 a modern layer strain. Appl. Anim. Behav. Sci. 74(1), 1–14.
- 303 https://doi.org/10.1016/S0168-1591(01)00156-3.
- 304
- 305 Suzuki, K., Ikebuchi, M., Bischof, H. J., Okanoya, K., 2014a. Behavioral and neural trade-offs
- 306 between song vcomplexity and stress reaction in a wild and a domesticated finch strain. Neurosci.
- 307 Biobehav. Rev. 46, 547–556. https://doi.org/10.1016/j.neubiorev.2014.07.011.

- 309 Suzuki, K., Ikebuchi, M., Okanoya, K., 2013. The impact of domestication on fearfulness: a
- 310 comparison of tonic immobility reactions in wild and domesticated finches. Behav. Processes. 100,

311 58–63. https://doi.org/10.1016/j.beproc.2013.08.004.

- 313 Suzuki, K., Matsunaga, E., Yamada, H., Kobayashi, T., Okanoya, K., 2014b. Complex song
- development and stress hormone levels in the Bengalese finch. Avian Biol. Res. 7(1), 10-17.
- 315 https://doi.org/10.3184/175815514X13903270812502.
- 316
- 317 Suzuki, K., Yamada, H., Kobayashi, T., Okanoya, K., 2012. Decreased fecal corticosterone levels
- 318 due to domestication: a comparison between the white-backed munia (Lonchura striata) and its
- 319 domesticated strain, the Bengalese finch (Lonchura striata var. domestica) with a suggestion for
- 320 complex song evolution. J. Exp. Zool. A 317, 561–570. https://doi.org/10.1002/jez.1748.
- 321
- 322 Svanberg, I., 2008. Towards a cultural history of the Bengalese Finch (Lonchura domestica). Der
- 323 Zoologische Garten 77(5–6), 334–344. https://doi.org/10.1016/j.zoolgart.2008.05.003.
- 324
- 325 Washio, K., 1996. Chasing the mystery of the Bengalese finch. Modern Literature Inc., Tokyo. (in
- 326 Japanese)
- 327

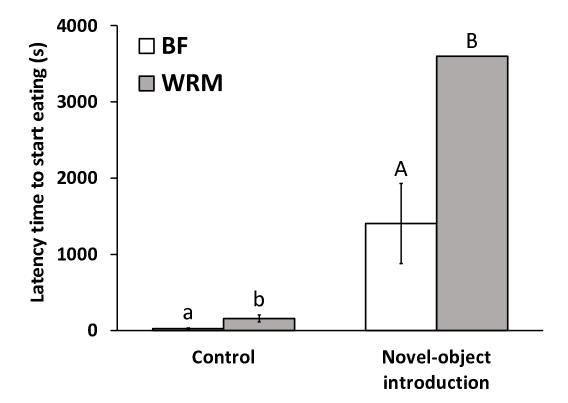


Fig. 1. Latency times (in seconds) to start eating food in Bengalese finches (BFs, *Lonchura striata* var. *domestica*) and white-rumped munias (WRMs, *Lonchura. striata*). Bars indicate means, and vertical lines indicate standard errors of mean (SEM). BFs had significantly shorter latency times to start eating the provided food than those WRMs under both conditions (control and exposure to a novel object, i.e., a small dog toy). Latency times were extended under novel-object conditions in both BFs and WRMs. Different letters indicate significant differences between groups (a vs b: p <0.05, A vs B: p < 0.01, a vs A: p < 0.05, b vs B: p < 0.0001).