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 2 

ABSTRACT 18 

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To 19 

decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to 20 

establish biologically relevant models that use phenotypic screening to predict drug-21 

induced toxicity. In this study, we sought to rapidly detect patterns of cardiotoxicity using 22 

high-content image analysis with deep learning and induced pluripotent stem cell–23 

derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive 24 

compounds and identified those predicted to have cardiotoxic liabilities using a single-25 

parameter score based on deep learning. Compounds with major predicted 26 

cardiotoxicity included DNA intercalators, ion channel blockers, epidermal growth factor 27 

receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a 28 

diverse library of molecules with unknown targets and identified chemical frameworks 29 

with predicted cardiotoxic liabilities. By using this screening approach during target 30 

discovery and lead optimization, we can de-risk early-stage drug discovery. We show 31 

that the broad applicability of combining deep learning with iPSC technology is an 32 

effective way to interrogate cellular phenotypes and identify drugs that protect against 33 

diseased phenotypes and deleterious mutations. 34 

 35 

Keywords: iPSC, iPSC-CMs, cardiomyocyte, deep learning, high-content screen, 36 

cardiotoxicity  37 
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GRAPHICAL ABSTRACT 38 

  39 
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CONTRIBUTION TO THE FIELD 40 

In this article, Grafton and colleagues use induced pluripotent stem cell technology and 41 

deep learning to train a neural network capable of detecting patterns of cardiotoxicity. 42 

To identify bioactive and chemical classes that lead to cardiotoxicity, they combine the 43 

neural network with high-content screening of 2560 compounds. The methods 44 

described in this study can be used to de-risk early-stage drug development, triage hits, 45 

and identify drugs that protect against disease. This screening paradigm will serve as a 46 

useful resource for drug discovery and phenotypic interrogation of stem cells and stem 47 

cell–derived cell types. 48 

  49 
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1 INTRODUCTION 50 

Drug development is a lengthy and expensive endeavor, often requiring an estimated 51 

10 years and $0.8 to $2.6 billion. The cost—and risk—grows exponentially as drugs 52 

advance toward the clinic (DiMasi et al., 2016). To reduce costs and risk, 53 

pharmaceutical companies need effective screening methods to prevent drug attrition at 54 

late stages of the development process. 55 

Major causes of therapeutic attrition are drug-induced toxicity, including 56 

cardiotoxicity and hepatotoxicity. Cardiotoxicity alone accounts for approximately one-57 

third of drugs withdrawn due to safety concerns (Guo et al., 2011; Mathur et al., 2013; 58 

Weaver and Valentin, 2019). To decrease the potential for toxicity, and for late-stage 59 

drug attrition, pharmaceutical and biotechnology industries seek in vitro systems that 60 

can predict drug-induced toxicity with phenotypic screening at early stages of 61 

development (Moffat et al., 2014). This screening enables interrogation of a large 62 

number of perturbagens (e.g., small molecules, siRNAs, CRISPR gRNAs) in a target-63 

agnostic assay that measures phenotypic changes (Eder et al., 2014). 64 

Some of the best in vitro models rely on human primary cells isolated directly 65 

from tissues. These models retain the morphological and physiological characteristics of 66 

their tissue of origin (Kaur and Dufour, 2012). However, the supply of primary cells is 67 

finite. Primary cells also have limited potential for proliferation, are technically 68 

complicated to culture for long periods, and are difficult to genetically manipulate. As a 69 

result, scientists often turn to immortalized cell lines, such as HEK293T cells, HepG2 70 

human liver cancer cells, and HL-1 cardiac muscle cells. Many of these cell lines have 71 
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been transformed (Ahuja et al., 2005; Prager et al., 2019), which may cause karyotypic 72 

abnormalities, and they do not fully recapitulate their in vivo counterparts. 73 

More recently, researchers have turned to cell types derived from human induced 74 

pluripotent stem cells (iPSCs) (Takahashi et al., 2007). Cells derived from iPSCs more 75 

closely recapitulate human biology than immortalized cells (Moffat et al., 2017; Scannell 76 

and Bosley, 2016). These derived cells have been used for disease modeling (Judge et 77 

al., 2017; Lan et al., 2013; Pérez-Bermejo et al., 2020; Ribeiro et al., 2017; Sharma et 78 

al., 2017; Sun et al., 2012), proposed for drug discovery (Carlson et al., 2013; Grskovic 79 

et al., 2011; Robinton and Daley, 2012), and used to assess arrhythmogenic and 80 

structural liabilities of drugs (Guo et al., 2011; Maddah et al., 2020). Additionally, iPSCs 81 

can be derived from patients carrying deleterious mutations and genetically modified 82 

using nucleases (Judge et al., 2017; Kime et al., 2016; Mandegar et al., 2016; Miyaoka 83 

et al., 2012). They can also be expanded to sufficient quantities and cultured for 84 

extended periods that facilitate screening at scale (Burridge et al., 2014; Ghazizadeh et 85 

al., 2020; Sharma et al., 2017). Hence, iPSC-derived cell types enable high-throughput 86 

interrogation and screening using arrayed libraries of perturbagens. 87 

 As of early 2021, few studies have used iPSC-derived cells for phenotypic 88 

screening in a high-throughput manner that is truly scalable and, most importantly, has 89 

an assay readout with an appropriate window for screening and high signal-to-noise 90 

ratio. The screening window, commonly assessed using the Z-factor, ensures detection 91 

of true-positive hits and limits the number of false-negative and false-positive hits. 92 

Additionally, most published studies have been limited to single-readout phenotypes, 93 

such as cell survival (Sharma et al., 2017; Sun et al., 2017), expression of a single 94 
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marker (Ghazizadeh et al., 2020), or reporter screens (McLendon et al., 2017). While 95 

these studies revealed great insight into cardiomyocyte biology, they have not described 96 

a general and unbiased screening strategy that can be applied to other cell types and 97 

used at scale. 98 

 Given the limitation of single-readout assays, researchers have turned to high-99 

content screening to assess cellular features using traditional image processing (Moen 100 

et al., 2019; Salick et al., 2020). However, they must first choose which feature to 101 

quantify from a vast array of possible cellular phenotypes, such as nuclear 102 

fragmentation, protein aggregation, cell density, organelle damage and distribution, and 103 

changes to cytoskeleton organization. While quantifying a combination of these features 104 

may reflect the true state or importance of the phenotype, this approach can be 105 

challenging. Researchers may need to develop a new algorithm for each feature, and 106 

then decide on the biological relevance of each parameter. This strategy is time-107 

consuming and subject to bias. 108 

 An alternative approach uses machine learning to decipher cellular features at 109 

high accuracies. For example, deep learning, a branch of artificial intelligence, uses a 110 

set of machine-learning techniques to train neural networks and learn input data (LeCun 111 

et al., 2015). Previously, we used phenotypic interrogation with deep learning to identify 112 

drug-induced structural toxicity in hepatocytes and cardiomyocytes (Maddah et al., 113 

2020). Herein, we aimed to expand that work to iPSC-CMs in a high-content screen 114 

(HCS) of 1280 bioactive compounds with putative primary targets. We then sought to 115 

validate identified hits using orthogonal assays to assess cellular stress, including 116 

mitochondrial respiration and brain natriuretic peptide (BNP) levels. Finally, we aimed to 117 
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use our deep learning approach to screen a library of 1280 diverse compounds with no 118 

known targets, and to identify chemical structures and frameworks with predicted 119 

cardiotoxicity. 120 

 121 

2 MATERIALS AND METHODS 122 

 123 

2.1 iPSC Culture, iPSC-CM Differentiation, and Blasticidin Selection 124 

WTC iPSCs and derivative lines were maintained under feeder-free conditions on 125 

growth factor-reduced Matrigel (BD Biosciences) and fed daily with E8 medium 126 

(STEMCELL Technologies) (Ludwig et al., 2006). Accutase (STEMCELL Technologies) 127 

was used to enzymatically dissociate iPSCs into single cells. To promote cell survival 128 

during enzymatic passaging, cells were passaged with p160-Rho-associated coiled-coil 129 

kinase (ROCK) inhibitor Y-27632 (10 μM; Selleckchem) (Watanabe et al., 2007). iPSCs 130 

were frozen in 90% fetal bovine serum (HyClone) and 10% dimethyl sulfoxide (Sigma). 131 

iPSCs were differentiated into iPSC-CMs using the Wnt modulation-differentiation 132 

method (Lian et al., 2012) with 7 μM CHIR (Selleckchem) and 5 μM IWP2 (Sigma) in 133 

RPMI media supplemented with B27 (Thermo Fisher Scientific). iPSC-CMs were 134 

purified using 1 μM blasticidin (Thermo Fisher Scientific). Then, 15 days after adding 135 

CHIR, iPSC-CMs were frozen in 90% fetal bovine serum (FBS) with 10% Dimethyl 136 

sulfoxide (DMSO). iPSC-CMs were thawed in RPMI with B27 and 10% FBS directly 137 

onto Matrigel-coated 384-well plates at a density of 20,000 cells/well. The next day, the 138 

media was switched to Tenaya’s Cardiomyocyte (TCM) media for 6 days before 139 

screening. TCM media comprises Dulbecco's Modified Eagle Medium (DMEM) without 140 
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glucose, 10% dialyzed FBS, 10 mM D-(+)-galactose, and 1 mM sodium pyruvate. 141 

 142 

2.2 Generation of Blasticidin-Selectable iPSC Line 143 

A plasmid containing the Bsd open reading frame and a selectable marker containing 144 

puromycin and green fluorescent protein was knocked into the 3’ end of the MYH6 locus 145 

of WTC iPSCs. Cells were selected with puromycin. After the first round of selection, the 146 

selectable marker was removed using a plasmid expressing Cre recombinase 147 

(Supplemental Figure 1A). Clones were isolated and verified using colony polymerase 148 

chain reaction (PCR) to ensure the presence of the Bsd marker and absence of the 149 

selectable cassette. Finalized clones showing the appropriate iPSC morphology were 150 

sent to WiCell for single-nucleotide polymorphism karyotyping (Figure S1B). 151 

 152 

2.3 Compound Library Screening 153 

A library containing 1280 bioactive compounds consisting of FDA-approved drugs, tool 154 

compounds, and pre-clinical drug candidates was sourced from Selleck Chemicals 155 

(Houston, TX). Screening and validation studies on the bioactive compounds were 156 

performed at three doses of 0.3 μM, 1.0 μM, and 3.0 μM in 0.1% DMSO. The library of 157 

diverse compounds was sourced from Enamine (Kyiv, Ukraine) and screened at 1.0 μM. 158 

StarDrop version 6.6.4.23412 (https://www.optibrium.com/stardrop/) was used to 159 

analyze data from the screen of diverse compounds. 160 

 161 

2.4 Immunocytochemistry 162 
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iPSC-CMs were fixed for 15 minutes in 4% (v/v) paraformaldehyde (Thermo Fisher 163 

Scientific) in phosphate buffered saline (PBS) and permeabilized in 0.1% (v/v) Triton X-164 

100 (Thermo Fisher Scientific) for 15 minutes. Cells were blocked in 5% (w/v) bovine 165 

serum albumin (BSA) (Sigma) with 0.1% (v/v) Triton X-100 in PBS for 60 minutes. 166 

Primary antibodies were diluted in 5% (w/v) BSA and 0.1% (v/v) Triton X-100 in PBS 167 

and incubated overnight at 4ºC. After treatment with primary antibodies, cells were 168 

washed 3 times in PBS for 15 minutes each. Secondary antibodies were diluted in 5% 169 

(w/v) BSA and 0.1% (v/v) Triton X-100 in PBS, and then incubated for 1 hour at room 170 

temperature. After treatment with the secondary antibody, cells were washed 3 times in 171 

PBS for 15 minutes each. Nuclei were stained using Hoechst 33342 (Thermo Fisher 172 

Scientific) (1:1000 dilution). Images were taken using a Cytation 5 microscope (BioTek 173 

Instruments) at 10X magnification (9 images per 384-well plate). A list of primary and 174 

secondary antibodies with the appropriate dilution is listed in Supplementary Table 4. 175 

 176 

2.5 Sarcomere Analysis Using Scanning Gradient Fourier Transform 177 

Sarcomere organization and alignment were assessed using scanning gradient Fourier 178 

transform (SGFT) with a pattern size of 1.8, scanning resolution of 16, and a Fourier 179 

threshold of > 0.8 (Salick et al., 2020). Briefly, SGFT performs gradient analysis on 180 

ACTN2 images to determine the myofibril directionality and then one-dimensional fast 181 

Fourier transforms to determine sarcomere organization and alignment. 182 

 183 

2.6 Contractility Measurements 184 
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Contractility video measurements were taken with an SI8000 Cell Motion Imaging 185 

System (Sony Biotechnology) and analyzed using Pulse software (Maddah et al., 2015). 186 

 187 

2.7 Construction of Deep Learning Models and Neural Network Architecture 188 

To avoid complications associated with cell segmentation, we used block image 189 

segmentation and seeded a confluent monolayer of iPSC-CMs. Deep learning artificial 190 

intelligence models were built using the PhenoLearn platform (www.PhenoLearn.com). 191 

We used PyTorch as the framework for the deep learning library, and a ResNet50 192 

architecture, a 50-layer-deep convolutional neural network. Images from the DMSO 193 

control group were trained against the toxic groups (defined as either mildly toxic, toxic, 194 

or highly toxic). Each input image was divided into 12 square sub-images to have sizes 195 

ranging from 224 x 224 to 300 x 300 pixels (Maddah et al., 2020). Each sub-image was 196 

flipped and rotated to create seven more augmented sub-images, and then fed into the 197 

input layer of ResNet50. Pseudo-image generation by rotation and flipping ensures 198 

enough diversity is seen by the net so that the algorithm is not biased based on the 199 

orientation of the images (Moen et al., 2019). We used 80% of the images to construct 200 

the neural network and the remaining 20% to validate the deep learning model. A 201 

consistent set of parameters were used for all training operations, including an initial 202 

learning rate of 0.01 and 20 epochs. For each training, the final neural network was 203 

selected from the epoch with the highest validation accuracy. Z-factor was calculated 204 

using the following formula: 205 

𝒁–𝒇𝒂𝒄𝒕𝒐𝒓 = 	𝟏 −
𝟑(𝝈𝒑–𝝈𝒏)
1𝝁𝒑–𝝁𝒏1

 206 

 207 
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2.8 ProBNP Assay 208 

The proBNP/NPPB human sandwich ELISA kit (Invitrogen) was used to determine the 209 

level of secreted human proBNP. Cell culture media was collected from wells containing 210 

approximately 105 iPSC-CMs exposed to cardiotoxic drugs for 4 days. Media was 211 

diluted to obtain a proBNP concentration between 0.137 and 100 ng/mL (1:3-1:5). A 212 

standard mixture of recombinant human proBNP was diluted 1:3 from 0.137 to 100 213 

ng/mL. Then 100 μL of diluted sample and standards were added to the human proBNP 214 

solid-phase sandwich ELISA microplate and incubated at room temperature for 2.5 215 

hours with gentle shaking. The plate was then washed four times with 300 μL of 1X 216 

wash buffer. Next, 100 μL/well of biotin conjugate was added to a microplate and 217 

incubated at room temperature for 1 hour with gentle shaking. The plate was then 218 

washed four times with 300 μL 1X wash buffer. Next, 100 μL/well of streptavidin-219 

horseradish peroxidase solution was added to the microplate and incubated at room 220 

temperature for 45 minutes with gentle shaking. The plate was then washed four times 221 

with 300 μL 1X wash buffer. Next, 100 μL/well of TMB substrate was added, and the 222 

plate was incubated in the dark at room temperature for 30 minutes. Then, 50 μL of stop 223 

solution was added directly to the TMB substrate and gently mixed. Absorbance was 224 

measured using a Cytation 5 microscope at 450 nm and 550 nm. For analysis, 225 

background signal was removed by subtracting the 550 nm signal from the 450 nm 226 

signal. A linear regression was fit to the standard absorbance measurements. ProBNP 227 

values from experimental samples were extrapolated from linear regression. Initial 228 

sample dilutions were accounted for when determining the final proBNP concentration. 229 

 230 
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2.9 RNA Extraction and TaqMan qPCR Analysis 231 

Approximately 105 to 106 iPSC-CMs were lysed with TRI Reagent (Zymo Research) and 232 

frozen at -80°C to ensure complete cell lysis. Total RNA was extracted and washed 233 

from lysed cells using the Direct-zol-96 RNA Kit (Zymo Research) according to the 234 

manufacturer’s instructions. Samples were treated with DNase I for 15 minutes at room 235 

temperature. cDNA was reverse transcribed from 1 μg of RNA through random 236 

hexamers using the SuperScript-III kit (Invitrogen) according to the manufacturer’s 237 

instructions. Real-time qPCR reactions were performed using the TaqMan universal 238 

PCR master mix (Applied Biosystems) with the TaqMan probes listed in Supplementary 239 

Table 5 (Life Technologies). RT-qPCR reactions were performed using the 240 

QuantStudio7 Flex Real-Time PCR systems (Life Technologies). Each reaction was 241 

performed in triplicate for a given RT-qPCR run, and each condition had four 242 

experimental replicates. Relative expression of the gene of interest was normalized to 243 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the housekeeping control 244 

using the 2–ΔΔCT method (Schmittgen and Livak, 2008). 245 

 246 

2.10 High-throughput Transcriptional Analysis Using RNA-Seq 247 

Raw RNA-seq reads were aligned with Salmon (Patro et al., 2017) (version 1.3.0) to the 248 

GENCODE (Frankish et al., 2019) version 33 reference transcript assembly (hg38 v.13) 249 

using best practice parameters to ensure mapping validity and reproducibility (--seqBias 250 

--gcBias --posBias --useVBOpt --rangeFactorizationBins 4 --validateMappings --251 

mimicStrictBT2). Next, tximport (Soneson et al., 2015) was used to generate an 252 

expression matrix normalized to transcripts per million (TPM). To ensure consistency, 253 
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we limited our analysis to genes with detectable expression in at least 90% of the 254 

samples. Protein-coding genes were determined using Ensembl release 100 human 255 

annotation (Cunningham et al., 2019) (GRCh38, Apr 2020) and extracted by biomaRt 256 

(Durinck et al., 2009) (version 2.45.9); non-protein-coding and mitochondrial genes 257 

were omitted from the analysis. After this step, expression values were re-normalized to 258 

TPM. After adding 1 as the pseudo-count, the expression matrix was log2-transformed. 259 

For the initial assessment, principal component analysis (PCA) models were generated 260 

in the R environment using the prcomp function, and the first two principal components 261 

were used for visualization. To quantify the distances between each drug’s samples and 262 

generate a PCA-based similarity matrix, we used Euclidean distance in the PCA space, 263 

as calculated by the pca2euclid function from the tcR package. We calculated the 264 

distance using all replicates and used the averaged expression in replicates for each 265 

drug. Visualizations were generated in R using the ggplot2 and ComplexHeatmap 266 

packages. 267 

To compare the differential gene expression analysis of these clusters with the 268 

DMSO-treated group, we limited our downstream analysis to the genes in our curated 269 

list of genes with high relative expression in cardiac tissue. We also applied the 270 

following filters: (1) protein-coding genes (as defined by Ensembl) that had a median 271 

log2-transform TPM expression of greater than 1 in at least one cluster and (2) showed 272 

a minimum of 0.25-fold change compared to the DMSO control. Transcriptomes in each 273 

cluster’s replicates were compared with DMSO-treated replicates by Welch’s t-test. A t-274 

statistic value for each gene’s expression vector was used to rank-order the 275 

transcriptome in each cluster. 276 
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To evaluate functional perturbations in each cluster, we limited our analysis to 277 

two gene sets: those labeled with a “cardiac” annotation in MSigDB (Liberzon et al., 278 

2011) version 7.2 (127 gene sets), and the top 100 gene sets that significantly 279 

overlapped with our curated cardiac-rich expression gene set as defined by false 280 

discovery rate (FDR) q-value. The FDR q-value is the FDR analog of the 281 

hypergeometric P-value after correcting for multiple hypothesis testing according to the 282 

Benjamini and Hochberg method. In each drug cluster, Welch’s t-test statistical values 283 

were used to identify and compare most perturbed gene sets to the DMSO-treated 284 

group. A P-value < 0.05 was considered significant. 285 

 286 

2.11 Seahorse Assay 287 

The Agilent Seahorse XFe96 Analyzer was used to measure mitochondrial function in 288 

iPSC-CMs. The 96-well Seahorse plates were coated with Matrigel (1/100 dilution) in a 289 

phenol-free medium overnight. WTC iPSC-CMs were seeded at 30,000 cells per XFe96 290 

well and recovered in TCM media for 1 week. Cardiotoxic compounds were diluted to 3 291 

µM, 1 µM, 0.3 µM, and 0.1 µM in 1.0% DMSO in TCM media. Drugs were administered 292 

in fresh media for 4 days. Following 4 days of exposure to drugs, the cells were washed 293 

and incubated for 1 hour before the assay with Seahorse XF DMEM Basal Medium 294 

supplemented with 2 mM glutamine, 2 mM pyruvate, and 10 mM glucose. The 295 

Seahorse XFe96 cartridge was prepared according to manufacturer’s guidelines. First, 296 

basal oxygen consumption rate (OCR) was measured. Next, the Mito Stress Test was 297 

performed with inhibitors injected in the following order: oligomycin (2.5 µM), carbonyl 298 

cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 1 µM), and rotenone and 299 
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antimycin A (0.5 µM). OCR values were normalized to the total nuclear count per well 300 

as quantified by Hoechst staining. Basal respiration was calculated as: (last rate 301 

measurement from the first oligomycin injection) – (minimum rate measurement after 302 

rotenone/antimycin A). Maximal respiration was calculated as: (maximum rate 303 

measurement after FCCP injection) – (minimum rate measurement after 304 

rotenone/antimycin A). Spare respiratory capacity was calculated as: (maximal 305 

respiration) – (basal respiration). ATP production was calculated as: (last measurement 306 

before oligomycin injection) – (minimum rate after oligomycin injection). 307 

 308 

2.12 Proteasome Activity Assay 309 

Proteasome activity was measured in iPSC-CMs using the Proteasome-Glo™ 310 

Chymotrypsin-Like Assay according to manufacturer’s instructions (Promega). Cells 311 

were incubated with the inhibitors (ranging from 2 to 5000 nM) for 1 hour before running 312 

the assay. IC50s were calculated using PRISM 8 software. 313 

 314 

3 RESULTS 315 

 316 

3.1 iPSC-CM Production, Selection, and Recovery After Thaw 317 

To efficiently and reproducibly assess cardiotoxicity in a highly enriched population of 318 

cardiomyocytes, we generated a blasticidin-selectable iPSC line by targeting the MYH6 319 

locus (Supplementary Figure 1A, B). Following standard differentiation of iPSC-CMs 320 

(Figure 1A), blasticidin selection reproducibly enriched a heterogenous population of 321 

iPSC-CMs to greater than 95% pure iPSC-CMs as measured by ACTN2, TNNT2, and 322 
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MYBPC3 immunostaining (Figure 1B,C). Compared to previously published protocols, 323 

recovery in culture media lead to improved maturity metrics based on quantitative 324 

polymerase chain reaction (qPCR) markers, contractility (beat rate and velocity), and 325 

immunostaining (Supplementary Figure 1C–F). To optimize recovery time of iPSC-CMs 326 

before screening, daily contractility metrics were performed using Pulse (Maddah et al., 327 

2015). Then, 6 to 8 days after thaw, iPSC-CMs fully recovered and had stabilized 328 

contractility readings (Figure 1D). 329 

 330 

3.2 Known Cardiotoxic Compounds Used to Establish the Extent of Functional 331 

Damage to iPSC-CMs 332 

To establish training sets for deep learning models, we treated iPSC-CMs with 333 

bortezomib (proteasome inhibitor), doxorubicin (topoisomerase inhibitor), cisapride 334 

(serotonin 5-HT4 receptor agonist), sorafenib (tyrosine kinase inhibitor), givinostat 335 

(histone deacetylase inhibitor), bafilomycin (vacuolar-type H+-ATPase), paclitaxel 336 

(microtubule stabilizer), and JQ1 (bromodomain and extraterminal domain inhibitor) 337 

(Lamoureux et al., 2014). These compounds disrupt a diverse set of cellular pathways, 338 

so we included them to ensure that our deep learning models can identify a broad range 339 

of cardiotoxic compounds in an HCS. 340 

To determine the level of drug-induced toxicity, we measured beat rate, velocity 341 

of contraction, and displacement as a function of dose and duration of exposure 342 

(Supplementary Figure 2). Results from three representative cardiotoxins (bortezomib, 343 

doxorubicin, and bafilomycin) are displayed as a heatmap (Figure 2A). For each 344 

compound, beats per minute and velocity measured on the fourth day of drug exposure 345 
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are displayed as a function of drug dose (Figure 2B,C). We observed that the 346 

cardiotoxins had both a dose- and time-dependent effect on contractility measurements. 347 

In most cases, the contraction velocity and displacement declined, and the beat rate 348 

reduced as a function of dose and time (Supplementary Figure 2). In some instances 349 

(e.g., doxorubicin), immediately before spontaneous contractility completely stopped, 350 

we observed an increased beat rate and reduced contraction velocity and displacement. 351 

This change may reflect a compensatory mechanism by which the cells increase beat 352 

rate to induce more “output” while the velocity and displacement are reduced (Burridge 353 

et al., 2016; Maddah et al., 2015). 354 

 Next, we assessed sarcomere organization and cell survival. Sarcomere staining 355 

intensity was measured using antibodies against MYBPC3 and ACTN2, and cell 356 

survival was measured using Hoechst nuclear stain (Figure 2D). To assess the 357 

structural integrity of the sarcomere and myofibril, which are negatively impacted by 358 

cardiotoxin-induced damage (Burridge et al., 2016; Judge et al., 2017; Maillet et al., 359 

2016), sarcomere organization and alignment were also analyzed with the SGFT. This 360 

method can quantify subcellular myofibril alignment through one-dimensional fast 361 

Fourier transforms following sarcomere mapping (Salick et al., 2020) (Figure 2E). Based 362 

on contractility metrics, sarcomeric staining, and nuclear count, we define three levels of 363 

structural toxicity binned into the three categories: highly toxic (class 3), toxic (class 2), 364 

and mildly toxic (class 1). DMSO-treated cells were designated as non-toxic (class 0) 365 

(Figure 2F and Supplementary Table 1). Representative immunostaining of iPSC-CMs 366 

stained with MYBPC3 and ACTN2 show various levels of structural toxicity (Figure 2G). 367 

 368 
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3.3 Optimizing the Deep Learning Model 369 

Frozen iPSC-CMs were thawed and allowed to recover in 384-well plates to enable 370 

high-content screening. These plates were divided into three categories: a training 371 

plate, a validation plate, and library plates. The cells were then immunostained using 372 

MYBPC3 before capturing images. Images from the training plate (dosed with known 373 

cardiotoxins ranging from 10 nM to 10 μM for 4 days) were used to establish the deep 374 

learning models. Images from the validation plate were used to test the accuracy of the 375 

deep learning models. And images from the library plates were used to test the toxicity 376 

level of compounds. iPSC-CMs in the library plates were exposed to 1280 bioactive 377 

compounds at three doses (0.3 μM, 1.0 μM, and 3.0 μM for 4 days) (Figure 3A). 378 

Based on defined criteria for reduced contractility, loss of immunostaining, and 379 

nuclear count when cells were treated with various doses of cardiotoxins (Figure 2F and 380 

Supplementary Table 1), we developed three deep learning models: 4-class, 3-class, 381 

and 2-class. The 4-class model distinguished highly toxic, toxic, and mildly toxic 382 

compound doses from the non-toxic DMSO-treated condition. The 3-class model 383 

combined highly toxic and toxic compound doses and kept mildly toxic compound doses 384 

separate. The 2-class model binned highly toxic and toxic compound doses from the 385 

non-toxic DMSO-treated condition. The total number of images used per class is 386 

outlined in Supplementary Table 2. 387 

 We compared the deep learning accuracies across the three models. All models 388 

showed more than 95% accuracy in identifying the non-toxic DMSO-treated condition 389 

(class 0). For the 2-class model, the validation showed 100% accuracy in distinguishing 390 

the toxic from non-toxic conditions. For the 3- and 4-class models, the accuracies were 391 
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lower when attempting to distinguish mildly toxic, toxic, and highly toxic classes (Figure 392 

3B). This reduced accuracy may be a result of cellular toxicity signatures that follow a 393 

continuous spectrum, rather than clearly defined categories. 394 

 After training, the three deep learning models were independently used to score 395 

the validation plate (which the neural network had not seen before). The results from the 396 

three models on the validation plate are compared in a 2D plot in Figure 3C. The data 397 

suggested that all three models showed a strong correlation upon validation (R2 > 0.93, 398 

p < 0.0001), regardless of how each deep learning model was trained (Figure 3C). As 399 

expected, the DMSO-treated cells scored the lowest on the cardiotoxicity scale. Cells 400 

treated with 1 µM doxorubicin showed the highest toxicity score, and cells treated with 401 

0.3 µM doxorubicin (the mildly toxic class) showed an intermediate toxicity score 402 

separated from the non-toxic and highly toxic class. 403 

 404 

3.4 Higher Cell Seeding Densities Lead to a Higher Model Accuracy and 405 

Screening Window 406 

We hypothesized that there may be an optimal cell density for screening that leads to 407 

best model performance and Z-factor. The Z-factor is a statistical measure of assay 408 

variability and reproducibility (Zhang et al., 1999). We posited that using a cell density 409 

that was too high would tightly pack cells and mask features, whereas using a cell 410 

density that was too low would not generate sufficient features for training. Interestingly, 411 

as we increased the cell density, we did not observe a bell-shaped effect in the 412 

performance of the deep learning models. We found that the higher the cell density, the 413 

higher the model accuracy and, most importantly, the higher the Z-factor. At 414 
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approximately 3000 cells per well of a 384-well plate, the model accuracy and Z-factor 415 

plateaued and did not decline with increasing cell density (Supplementary Figure 3A,B). 416 

We also found that a minimum cell density is needed to ensure an appropriate 417 

screening window. For example, a minimum number of 1500 iPSC-CMs per well of a 418 

384-well plate was required to reach a Z-factor of approximately 0.5, which is an 419 

acceptable level for an HCS in cell-based assays (Supplementary Figure 3B). Training 420 

and validation accuracies were tracked as a function of epochs, or the number of times 421 

the entire training dataset passed through the neural network. Two representative cell 422 

seeding densities were analyzed, which showed that a higher cell density supports 423 

improved model performance (Supplementary Figure 3C). Higher cell densities yielded 424 

higher cellular content for feature training, and they reduced cell edges and background. 425 

In addition, more cell-cell contact between iPSC-CMs led to sarcomere alignment that 426 

may reduce heterogeneity in training images. Given these factors, higher cell densities 427 

achieved a Z-factor greater than 0.5, which is ideal for HCS (Supplementary Figure 3D). 428 

 429 

3.5 Deep Learning Enables Detection of Toxic Compounds in an HCS Format 430 

We calculated the dynamic range and Z-factors on the screening plates treated with 431 

DMSO (non-toxic control) as well as bortezomib and doxorubicin (cardiotoxic controls) 432 

(Figure 4A). With enough technical replicates, we saw significant differences in the 433 

nuclear count and sarcomere staining intensities (Figure 4A). However, when 434 

performing an HCS, only one or two technical replicates per test article are used. Thus, 435 

using parameters such as nuclear count and staining intensity will not be reliable for 436 

identifying hits in high-throughput screening (HTS) (Supplementary Figure 4A,B). In this 437 
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case, the associated Z-factors are far lower than a minimum de facto cutoff of 0.5 for 438 

HTS (Bray and Carpenter, 2017; Zhang et al., 1999). By using deep learning and the 439 

appropriate cell seeding density, we can increase the dynamic range and reduce the 440 

variability between treatment groups. These changes would increase the screening 441 

window coefficient (Z-factor > 0.5) for an HCS (Figure 4B). 442 

 We compared the cardiotoxicity scores from all screening wells at three doses, 443 

including the DMSO, bortezomib, and doxorubicin controls. Regardless of how each 444 

deep learning model was trained, all three models showed strong correlation (R2 > 0.95, 445 

P < 0.0001) when applied to the screening plates (Figure 4C). All three models also 446 

accurately predicted the non-toxic DMSO condition and enabled detection of the toxic 447 

controls (0.1 μM bortezomib and 1 μM doxorubicin). This result points to the robustness 448 

of hit detection and predictive power of deep learning for analyzing large datasets. 449 

Given that the 4-class model was trained to separate the toxic and highly toxic classes, 450 

this model enables separation between the conditions treated with 0.1 μM bortezomib 451 

and 1 μM doxorubicin. To maximize assay sensitivity, it is more valuable to identify 452 

mildly toxic compounds than to distinguish highly toxic compounds from toxic 453 

compounds (given that highly toxic and toxic compounds show similarly strong 454 

phenotypes). To avoid overlooking a mildly toxic compound during the HCS, we 455 

proceeded to use the 3-class model to identify and further validate hits. 456 

 457 

3.6 Screening Using Deep Learning Identifies Compounds with Cardiotoxic 458 

Liabilities 459 
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We analyzed cardiotoxicity scores by screening 1280 bioactive compounds at three 460 

doses using our three deep learning models (Supplementary Figure 5A,B). As 461 

mentioned, we focused on the 3-class model for further studies and validation rounds 462 

(Figure 5A). The cardiotoxicity scores from the top 25 hits are displayed as a heatmap 463 

from a scale of 0 to 2, such that the most cardiotoxic drugs have scores nearing 2 (red) 464 

and the non-toxic class have scores of nearly 0 (blue). For comparison, MYBPC3 and 465 

ACTN2 staining intensity and nuclear count are also displayed on a scale of 0 to 1. Most 466 

toxic compounds received a score of 1 (red), and least toxic compounds received a 467 

score of 0 (blue) (Figure 5B). Details about the identified cardiotoxic compounds are 468 

listed in Supplementary Table 3. 469 

 A number of the identified hits clustered based on mechanism of action and 470 

molecular pathways. The top predicted hits included epidermal growth factor receptor 471 

(EGFR) inhibitors (WZ8040, AG-1478), cyclin-dependent kinase 1 (CDK1) inhibitors (BI-472 

2536, PHA-767491), DNA intercalators and synthesis inhibitors (Adrucil, daunorubicin, 473 

streptozotocin), ion channel blockers (chlorpromazine, nitrendipine), and other multi-474 

kinase inhibitors (regorafenib). The characterization of hits into target classes is 475 

summarized in Figure 5C. We classified the protein targets of our top 25 predicted 476 

cardiotoxic hits with a PRISM repurposing dataset. Next, we built a protein-protein 477 

interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins 478 

(STRING). In the resulting network, we identified seven clusters of protein families, 479 

including DNA interactors, ion channel blockers, multi-kinase inhibitors, and cyclin-480 

dependent kinase (CDK) inhibitors (Figure 5D). 481 
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 The top predicted cardiotoxic compounds included several FDA-approved drugs 482 

that clinical and pre-clinical studies have linked to adverse cardiovascular events 483 

(Supplementary Table 3). For example, Adrucil (DNA synthesis inhibitor) had a side 484 

effect of cardiac toxicity (Adrucil. RxList., 2020). Betamethasome (oral glucocorticoid) 485 

was identified as a risk factor for heart failure (Souverein et al., 2004). Regorafenib 486 

(sorafenib analog, a multi-kinase inhibitor) was linked to increased risk of cardiovascular 487 

events in patients with solid tumors (Chen and Wang, 2018). Chlorpromazine 488 

(dopamine and potassium channel inhibitor) was linked to fast and irregular heart rate 489 

(Chlorpromazine HCL. WebMD., 2020). Anagrelide (PDE3 inhibitor) may cause 490 

cardiovascular effects, including fast, irregular, pounding, or racing heartbeat or pulse 491 

(Anagrelide. Mayo Clinic., 2020). Sotalol (beta-blocker and anti-arrhythmic) has serious 492 

cardiac side effects, including QT prolongation, heart failure, or bronchospasm (Sotalol. 493 

FDA.gov., 2020). Solifenacin (muscarinic receptor antagonist) overdose may cause fast 494 

heartbeat (Solifenacin. Medline Plus., 2020). Daunorubicin (doxorubicin analog, 495 

topoisomerase II inhibitor, and DNA intercalator) causes cardiotoxicity (Menna et al., 496 

2012; Sawyer et al., 2010). Rosiglitazone (PPAR-γ agonist used to treat patients with 497 

type 2 diabetes) was associated with a significant increase in the risk of myocardial 498 

infarction (Nissen and Wolski, 2007). These reports strongly support and validate the 499 

predictive value of screening with deep learning to detect early signs of cardiotoxicity. 500 

 501 

3.7 Validation Studies Using Deep Learning and Orthogonal Assays 502 

We further evaluated a subset of hits that showed cardiotoxic liabilities using deep 503 

learning analysis but did not show a strong toxic liability using immunostaining image 504 
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analysis (Supplementary Figure 6). This subset included six compounds with predicted 505 

cardiotoxic liabilities: three pre-clinical compounds [WZ8040 (EGFR inhibitor), BI-2536 506 

(CDK inhibitor), and PHA-767491 (CDK inhibitor)] and three FDA-approved compounds 507 

[danorubicin (DNA intercalator), nitrendipine (Ca2+-channel blocker), and solifenacin 508 

(muscarinic receptor antagonist)]. As a positive control, we also included tegaserod (5-509 

HT4 agonist), which was withdrawn from the market in 2007 due to adverse 510 

cardiovascular effects (Tegaserod. MayoClinic., 2020). With these seven compounds, 511 

we performed a secondary round of validation using deep learning and additional 512 

orthogonal assays. This validation showed that all seven compounds had cardiotoxic 513 

liability (Figure 6A and Supplementary Figure 7A). 514 

To further assess those seven validated compounds, we treated iPSC-CMs with 515 

the compounds and measured their mitochondrial respiration 4 days later using the 516 

Seahorse XFe96 Analyzer. Based on real-time OCR, all seven compounds dose-517 

dependently reduced basal respiration in iPSC-CMs (Figure 6B and Supplementary 518 

Figure 7B), suggesting decreased respiratory function compared to the DMSO control. 519 

To indirectly measure OCR, we treated iPSC-CMs with the compounds and oligomycin 520 

[ATP synthase (complex V) inhibitor] and then measured their capacity to produce 521 

adenosine triphosphate (ATP). Similarly, we found a dose-dependent decrease in the 522 

capacity of iPSC-CMs to produce ATP. Finally, we measured whether these compounds 523 

affect the spare respiratory capacity (maximum OCR subtracted by basal OCR) in 524 

iPSC-CMs. The spare respiratory capacity represents the cell’s ability to respond to an 525 

energetic stress. When compared to DMSO control, all compounds resulted in a dose-526 

dependent decrease in maximal respiration and spare respiratory capacity (Figure 6C, 527 
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D and Supplementary Figure 7C). These data suggest that all seven compounds dose-528 

dependently impair mitochondrial bioenergetics. Thus, by analyzing mitochondrial 529 

respiration, we validated the cardiotoxic compounds that were identified by deep 530 

learning but not by immunostaining image analysis. 531 

 532 

3.8 ProBNP Levels are Not a Reliable Marker for Predicting Cardiotoxicity in 533 

iPSC-CMs 534 

BNP is natriuretic peptide and hormone secreted from cardiac tissue. During heart 535 

failure, BNP secretions are elevated (Bay et al., 2003; Doust et al., 2006; Januzzi et al., 536 

2005). BNP is also expressed in iPSC-CMs, which secrete the hormone into their 537 

culture media. 538 

To determine if BNP is a reliable marker for cardiotoxicity, we treated iPSC-CMs 539 

with the seven validated cardiotoxic compounds and evaluated the levels of BNP that 540 

these cells secrete into the media using a ProBNP ELISA kit. We found an inconsistent 541 

pattern of ProBNP levels and cardiotoxicity signal in the media of treated cells. Only 542 

PHA-767491 (at all three doses) elevated ProBNP. In contrast, WZ8040, daunorubicin, 543 

nitrendipine, and solifenacin dose-dependently reduced ProBNP (Figure 6E). This 544 

reduction may be due to poor health of iPSC-CMs after treatment with the cardiotoxic 545 

compounds. We found that BI-2536 did not alter the levels of ProBNP and that 546 

tegaserod only reduced BNP at the highest dose (3 μM) (Figure 6E). 547 

 548 

3.9 RNA-Seq Analysis Confirms Drug-Specific Changes in Key Pathways that 549 

Regulate Cardiac Muscle Contraction, Development, and Identity 550 
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 551 

To delineate perturbed transcriptional profiles in iPSC-CMs treated with drugs, we 552 

performed RNA sequencing on samples treated with our previously defined nine 553 

cardiotoxic compounds (two replicates/drug) and DMSO-treated iPSC-CMs (six 554 

replicates). Using PCA, four drugs (bortezomib, daunorubicin, doxorubicin, and BI-2536) 555 

fell into three distinct clusters, whereas the other five drugs (nitrendipine, PHA-767491, 556 

solifenacin, tegaserod, and WZ8040) clustered more closely with DMSO-treated 557 

controls (Figure 7A). Based on hierarchical clustering on each sample’s projected 558 

location in the PCA space with 23 components, we classified the transcriptomic profiles 559 

into four clusters (n = 24; cluster 1: bortezomib; cluster 2: doxorubicin and daunorubicin; 560 

cluster 3: BI-2536; cluster 4: nitrendipine, PHA-767491, solifenacin, tegaserod, and 561 

WZ8040). We generated the heatmap in Figure 7B by selecting the top overexpressed 562 

and underexpressed genes in each cluster that intersected with a curated set of 310 563 

genes with enriched expression in cardiac tissue. We did not see any major difference 564 

in the clustering structure between these two methods. For simplicity, we show the 565 

averaged PCA-based similarity matrix for each drug cluster in Figure 7B. 566 

Bortezomib-treated cardiomyocytes showed significant downregulation of major 567 

genes encoding structural proteins associated with different forms of familial 568 

cardiomyopathies (Haas et al., 2015). For example, TCAP (regulates sarcomere 569 

assembly and titin assembly; implicated in familial hypertrophic cardiomyopathy), MYL3 570 

(myosin light chain 3; implicated in left ventricular hypertrophic cardiomyopathy and 571 

restrictive cardiomyopathy), LDB3, and DES were highly downregulated (Figure 7C). 572 

Doxorubicin- and daunorubicin-treated clusters were identified by substantial 573 
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downregulation of ANKRD1 (associated with dilated cardiomyopathy), LMNA (Lamin 574 

A/C; known mutations result in cardiomyopathy), as well as NKX2-5,and GATA4 (two 575 

transcription factors essential for cardiac development and survival). 576 

BI-2536-related cardiotoxicity in cluster 3 was associated with reduced 577 

expression of AGT (angiotensinogen; a critical component of the renin-angiotensin 578 

system), PRKCH (protein kinase C, eta; a calcium-dependent serine/threonine protein 579 

kinase), and NFATC4 (a cardiac transcription factor required for oxidative 580 

phosphorylation activity as well as cardiomyocyte proliferation and differentiation) 581 

(Bushdid Paul B. et al., 2003). The fourth cluster with the remaining five drugs 582 

(nitrendipine, PHA-767491, solifenacin, tegaserod, and WZ8040) presented more subtle 583 

transcriptional changes, including reduced expression of KCNE2 (potassium voltage-584 

gated channel subfamily E regulatory subunit 2; associated with arrhythmic 585 

abnormalities) and HSPB6 (a molecular chaperone with greater expression in response 586 

to stress or tissue damage) (Li et al., 2017) (Figure 7C). 587 

To evaluate functional perturbations in each cluster, we performed single-sample 588 

gene set enrichment analysis (ssGSEA) (Subramanian et al., 2005) and normalized 589 

enrichment score for each sample. Normalized enrichment scores were scaled and 590 

centered on the average scores of the DMSO group (Figure 7D). 591 

 592 

3.10 Deep Learning Predicts Structural Frameworks that Cause Cardiotoxicity 593 

To predict chemical structure frameworks that lead to cardiotoxicity, we used our deep 594 

learning approach to assess a library of 1280 diverse compounds with no known 595 

targets. We used the same conditions as the bioactive library screen. However, to 596 
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optimize the accuracy and applicability of the diverse library screen, we established a 597 

new set of training images and developed a new deep learning model that incorporated 598 

all generated datasets. From the 1280 diverse compounds, our deep learning approach 599 

identified 33 hits predicted to cause cardiotoxicity (Figure 8A,B). Analysis of the 600 

structure-activity relationship revealed three structural frameworks with two compounds 601 

(also classified as matched pairs) in each framework set (Figure 8C). For example, 602 

Framework 2a (cardiotoxicity score: 1.41) and its matched pair Framework 2b 603 

(cardiotoxicity score: 0.69) showed that adding an ethylene spacer increased the 604 

cardiomyocyte toxicity score by two-fold (Figure 8C). Based on this result, high-content 605 

phenotypic analysis using deep learning is a powerful approach to identifying chemical 606 

frameworks with cardiotoxic liabilities. By using this approach during the lead 607 

optimization process, we can de-risk a clinical development program and potentially 608 

reduce drug attrition in late-stage clinical trials. 609 

 610 

3.11 Deep Learning Predicts Proteasome Inhibitors with Reduced Cardiotoxicity 611 

Bortezomib and carfilzomib are FDA-approved proteasome inhibitors used for oncology 612 

indications, including multiple myeloma and mantle cell lymphoma (Dimopoulos et al., 613 

2016; Richardson et al., 2003). Patients given these drugs can develop 614 

cardiomyopathy, worsening heart rhythm, heart failure, and death due to cardiac arrest 615 

(Moslehi, 2016). To identify proteasome inhibitors that may reduce cardiotoxic liability, 616 

we profiled the potency of ten proteasome inhibitors using the Proteasome-Glo 617 

biochemical assay (Figure 8D). For each inhibitor, we calculated the biochemical IC50 618 

and measured the cardiotoxicity score using deep learning. We identified six inhibitors 619 
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with a similar range of biochemical potencies (~12 to ~25 nM): carfilzomib, bortezomib, 620 

epoxomicin, delanzomib, ixazomib, and oprozomib. Carfilzomib, bortezomib, and 621 

epoxomicin had the highest cardiotoxicity score; delanzomib showed the lowest 622 

cardiotoxicity liability; and ixazomib and oprozomib showed medium levels of 623 

cardiotoxicity (Figure 8E). This analysis is an example of how this type of phenotypic 624 

screening would help to de-risk a small-molecule program at an early stage. By focusing 625 

on a chemical series (or pathway) that shows high levels of potency for the intended 626 

target, we can identify compounds in that series that limit undesired toxicity in a specific 627 

cell type with a major liability (such as cardiomyocytes and hepatocytes). 628 

 629 

4 DISCUSSION 630 

In this study, we combined the power of human iPSC technology with high-content 631 

image analysis using deep learning to detect signatures of cardiotoxicity in a high-632 

throughput chemical screen. First, we treated iPSC-CMs with drugs known to cause 633 

cardiotoxicity in the clinic. We combined the contractility readout, immunostaining, and 634 

nuclear count to stratify doses of compounds into defined categories: mildly toxic, toxic, 635 

and highly toxic. Next, we trained a neural network with fluorescently labeled images to 636 

classify the images by degrees of cardiotoxicity with a data-driven method. We then 637 

constructed three deep learning models to understand how the categories would differ 638 

based on how the toxicities were classified with imaging. We found that all models 639 

strongly agreed in identifying hits predicted to cause cardiotoxic liabilities. 640 

Our screening identified classes of compounds that clustered into distinct 641 

mechanisms of action and predicted targets. Some of the compounds with the most 642 
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likely cardiotoxic liabilities included DNA intercalators and ion channel blockers, as well 643 

as EGFR, CDK, and multi-kinase inhibitors. We validated these hits using a second 644 

round of deep learning and orthogonal assays that measured mitochondrial respiration 645 

and evaluated BNP as a marker of stress. 646 

Cardiomyocytes in the adult human heart contain approximately 30% 647 

mitochondria by cell volume. These mitochondria critically regulate many cellular 648 

processes, such as metabolism, oxidative stress, cell survival, and apoptotic death 649 

(Ventura-Clapier et al., 2011). The adult human myocardium is highly metabolically 650 

active. Approximately 70% to 80% of its energy derives from oxidative phosphorylation 651 

in mitochondria fueled by fatty acid–based oxidative phosphorylation. Conversely, in 652 

immature neonatal myocardium or iPSC-CMs, ATP production is predominately through 653 

the glycolytic pathway (Sacchetto et al., 2019; Siasos et al., 2018). In previous studies, 654 

exposing iPSC-CMs to various clinically approved compounds with known 655 

cardiotoxicities led to a dose-dependent decrease in mitochondrial function in these 656 

cells (Burridge et al., 2016; Rana et al., 2012). Using mitochondrial bioenergetics in 657 

iPSC-CMs, we showed that cardiotoxic hits identified from our HCS negatively affected 658 

mitochondrial bioenergetics in iPSC-CMs, including reduced basal respiration, ATP 659 

production, and maximal respiration rate. 660 

Using RNA-seq analysis, we confirmed that iPSC-CMs treated with drugs 661 

identified using our phenotypic cardiotoxicity screening approach resulted in 662 

downregulation of key structural and developmental genes, including TCAP, MYL3, 663 

LDB3, DES, ANKRD1, NKX2-5, and GATA4. In addition, ssGSEA showed 664 

downregulation of pathways involved in cardiac muscle contraction, development, and 665 
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differentiation, further validating our phenotypic screening approach to identifying 666 

cardiotoxic drugs. 667 

Use of iPSC-derived models for cardiotoxicity (Sharma et al., 2017; Sirenko et 668 

al., 2017) and hepatotoxicity screening have been proposed (Mann, 2015). Phenotypic 669 

assays with generic readouts, such as cell viability, are typically less sensitive in 670 

identifying subtle toxicity signatures and less likely to enable hit triaging at an early 671 

stage. Other toxicity assays in iPSC-CMs, such as electrophysiology and multi-672 

electrode arrays (Takeda et al., 2018), are not scalable for HTS. Instead, high-content 673 

imaging, such as used in this study, enables researchers to use more complex assays 674 

for HTS lead discovery. 675 

Essential components are needed to build a useful deep learning neural network. 676 

For example, constructing a relatively large and annotated dataset can strengthen the 677 

model. In general, the larger the dataset, the better the performance of the model. In 678 

addition, the quality of the dataset determines the success of the deep learning model. 679 

For instance, a more homogenous set of images in well-controlled studies enables 680 

better model performance and predictive value. Conversely, heterogeneity in the cells 681 

leads to less accurate and reliable models. Furthermore, the experimenter should 682 

ensure that the classes are balanced in the training dataset. Without this balance, the 683 

training dataset will display bias toward the most represented class, and in extreme 684 

cases, may completely ignore the minority class (Johnson and Khoshgoftaar, 2019). In 685 

this study, we trained the model by feeding the neural network between 250 and 500 686 

images of pure iPSC-CMs at high cell densities from each class. This approach ensured 687 
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that we achieved a relatively large and balanced annotated dataset, while also reducing 688 

cellular heterogeneity. 689 

Widespread use of deep learning methods in the biological sciences can be 690 

challenging. This challenge may be attributed to technical and cultural norms (Moen et 691 

al., 2019). For example, biological data is inherently complex, heterogeneous, and 692 

variable. Thus, a certain threshold of data and computational resources are needed for 693 

data annotation to build accurate and useful deep learning models. Another concern 694 

has been the “black box” nature of the method, or not knowing exactly what features the 695 

deep learning net is identifying (Moen et al., 2019). We propose that the black box is “a 696 

feature and not a bug” of deep learning. We believe the black box allows researchers to 697 

interrogate a large set of perturbations in a cell-agnostic, unbiased, and high-throughput 698 

manner. 699 

In this study, we showcase the power of deep learning in uncovering new 700 

biological insights and how the technology can be more accessible to biologists. Deep 701 

learning can be used as an additional tool to interrogate subtle and difficult-to-define 702 

phenotypes. Our findings support that deep learning is a highly sensitive method to 703 

detect cardiotoxicity phenotypes that are undetectable by traditional single-readout 704 

assays. While the scope of our study was limited to identifying cardiotoxicity signatures 705 

in iPSC-CMs, the method can be applied to identifying toxicity in other cell types. 706 

Screening using iPSC-derived cells with deep learning can also be applied to de-risk 707 

early-stage drug discovery and ensure that compounds with on- and off-target toxicity 708 

are triaged at an early stage in drug development. In particular, deep learning can be 709 

used to identify targets with high-throughput perturbation screening (using small 710 
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molecules, siRNA, and CRISPR libraries). Our screening strategy is cell and modality 711 

agnostic, and it can be applied to a range of indications, such as orphan and neglected 712 

diseases. Thus, combining iPSC technology and deep learning can accelerate 713 

discovery efforts by supporting rapid model development and interrogation of targets 714 

that could be used in different areas of research and for multiple indications. 715 
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9 FIGURES LEGENDS 1054 

Figure 1. Overview of iPSC-CM differentiation, selection, cryopreservation, and 1055 

recovery for high-content screening. (A) Schematic representation of protocol for iPSC-1056 

CM differentiation, selection, and cryopreservation for high-content screening. (B) iPSC-1057 

CMs taken from a representative differentiation stained with ACTN2, TNNT2, and 1058 

MYBPC3 before and after blasticidin (Bsd) selection. (C) Representative 1059 

immunostaining of an unpurified population of iPSC-CMs before and after selection with 1060 

blasticidin. iPSC-CMs were seeded as a monolayer for screening. Hoechst stain 1061 

represented as pseudocolored-to-white for better visualization. Scale bars = 100 μm. 1062 

(D) Blasticidin-purified iPSC-CMs from a representative batch were thawed and 1063 

recovered for 7 days. Daily contractility metrics were performed to identify the optimal 1064 

time for recovery of iPSC-CMs after thaw. n = 15–32 technical replicates per day. 1065 

Error bars = SD. 1066 

 1067 

Figure 2. Effect of representative cardiotoxins on inducing structural toxicity in iPSC-1068 

CMs. (A) Displacement of iPSC-CMs was measured as a function of dose and duration 1069 

of exposure to drug. Results from three representative cardiotoxins (bortezomib, 1070 

doxorubicin, and bafilomycin) are displayed as a heatmap. (B,C) Contractility measures 1071 

of beats per minute and velocity on the fourth day of drug exposure as a function of 1072 

drug dose. Data indicate a time- and dose-dependent decline in contractility. Error bars 1073 

= SD; n = 8 technical replicates per drug dose, n = 26 for DMSO group. (D) Signal 1074 

intensities of sarcomeres stained with antibodies against MYBPC3 and ACTN2 were 1075 

measured using total fluorescent staining and normalized to DMSO control. Nuclear 1076 
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count was quantified and normalized to DMSO control. Dashed gray line, DMSO control 1077 

condition. Error bars = SD; n = 8 technical replicates per drug dose, n = 26 for DMSO 1078 

group. (E) Relative sarcomere organization quantified using scanning gradient Fourier 1079 

transform and normalized to DMSO control. The organizational index refers to the 1080 

average Fourier strength measured across the image. Error bars = SD; n = 8 technical 1081 

replicates per drug dose, n = 26 for DMSO group. (F) Levels of structural toxicity for 1082 

each drug were binned into the three categories of highly toxic (class 3), toxic (class 2), 1083 

and mildly toxic (class 1). (G) Representative immunostaining of levels of structural 1084 

toxicity in iPSC-CMs treated with bortezomib (30 nM), doxorubicin (100 nM), and 1085 

bafilomycin (100 nM). Magenta, MYBPC3; green, ACTN2. Scale bars = 100 μm. 1086 

 1087 

Figure 3. Schematic of drug screening and deep learning approach. (A) iPSC-CMs 1088 

were thawed and allowed to recover for 6 days. Two plates were designated for training 1089 

and validating the deep learning models. iPSC-CMs were then treated with known 1090 

cardiotoxins (doses ranging from 10 nM to 10 μM) in the training and validation plates 1091 

for 4 days. In parallel, a library of 1280 bioactive compounds was added to iPSC-CMs at 1092 

three doses (0.3 μM, 1.0 μM, and 3.0 μM) for 4 days. (B) Deep learning accuracies 1093 

compared across the three models. All models show more than 95% accuracy in 1094 

identifying the non-toxic DMSO-treated condition (class 0). Model accuracies were 1095 

lower when attempting to distinguish mildly toxic, toxic, and highly toxic classes. (C) The 1096 

three deep learning models compared in a two-dimensional plot on the validation plate. 1097 

Regardless of how each model was trained (based on the defined images fed into the 1098 

neural network), all models were strongly correlated when analyzing the validation 1099 
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dataset (R2 > 0.93). The DMSO-treated cells scored the lowest in toxicity, and 1100 

doxorubicin-treated (1 μM) cells scored the highest. The mildly toxic class (doxorubicin 1101 

at 0.3 μM) showed an intermediate toxicity separated from the non-toxic and highly toxic 1102 

classes. 1103 

 1104 

Figure 4. Dynamic range and Z-factors of positive and negative controls in screening 1105 

plates. (A) Comparison of Z-factor of nuclear count and MYBPC3 and ACTN2 staining 1106 

intensities for DMSO vs bortezomib (Bort; 0.1 μM) and doxorubicin (Doxo; 1 μM). The Z-1107 

factors (< 0) and the limited dynamic range of the nuclear count and sarcomere 1108 

intensities prevents reliable separation of positive and negative controls. Error bars = 1109 

SD. (B) While using deep learning (regardless of how the models are trained), the 1110 

dynamic range and Z-factors (> 0.5) enable identification of the toxic controls from the 1111 

DMSO condition. Error bars = SD. (C) Cardiotoxicity scores from all screening wells at 1112 

three doses of DMSO, bortezomib, and doxorubicin controls are compared in various 1113 

deep learning models. Regardless of how each deep learning model was trained, 1114 

cardiotoxicity scores from all three models had strong correlation when applied to the 1115 

screening plates (R2 > 0.95). 1116 

 1117 

Figure 5. Screen of bioactive compound library and identified cardiotoxic hits. (A) 1118 

Cardiotoxicity score from screening 1280 bioactive compounds at three doses. Data 1119 

from the 3-class deep learning model are plotted. Higher scores correspond to a higher 1120 

probability of a cardiotoxicity signature. Bortezomib and doxorubicin were used as 1121 

cardiotoxic controls (Cntrls). (B) Cardiotoxicity heatmap scores of top 25 cardiotoxic hits 1122 
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based on deep learning signal. The immunostaining signal is also displayed as a 1123 

heatmap. Drugs and doses with predicted cardiotoxicity are indicated in red and yellow, 1124 

while non-toxic drugs are indicated in blue. Signal intensity from immunostaining and 1125 

nuclear count was normalized to the DMSO control and converted to a toxicity scale. 1126 

Based on the generated heatmaps, phenotypic screening with deep learning is more 1127 

sensitive in detecting signals than pure immunostaining assays. (C) Target class 1128 

composition of top cardiotoxic hits from the screen, including DNA intercalators and ion 1129 

channel blockers, as well as epidermal growth factor receptor (EGFR), cyclin-dependent 1130 

kinase (CDK), and multi-kinase inhibitors. (D) Search Tool for the Retrieval of 1131 

Interacting Genes/Proteins (STRING) protein-protein interaction network was used to 1132 

identify interactions between drug targets (nodes) identified through the PRISM 1133 

repurposing dataset. Seven clusters in four protein families of DNA (green), multi-kinase 1134 

(light blue), ion channels (dark blue), and CDK (red) were found based on the highest 1135 

number of interactions. The minimum required interaction score was set to 0.4, and the 1136 

edge thickness indicated the degree of data support. 1137 

 1138 

Figure 6. Hit validation using deep learning and orthogonal assay analysis. (A) 1139 

Cardiotoxicity heatmap scores for validation of seven compounds: six cardiotoxic hits 1140 

from the primary screen and tegaserod (known to cause cardiotoxicity and withdrawn 1141 

from the market). (B) Kinetic plots of oxygen consumption rates for the seven 1142 

compounds and bortezomib as another control. Kinetic data from only the 1μM dose is 1143 

plotted. Error bars = SD. (C) Heatmaps for basal respiration, adenosine triphosphate 1144 

(ATP) production, maximal respiration, and spare respiratory capacity. BI-2535, 1145 
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daunorubicin, nitrendipine, and bortezomib had the largest effect on basal respiration, 1146 

ATP production, and maximal respiration. The oxygen consumption rate (OCR) was 1147 

measured as pmol/min/nuclear count. (D) All seven compounds show significantly 1148 

different basal respiration and ATP production (one-way ANOVA). All drugs, except 1149 

tegaserod, show significantly different maximal respiration. SRC, spare respiratory 1150 

capacity. (E) Heatmaps for ProBNP levels show that PHA-767491 elevates ProBNP 1151 

levels at all three doses. All other drugs showed no change or a slight decrease in 1152 

ProBNP levels, suggesting that ProBNP is the least-sensitive marker to assess 1153 

cardiotoxicity and cellular stress. 1154 

 1155 

Figure 7. RNA-Seq analysis of iPSC-CMs treated with candidate cardiotoxic drugs 1156 

reveals distinct clusters associated with altered gene expression. (A) Principal 1157 

component analysis (PCA) scatter plot representing the extent of transcriptional 1158 

perturbation compared with DMSO-treated iPSC-CMs. Overlapping replicates for each 1159 

drug indicate very high precision of the experiment. Daunorubicin and doxorubicin on 1160 

principal component 1 (PC1) and bortezomib on PC2 show the most different 1161 

transcriptional profile compared to the DMSO-treated group. Note that daunorubicin and 1162 

doxorubicin (both DNA intercalators) cluster together. Clustering of other drugs with the 1163 

control group indicates relatively modest changes when compared with bortezomib, 1164 

daunorubicin, and doxorubicin. (B) PCA-based hierarchical clustering of similarity matrix 1165 

shows four distinct clusters of gene expression pattern: bortezomib (cluster 1); 1166 

daunorubicin and doxorubicin (cluster 2); BI-2536 (cluster 3); and nitrendipine, PHA-1167 

767491, solifenacin, tegaserod, and WZ8040 (cluster 4). Cluster 4 shows a gene 1168 
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expression profile closer to the DMSO control group. (C) Heatmap of the most 1169 

differentially abundant cardiac tissue-enriched genes in each drug cluster versus the 1170 

DMSO-treated group. Each drug cluser shows up to five most differentially expressed 1171 

genes (FDR < 0.05), showing the presence of four distinct cluster-associated gene 1172 

groups. (D) Heatmap of the most differentially enriched pathways in each drug cluster. 1173 

Unbiased single-sample gene set enrichment analysis (ssGSEA) was performed on 1174 

curated gene lists representing the gene sets most enriched or depleted in each drug 1175 

cluster as compared with the DMSO-treated group and identified by Welch’s t-test. 1176 

 1177 

Figure 8. Screen of diverse compound library and identified cardiotoxic chemical 1178 

frameworks. (A) Cardiotoxicity scores of 1280 diverse compounds screened at 1 µM. 1179 

Sorted data from the 3-class deep learning model are plotted. Higher scores correspond 1180 

to a higher probability of a cardiotoxicity signature. Bortezomib and doxorubicin were 1181 

used as cardiotoxic controls (Cntrls). (B) Cardiotoxicity heatmap scores of top 33 1182 

cardiotoxic hits based on deep learning signal. The immunostaining signal is also 1183 

displayed as a heatmap. Drugs and doses with predicted cardiotoxicity are indicated in 1184 

red and yellow, whereas non-toxic drugs are indicated in blue. Signal intensity from 1185 

immunostaining and nuclear count was normalized to the DMSO control and converted 1186 

to a toxicity scale. (C) Three structural frameworks with matched pairs were predicted to 1187 

lead to cardiotoxicity: Framework 1 (1a and 1b, tetrahydronaphthalene-2-sulfonamide 1188 

core) Framework 2 (2a and 2b, 4-benzylpiperidine core) and Framework 3 (3a and 3b, 1189 

3-azabicycloheptane core). (D) Heatmap of chymotrypsin-like biochemical activity of ten 1190 

proteasome inhibitors profiled in iPSC-CMs. (E) Cardiotoxicity scores of ten proteasome 1191 
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inhibitors plotted as a function of chymotrypsin-like biochemical IC50. Six of the 1192 

proteasome inhibitors showed a similar range of biochemical potencies (dashed box). 1193 

Delanzomib showed the lowest cardiotoxicity score; carfilzomib, bortezomib, and 1194 

epoxomicin showed the highest cardiotoxicity scores. 1195 
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FIGURES 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Supplementary Table 1. Criteria for Defining Cardiotoxicity Scores and Binning 

Compounds Used to Establish Deep Learning Models 

Cardiotoxicity 

Score 
Description 

Drug and 

Condition Rangea 

Effect on 

Contractility 

Sarcomere 

Damage 

Nuclear 

Count 

Class 3 Highly toxic 

Bortezomib: 1 μM, 3 

μM, 10 μM 

Doxorubicin: 1 μM, 

3 μM, 10 μM 

Givinostat: 3 μM, 10 

μM 

Bafilomycin: 1 μM, 

3 μM, 10 μM 

Paclitaxol: 10 μM 

Increase or 

decrease in 

beat rate > 

30% 

Displacement 

reduced by > 

50% 

Contraction 

velocity 

reduced by > 

50% 

No visible Z-

disk, or highly 

damaged 

sarcomere 

present 

< 20% cell 

survival by 

nuclear 

count 

Class 2 Toxic 

Bortezomib: 0.03 

μM, 0.1 μM, 0.3 μM 

Cisapride: 1 μM, 3 

μM, 10 μM 

Sorafenib: 10 μM 

Givinostat: 1 μM 

Bafilomycin: 0.01 

μM, 0.03 μM, 0.1 

μM, 0.3 μM 

Paclitaxol: 3 μM 

JQ1: 10 μM 

No significant 

effect on beat 

rate 

Displacement 

reduced by > 

35% 

Contraction 

velocity 

reduced by > 

35% 

Visibly 

damaged 

sarcomeres 

 < 60% cell 

survival by 

nuclear 

count 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436666
http://creativecommons.org/licenses/by-nc-nd/4.0/


 67 

Class 1 Mildly toxic 

Bortezomib: 0.01 

μM 

Doxorubicin: 0.3 μM 

Cisapride: 0.3 μM 

Givinostat: 0.3 μM 

Paclitaxol: 1 μM 

JQ1: 1 μM, 3 μM 

No significant 

effect on beat 

rate 

No significant 

effect on 

displacement 

No significant 

effect on 

contraction 

velocity 

Subtle 

damage to 

sarcomeres, 

not easily 

quantifiable 

No 

significant 

effect on 

nuclear 

count 

Class 0b Non-toxic DMSO (0.1%) 
No significant 

effect 

No significant 

effect 

No 

significant 

effect 

DMSO, dimethyl sulfoxide. 

aEach drug concentration was binned to these classes based on three criteria: 

functional effects on contractility, extent of sarcomere damage, and number of surviving 

cells (nuclear count). 

bDMSO-treated (0.1%) condition. 
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Supplementary Table 2. Criteria Used to Construct Classes of Deep Learning Models 

Cardiotoxicity 

Score 

Description Number of 

Imagesd 

4-Class 

Modela 

3-Class 

Modelb 

2-Class 

Modelc 

Class 3 Highly toxic 432 Class 3 
Class 2 Class 1 

Class 2 Toxic 504 Class 2 

Class 1 Mildly toxic 252 Class 1 Class 1   

Class 0 Non-toxic 504 Class 0 Class 0 Class 0 

aDistinguishes highly toxic, toxic, and mildly toxic compounds from the non-toxic DMSO-

treated condition (0.1%). 

bBins highly toxic and toxic compounds into a single category separate from mildly toxic 

compounds. 

cBins highly toxic and toxic compounds separate from the non-toxic DMSO-treated 

condition. 

dThe total number of images used per class (80% of images were used to construct the 

neural network; the remaining 20% were used to validate the deep learning model). 
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Supplementary Table 3. List of Compounds with Potential Structural Cardiotoxicity and 

Associated Information 

Compound 

/Drug 
Status 

Indication/Pharmacolo

gical Classification 

Primary 

Target 

Reported Adverse 

Cardiovascular 

Events 

WZ8040 Tool compound Oncology/EGFR inhibitor EGFR  

Zileuton 

Approved. 

Immediate-

release tablets 

withdrawn from 

the US market 

Asthm, anti-

inflammatory/5-

lipoxygenase inhibitor 

ALOX5  

Mosapride 
Investigational 

drug (Phase 3) 

Gastrointestinal 

disorders/5HT4 agonist 
HTR4  

Roscovitine 
Investigational 

drug (Phase 2) 

Oncology, multiple 

indications/CDK2, 

CDK7, and CDK9 

inhibitor 

CDK2, 

CDK7, 

CKD9 

 

Streptozotocin Approved 

Pancreatic and other 

oncology, 

chemotherapy/alkylating 

antineoplastic agent 

DNA  

Adrucil Approved 

Oncology, 

chemotherapy/nucleosid

e metabolic inhibitor, 

DNA synthesis inhibitor 

DNA 

Side effects include 

cardiac toxicity 

(Adrucil. RxList., 2020)  

Betamethasone Approved 
Topical steroid, 

immunosuppressive, 
NR3C1 

Oral glucocorticoid 

identified as risk factor 
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anti-

inflammatory/glucocortic

oid receptor agonist 

for heart failure 

(Souverein et al., 

2004) 

Meropenem Approved 
Broad-spectrum 

carbapenem antibiotic 

dacB 

(E. coli) 
 

Regorafenib Approved 

Sorafenib analog, 

metastatic colorectal 

cancer/multi-kinase 

inhibitor 

KIT, KRAS, 

BRAF, KDR 

Risk of regorafenib-

induced 

cardiovascular events 

in patients with solid 

tumors (Chen and 

Wang, 2018) 

Lamivudine Approved 

Antiviral drug/HIV-1, 

HBV/reverse 

transcriptase inhibitor 

DNA  

Chlorpromazine Approved 

Antipsychotic 

medication, 

schizophrenia/dopamine 

and potassium channel 

inhibitor 

DRD1, 

DRD2, 

KCNH2 

Fast/Irregular heart 

rate (Chlorpromazine 

HCL. WebMD., 2020) 

Imidapril Approved 
Antihypertensive drug, 

ACE inhibitor 
ACE  

Rasagiline Approved 

Antidepressant, 

Parkinson’s 

disease/monoamine 

oxidase inhibitor 

MAOB  
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Anagrelide  Approved 

Blood thinner, Platelet-

reducing agent/PDE3 

inhibitor 

PDE3 

Side effects may 

include fast, irregular, 

pounding, or racing 

heartbeat or pulse 

(Anagrelide. Mayo 

Clinic., 2020) 

CI-1040 
Investigational 

drug (Phase 2) 

Oncology, lung, breast, 

pancreatic, 

colorectal/MEK1, 2 

inhibitor 

MAP2K1 

(MEK1), 

MAP2K2 

(MEK2) 

 

Dimesna 
Investigational 

drug (Phase 3) 

Uroprotective 

agent used to decrease 

urotoxicity. Used as a 

chemoprotector in 

cisplatin-based 

chemotherapy 

 (Parker et al., 2010) 

Sotalol Approved 
Anti-arrhythmic drug, 

beta-blocker 

ADRB1, 

ADRB2, 

KCNH2 

Serious side effects 

may include QT 

prolongation, heart 

failure, 

or bronchospasm 

(Sotalol. FDA.gov., 

2020) 

Melatonin Approved 

Insomnia, melatonin is 

a melatonin 

receptor agonist, used 

as a dietary supplement 

MTNR1A, 

MTNR1B 
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Solifenacin Approved 

Overactive bladder with 

urinary 

incontinence/muscarinic 

receptor antagonist 

CHRM3 

Symptoms of 

overdose may include 

fast heartbeat 

(Solifenacin. Medline 

Plus., 2020) 

BI-2536 
Investigational 

drug (Phase 2) 

Oncology/PLK1 and 

BRD4 Inhibitor 

PLK1, 

BRD4 
 

Daunorubicin Approved 

Anthracycline. DNA and 

RNA synthesis and 

inhibits DNA synthesis/T

opoisomerase II inhibitor 

DNA, 

TOP2A 

Doxorubicin analog, 

known to cause 

cardiotoxicity (Menna 

et al., 2012; Sawyer et 

al., 2010) 

Nitrendipine Approved 

Antihypertensive agent, 

vasodilator/calcium 

channel blocker 

CACNA2D1, 

CACNA1C, 

CACNB2 

 

PHA-767491 Tool compound  
CDK 

inhibitor 
 

Rosiglitazone Approved 
Type 2 diabetes/ 

PPAR-γ agonist 
PPARG 

Associated with 

increase risk of 

myocardial infarction 

(Nissen and Wolski, 

2007) 

AG-1478 Tool compound EGFR inhibitor EGFR  

ACE, angiotensin converting enzyme; ADRB, adrenoceptor beta; ALOX5, arachidonate 

5-lipoxygenase; BRAF, B-Raf proto-oncogene, serine/threonine kinase; BRD, 

bromodomain containing.;CACNA/B, calcium voltage-gated channel auxiliary subunit 

(A/B); CDK, cyclin dependent kinase; CHRM, cholinergic receptor muscarinic; dacB, D-
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alanyl-D-alanine carboxypeptidase; DRD, dopamine receptor D; EGFR, epidermal 

growth factor receptor; HTR, 5-hydroxytryptamine receptor; KCNH, potassium voltage-

gated channel subfamily H; KDR, kinase insert domain receptor; KIT, KIT proto-

oncogene, receptor tyrosine kinase; KRAS, kirsten rat sarcoma; MAOB, monoamine 

oxidase B; MAP2K1, mitogen-activated protein kinase kinase; MTNR, melatonin 

receptor; NR3C, nuclear receptor subfamily 3 group C; PDE, phosphodiesterase; PLK, 

polo like kinase; PPARG, peroxisome proliferator activated receptor gamma; TOP2A, 

DNA topoisomerase II alpha. 
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Supplementary Table 4. Primary and Secondary Antibodies Used for Immunostaining 

Type Antibody Dilution Species Manufacturer 
Catalog 

Number 

Primary Anti-MYBPC3 1:200 Mouse 

(monoclonal) 

Santa Cruz Sc-137237 

Primary Anti-ACTN2 1:200 Rabbit 

(monoclonal) 

Invitrogen 701914 

Secondary Donkey anti-

Rabbit IgG (H+L) 

Alexa Fluor 594 

1:500 Donkey anti-

Mouse IgG (H+L) 

Invitrogen A-21202 

Secondary Donkey anti-

Mouse IgG (H+L) 

Alexa Fluor 488  

1:500 Donkey anti-

Rabbit IgG (H+L) 

Invitrogen A-21207 
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Supplementary Table 5. TaqMan qPCR Probes 

Gene Probe ID 
Exon 

Boundary 

Amplicon 

Length (bp) 
Marker 

MYH7 Hs01110632_m1 39-40 73 Cardiac/Sarcomeric 

MYH6 Hs01101425_m1 20-21 67 Cardiac/Sarcomeric 

TNNI3 Hs00165957_m1 7-8 93 Cardiac/Sarcomeric 

TNNI1 Hs00913333_m1 8-9 77 Cardiac/Sarcomeric 

MYBPC3 Hs00165232_m1 12-13 56 Cardiac/Sarcomeric 

TNNT2 Hs00943911_m1 14-15 152 Cardiac/Sarcomeric 

GAPDH Hs99999905_m1 2-3 122 Housekeeping 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436666
http://creativecommons.org/licenses/by-nc-nd/4.0/


 76 

 

Supplementary Figure 1. Characterization and culturing conditions of WTC-Bsd iPSC 

line and differentiated cells. (A) Schematic of knockin strategy of the blasticidin (Bsd) 

selection cassette into the endogenous MYH6 locus and subsequent Cre-excision of the 

Puro-selectable marker. (B) Single-nucleotide polymorphism karyotyping of the WTC-

Bsd line showed no aberrant karyotypic abnormalities after genome engineering and 
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clonal expansion. (C) iPSC-CMs cultured in Tenaya’s Cardiomyocyte (TCM) media 

showed significantly upregulated maturity markers (MYH7 and TNNI3) and 

downregulated neonatal myosin isoform (MYH6) compared with iPSC-CMs cultured in 

RPMI/LT3 media. Error bars = SD. ns, not significant. (D,E) iPSC-CMs recovered and 

cultured in TCM media showed a reduced spontaneous beat rate and increased velocity 

of contractions. Data collected from five independent differentiations (n = 40 technical 

replicates per differentiation). Error bars = SD. (F) A representative batch of iPSC-CMs 

recovered in TCM media, leading to greater intensity of cardiac sarcomere markers 

(MYBP3 and TNNT2) without affecting cell survival in culture. (G) Representative 

immunostaining of iPSC-CMs recovered in PRMI/LT3 media vs TCM media. TCM 

media improved recovery of iPSC-CMs after thaw. Scale bars = 100 μm. 
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Supplementary Figure 2. Known cardiotoxins were used to establish levels of 

functional toxicity in iPSC-CMs. Eight known cardiotoxins that target various biological 

processes were used to establish training for deep learning models. The cardiotoxins 

included bortezomib (proteasome inhibitor), doxorubicin (topoisomerase inhibitor), 

cisapride (serotonin 5-HT4 receptor agonist), sorafenib (tyrosine kinase inhibitor), 

givinostat (histone deacetylase inhibitor), bafilomycin (vacuolar-type H+-ATPase), 

paclitaxel (microtubule stabilizer), and JQ1 (BET bromodomain inhibitor). For each drug, 

beat rate, velocity of contraction, and displacement were measured as a function of 

dose and time of exposure to the drug. Measurements are displayed as a heatmap. In 

most cases, the contraction velocity and displacement time- and dose-dependently 

declined alongside reduced beat rate. 
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Supplementary Figure 3. Optimization of cell seeding density and model performance. 

(A,B) iPSC-CMs were seeded at various densities in a 384-well plate and treated with 

dimethyl sulfoxide (DMSO; 0.1%), bortezomib (0.1 μM), and doxorubicin (1.0 μM) for 4 

days. The 2-class deep learning models were established (DMSO vs cardiotoxin), and 

model accuracies were plotted as a function of cell seeding density. Validation 

accuracies and Z-factors increased with greater cell density. A minimum threshold of 
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approximately 1500 cells per well is required to obtain high validation accuracies and a 

suitable screening Z-factor of approximately 0.5. (C) Training and validation accuracies 

are plotted as a function of epochs. Two representative cell seeding densities are 

plotted, showing a higher cell density leads to significantly better model performance. 

(D) Cells were scored against models built with various input numbers of cells showing 

that higher cell density leads to better separation of the DMSO vs cardiotoxin controls. 

Lower cell density leads to significant overlap between the DMSO vs cardiotoxin 

controls, while higher cell densities show maximal separation. Bort, bortezomib; Doxo, 

doxorubicin. Error bars = SD. 
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Supplementary Figure 4. Sarcomere intensity and nuclear count on screening plates 

at three doses. (A) Signal intensity and sarcomere content in screening plates using 

antibodies against MYBPC3 and ACTN2. Nuclear count was measured using Hoechst 

stain. (B) Two-dimensional plots of MYBPC3 and ACTN2 signal intensity shows a good 

correlation between the two sarcomeric stains. DMSO (0.1%), bortezomib (0.1 μM), and 

doxorubicin (1.0 μM) are used as internal controls. 
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Supplementary Figure 5. Screening results and hit identification. (A) Cardiotoxicity 

scores of putative hits from screening 1280 compounds at three doses using the 2-

class, 3-class, and 4-class deep learning models. Based on the cardiotoxicity score 

across the three doses, putative hits were clustered into high-risk, medium-risk, and 

low-risk categories. (B) Toxicity scores based on immunostaining data using MYBPC3 

and ACTN2 antibodies, and cytotoxicity based on nuclear count. 
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Supplementary Figure 6. Deep learning vs. immunostaining analysis. Cardiotoxicity 

scores of six putative hits from the primary screen show a dose-dependent increase in 

the cardiotoxicity score. Loss of MYBPC3 and ACTN2 immunostaining signal intensity 

failed to predict a strong toxicity signal (except the 3 μM dose for BI-2536, daunorubicin, 

and solifenacin). 
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Supplementary Figure 7. Validation using deep learning and mitochondrial respiration. 

(A) Deep learning validation of cardiotoxicity scores of six putative hits from the primary 

screen, along with tegaserod and known toxic controls [bortezomib (Bort), doxorubicin 

(Doxo), and JQ1]. The higher the cardiotoxicity score, the higher the predictive toxicity 
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of the compound. n = 3–8 technical replicates per compound per dose. Error bars = SD. 

(B) Kinetic plots for oxygen consumption rates for six cardiotoxic hits, along with 

tegaserod and bortezomib as controls. Kinetic data from all three tested doses (0.3–3 

μM) is plotted. Error bars = SD. (C) Orthogonal validation was performed using 

mitochondrial respiration assay after exposure to the predicted toxic drugs and known 

controls. Basal respiration, ATP production and maximal respiration show a significant 

decline compared to the DMSO-treated condition. Error bars = SD. 
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