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Abstract  

We present InTAC-seq, a method for simultaneous quantification of genome-wide open 

chromatin and intracellular protein abundance in fixed cells. Using InTAC we directly observe 

variation in chromatin accessibility and transcription factor motif occupancy driven by 

differences in transcription factor protein abundance.   By purifying bone marrow progenitor 

cells based on GATA1 protein expression, we establish its role in both functional and epigenetic 

restriction of erythroid cell identity in human hematopoiesis.  

Main text  

Transcription factors (TFs) are the master drivers of cell identity and differentiation, and 

their binding to specific regulatory sequences across the genome controls gene networks 

conferring cell phenotype and function. The identification of potential regulatory regions in a cell 

has been facilitated by techniques that map regions of open chromatin, such as the assay for 

transposase-accessible chromatin by sequencing (ATAC-seq)1,2. Still, methods to directly measure 

regulatory protein abundance in a cell and link changes in their levels to genome-wide changes in 

chromatin accessibility are lacking.  Open questions in gene regulation remain around the 

relationship between TF abundance and its influence on accessibility and occupancy at predicted 

regulatory regions. The challenge of revealing these relationships is exacerbated when cells of 

interest are rare and regulatory proteins are transiently expressed in primary human tissue, such as 

hematopoietic lineage commitment in the bone marrow. However, by overcoming these 

challenges, measurements of protein abundance for lineage defining TFs in minimally manipulated 

primary tissues could be directly integrated with the anticipated restriction of epigenetic identity, 

providing unprecedented granularity into cell-fate decision mechanisms.  

There have been a number of attempts to link gene expression to chromatin accessibility 

profiles employing single cell ATAC-seq (scATAC-seq) alone or in combination with RNA-seq 

in the same cell 3-6. While RNA levels are informative, they do not always reflect existing protein 

levels in the nucleus or account for post-translational regulation, which can dictate the functional 

state of a cell7-9. Protein expression has also been previously linked to chromatin accessibility in 

single cells (protein-indexed ATAC, or piATAC)10. However, TSS enrichment scores were 

considerably lower than those from conventional ATAC-seq libraries and piATAC datasets had 

comparatively few unique reads per cell. The lower enrichment in signal over background and 
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decreased library complexity resulted in difficulty associating differences in TF protein abundance 

to significant changes in chromatin accessibility at predicted binding sites. Therefore, 

improvements in data quality will be critical in order to quantitatively assess how protein 

regulators (i.e. TFs, chromatin modifiers, upstream signaling molecules) influence epigenetic 

state.  

Here, we introduce an improved method for intracellular staining and ATAC-seq (InTAC-

seq, or InTAC) on fixed samples that produces libraries comparable in quality to those generated 

from fresh, unfixed cells. InTAC-seq can be applied to chromatin-binding protein factors such as 

TFs and generates high quality, quantitative data from primary tissue to robustly assess the 

relationship between TF abundance and chromatin occupancy. We first benchmarked InTAC-seq 

with the GM12878 lymphoblastoid cell line.   We then further demonstrated that variation in 

GATA1 protein abundance differentially affects chromatin accessibility at sites of differing 

GATA1 binding affinity in the K562 erythroleukemic cell line. We then applied InTAC to bone 

marrow progenitor cells isolated based on GATA1 expression to profile the GATA1-associated 

epigenetic changes in human hematopoietic progenitor differentiation.  The high-quality profiles 

produced by InTAC enabled us to integrate our results with previous single cell ATAC- and RNA-

seq bone marrow datasets.  Thus, we could position the isolated GATA1 cells within this 

multiomic landscape of human hematopoietic lineage commitment. Our results reveal that while 

GATA1 is expressed in only a subset of conventional erythroid progenitors (i.e. the 

megakaryocytic and erythroid progenitor population, or MEPs), it almost entirely captures the 

erythropoietic program.  By using surrogate surface markers to enrich for GATA1 expression we 

show that GATA1-high progenitor cells demonstrate the most functionally pure erythroid 

progenitor capacity identified to date. Thus, our data define GATA1 as a central epigenetic and 

functional lineage restriction factor in human red blood cell homeostasis.  

The main challenge with combining ATAC-seq with intracellular protein quantification 

lies in the fixation and permeabilization of cells required for direct measurement of intracellular 

proteins using affinity reagents such as antibodies and subsequent paraformaldehyde crosslinking 

reversal at high temperature prior to library amplification. The conventional 65°C crosslink 

reversal step10 results in dissociation and loss of shorter fragments that contribute to a large fraction 

of the final ATAC-seq library, resulting in reduced library complexity and lower TSS enrichment 

scores. To improve data quality, the InTAC protocol uses a shorter fixation time with mild 
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permeabilization and reversal of formaldehyde crosslinks with a catalyst11 to allow crosslink 

reversal to occur at 37°C (Figure 1A).  

ATAC-seq libraries generated from fixed GM12878 cells using InTAC exhibited 

enrichment in Tn5 insertions at transcriptional start sites (TSS) comparable to the TSS enrichment 

in ATAC-seq libraries from unfixed live cells and approximately two-fold greater than that in 

published bulk piATAC libraries (Figure 1C). The fragment length distribution for InTAC libraries 

was also similar to the distribution in libraries from live cells due to preservation of sub-

nucleosomal fragments at 37°C (Figure S1A). The retention of sub-nucleosomal fragments 

translated into a larger estimated number of unique ATAC-seq fragments from InTAC and live 

ATAC libraries relative to piATAC libraries (Figure 1D). To compare InTAC libraries to unfixed 

libraries, we plotted the correlation of reads in consensus peaks and found a strong correlation 

between InTAC and live samples (Figure 1E, S1B). Genome browser tracks further illustrated the 

concordance between InTAC and live samples (Figure 1B). We further demonstrated that InTAC 

can be performed on as low as 100 cells, enabling profiling of rare cell types (Figure S1C and D). 

Together, these results show that the InTAC protocol produces ATAC-seq libraries that closely 

resemble live ATAC-seq libraries, with comparable signal-to-background (as defined by TSS 

enrichment scores) and library complexity. 

We next aimed to use InTAC to detect chromatin accessibility differences in cells 

endogenously expressing different levels of a chromatin-binding protein. We compared the 

chromatin accessibility profiles in K562 cells expressing the highest or lowest 15% of GATA1 

levels using InTAC (Figure 1F). With ChromVAR12, we found that GATA binding motifs were 

among the most variable in accessibility across samples (Figure S1E). Specifically, we observed 

increased accessibility in cells with high levels of GATA1 at GATA1 motif sites (Figure S1G and 

H). Differentially accessible peaks (FDR < 0.1) between cells with high vs low GATA1 were 

almost exclusively more accessible in GATA1-high cells, and these were most significantly 

enriched for GATA motifs relative to all other peaks present across samples (Figure 1H, S1F), 

suggesting that accessibility differences are due to differences in GATA1 abundance. 

We next asked how increases in GATA1 occupancy can vary based on the predicted 

binding affinity of the GATA1 binding site. To address this, we grouped all consensus peaks into 

20 bins of equal size based on the quality of their GATA1 motif score and measured the average 

accessibility across these bins in cells with high vs low GATA1. We found that cells with high 
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GATA1 levels exhibit a general increase in accessibility at GATA1 motif sites above a threshold 

motif score that likely represents the minimum score for a true GATA1 binding site (Figure 1I). 

However, we observed that the greatest change in accessibility between cells with high vs low 

GATA1 occurred at sites of moderate predicted affinity (i.e. bin 18), suggesting that the occupancy 

of GATA1 at the highest affinity GATA1 binding sites may be saturated even at low GATA1 

levels (Figure 1J). These results showcase the ability of InTAC to measure subtle differences in 

chromatin accessibility among populations, allowing us to link natural variation in transcription 

factor abundance to functional differences at the chromatin level and approximate TF occupation 

stoichiometry. 

While clinically significant for both cell-based therapies and hematopoietic dysplasias, the 

regulatory landscape of erythropoietic cell homeostasis in the human blood stem cell compartment 

is not well understood. Bone marrow progenitor populations are traditionally defined and isolated 

based on expression of cell-surface proteins, which viably preserves these cells for downstream 

functional assays13. However, these surface molecules are not always functionally related to the 

cellular state that we associate them with. We therefore hypothesized that intracellular regulatory 

protein abundance would identify cellular states with higher fidelity and enable more accurate 

molecular characterization. To test this, we focused on human erythroid progenitor cells, which 

are regulated by GATA114 but conventionally defined by unrelated surface molecules (i.e. IL3 

receptor CD123, and pan-leukocyte phosphatase isoform CD45RA) to delineate megakaryocyte 

erythroid progenitor (MEP) cells. We applied InTAC to interrogate the link between the abundance 

of the lineage-defining TF, GATA1, and epigenetic commitment to red blood cell development.  

 First, we used InTAC to profile the accessible chromatin landscape of GATA1-positive 

and GATA1-negative cells within the landscape of the general bone marrow progenitor 

compartment (i.e. CD34+CD38+) to determine if GATA1-positive cells were enriched for erythroid 

epigenetic signatures (Figure 2A). InTAC libraries generated from these isolated subpopulations 

had TSS enrichment scores similar to ATAC-seq libraries from live GM12878 cells indicating that 

InTAC performs well on primary human samples (Fig S2A and B). We observed a marked increase 

in accessibility at regulatory regions surrounding the GATA1 locus in GATA1-positive vs 

GATA1-negative progenitors consistent with GATA1 expression levels, along with a decrease in 

accessibility at regulatory regions within the SPI1 locus, which encodes a TF known to antagonize 

GATA1 activity and repress MEP commitment15-18 (Figure 2B). The binding motifs for these two 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436609
http://creativecommons.org/licenses/by-nc-nd/4.0/


TFs also exhibited strong differences in accessibility between GATA1-positive and negative 

progenitors (Figure 2C). We further observed a broader trend of increased accessibility 

surrounding the motifs for TFs that drive erythroid fates (eg. GATA1, Mecom19) and decreased 

accessibility at motifs for TFs that drive myeloid and lymphoid lineages (eg. SPI120,21, EBF122) in 

GATA1-positive progenitors (Figure 2C). Analysis of differentially accessible peaks showed 

enrichment of these erythroid TF motifs in sites more accessible in GATA1-positive progenitors 

and enrichment of a variety of myeloid and lymphoid TFs in sites more accessible in GATA1-

negative progenitors (Figure 2D and E, S2C). Deeper analysis into accessibility at GATA1 motif 

sites of varying binding affinity across the genome showed that high GATA1 abundance in 

progenitors is associated with marked increase in accessibility above a threshold motif score 

(Figure S2D). The greatest increases were observed at sites with the highest predicted GATA1 

affinity, confirming the preferential binding of GATA1 to the genome at these sites (Figure S2E). 

Altogether, these data suggest that GATA1 expression in human hematopoietic progenitors 

promotes an erythroid epigenetic program while repressing alternative fates. 

To further assess the position of these progenitors within the hematopoietic hierarchy, we 

projected our GATA1 progenitor samples onto a single cell ATAC-seq UMAP of filtered bone 

marrow mononuclear cells (BMMCs) from Granja et al.4 to identify their closest hematopoietic 

cell type using ArchR23. Given our focus on erythropoiesis, we performed a more fine-grained 

analysis of the erythroid cluster and separated it into early, mid, and late erythroid progenitor 

populations based on differences in gene accessibility and chromVAR deviation scores of key TFs 

(Figure 2F, S2F, G , and H). We found that GATA1-positive progenitors were positioned within 

the mid erythroid progenitor branch while GATA1-negative progenitors spanned annotated GMP, 

LMPP, and CMP clusters (Figure 2G). This observation is consistent with the expected presence 

of GMPs, LMPPs, and CMPs in CD34+CD38+ bone marrow cells13. More strikingly, the 

restriction of GATA1-positive progenitors to the mid erythroid cluster (Figure 2F and G) combined 

with the overall enrichment of erythropoietic programs (Figure 2C and D) suggests that progenitor 

expression of GATA1 alone is likely sufficient to enrich for erythroid commitment.  

To functionally assess erythroid progenitor commitment in GATA1-expressing cells, we 

sought to benchmark them against conventional human MEPs (CD34+CD38+CD10-CD123-

CD45RA-) using a colony-forming assay for clonal hematopoietic lineage potential. In order to 

isolate viable cells enriched in GATA1 for the assay, we first identified surface protein surrogates 
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for GATA1 expression. To identify GATA1 cell surface correlates, we co-stained BMMCs with 

metal isotope-conjugated antibodies to GATA1  and a 30-plex panel of relevant surface proteins 

in BM for interrogation using mass cytometry24 (Figure S2I and Table 1). We found that CD71 

and CD84, both known to be enriched in erythroid cells25, best represented GATA1 expression 

(Pearson correlation = 0.372 and 0.378, respectively; Figure S2J). The myeloid-enriched surface 

protein, CD33, was also mildly anti-correlated with GATA1 (Pearson correlation = -0.079, Figure 

S2J). Additionally, when we selected the high expressing GATA1-positive progenitors (Figure 2I 

left) at a frequency similar to that used to sort for GATA1-positive progenitors in the InTAC 

experiment (~8%), we observed an enrichment for CD71, CD84, and CD33 in the GATA1-positive 

relative to GATA1-negative populations (Figure 2H). Lastly a data-driven, back-gating approach 

was employed26 and CD33, CD84 and CD71 were predicted to best enrich for the GATA1 positive 

target population with high F-score at 0.99 (red cells, Figure S2K, L). By selecting for 

CD71+CD84+CD33- cells within the CD34+CD38+ compartment, we confirmed that these cells 

have higher expression of GATA1 relative to cells isolated with conventional MEP markers 

(Figure 2J).  

We then compared the hematopoietic colony-forming potential of the 

CD71+CD84+CD33- (i.e. GATA1-enriched) population and conventional MEPs using a 

methylcellulose assay. The CD71+CD84+CD33- (GATA1-enriched) cells were significantly 

(p=0.048) enriched for erythroid (BFU-E) colonies compared to conventional MEPs that formed 

a significant number of granulocyte and monocyte (CFU-GM) colonies (p=5.21E-4, Figure 2K 

and S2M), which is consistent with previous reports27,28.  These data confirm that GATA1 

expression in human CD34+CD38+ progenitors is sufficient to identify erythroid commitment, 

and is consistent with the GATA1 epigenetic programs we observed. 

Consistent with their mixed lineage potential demonstrated by CFU analysis, conventional 

human MEPs have mixed positive expression for GATA1 (Figure 3A). To examine the nature of 

GATA1-high cells from within the conventional MEP population and how they compare to the 

GATA1-positive CD34+CD38+ progenitors, we isolated them for InTAC (Figure 3A, S3A). 

Despite the low cell numbers obtained from these rare primary BM populations (down to ~250 

cells), the resulting ATAC-seq data were of high quality (Figure S3B). As expected, projection of 

GATA1-high cells isolated both from CD34+CD38+ progenitor and MEP compartments onto the 

scATAC UMAP of BMMCs demonstrated similar embedding within the mid-erythroid population 
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(Figure 3B). These data suggest that they are, in fact, similar cells and further confirming that 

GATA1 expression in BM progenitors is sufficient to isolate  erythroid progenitors, including as 

a subset of the conventional MEP population (Figure 3B).  

During erythropoiesis, BM progenitors undergo global changes in transcription factor 

activity and chromatin accessibility in order to restrict non-erythroid lineage potential and drive 

the erythroid program. In order to model this process within our data and understand the epigenetic 

transitions associated with GATA1 acquisition, and thus erythroid commitment, we calculated a 

pseudotime ordering of cells from HSCs to the late erythroid cluster (Figure 3C). Using the 

GATA1 cells as a landmark, we identified the positions of their closest scATAC BM cells within 

the erythroid trajectory (Figure S3H). To assess the chromatin accessibility changes across 

erythroid differentiation, we then plotted chromVAR deviations for variable TF motifs along this 

derived erythroid trajectory. We observed a coordinated decrease in accessibility at motif sites for 

TFs that drive alternative lineages and an increase in accessibility at erythroid TF motif sites 

precisely where our GATA1-positive progenitors are positioned within the trajectory (Figure 3D, 

red box and erythroid TFs in bold). The preceding stage of erythroid differentiation still shows 

persistence of non-erythroid TF motif accessibility (Figure 3D, blue box), consistent with 

functional lineage restriction and erythroid fate determination being tied to GATA1 protein 

abundance.  

Using existing scRNA-seq data from the same BM samples, we next integrated measured 

TF protein abundance data with gene expression, gene accessibility (gene score), and motif 

accessibility along a differentiation trajectory. We observe that gene accessibility changes before 

and after our determined GATA1-positive erythroid restriction point concur with expected trends 

for lymphoid/myeloid and erythroid genes, respectively (Figure S3J). Differential analysis of 

integrated scRNA-seq data at these 3 stages of erythroid differentiation reveal key hemoglobin 

subunit genes (eg. HBD, HBA1, HBB) and heme metabolism (TMEM14B/C) after the restriction 

point (Figure 3E, in green and red). We also observe differential upregulation of histidine 

decarboxylase (HDC), an enzyme in the histamine synthesis pathways, in cells at this restriction 

point, with decreasing HDC expression as cells move into the final erythroid stage. In contrast, 

preceding the GATA1-defined restriction point, we see enrichment for genes involved in various 

non-erythroid lineages (Figure 3E, in blue, with genes related to hematopoiesis bolded), including 

NRIP1 for hematopoietic stem cell quiescence29,30. Integrated maps further reveal the discord 
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between the different regulatory layers for specific genes and highlight the importance of directly 

measuring protein levels of key TFs and associated chromatin accessibility due to the presence of 

TF families that recognize similar binding motifs (Figure S3I).  

Given that conventional MEPs have mixed GATA1 expression (Figure 3A) and 

corresponds to mixed commitment to the erythroid lineage (Figure 2K), we also examined how 

the GATA1-high and GATA1-low MEP cells differed.  We observed differences in accessibility 

at the gene locus for the erythropoiesis-enhancing TF, Myb, a known target of GATA1 binding 

and repression, between these two populations, consistent with their GATA1 levels (Figure S3C). 

Notably, we found that GATA1 expression marked distinct cellular subsets with thousands of 

differentially accessible sites between GATA1-high and GATA1-low MEPs (Figure S3D, E). 

While megakaryocyte and erythroid TF motifs were enriched in GATA1-high cells, motifs for TFs 

involved in myeloid and B cell development were enriched in GATA1-low cells (Figure S3F, G). 

These results suggest that GATA1-low cells within the conventional MEP population retain some 

myeloid and/or lymphoid potential, likely resulting in their mixed lineage functional output in 

clonal assays. Interestingly, these observations are consistent with a previous study that described 

a subpopulation of cells within the MEP compartment exhibiting both erythroid and myeloid 

potential based on functional assays, although lymphoid potential was not tested31. 

In summary, we have developed a robust protocol for profiling chromatin accessibility in 

fixed cells that enables staining and isolation of populations based on protein levels of intracellular 

regulators prior to ATAC-seq. This protocol, which we termed InTAC-seq, enables us to integrate 

endogenous differences in key transcription factors with associated chromatin accessibility 

profiles to directly probe the link between their protein level abundance and chromatin occupancy. 

We use our approach to reveal GATA1-associated epigenetic profiles and infer motif binding 

stoichiometry.  

Importantly, our protocol captures high quality data from primary human tissue and can be 

used with low (~100 cells) inputs which allows direct and robust integrated profiling of 

intracellular functional drivers and their associated chromatin accessibility in rare populations such 

as progenitors in human bone marrow. We revealed the GATA1-associated epigenome in 

CD34+CD38+ hematopoietic progenitors and identified strong epigenetic restriction to erythroid 

cell fate. We further demonstrated that, as predicted based on their epigenetic restriction, these 

GATA1-expressing cells represent the best example of erythroid functional restriction compared 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436609
http://creativecommons.org/licenses/by-nc-nd/4.0/


to previous definitions. Consequently, GATA1 expression differences within MEP likely account 

for their lineage heterogeneity, given residual myeloid and/or lymphoid potential in GATA1 low 

MEPs. 

InTAC enables biologists to directly connect levels of functionally pertinent intracellular 

proteins such as transcription factors and other chromatin-binding proteins to chromatin 

accessibility profiles in order to answer gene regulatory questions and assess transient cellular 

molecular states previously difficult to access. By measuring endogenous intracellular regulators 

in complex biological contexts, InTAC delineates epigenetic landscapes driven by master TFs or 

chromatin remodelers in primary human tissue. This allows us to interrogate how levels of these 

key proteins and their cooperative and antagonistic partners could influence global chromatin 

accessibility and local binding to drive cellular state and function. Additionally, one could devise 

more complex isolation schemes based on the expression of a multitude of intracellular regulators, 

rather than those which could be accomplished with more targeted chromatin immunoprecipitation 

(ChIP) procedures if sufficient cell numbers were available.  Such an approach could identify 

cooperative or antagonistic functions with the key protein(s) of interest and associate their 

expression levels with specific cell states. Alternatively, we can design experiments that introduce 

exogenous factors into biological systems and use InTAC to isolate and profile populations with a 

range of expression of the exogenous proteins to understand the relationship between their 

abundance and chromatin architecture. InTAC is also complementary to single cell genomic 

techniques such as single cell ATAC-seq and RNA-seq as it can be integrated together with 

existing single cell data so that the populations of interest can be studied in the context of a larger 

biological system. Overall, InTAC enables the profiling of chromatin accessibility of cell 

populations isolated by abundance of intracellular proteins such as transcription factors with a cost, 

ease, and robustness that is on par with standard ATAC-seq.  

 

Methods 

Cell lines 

The human chronic myeloid leukemia cell line, K562, were obtained from the American Type 

Culture Collection (Manassas, VA, USA). The human lymphoblastic cell line GM12878 were 

obtained from Coriell Institute. Cells were cultured in RPMI 1640 medium containing 15% fetal 

bovine serum (FBS) and penicillin/streptomycin, and maintained at 37 °C, 5% CO2. 
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Primary bone marrow samples 

All fresh adult whole BM used in this study was collected in heparin sulfate anticoagulant and 

purchased from All Cells, Inc. BM mononuclear cells (BMMNC) were separated using Ficoll-

Paque Plus (Amersham Biosciences). Next, BMMNC were either cryopreserved in FBS with 10% 

of DMSO or previously enriched for CD34+ (CD34 MicroBead Kit, Miltenyi Biotec) before 

cryopreservation. 

 

K562 GATA-1 staining and sorting 

Cells were washed once with PBS, then incubated in LIVE/DEAD™ Fixable Aqua Dead Cell 

Stain (Invitrogen L34965) diluted in PBS for 30 mins on ice. After a PBS wash, cells were fixed 

with 1.6% formaldehyde in PBS for 1 min, then quenched with an equal volume of 1X 

eBioscience permeabilization buffer (Thermofisher Scientific 00-8333-56). Cells were 

immediately centrifuged for 5 min at 600g and washed once with permeabilization buffer. Cells 

were then stained with anti-cleaved caspase 3-PE (BD #550821) and anti-GATA1 (Abcam 

ab181544) for 30 mins at room temperature and FITC anti-rabbit secondary (Cell Signaling 

Technologies #4412S) for 30 mins. Washes were performed using permeabilization buffer and 

cells were resuspended in PBS for FACS and sorted using a BD FACSAria II. Cells positive for 

Aqua live/dead stain or cleaved caspase 3 were gated out and a narrow FSC gate was used to 

control for cell size. Cells in the lowest and highest 15% of GATA1 expression were then sorted 

into PBS containing 30% FBS for InTAC. 

 

Bone marrow processing and GATA-1 sorting 

On the day of the sorting, BM enriched CD34+ cells or BMMNC were thawed into cell culture 

medium supplemented with 25 U/mL benzonase (Sigma-Aldrich).  For BMMNC, cells underwent 

magnetic lineage depletion according to the manufacturer’s instructions using BD Streptavidin 

Particles Plus (BD Biosciences #557812) and the BD IMag Cell Separation Magnet (BD 

Biosciences) with biotinylated anti-CD3, CD15, CD7, and CD56. Next, cells were incubated with 

LIVE/DEAD fixable Aqua dead cell stain (Invitrogen #L34957) for 30 minutes at room 

temperature (RTP) in dark, followed by a wash with PBS, before Fc receptor blocking (Human 

TruStain FcX, Biolegend #422302) for 10 minutes. Surface staining was carried out with CD34-

FITC, CD38-BV421, CD45RA-AlexaFluor700, CD10-BV650, and CD123-PECy7 at 4oC in dark. 
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Cells were then washed with cell staining media (PBS + 0.5% BSA). Fixation was carried out with 

1.6% paraformaldehyde for 5 min at RTP before quenching with 1X eBioscience permeabilization 

buffer (Thermo Fisher Scientific 00-8333-56). Two washes were carried out with permeabilization 

buffer at 600G for 5 minutes each. Cells were incubated with GATA1-PE in permeabilization 

buffer for 45 minutes at RTP, followed by a wash with CSM and sorting using a BD FACS Aria 

II (BD Biosciences). GATA-1 high and low/intermediate gates were performed on BM progenitors 

(gated as singlet, viable CD34+, CD38+ cells) and on conventional MEP (gated as singlet, viable, 

CD34+, CD38+, CD10-, CD123-, CD45RA- cells; antibody panels in Supplementary Table 2).  

 

InTAC protocol 

Fixed, permeabilized cells were counted using a hemocytometer and up to 50,000 cells were 

used for ATAC-seq where possible. Cells were spun down at 600g for 5 mins and resuspended in 

transposition mix containing 1X TD buffer, 0.1% NP40, 0.01% digitonin, and Tn5. Cells were 

incubated at 37 degrees with 1200 rpm shaking for 1 hour. 2X reverse crosslinking buffer (2% 

SDS, 0.2mg/mL proteinase K, and 100mM N,N-Dimethylethylenediamine, pH 6.5 [Sigma 

Aldrich D158003]) was added at equal volume to transposed cells and reversal of crosslinks was 

performed at 37 degrees overnight with 600 rpm shaking. DNA was purified using Qiagen 

minelute PCR purification columns and ATAC-seq libraries were generated as previously 

described in Buenrostro et al. 2015. For preparation of live ATAC-seq samples from fresh cells 

as a comparison, samples were prepared as above, except DNA was purified immediately 

following transposition rather than performing crosslink reversal.  

 

ATAC-seq data processing 

Adapters were trimmed using cutadapt and reads were mapped using bowtie2 with max fragment 

length of 2000bp to hg19 (primary bone marrow samples) or hg38 (all cell lines). We then 

filtered for non-mitochondrial reads, mapq > 20, and properly paired reads. We then removed 

duplicates using Picard tools. Peaks were called using macs2 with the following parameters on 

Tn5 insertion sites: --shift -75 --extsize 150 --nomodel --call-summits --nolambda -p 0.01 -B –

SPMR 

 

ATAC-seq QC of live and fixed GM12878 samples 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436609
http://creativecommons.org/licenses/by-nc-nd/4.0/


For estimating library complexity, libraries were downsampled to 13 million read pairs prior to 

deduplication and library size was estimated using Picard tools EstimateLibraryComplexity. For 

TSS enrichment, deduplicated libraries were down-sampled to 10 million read pairs except for 

cell titration experiments where libraries were down-sampled to 4 million read pairs. TSS 

enrichment was calculated using the getTssEnrichment function in the ChrAccR R package for 

gencode.v27 protein coding gene transcriptional start sites.  

 

Differential accessibility analysis  

Aligned, deduplicated bam files output from data processing pipeline were loaded into R in 

HDF5 format using DsATAC.bam function in the ChrAccR R package. Consensus peakset 

across technical and biological replicates was calculated using getPeakSet.snakeATAC function 

in the ChrAccR R package where peaks have to be consistently absent or present across 

replicates to be retained. Count matrix was calculated as insertion counts across samples at 

consensus peakset regions using ChrAccR regionAggregation function. DESeq232 was used to 

calculate differentially accessible peaks and independent hypothesis weighting (cite IHW) was 

used to correct for multiple testing. ggmaplot package was used to visualize MA plot. 

Differentially accessible peaks for GATA1 high or low cells was used to calculate motif 

enrichment (getMotifEnrichment function in the ChrAccR R package) using the CIS-BP TF 

motif database (from chromVARmotifs package). Adjusted p value (q value) was converted to -

log(q value) and top enriched motifs were plotted by -log(q value) and odds ratio.  

 

ChromVAR analysis  

Raw insertions counts at relevant consensus peakset regions were RPKM normalized, log2 

transformed, and quantile normalized. ChromVAR deviation scores were calculated on the log 

transformed count matrix using getChromVarDev function in the ChrAccR R package. Top 

variable TF motifs’ deviation scores were plotted using ComplexHeatmap R package.  

 

GATA1 footprinting analysis 

To calculate GATA1 footprinting as a measure of GATA1 occupancy, we calculated Tn5 bias-

corrected, normalized insertions centered at GATA1 motif sites across the GATA1 consensus 

peak set using the aggregateRegionCounts in the ChrAccR R package using the following 
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parameters: countAggrFun = "mean", norm = "tailMean", normTailW = 0.1, kmerBiasAdj = 

TRUE, k = 6. To compare accessibility in K562 cells with high vs low GATA1 across GATA1 

sites of different binding affinity, we identified the highest scoring GATA1 sequence motif 

within each consensus peak, binned all sites into 20 equal bins based on the GATA1 motif score, 

and calculated the GATA1 footprint. We then measured accessibility flanking the GATA1 motif 

as the area under the GATA1 footprint plot from -50bp to -10bp and from +10bp to +50bp. For 

each motif score bin, the fractional change in accessibility was calculated as the average 

difference in accessibility between GATA1-high and GATA1-low samples normalized to the 

accessibility in the GATA1-low samples.  

 

Mass cytometry experiment 

BM enriched CD34+ cells were thawed and stained for viability using cisplatin protocol33. After 

quenching and washing in CSM (at 250G for 5min), cells were stained for surface markers 

before fixing in 1.6% paraformaldehyde and permeabilizing in 100% methanol for 10min at 4C. 

GATA1 and cleaved caspase antibodies were stained intracellularly before washing in CSM at 

600G for 5min. Cells were then re-fixed in 1.6% paraformaldehyde and DNA intercalator34 

before analyzing on Helios mass cytometer (Fluidigm). Supplementary Table 1 details antibodies 

used, their clones and the metal isotope channels they were conjugated to. Resulting FCS files 

from Helios run contains single cell protein level abundance for ~1mil BM cells.  

 

Mass cytometry analysis 

FCS files were gated on cytobank or cellengine platforms for cisplatin low (viability) and then 

gated for BM progenitors and conventional MEP as detailed above. Manually gated populations 

were exported into R and acsinh transformed with a cofactor of 5 and normalized from 0-1. 

CD34+/CD38+ gated BM progenitor mass cytometry data was then correlated across GATA1 

and all assayed surface markers using Spearman correlation and plotted using corrplot R package 

with hierarchal clustering. Boxplots of GATA1 high and low BM progenitors were constructed 

using top 8% of GATA1-expressing cells and remaining cells respectively in order to match 

frequency of GATA1 positivity captured in sorting for InTAC experiment. Manually gated 

canonical MEP and deduced candidate populations were plotted for GATA1 abundance using 

ggplot2 boxplot function. The data-driven, backgating algorithm GateFinder26 was applied on all 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.23.436609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.23.436609
http://creativecommons.org/licenses/by-nc-nd/4.0/


BM progenitors with candidate population as target with 2 gating step parameter and predicted 

gates were plotted as scatterplots using ggplot2.  

 

Colony-forming unit (CFU) assay 

BM enriched CD34+ cells were stained with CD34-FITC, CD38-APC/Cy7, CD71-PE, CD33-

PE/Cy7, and CD84-APC and sorted for our putative GATA-1 high erythroid progenitor 

subpopulation. We also stained and sorted cells for conventional MEPs (CD34-FITC, CD38-

BV421, CD45RA-AF700, CD10-BV650, CD123-PECy7). Antibody panels in Supplemental 

Table 2. For viability, 7-amino actinomycin D (7-AAD) was used. Our putative population 

corresponding to GATA-1 high BM progenitors were gated as singlet, viable CD34+, CD38+, 

CD84hi, CD71hi, CD33- cells. Cells were sorting using a BD FACS Aria II (BD Biosciences) and 

collected in IMDM 2% FBS for further CFU assays. 

CFU assays were performed using the MethoCultTM H4435 Enriched (STEMCELL 

Technologies). Briefly, progenitor BM sorted cells were seeded (250 or 500 cells/well) into 6 well 

SmartDish™ (STEMCELL Technologies). After incubation for 14 days, at 37oC in 5% CO2, 

hematopoietic colony-forming unit were automated counted and analyzed by STEMvisionTM 

Human (STEMCELL Technologies). Differentiation frequency was calculated for each sorted 

population by number of resulting colonies/numbers of starting cells seeded.  

 

scATAC processing and clustering  

Raw data files were downloaded from Granja et. al.4 which had scATAC and scRNA seq carried 

out in parallel on PBMC, BM and CD34-enriched BM. Processing was done using the ArchR 

package23, where Harmony35 was used to batch correct and MAGIC36 was used to impute gene 

accessibility scores. Further processing including iterativeLSI and subsequent UMAP embedding 

was carried out using ArchR’s built-in functions of addIterativeLSI and addUMAP. Pre-

determined population annotations (from scRNA seq) were integrated into the scATAC data 

using constrained integration of the scRNA seq data (addGeneIntegrationMatrix from ArchR 

which uses Seurat’s transferAnchor function). Populations were filtered to exclude more 

differentiated PBMC and BM populations such as B cells, T cells and monocytes and focus the 

analysis on BM progenitors relevant to erythropoiesis. Seurat’s FindClusters approach was used 

on dimensionality reduced iterativeLSI embedding to cluster the scATAC data and clusters were 
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labelled using predicted populations from annotated scRNA seq integration. MACS2 was run on 

the different scATAC clusters and reproducible peakset was curated using the 

addReproduciblePeakSet function with (n+1)/2 reproducibility with a maximum of 500 peaks 

per cell.  

Populations were compared across accessibility in consensus peaks using binomial test after 

binarizing data and correcting for TSS enrichment and log10(nFrags) bias in getMarkerFeatures 

function of ArchR. Features differentially enriched across populations were plotted in a heatmap 

with a FDR<0.1 and Log2FC>0.5 cutoff. Key motifs such as GATA1, CEBPA, GATA2, KLF1, 

KLF2, SPI1, RUNX1, IRF4 and IRF8 were plotted for chromVAR deviation scores as stacked 

histogram across populations using plotGroups function in ArchR. 

 

Bulk sample projection onto scATAC space  

Bulk ATAC count matrix calculated from relevant consensus peakset regions was converted into 

a summarizedExperiment data class. This was projected into the scATAC UMAP space after 

calculating iterativeLSI on bulk samples simulated as single cells using the projectBulkATAC 

function from ArchR. Resulting simulated single cell ATAC UMAP projection from bulk data 

(250 cells simulated per bulk sample) was plotted along with the scATAC data in the original 

UMAP embedding using ggplot. Closest 500 scATAC cells to simulated GATA1 positive 

samples’ bulk projection was quantified using mahanoblis distance to combined bulk sample 

centroid in projected UMAP space.  

 

Erythroid trajectory analysis  

Erythroid trajectory was quantified by fitting splines through the early progenitor, early 

erythroid, mid erythroid and late erythroid clusters using the addTrajectory function in ArchR 

and normalizing pseudotime between 0-100. Trajectory was plotted using the plotTrajectory 

function. The GATA1 positive sample demarcations on trajectory was found quantifying closest 

scATAC cells’ pseudotime values on trajectory.  

Gene accessibility, expression and chromVAR motif deviation scores for cells across the 

trajectory were extracted using the getTrajectory function from ArchR and heatmaps of top 

variable features were plotted. Normalized line plots were constructed by extracting GATA1 

positive scATAC counts across 100 pseudotime bins and plotting using ggplot. GATA1 positive 
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scATAC cells (by protein expression) was defined as GATA1 positive restriction point on 

trajectory (65-75 on pseudotime scale) and subsequently before and after restriction point was 

binned (40-60 and 80-100 respectively) as per plotted gene expression inflection points.  

 

Differential scRNA analysis 

Integrated scRNA seq data was filtered for the abovementioned 3 restriction point related bins 

(before, during and after) and imported into Seurat R package. Data was log normalized with a 

scaling factor of 10000 and scaled after. FindAllMarkers function was used to detect only 

enriched markers in the 3 bins with genes detected in at least 10% of the total number of cells at 

a foldchange threshold of 2 using ROC analysis. Top 20 markers for each bin was plotted as a 

scaled heatmap using DoHeatmap function.  

 

Graphic design  

All figures were constructed in Affinity Designer and schematics constructed in BioRender.com.   

 

Data availability 

All sequencing data is available at GEO accession GSE167934.  
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Main figures 

 

 

 

Figure 1. InTAC data from fixed cells is of comparable quality to ATAC-seq data from live cells 

and allows interrogation of TF chromatin occupancy as a function of its protein abundance 

 

A. Overview of InTAC experimental protocol. B. Genome coverage of ATAC-seq data 

generated from live cells, fixed cells using InTAC, or fixed cells using piATAC at the EBF1 

locus in GM12878 cells. C. Normalized Tn5 insertion profiles centered at transcription start sites 

(TSS) for the indicated ATAC-seq libraries. D. Scatterplot of estimated library size vs 

normalized TSS insertion score across all replicates of compared protocols. E. Scatterplot of 

reads in consensus peaks averaged across replicates between InTAC and live ATAC samples, 

with calculated Spearman correlation coefficient as shown. F. FACS plot of forward scatter 

(linear scale) vs GATA1 protein abundance (log10 scale) and the gating strategy to isolate the 

highest and lowest 15% of GATA1-expressing K562 cells. G. MA plot of log2 fold change in 

accessibility between GATA1-high and GATA1-low K562 populations vs log2 mean number of 
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reads at all consensus peaks. Peaks with significant changes in accessibility are highlighted in 

red or blue. H. Most significantly enriched TF motifs in differentially accessible peaks in 

GATA1-high cells calculated using Fisher’s test. I. Average accessibility of GATA1 motif sites 

across all consensus ATAC-seq peaks binned by GATA1 motif score. Accessibility is defined 

here as the area under the curve of a plot of bias-corrected, normalized Tn5 insertions centered at 

GATA1 motif sites (as in Fig S1G), integrated from -50 to +50 bp and excluding the TF 

footprint from -10 to +10 bp. J. Difference in GATA1 motif accessibility between GATA1-high 

and GATA1-low samples normalized to the accessibility in the GATA1-low population for each 

motif score bin.  
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Figure 2. GATA1-high BM progenitors are enriched for erythroid potential 

 

A. Bone marrow aspirate is ficolled and enriched for CD34+ cells before gating for 

CD34+/CD38+ cells and selecting GATA1 positive population (top ~8%) and negative 

population (bottom ~87%). B. InTAC genome coverage plots at GATA1 and SPI1 loci for 

GATA1 positive and negative BM progenitors. C. Heatmap of chromVAR deviation scores 

across GATA1 positive and negative BM progenitors for top 50 most variable motifs. D. MA 
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plot of log2 fold change in accessibility between GATA1 positive and negative BM progenitors 

vs log2 mean number of reads in consensus peaks. Peaks with significant changes in accessibility 

are highlighted in red or blue. E. Most significantly enriched TF motifs in differentially 

accessible peaks between GATA1 positive and negative BM progenitors calculated using 

Fisher’s test. F. UMAP of previously published and annotated BM scATAC datasets (Grenja et. 

al.) with Seurat clusters manually annotated as key BM populations. G. Bulk BM progenitor 

InTAC data simulated as single cell ATAC counts and projected onto scATAC UMAP space. H. 

Normalized surface marker abundance of GATA1 positive BM progenitors (top ~8% of 

expression) and GATA1 negative BM progenitors (bottom ~87% of expression) from mass 

cytometry I. (left) Scatter plot of GATA1 by CD34 protein expression where GATA1 positivity 

in cytometry space is defined as top 8% of expressing cells. (right) Scatter plot of GATA1-

enriching marker CD71 vs depleting marker CD33 colored by GATA1 abundance in BM 

progenitor space. J. GATA1 protein abundance in manually gated target population (as defined 

by CD71hi, CD84hi, CD33neg) versus canonically gated MEP population. K. Clonal 

differentiation frequency of target population and canonical MEP population to different 

lineages/population types.  
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Figure 3. GATA1 protein abundance delineates key erythroid commitment step in RBC 

development 

 

A. Bone marrow aspirate is ficolled and enriched for CD34+ cells before gating for conventional 

MEP (CD34+/CD38+/CD10-/CD45RA-/CD123-) cells and selecting highest (25-40%) GATA1-

expressing MEP and remaining low GATA1-expressing MEP cells. B. Bulk GATA1 positive 

BM progenitor and MEP InTAC data simulated as single cell ATAC counts and projected on 

scATAC UMAP space. C. Putative erythropoiesis trajectory constructed from HSC to late 

erythoid population and overlaid on scATAC UMAP. D. Heatmap of top variable TFs by 

ChromVAR deviation scores across constructed erythroid trajectory with the projected position 

of GATA1-positive samples indicated in red as GATA1 pos restriction, in blue as before 

restriction and in green as after restriction. Top: Line plot of GATA1 pos scATAC cells as 

binned across pseudotime E. Top 20 genes significantly enriched (of fold change 2 and above) in 

integrated scRNA seq data between the 3 bins, before, during and after GATA1 positive 

restriction. F. Summary schematic of continuous differentiation to erythrocytes in BM with 

lineage restriction from downregulation of lymphoid/myeloid TF activity and gene expression 

programs and upregulation of erythroid TF activity and gene expression programs. GATA1 

protein abundance marks key restriction point of erythroid lineage commitment. 
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