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Abstract 25 

Yellow fever virus (YFV) is the agent of the most severe mosquito-borne disease in the tropics. 26 

Recently, Brazil suffered major YFV outbreaks with a high fatality rate affecting areas where the 27 

virus has not been reported for decades, consisting of urban areas where a large number of 28 

unvaccinated people live. We developed a machine learning framework combining three different 29 

algorithms (XGBoost, random forest and regularized logistic regression). This method was applied 30 

to 56 YFV sequences from human infections and 27 from non-human primate (NHPs) infections 31 

to investigate the presence of genetic signatures possibly related to disease severity (in human 32 

related sequences) and differences in the PCR cycle threshold (Ct) values (in NHP related 33 

sequences). Our analyses reveal four non-synonymous single nucleotide variations (SNVs) on 34 

sequences from human infections, in proteins NS3 (E614D), NS4a (I69V), NS5 (R727G, V643A) 35 

and six non-synonymous SNVs on NHP sequences, in proteins E (L385F), NS1 (A171V), NS3 36 

(I184V) and NS5 (N11S, I374V, E641D). We performed comparative protein structural analysis 37 

on these SNVs, describing possible impacts on protein function. Despite the fact that the dataset 38 

is limited in size and that this study does not consider virus-host interactions, our work highlights 39 

the use of machine learning as a versatile and fast initial approach to genomic data exploration. 40 

 41 

Importance 42 

Yellow fever is responsible for 29-60 thousand deaths annually in South America and Africa and 43 

is the most severe mosquito-borne disease in the tropics. Given the range of clinical outcomes and 44 

the availability of YFV genomic data, the use of machine learning analysis promises to be a 45 

powerful tool in the investigation of genetic signatures that could impact disease severity and its 46 

potential of being reintroduced in an urban transmission cycle. This can assist in the search for 47 

biomarkers of severity as well as help elucidating variations in host’s Ct value. This work aims to 48 

propose a relatively fast and inexpensive computational analysis framework, which can be used as 49 

a real-time, innitial strategy associated with genomic surveillance to identify a set of single 50 

nucleotide variants putatively related to biological and clinical characteristics being observed.  51 

 52 

  53 
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Introduction 54 

Yellow fever (YF) is an acute viral hemorrhagic disease endemic in tropical areas of Africa and 55 

Latin America. The causative agent, yellow fever virus (YFV), represents the prototypical member 56 

of the genus Flavivirus (family Flaviviridae), consisting of a single-stranded, positive-sense RNA 57 

virus, with a genome about 11,000 kb and a single open-reading frame of 10,233 nucleotides (1, 58 

2). Disease varies from nonspecific febrile illness to a fatal hemorrhagic fever. Symptoms usually 59 

appear after an incubation period of three to six days following the bite of an infected mosquito, 60 

with a period of infection lasting several days (2–4). The World Health Organization (WHO) 61 

reports case fatality rates in the order of 15 to 50% (5). Vaccination remains the most effective YF 62 

prevention method, providing lifetime immunity in up to 99% of vaccinated people (6). 63 

Nevertheless, the burden of YF is estimated to be between 84,000 to 170,000 severe cases and 64 

29,000 to 60,000 deaths annually (7, 8), while an estimated 35 million people remain unvaccinated 65 

in areas at risk in Brazil only (9). 66 

YFV spreads in two different cycles: sylvatic and urban. The sylvatic transmission cycle occurs in 67 

forested areas, where the virus is endemically transmitted between several non-human primate 68 

(NHP) species. The urban transmission cycle occurs when the virus is introduced into human 69 

populations with high density and urban-dwelling mosquitoes (mainly Aedes aegypti) (3). Urban 70 

cycles of YFV transmission have been eradicated in Brazil since 1942 due to vaccination and 71 

vector control campaigns (10–13).  72 

In the last decade in Brazil, however, human and NHP epizootic YF cases have been notified at 73 

places beyond the limits of regions previously considered (sylvatic) endemic for the virus (14–17).  74 

The severe impact of these recent outbreaks can be measured, in part, by its fatality rate at around 75 

34%, higher than the general rate estimated by Monath and colleagues (4), motivating the inquiry 76 

as to what could be the possible factors contributing to such a high fatality rate, and if YFV genetic 77 

signatures could be among those factors. 78 

Additionally, important findings in recent epidemics (11, 18) show a significant difference in the 79 

distribution of NHP Ct values, in which Callithrix spp. exhibit generally higher Ct values than 80 

other NHP species, do not develop fatal YFV infections similar to those reported in humans and 81 

can persist for longer, thus increasing the infectious period. The latter can be an essential factor in 82 

igniting an urban cycle of transmission, mainly due to the genus’ proximity to densely urbanized 83 

areas.  84 
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On this respect, genomic and epidemiological monitoring have become an integral part of the 85 

national (Brazil) and international response to emerging and ongoing epidemics of viral infectious 86 

diseases, allowing the availability of a large amount of genomic data (19–23).  87 

In genomic and epidemiological monitoring analysis, machine learning (ML) approaches are 88 

usually applied (24, 25), as described in works that analyze the effectiveness of large scale 89 

genome-wide association studies (GWAS), due to their capability to computationally model the 90 

relationship between combinations of single nucleotide variants, other genetic variations and 91 

environmental factors with observed outcomes (26–28).   92 

We curated two different datasets of YFV genomes, one from human cases and the other from 93 

NHP cases. After data curation, the human dataset contained 56 YFV sequences, with 40 94 

sequences related to infections leading to severe outcomes or death, and 16 sequences related to 95 

cases with no severe outcome. We also gathered an NHP (Callithrix spp.) dataset, that after 96 

curation contained 27 sequences, of which 21 were related to low Ct values (< 20) and 6 were 97 

related to high Ct values (>= 20). 98 

We applied three different ML models to each dataset, to guarantee robustness of the ML analysis 99 

(29). We then analysed the models using SHAP (SHapley Additive explanation) (30–32) to 100 

highlihght genetic signatures. The possible biological impacts of these signatures were 101 

investigated and discussed by means of in-silico protein structural analysis coupled with literature 102 

review. 103 

 104 

Results 105 

Non-human primates Ct value statistical analysis 106 

Figure 1 shows the distribution of cycle threshold (Ct) values from Callithrix spp. sequences, with 107 

two distinct clusters roughly around 12 and 30, with a median value of 26.1. The result of 108 

Hartigan’s dip test of unimodality (33) rejected the null hypothesis of a unimodal distribution for  109 

Ct values (p < .001), which indicate the existence of two groups of Callithrix spp. Ct values. 110 

 111 
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 112 
Figure 1 – Ct values associated with Callithrix spp. sequences.  The median value shown by a dashed line. Hartigan’s 113 
dip test of unimodality indicates bimodal distribution (p < .001). 114 

 115 

Machine learning models’ performance 116 

Figure 2 shows the confusion matrices for the machine learning models applied. For the human 117 

dataset, the XGBoost classification model achieved an accuracy of 75% on the test set, with F-1 118 

scores of 0.59 and 0.82 for classes 0 (not severe/not death) and 1 (severe/death), respectively. The 119 

random forest model achieved an accuracy of 82% on the test set, with F-1 scores of 0.74 and 0.86 120 

for classes 0 and 1 respectively. The modified logistic regression model achieved an accuracy of 121 

82% on the test set, with F-1 scores of 0.74 and 0.86 for classes 0 and 1, respectively.   122 

For the Callithrix spp. dataset, the three models achieved an accuracy of 100% on the test set, with 123 

F-1 scores of 1.00 and 1.00 for classes 0 (low Ct) and 1 (high Ct) respectively.  124 
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 125 
Figure 2 - Confusion matrices. Top three figures correspond to human test dataset and the bottom three figures correspond to 126 
Callithrix spp. test dataset, for XGBoost, random forest and regularized logistic regression respectively. 127 

 128 

YFV genetic signatures 129 
The machine learning methods identified the non-synonymous single nucleotide variants (SNVs) shown in   130 
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Table 1.  The table displays each protein where the SNV was found, with nucleotide position on 131 

YFV genome, position relative to the protein’s sequence, amino acid position relative to the 132 

translated protein, reference genome amino acid and corresponding codon, analyzed sequences 133 

amino acid variation and corresponding codon and SNV position inside codon (1st, 2nd or 3rd).  134 

The results obtained by the analysis of human YFV sequences highlighted 4 SNV positions that 135 

result in the amino acid change, and the results obtained by the analysis of Callithrix spp. shows 6 136 

SNV positions that resulted in the amino acid change.  137 

 138 
  139 
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Table 1 - YFV genetic signatures 140 

Human dataset 

Protein 
nn 
postition 

nn 
position 
on protein 

aa 
position 
on protein 

aa 
reference 

codon 
reference 

aa 
variation 

codon 
variation 

SNV 
codon 
position 
(1, 2, 3) 

NS3 6412 1842 614 E gaa D D gac gat 3 

NS4a 6644 205 69 I atc V gtc 1 

NS5 9815 2179 727 R agg G ggg 1 

NS5 9564 1928 643 V gtt A gct 2 

NHP dataset 

Protein 
nn 
postition 

nn 
position 
on protein 

aa 
position 
on protein 

aa 
reference 

codon 
reference 

aa 
variation 

codon 
variation 

SNV 
codon 
position 
(1, 2, 3) 

NS5 8756 1120 374 I atc V gtc 1 

NS5 9559 1923 641 E gaa D D gac gat 3 

NS3 5120 550 184 I atc V gtc 1 

E 2126 1153 385 L ctc F ttc 1 

NS5 7647 11 4 N aat S agt 2 

NS1 2964 512 171 A gca V gta 2 
 141 

 142 

Protein structural analysis 143 

We performed protein structural analysis for all SNVs indicated in   144 
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Table 1. The templates, their resolution, the quality of models provided from Swiss-Model (34) 145 

and the changes in binding affinity and stability predicted by mCSM-NA (35) are summarized in  146 

  147 
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Table 2. 148 

  149 
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Table 2 - Protein structural analysis results 150 

  Callithrix spp. Dataset Human dataset 

Protein E NS1 NS3 NS5     NS3 NS4a NS5   

SNV L385F A171V I184V N11S I374V E641D E614D I69V R727G V643A 

Template 

(PDB ID) 

Template 

(6WI5) 

(?) 

Zika 

virus 

NS1 

(5K6K) 

(27) 

Dengue 

virus 

NS3 

(5YV8:A) 

(31) 

Yellow 

fever 

virus  

NS5 

(6QSN) 

(32) 

Yellow fever 

virus  NS5 

(6QSN) (32) 

Yellow 

fever virus  

NS5 

(6QSN) 

(32) 

Yellow fever 

virus NS3 

(1YKS) (29) 

No 

structure 

deposited 

in the 

PDB 

Yellow fever 

virus  NS5 

(6QSN) (32) 

Yellow fever 

virus  

NS5(6QSN) 

(32) 

Resolution 1.83 Å 1.89 Å 2.5 Å 3.00 Å 3.00 Å 3.00 Å 1.80 Å - 3.00 Å 3.00 Å 

Coverage 

(%) 
  100% 99%         -     

Sequence 

identity 
 47.58% 50.57%     -   

Localization 

at protein 

Domain 

III 

Wing 

flexible 

loop 

Linker 

region 

MTase 

domain 

Palm 

subdomain 

Palm 

subdomain 

Helicase 

domain 
- 

Thumb 

subdomain 

Palm 

subdomain 

Global 

Model 

Quality 

Estimation 

(GMQE) 

 0.79 0.76     -   

(Qualitity 

mean) 

QMEAN 

  -2.5 -2.22         -     

Predicted 

change in 

binding 

affinity 

Target 

distant 

from 

binding 

sites 

   

ΔΔG=0.003 

Kcal/mol 

(Increased 

affinity) 

 

ΔΔG=0.025 

Kcal/mol 

(Increased 

affinity) 

- 

ΔΔG=-1.545 

Kcal/mol 

(Reduced 

affinity) 

ΔΔG=-0.001 

Kcal/mol 

(Reduced 

affinity) 

Predicted 

change in 

stability 

        

-1.908 

Kcal/mol 

(Destabilising) 

  

-0.254 

Kcal/mol 

(Destabilising) 

- 

-0.751 

Kcal/mol 

(Destabilising) 

-1.884 

Kcal/mol 

(Destabilising) 

  151 
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Figure 3 shows the structural representation of proteins E, NS1, NS3 and NS5, with 152 
corresponding SNVs. 153 

 154 

 155 
Figure 3 - (A) Envelope protein - (A, left) PDB id 6wi5 - tretamer of E protein  LEU385 presented in spheres. (A, right) PDB id 156 
6ivz - in green, one chain of protein E and in yellow, the light and heavy chains of monoclonal antibody 5A. Note that the L385F 157 
SNV is distant from both the binding between protein E chains and the antibody recognition site.  158 
(B) NS1 protein. Comparative model built with Swiss-Model and PDB id 5k6k. In orange, we depict the wing flexible loop and in 159 
spheres, SNV ALA171. (C) NS3 protein. (C, left) Comparative model built with Swiss-Model and PDB id 5yvu. In orange, we 160 
depict the interdomain linker region and in spheres, SNV ILE184. (C, right) GLU614 from PDB id 1yks showing that the SNV 161 
E614D is close to the cleft where the DNA binds the NS3 protein. (D) NS5 protein. In green, SNVs. In yellow, important conserved 162 
residues across ZIKV, DENV and WNV. In cyan, active site. In grey, ligand S-adenosyl-L-homocysteine. Sulfate and Zn íons are 163 
also represented in spheres. 164 

 165 

E (envelope) protein  166 

LEU385 (NHP dataset) is far from the intra-chain binding site and the antibody recognition site 167 

(Figure 4-A). LEU385 is in the Domain III (DIII) which has an immunoglobulin C domain (IgC-168 

like) presenting a seven-stranded fold and is supposed to contain the receptor-binding site. DIII 169 

suffers a rotation and goes closer to the fusion loop (FL), bringing the C-terminal part of DIII 170 

(residue 392) close to FL. LEU385 is 20.3 angstroms far from GLU392.  171 

NS1 protein  172 
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The SNV A171V (NHP dataset) is in close contact with a region called wing flexible loop 173 

(highlighted in orange in Figure 4-B) and it is also a probable glycosylation site (36).  174 

NS3 protein  175 

Although there is a crystallographic structure (PDB id: 1yks) of the helicase domain (37) and 176 

another containing part of NS3 complexed with NS2B (PDB id 6urv) (38) deposited in the PDB, 177 

the referred SNV occurs in the unresolved stretch. The I184V (NHP dataset) is in the linker region 178 

(shown in orange in Figure 4-C, left). It connects protease and helicase domains and corresponds 179 

to sequence KEEGKEELQEIP that encompasses residues between 174 and 185. The SNV E614D 180 

(human dataset) occurs in the helicase domain and is located in the RNA binding cleft, shown in 181 

red on Figure 4-C, right.  182 

NS4a protein 183 

Since it has multiple transmembrane hydrophobic segments, structural analysis of NS4a has been 184 

unsuccessful and, so far, there is no structure deposited in the PDB. It is still one of the least 185 

characterized proteins from YFV. It was not possible to obtain a good structural model since the 186 

best template found had a coverage of only 37% and a sequence identity of 25.53%. 187 

NS5 protein  188 

There is a recent YFV NS5 structure deposited on PDB (PDB id 6qsn) (39). The analyzed SNVs 189 

(shown in green in Figure 4-D) are N11S, the only SNV in the MTase domain; I374V and E641D, 190 

both located in the palm subdomain. These three SNVs were found on the NHP dataset. 191 

Additionally, SNV V643A, located in the palm, and R727G, in the thumb subdomain, were found 192 

in the human dataset. As depicted in Figure 4-D, they (green) are located far from the Zn and 193 

sulfate ions and the ligand (S-adenosyl-L-homocysteine) (grey). They are not close to any 194 

important / conserved mentioned residue (yellow) that interact with the nucleic acid. SNV I374V 195 

is also present in ZIKV, DENV and WNV. Position E641D varies across other viruses (K, N, R). 196 

Position V643A is also not conserved being an insertion, K or N. Position R727G is S, E or T in 197 

other flaviviruses.  198 

 199 

Discussion 200 

In this study, we demonstrate the potential of applying ML approaches on real-time genomic 201 

surveillance, to quickly identify genetic loci which may be of public health interest.  202 
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We find signals in multiple genetic loci and present a structural-based review on the potential 203 

impact of changes at those loci. However, the limited number of sequences analyzed demands 204 

caution when presenting the results. A large number of high-quality sequences is ideal for the 205 

application of ML analysis, especially when dealing with viruses, whose high mutation rates tend 206 

to insert many variations on its genomes. Furthermore, our analysis didn’t  consider virus-host 207 

interactions, such as host genome or immune system and pre-existing health conditions. In this 208 

regard, efficient host data collection, such as Electronic Health Records (EHR), are of paramount 209 

importance for a thorough investigation of clinical outcomes.  210 

The envelope (E) protein is related to virus attachment and fusion (40). NHP dataset analysis shows 211 

SNV L395F on Domain III, a region containing an IgC-like domain and supposed to contain a 212 

receptor-binding site crucial for virion maturation (41). It is possible that this SNV could have an 213 

impact on the plasticity of this domain and affect the virus' receptor-binding site and it would be 214 

interesting to investigate this behaviour through simulations of molecular dynamics in future work. 215 

NS1 protein is a crucial non-structural protein (36). We found a non-synonymous SNV (A171V) 216 

on NHP dataset, located near a highly flexible region on the protein, called the wing flexible loop, 217 

which is a probable glycosylation site (GS) (42). NS1 is also a key protein secreted by infected 218 

cells, which has the potential to interact with the adaptive immune system responses (36). In 219 

dengue infections, NS1 is known to modulate capillary leakage in severe disease and may thus 220 

have a role to play in the severity of YFV infection (43).  221 

NS3 protein, which is composed of protease and helicase domains, has functions related to viral 222 

polyprotein processing and cleavage, viral genome replication and RNA capping (40). SNV 223 

I184V, found on NHP dataset, is in a region with probable limited functional constraints (44). SNV 224 

E614D, found on the human dataset, occurs in the NS3 helicase domain and is located in the RNA 225 

binding cleft. ASP and GLU are both negatively charged amino acids, but ASP has a shorter side 226 

chain which can cause it to lose access to the ligand.  We used mCSM-NA (35) to evaluate the 227 

impact of the SNV on stability and affinity with RNA, showing a small destabilizing effect on the 228 

interaction with RNA (-0.646 Kcal/mol), which could have an impact on its function, fundamental 229 

to viral genome replication. Unfortunately, there are no structures in complex with RNA available. 230 

Models built with protein-RNA docking techniques could help elucidate if there is a significant 231 

impact of this SNV on RNA interaction. 232 

We found one SNV on the NS4a protein (I69V, human dataset). However, a lack of current 233 

knowledge on YFV NS4a impeded us from further exploring the possible role of I69V in human 234 
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hosts. Based on the protein’s proposed functions (45–47), this SNV could, in principle, affect viral 235 

replication, but such hypothesis would have to be tested by non-computational means. 236 

As an outlier, NS5 had the highest number of identified variations - I374V, E641D, N11S, R727G, 237 

V643A - from both human and NHP YFV sequences. NS5 protein is a fundamental enzyme for 238 

viral replication because it contains an N-terminal methyltransferase domain (MTase) and a C-239 

terminal RNA dependent RNA polymerase domain (RdRp) (48). MTase domain has important 240 

functions involved in protecting viral RNA from degradation and innate immunity response. RdRp 241 

is essential for viral RNA replication, because its activities cannot be performed by host 242 

polymerases, and is a promising target for antiviral drug development (49). Furthermore, dengue 243 

virus NS5 has been associated with immune response evasion (50). With the structural analyses, 244 

we found that none of the SNVs found has been reported to be in positions with apparent 245 

connections to protein function or structure. However, R727G on the human dataset, on the thumb 246 

subdomain of RdRp domain, shows a change in predicted affinity for RNA upon SNV occurrence. 247 

This reduction in affinity could impact polymerase function and viral replication efficiency. 248 

In conclusion, even though the method proposed was applied on data that was already available 249 

from other sources, our study demonstrate that it is efficient and easy to replicate, making it 250 

suitable for real-time genomic surveillance, in which  genetic data is analized as it is generated. 251 

This approach may help detect and inform on possible connections between ongoing genetic 252 

changes and public health in a timely manner. 253 

 254 

Materials and Methods 255 

Datasets 256 

We retrieved YFV complete or near complete genome sequences from the recent Brazilian 257 

outbreaks, available on public databases (19–23), with associated epidemiological and clinical data 258 

containing relevant information regarding clinical severity and outcome for human infections 259 

samples, as well as PCR cycle threshold value (Ct) for both human and NHP samples. The 260 

alignment was made using MAFFT online (51) and was manually verified and corrected using 261 

AliView (https://ormbunkar.se/aliview/). Sequences with coverage lower than 90% were removed 262 

from the study. For ML analysis, human infection sequences were divided between not severe/not 263 

death and severe/death. Callithrix ssp. infection sequences were divided by low Ct (<20) and high 264 

Ct (≥ 20). After curation, the human dataset contained 56 YFV sequences, with 40 sequences 265 

related to severe/death cases, and 16 sequences related to not severe/not death cases. The NHP 266 
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(Callithrix spp.) dataset, after curation, contained 27 sequences, of which 21 were related to low 267 

Ct values (< 20) and 6 were related to high Ct values (>= 20). 268 

Machine learning model adjustment  269 

We applied three different ML models for each of two analyzed datasets, XGBoost (52, 53), 270 

random forest (54) and regularized logistic regression (55). We adjusted the XGBoost model 271 

parameters in a “grid-search cross-validation” scheme with five folds. Random forest adjustment 272 

used “out of bag” data as validation. Regularized logistic regression parameters were adjusted on 273 

a 10-fold cross-validation scheme, using their averages in the final model.  274 

Model interpretation 275 

Feature importance was computed using SHAP (SHapley Additive exPlanation) (30–32). We 276 

followed the author’s suggestion (https://github.com/slundberg/shap/issues/397) on dealing with 277 

categorical data when using SHAP. 278 

Protein structural analysis 279 

We searched on Protein Data Bank (PDB) (56) for experimentally resolved structures. For those 280 

proteins that did not have structures, we looked for templates for comparative modeling with at 281 

least 30% identity. The comparative models were built with the Swiss-Model server (57). We used 282 

mCSM (35) method to predict the impact of SNVs on protein stability and interactions.  283 
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