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Abstract  

Background: Excessive alcohol consumption increases the risk of aging-related 

comorbidities and mortality. Assessing the impact of alcohol consumption on biological 

age is important for clinical decision-making and prevention. Evidence shows that 

alcohol alters monocyte function, and age is associated with DNA methylome and 

transcriptomic changes among monocytes. However, no monocyte-based epigenetic 

clock is currently available. In this study, we developed a new monocyte-based DNA 

methylation clock (MonoDNAmAge) by using elastic net regularization. The 

MonoDNAmAge was validated by benchmarking using epigenetic age acceleration 

(EAA) in HIV infection. Using MonoDNAmAge clock as well as four established clocks 

(i.e., HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge), we 

then evaluated the effect of alcohol consumption on biological aging in three 

independent cohorts (N=2,242).  

Results: MonoDNAmAge, comprised of 186 CpG sites, was highly correlated with 

chronological age (rtraining=0.96, p<2.20E-16; rtesting=0.86, p=1.55E-141). The 

MonoDNAmAge clock predicted an approximately 10-year age acceleration from HIV 

infection in two cohorts. Quadratic regression analysis showed a nonlinear relationship 

between MonoDNAmAge and alcohol consumption in the Yale Stress Center 

Community Study (YSCCS, 𝑝𝑚𝑜𝑑𝑒𝑙=4.55E-08, 𝑝𝑥2=7.80E-08) and in the Veteran Aging 

Cohort Study (VACS, 𝑝𝑚𝑜𝑑𝑒𝑙=1.85E-02, 𝑝𝑥2=3.46E-02). MonoDNAmAge and light 

alcohol consumption showed a negative linear relationship in the Women’s Interagency 

HIV Study (WIHS, 𝛽=-2.63, 𝑝𝑥=2.82E-06). Heavy consumption increased 

EAAMonoDNAmAge up to 1.60 years in the VACS while light consumption decreased 
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EAAMonoDNAmAge to 2.66 years in the WIHS. These results were corroborated by the four 

established epigenetic clocks. 

Conclusions: We observed a nonlinear effect of alcohol consumption on epigenetic 

age that is estimated by a novel monocyte-based “clock” in three distinct cohorts, 

highlighting the complex effects of alcohol consumption on biological age.  

Keywords: Monocyte-based epigenetic clock, alcohol consumption, epigenetic age 

acceleration.  
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Background  

Alcohol consumption has significant adverse effects on health and contributes to 

increased morbidity and mortality [1]. Biological aging has been proposed as an 

indicator of alcohol’s adverse effect on health and frailty [2, 3]. Recently developed 

epigenetic “clocks” employ cellular DNA methylation (DNAm) as a measure of the aging 

process. DNAm-based epigenetic clocks were shown to be more sensitive and precise 

measures of cellular age than other genomic measures (e.g., transcriptome, telomere 

length) [4]. However, the study of the impact of alcohol consumption on epigenetic age 

is still in its infancy. 

To date, more than a dozen DNAm-based epigenetic clocks have been reported 

including four well-established DNAm-based age estimators. The Horvath clock 

(HorvathDNAmAge) is based on 353 CpG sites capture multi-tissue biological age 

estimation [5]. The Hannum clock (HannumDNAmAge) is derived from 71 CpGs in 

leukocytes [6]. The Levine clock (PhenoDNAmAge) employs 513 CpGs predicting life 

span [7]. Lu’s GrimAge clock (GrimDNAmAge) is a linear combination of chronological 

age, sex, and 1,030 CpG sites modeled as surrogate biomarkers for seven plasma 

proteins and smoking pack-years, predicting age at death [8]. These clocks have been 

applied as biomarkers of the aging process to understand how numerous medical or 

psychiatric conditions impact biological age. For example, HIV infection has shown a 5 

to 10 year accelerated biological age [9, 10].  

These established “clocks” have been applied to examine alcohol use on biological age. 

Epigenetic age acceleration (EAA) in heavy alcohol use and in children with fetal 

alcohol spectrum disorder have been reported [11, 12]. People with alcohol use disorder 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.22.436488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436488


 

 6 

show a trend in age acceleration in liver tissue [13] and have a 2.22-year acceleration in 

blood relative to healthy individuals [14]. On the other hand, light to moderate alcohol 

use appears to no change or even slow extrinsic epigenetic age acceleration [15, 16]. 

These observations suggest that the impact of alcohol consumption on the biological 

aging process may differ by the quantity of use and by tissue types.  

One limitation of previous studies using available epigenetic clocks is the lack of tissue 

and cell-type specificity to estimate the biological age of alcohol use, thus they may 

offer limited insight into the mechanisms of tissue-specific cellular aging. Alcohol 

consumption changes immunity and inflammatory functions that may result from 

functional alteration of immune cells [17]. For example, moderate or heavy alcohol use 

changes monocyte function [18-20]. Interestingly, Szabo et al [19] reported that alcohol 

consumption had a biphasic effect on interferon-inducibility and could affect monocyte-

derived inflammatory cytokine production, which changes the course of the aging 

process. In addition, monocytes show aging-related gene dysfunction in metabolism, 

immune function, and inflammation [21, 22], as well as DNAm and transcriptomic 

alterations [23, 24]. Therefore, it is reasonable to posit that a set of CpG sites selected 

from monocytes can serve as an indicator of the impact of alcohol consumption on 

biological age and provide insight into its underlying mechanisms.  

In this study, we aimed to characterize the effect of a range of alcohol consumption on 

monocyte epigenetic age. We developed a novel “clock” derived from the human 

monocyte DNA methylome (termed “MonoDNAmAge”) by using Elastic Net 

Regularization (ENR). We evaluated the performance of the MonoDNAmAge in 

estimating HIV-associated age acceleration as a benchmark. Finally, we assessed the 
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impact of alcohol consumption on MonoDNAmAge, EAA, and apparent methylation age 

rate (AMAR) in three distinct cohorts: Yale Stress Center Community Cohort (YSCCS) 

[25]; Veteran Aging Study Cohort (VACS) [26]; and Women’s Interagency HIV Study 

(WIHS) [27, 28].  Demographic and phenotypic information for each cohort is presented 

in Table 1 and Supplementary Information. Four well-established clocks (i.e., 

HorvathDNAmAge, HannumDNAmAge, PhenoDNAmAge, GrimDNAmAge) were also 

used to assess the impact of alcohol consumption on measures of biological age (Fig. 

1).  

 

Results  

MonoDNAmAge clock and biological interpretation 

MonoDNAmAge was derived from CD14+ monocyte methylome in Multi-Ethnic Study of 

Atherosclerosis (MESA) (N=1,202) (GSE56046) [24]. We selected a set of 186 age-

associated CpGs using ENR. The correlation between DNAm age and chronological 

age was 0.96 (p<2.20E-16) in the training set and was 0.86 (p=1.55E-141) in the testing 

set (Fig. 2a). These 186 CpG sites mapped to 135 genes (Supplementary 

Information: Table S1), including well-established genes associated with age (e.g. 

KLF14), transcription factors (e.g. RUNX3), and inflammatory function (e.g. IL17RC).  

Interestingly, the 186 CpG sites were enriched for 25 complex traits with p<5.00E-03 in 

the Epigenome-Wide Association Study (EWAS) Atlas database [29] (Fig. 2b). The top 

significant traits included aging (p=2.57E-159), smoking (p=2.39E-38), breast cancer 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.22.436488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436488


 

 8 

(p=2.71E-09), and alcohol consumption (p=8.95E-05). Three established clocks 

(HorvathDNAmAge, HannumDNAmAge, and PhenoDNAmAge) were enriched for 

multiple traits including age and smoking, but except HorvathDNAmAge (p=2.45E-03), 

none of the other two clocks was enriched for alcohol consumption (Supplementary 

Information: Fig. S1). One CpG site, SCGN cg06493394 was shared across the four 

clocks (Fig. 2c). Identifiers of CpG sites for GrimDNAmAge were not publicly available 

for comparisons. The 135 genes harboring the 186 CpG sites were enriched on 

biological pathways relevant to aging (e.g. regulation of multicellular organismal 

process) by performing Database for Annotation, Visualization and Integrated Discovery 

(DAVID) pathway enrichment analysis (http://david.niaid.nih.gov) (Supplementary 

Information: Fig. S2) [30]. 

MonoDNAmAge was significantly correlated with chronological age in all three cohorts 

(YSCCS: 𝑟=0.90, p=3.12E-181; VACS: 𝑟=0.54, p=1.75E-96; WIHS: 𝑟=0.66, p=1.50E-

60) (Fig. 2d). We also estimated the correlations of four established clocks with 

chronological age in these three cohorts. As expected, all clocks showed significant 

correlations with chronological age in each cohort (YSCCS: p=8.42E-215~4.69E-168; 

VACS: p=6.82E-205~3.94E-135; WIHS: p=2.25E-175~1.75E-91) (Supplementary 

Information: Fig. S3).  

Benchmarking MonoDNAmAge against HIV infection shows epigenetic age 

acceleration 

EAA analysis showed an average age acceleration of 10.14-years in the VACS 

(pVACS=1.17E-24) and 12.17-years (pWIHS=2.07E-28) in the WIHS in HIV+ participants 
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compared to HIV-negative (HIV-) participants (Fig. 3a, Supplementary Information: 

Table S2). To avoid a bias due to different sample sizes of HIV+ and HIV- participants, 

we randomly selected HIV+ participants to match the number of HIV- participants and 

compared the EAA value between the groups in both cohorts in Fig. 3b. As shown in 

Fig. 3b, the majority of HIV+ participants displayed positive EAA values while the 

majority of HIV- participants displayed negative EAA values. The methylation age rate 

(i.e., AMAR) of monocyte biological age was significantly greater in HIV-positive (HIV+) 

than HIV- participants in both cohorts (MDVACS=0.21, pVACS=1.00E-27; MDWIHS=0.34, 

pWIHS=6.51E-37) (Fig. 3c, Supplementary Information: Table S2).  

Additionally, we tested age acceleration in HIV infection using four established 

epigenetic clocks in VACS and WIHS. The EAAs estimated by all four clocks were 

significantly different between HIV+ and HIV- participants in both VACS (p=3.26E-

11~1.07E-02) and WIHS (p=4.62E-14~1.34E-04). For example, the EAA differences 

between HIV+ and HIV- were as great as 2.53 in VACS and 3.60 in WIHS measured by 

HorvathDNAmAge (Supplementary Information: Fig. S4 and Table S2).  AMAR was 

also greater in HIV+ than HIV- participants except for HannumDNAmAge in VACS and 

GrimDNAmAge in VACS and WIHS (Supplementary Information: Fig. S5 and Table 

S2).   

Nonlinear effects of alcohol consumption on DNA methylation age  

ANOVA model comparison showed that the quadratic regression model fits the data 

better than the linear regression model for all five clocks in the YSCCS (p=6.27E-

09~2.41E-06) and VACS (p=8.32E-04~3.91E-02) but not in the WIHS cohort (p=2.47E-
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01~4.38E-01) (Supplementary Information: Table S3). Then, the quadratic regression 

was applied to YSCCS (Fig. 4a) and VACS (Fig. 4b). In the YSCCS cohort, we 

observed a nonlinear relationship between MonoDNAmAge and Alcohol Use Diagnosis 

Identification Test (AUDIT) score (𝑝𝑚𝑜𝑑𝑒𝑙 =4.55E-08,  𝑝𝑥2=7.80E-08) (Fig. 4a). The 

other four DNAm clocks also showed nonlinear associations between DNAm age and 

AUDIT score (HorvathDNAmAge: 𝑝𝑚𝑜𝑑𝑒𝑙=2.82E-07, 𝑝𝑥2=2.37E-07; HannumDNAmAge: 

𝑝𝑚𝑜𝑑𝑒𝑙=5.54E-06, 𝑝𝑥2=2.41E-06; PhenoDNAmAge: 𝑝𝑚𝑜𝑑𝑒𝑙=4.08E-10, 𝑝𝑥2=6.27E-09; 

GrimDNAmAge: 𝑝𝑚𝑜𝑑𝑒𝑙=1.80E-07, 𝑝𝑥2=6.12E-08). 

To further investigate the relationship between MonoDNAmAge and different levels of 

alcohol consumption, we performed two linear regression analyses at the inflection point 

of the nonlinear distribution at the AUDIT score of 13 in YSCCS, separately 

(Supplementary Information: Fig. S6). We found that MonoDNAmAge was negatively 

associated with consumption at AUDIT<13 (p=5.36E-06) and positively associated with 

heavy drinking of AUDIT>13 (p=3.70E-03). Every unit change in the AUDIT score<13 

was associated with a 1.20-year decrease in MonoDNAmAge in the non-heavy alcohol 

drinking (non-HAD) group and every unit change in AUDIT score>13 was associated 

with a 0.36-year increase in MonoDNAmAge in the heavy alcohol drinking (HAD) group.  

In the VACS cohort, quadratic regression also showed a significant association of 

MonoDNAmAge on alcohol consumption measured by the natural logarithm of 

phosphatidylethanol (In(PEth)) (𝑝𝑚𝑜𝑑𝑒𝑙=1.85E-02, 𝑝𝑥2=3.46E-02) (Fig. 4b). The results 

from the three established clocks provided estimates consistent to MonoDNAmAge: 

HannumDNAmAge (𝑝𝑚𝑜𝑑𝑒𝑙=3.74E-03, 𝑝𝑥2=8.32E-04), PhenoDNAmAge (𝑝𝑚𝑜𝑑𝑒𝑙=4.97E-
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04, 𝑝𝑥2=8.60E-04), GrimDNAmAge (𝑝𝑚𝑜𝑑𝑒𝑙=3.40E-02, 𝑝𝑥2=2.21E-02). Here, the 

inflection point for the curve of PEth levels was close to the PEth cutoff for the definition 

of HAD. We found that the slope below the PEth inflection point (non-HAD: PEth<20, 

that is ln(PEth)<2.996) showed no significant (p=6.79E-01) association with 

MonoDNAmAge while the slope above the PEth inflection point (HAD: PEth≥20, that is 

In(PEth)≥2.996), showed a significant positive association with MonoDNAmAge 

(p=4.39E-02) (Supplementary Information: Fig. S6). Every unit change of In(PEth) 

above the inflection point was associated with a 1.31-year increase in DNAm age. 

However, we found that no significant association of DNAm age on AUDIT-

Consumption (AUDIT-C, first 3 items of AUDIT) score for all five clocks (𝑝𝑚𝑜𝑑𝑒𝑙=1.79E-

01~9.01E-01) (Supplementary Information: Fig. S7), suggesting that PEth is a more 

accurate measure of alcohol consumption on DNAm age than self-reported AUDIT-C. 

In the WIHS, MonoDNAmAge was linearly associated with light alcohol consumption 

measured by the number of drinks per week (NDRNKWK) (𝛽=-2.63, 𝑝𝑚𝑜𝑑𝑒𝑙=2.82E-06, 

𝑝𝑥=2.82E-06) (Fig. 4c). The negative linear relationship between DNAm age and light 

alcohol consumption was also observed with the four established clocks 

(HorvathDNAmAge: 𝛽=-1.41, 𝑝𝑚𝑜𝑑𝑒𝑙=1.33E-05, 𝑝𝑥=1.33E-05; HannumDNAmAge: 𝛽=-

1.38, 𝑝𝑚𝑜𝑑𝑒𝑙=4.99E-05, 𝑝𝑥=4.99E-05; PhenoDNAmAge: 𝛽=-1.70,  𝑝𝑚𝑜𝑑𝑒𝑙=7.74E-05, 

𝑝𝑥=7.74E-05; GrimDNAmAge: 𝛽=-1.03, 𝑝𝑚𝑜𝑑𝑒𝑙=1.23E-03, 𝑝𝑥=1.23E-03).  

Alcohol consumption alters epigenetic age acceleration 

In the YSCCS cohort, alcohol consumption was not associated with EAA estimated 

using MonoDNAmAge or the four established clocks (Fig. 4d and Table 2). However, 
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AMAR from HorvathDNAmAge, HannumDNAmAge, and GrimDNAmAge showed 

greater DNAm age than chronological age and were associated with alcohol 

consumption (=0.003~0.005, p=3.31E-05~7.29E-03).  

In the VACS cohort, EAA analysis showed that alcohol consumption significantly 

accelerated MonoDNAmAge by 1.60 years (=0.477, p=3.99E-03) (Fig. 4e and Table 

2). EAA estimated by HannumDNAmAge and PhenoDNAmAge also showed significant 

acceleration (=0.237, p=2.0E-02 and =0.375, p=3.76E-03, respectively). AMAR 

estimated by MonoDNAmAge was associated with alcohol consumption (=0.012, 

p=3.55E-04). Similarly, PhenoDNAmAge showed a similar association (=0.011, 

p=9.16E-05). HannumDNAmAge and GrimDNAmAge were also significantly positively 

correlated with alcohol consumption. 

In the WIHS cohort, MonoDNAmAge EAA was correlated with alcohol consumption in 

an inverse relationship (=-1.627, p=1.56E-04, MDEAA=-2.656) (Fig. 4f and Table 2). All 

five clocks showed decelerations of DNAm age with an average MDEAA of -1.24 years. 

AMAR for MonoDNAmAge was negatively correlated with alcohol consumption 

(MonoDNAmAge: =-0.046, p=2.54E-05). Similarly, each AMAR for HorvathDNAmAge, 

HannumDNAmAge, and PhenoDNAmAge, was significantly negatively correlated with 

alcohol consumption.  

DNAm-based age estimated by the MonoDNAmAge clock and four other clocks were 

significantly correlated with each of the six cell types in all three cohorts (r=0.54~0.93, 

p=8.42E-215~1.50E-60) (Fig. 5). Correlations were calculated for each of the five 

clocks with six estimated cell types in the HAD and moderate alcohol drinking (MAD) 
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groups separately in YSCCS and VACS, and light alcohol drinking (LAD) and non-

alcohol drinking (NAD) in WIHS. The correlation patterns were similar between the two 

alcohol use groups across the three cohorts, suggesting the effect of cell-type 

composition on the performance of the five biological age estimators does not differ 

significantly between HAD and MAD, or between LAD and NAD groups. 

 

Discussion  

Our results demonstrate that a set of DNAm CpG sites in monocytes are predictive of 

biological age, enabling the detection of the impact of alcohol consumption on DNAm 

age validated in three distinct cohorts. MonoDNAmAge clock, benchmarked against HIV 

infection, showed an approximate 10-year acceleration in HIV-positive participants. 

More importantly, this novel MonoDNAmAge clock detected a nonlinear relationship 

between DNAm-based biological age and alcohol consumption in both a healthy 

community cohort (YSCCS) and a clinic-based cohort (VACS) that included heavy 

alcohol drinkers (~33%). The impact of alcohol consumption on MonoDNAmAge was 

corroborated using four established epigenetic clocks. Thus, employing a 

comprehensive approach (i.e., one novel and four established epigenetic clocks, three 

independent cohorts, different but commonly employed measures of alcohol exposure), 

we identified for the first time that alcohol consumption appears to have a complex, 

nonlinear relationship with DNAm-based estimates of biological age.  

Different from previous studies, here we examined the effect of alcohol consumption on 

epigenetic age by applying a novel cell-type-specific epigenetic clock related to the 
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biological mechanism of alcohol consumption. The monocyte methylome plays an 

important role in epigenetic aging. Recently, differentially methylated regions in CD14 

monocytes between young (24-30 years) and older (57-70 years) individuals have been 

reported [31]. Those age-associated CpG sites or DNAm regions have been linked to 

transcriptomic changes with aging [31]. Therefore, a CD14 monocyte epigenetic clock 

may provide a more accurate measure of the biological age of genes that compose the 

MonoDNAmAge clock that have functional implications for the aging process in 

monocyte-related phenotypes such as HIV infection and alcohol consumption. Indeed, 

the 186 MonoDNAmAge CpG sites are enriched in alcohol consumption and other 

related traits (e.g. smoking, cancer). Interestingly, although MonoDNAmAge and the 

established epigenetic clocks are composed of different sets of CpGs with the exception 

of one site (SCGN cg06493394), these clocks showed reasonably consistent but not 

identical performance in estimating alcohol’s effect on epigenetic age. We speculate 

that each epigenetic clock is estimating different but related facets of biological aging, 

inferred in part by the overlapping traits that show enrichment for the CpG sites that 

compose each DNAm-based epigenetic clock.  

The nonlinear association between alcohol consumption and biological age is 

interesting. The beneficial and harmful effects of alcohol consumption have been well 

documented in the literature [1, 32-35]. While any amount of alcohol is harmful to health 

[1], some studies showed that alcohol consumption had a U-shaped relationship to 

biomarkers including HDL, LDL, VLDL, and inflammation [36, 37], underscoring the 

bidirectional effects on cardiovascular and metabolic disease risks. In a line of this 

evidence, we observed a nonlinear association between alcohol consumption and 
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biological age in two cohorts, YSCCS and VACS, in which the numbers of heavy and 

non-heavy alcohol consumers were relatively balanced. In the WIHS cohort, the 

predominance of none-to-light drinkers may explain why the negative association with 

biological aging was similarly observed; insufficient observations were available to test 

the relationship between heavy drinkers and biological aging. The results of EAA 

showed heavy consumption measured by PEth accelerated epigenetic age of 1.60 

years, consistent with a previous report of a 2-year acceleration in individuals with 

Alcohol Use Disorder (AUD) [14]. On the other hand, EAA was inversely associated with 

light to moderate alcohol consumption, which is consistent with a previous report that 

self-reported moderate alcohol use (i.e., number of drinks per week) showed a negative 

correlation with biological age estimated using PhenoDNAmAge [7].  

A possible explanation for the observed nonlinear relationship between alcohol 

consumption and biological aging is that individuals with light to moderate alcohol use 

are more likely to follow a healthier lifestyle. For example, in the YSCCS and VACS, 

individuals not reporting HAD showed lower smoking rates and cannabis use, than 

those with HAD, suggesting that a healthy lifestyle may slow or potentially even reverse 

the epigenetic aging process due to alcohol consumption. Another possibility is due to 

underreported alcohol consumption among participants. For example, in the VACS 

cohort, 17.02% of participants reported AUDIT-C as 0 but PEth level among those 

participants are greater than 8ng/mL (Supplementary Information: Fig. S8), which 

indicates active alcohol use [38]. Inaccurately self-reported alcohol consumption may 

result in biased findings towards the slow acceleration of light-to-moderate drinkers on 

biological age. These observations need further investigations with accurately assessed 
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phenotype or in longitudinal cohorts.  Whereas the overall harm of alcohol drinking 

consumption is outweighed the benefit, causality has remained elusive [32]. 

We acknowledge some limitations of this study. A recent study suggests that the 

accuracy of DNAm-based epigenetic clock estimation is affected by sample size [39]. 

Validation of the MonoDNAmAge clock in a large independent sample is warranted. 

DNAm in the three cohorts was measured in DNA from whole blood. We expect that 

DNAm derived solely from monocytes may be a more accurate predictor of the impact 

of alcohol consumption. We are unable to examine DNAm age in past alcohol users, for 

different patterns of alcohol consumption, or for comorbidity with other substance or 

drug use. Furthermore, while differences in the effects of alcohol use between women 

and men are well documented, the study lacked sufficient power to evaluate for sex 

differences in alcohol exposure on biological aging.  

 

Conclusion 

We found that alcohol use impacts epigenetic aging in a nonlinear fashion with heavy 

consumption accelerating while non-heavy use decreasing the acceleration of biological 

age. The use of cell-type-specific epigenetic clocks that are known to be directly 

impacted by alcohol exposure may provide more precisive information than provided by 

more holistic epigenetic clocks that estimate more global biological aging effects. Our 

study expands previous knowledge and provides new insights on the impact of a 

spectrum of alcohol use on epigenetic aging.  
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Methods  

Study cohorts and phenotype assessments 

Multi-Ethnic Study of Atherosclerosis (MESA) (N=1,202) [24]. DNAm data of the 

MESA Epigenomics and Transcriptomics Study (GSE56046) was used to construct the 

MonoDNAmAge clock. The DNA samples were from CD14+ monocyte samples, 

collected from 1,202 individuals with ages ranging from 44 to 83 years.  

The following three cohorts were used for assessing alcohol’s effects on DNAm aging 

(Table 1, see details of study cohorts and phenotype assessment in Supplementary 

Information).  

Yale Stress Center Cohort Study (YSCCS) (N=502) [25]. The cohort served as a 

community-based sample to examine the impact of alcohol consumption on DNAm age 

among healthy participants. The 10-item AUDIT scale was used to assess alcohol use. 

HAD was defined as AUDIT≥8 for men and AUDIT≥7 for women (N=148) [40]. The 

average AUDIT score was 5.69 among all participants in the cohort.  

Veterans Aging Cohort Study (VACS) (N=1,259) [26]. The cohort served as a clinic-

based sample to benchmark HIV infection on MonoDNAmAge and to examine the 

effects of alcohol consumption on DNAm age. The participants included both HIV+ 

(N=1,151) and HIV- (N=104) individuals. A majority of HIV+ participants were on 

antiretroviral therapy and were virally suppressed (63.66%). Alcohol consumption was 

assessed by using PEth, a biomarker for alcohol use [22] that is positively correlated 

with AUDIT scores [41, 42]. HAD was defined as PEth≥20 (N=299) according to a 
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previous study [43]. The average PEth was 41.7 ng/ml. Self-reported AUDIT-C was also 

collected for each participant.  

Women’s Interagency HIV Study (WIHS) (N=481) [27, 28].  The cohort served as a 

clinic- and community-based sample to examine HIV infection and alcohol consumption 

on DNAm age. This study included HIV-positive (N=272, 90.44% virally suppressed) 

and HIV-negative (N=209) participants. The cohort predominantly reported light alcohol 

use with an average NDRNKWK of 0.7. The LAD was defined as 0<NDRNKWK≤7 

(N=196), and the NAD was defined as NDRNKWK=0 (N=255) [44].  

DNA methylation and data quality control (QC) 

Epigenome-wide CpG methylation was profiled by using either the Illumina 

HumanMethylation450 BeadChip (HM450K) (San Diego, CA, USA) in MESA 

(monocyte), YSCCS (blood), and VACS (blood) (57.2% of the sample) or Illumina 

HumanMethylation EPIC BeadChip (EPIC) (San Diego, CA, USA) in 42.8% of the 

VACS samples and the WIHS (blood) samples. All samples in the three study cohorts 

(YSCCS, VACS, and WIHS) were processed at the Yale Center for Genomic Analysis 

[45]. We applied the method described by Houseman et al. [46, 47] to estimate 

proportions of CD4+ T cell, CD8+ T cell, NK T cell, B cell, monocyte, and granulocyte 

DNAm in each cohort. The QC for the MESA cohort was previously reported [24]. For 

the YSCCS, VACS, and WIHS cohorts, we applied the same QC process as reported in 

our previous studies [45, 48, 49].  

MonoDNAmAge clock development 
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As depicted in Fig. 1, we applied ENR to build a MonoDNAmAge clock. All samples in 

MESA were divided into two sets: a training (N=721) and a testing (N=481) set.    

Briefly, the top 1,000 significant CpG features were preselected from monocyte 

methylome based on the EWAS on age in the MESA. In the training set, the ENR 

combined with random sampling was performed to select CpGs and establish the 

predictive model. The CpGs were filtered and sorted according to their coefficients in 

ENR. In the testing set, we added CpGs sequentially and calculated the corresponding 

correlations between the predicted MonoDNAmAge and chronological age. We 

determined the linear combination of the CpG set with the correlation at the inflection 

point of the performance curve in the testing set as MonoDNAmAge (Fig. 2a). The 

performance of MonoDNAmAge was evaluated in the three validation data sets (i.e., 

YSCCS, VACS, and WIHS). Analyses were performed using R software. ENR was 

performed using the function “cv.glmnet” in the “glmnet” package. The details of feature 

selection are described below. 

Preselection of CpGs. Because a large number of CpGs may introduce noise, DNA 

methylation of CpGs under the epigenome-wide significance threshold may collectively 

account for phenotype variation and may improve prediction of a phenotype, we 

preselected the top 1000 age-associated CpGs from the EWAS on age in the MESA 

cohort.  

Importance ranking of CpGs in the training set. The preselected CpGs were used to 

establish the predictive model in the training set of MESA. We randomly selected 80% 

of training subjects without replacement 200 times and constructed a model for each 
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replication. We only included the CpGs that were present in more than 95% of all 

replications in the final model and ranked the CpGs based on the coefficients of all 

replications. For the ENR method in each replication, the 10-fold cross-validation 

procedure was included in the feature selection to obtain the estimations of ENR tuning 

parameters. We extracted the coefficients for the model with the lambda value 

corresponding to the minimum mean cross-validated error. The CpG importance 

ranking was based on the summation of the absolute value of the coefficients of all 

replications.  

Epigenetic clock construction using ENR in the testing set. The CpG features were 

selected based on Pearson's correlation coefficient between predicted DNAm age and 

chronological age in the testing set of MESA. Based on the CpG importance ranking, 

CpGs were added one at a time, and the correlation coefficients between predicted 

DNAm age and chronological age were calculated. We selected the CpG set with the 

correlation at the inflection point of the performance curve.    

Evaluation of epigenetic clock performance in the validation dataset. The performance 

of the CpG features selected from MESA was evaluated in three independent validation 

cohorts (YSCCS, VACS, and WIHS) using the four measures, EAA, MDEAA, AMAR, and 

MDAMAR (see Statistics section). 

Statistics 

Epigenetic clocks and assessments 

Pearson correlation coefficients (r) between the DNAm age and chronological age were 

estimated in each cohort. EAA was defined as the residuals of regressing DNAm age on 
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chronological age [5, 50]. We calculated the mean difference of EAA between heavy 

users and non-heavy users, between HIV+ and HIV-, and denoted it as MDEAA. AMAR 

was defined as the ratio of DNAm age to chronological age [6], AMAR>1 represents 

DNAm age acceleration, and AMAR<1 represents DNAm age deceleration. We also 

calculated the mean difference of AMAR between heavy and non-heavy users, between 

HIV+ and HIV-, and denoted as MDAMAR. 

Benchmarking the MonoDNAmAge clock using HIV infection  

We evaluated whether the MonoDNAmAge was able to predict changes in DNAm age 

for HIV infection in two cohorts (VACS and WIHS) using linear regression, EAA or 

AMAR as the dependent and HIV infection as the independent variable. We adjusted 

potential confounding factors including self-reported ethnicity, sex, tobacco use, body 

mass index (BMI), and alcohol-related phenotype in the model.  

Association between alcohol consumption and DNAm-based biological age  

Instead of just assuming a linear relationship between alcohol consumption and DNAm 

age, we first compared the linear model (reduced model) with the quadratic model (full 

model) for modeling the relationship between DNAm age and alcohol consumption 

(AUDIT in YSCCS; ln(PEth) in VACS; and NDRNKWK in WIHS) using ANOVA. The null 

hypothesis is that the reduced model is as good as the full model. We applied quadratic 

model when the quadratic model was significantly better than the linear model, 

otherwise, we applied the linear model.  

In the quadratic regression model, DNAmAge=𝛽2 𝑥2 + 𝛽1𝑥 + 𝛽0, where 𝛽2 ≠ 0 and 𝑥 

represents alcohol consumption. The t-test was used to conduct hypothesis tests on the 
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regression coefficients obtained in both quadratic regression and simple linear 

regression. That is, for the quadratic regression model, we tested 𝐻0: 𝛽𝑗 = 0  vs. 𝛽𝑗 ≠ 0 

using t-test 𝑇𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 =
�̂�𝑗

𝑆𝐸(�̂�𝑗)
~𝑡(𝑛 − 3), where 𝑛 is the sample size. We also tested the 

regression model 𝐻0: the regression model was not significant vs. 𝐻𝑎: the regression 

model was significant by performing F test, 𝐹𝑚𝑜𝑑𝑒𝑙 =
𝑀𝑆𝑅

𝑀𝑆𝐸
=

𝑆𝑆𝑅/2

𝑆𝑆𝐸/(𝑛−3)
~𝐹(2, 𝑛 − 3) based 

on ANOVA test, where 𝑀𝑆𝑅 was the regression mean square and 𝑀𝑆𝐸 was the error 

mean square, 𝑆𝑆𝑅 = ∑ 𝑛(𝐷𝑁𝐴𝑚𝐴𝑔𝑒̂
𝑖 − 𝐷𝑁𝐴𝑚𝐴𝑔𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2𝑛
𝑖=1  was the corrected sum of 

squares for regression model and 𝑆𝑆𝐸 = ∑ 𝑛(𝐷𝑁𝐴𝑚𝐴𝑔𝑒𝑖 − 𝐷𝑁𝐴𝑚𝐴𝑔𝑒̂
𝑖)

2𝑛
𝑖=1  was the 

sum of squares for error. 

We also examined EAA and AMAR between different groups of alcohol consumption in 

each cohort, adjusted potential confounding factors including self-reported ethnicity, 

sex, tobacco use, and BMI.  

Correlation between DNAm age and cell types in different alcohol consumption 

groups 

To address potential cell type confounding effects, Pearson correlation coefficients (r) 

between DNAm-based estimates of biological age and six cell type proportions were 

estimated in each cohort. 
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Table 1. Demographic and clinical characteristics for YSCCS, VACS, and WIHS 

Variable 

YSCCS VACS WIHS 

HAD MAD 

p 

HAD MAD 

p 

LAD NAD 

p 

Men:     
AUDIT≥8        
Women: 
AUDIT≥7               
(N=148) 

Men:     
AUDIT<8           
Women: 
AUDIT<7                
(N=354) 

PEth≥20      
(N=299) 

PEth<20      
(N=738) 

 
0<NDRNKWK≤7 

(N=196) 

 
NDRNKWK=0 

(N=255) 

age 26.8 ± 7.13 29.8 ± 9.28 1.35E-04 50.7 ± 7.23 51.1 ± 8.14 5.03E-01 40.3 ± 9.13 43.7 ± 9.46 1.13E-04 

sex (%male) 64.9% 35.3% 2.18E-09 100% 100%/ NA 0% 0% NA 

race (AA) 12.2% 22.4% 1.29E-02 86.6% 80.2% 1.90E-02 49.0% 49.8% 9.69E-01 

smoker 39.9% 12.7% 1.77E-11 68.1% 54.3% 6.27E-05 70.9% 67.3% 8.97E-01 

HIV-positive 0% 0% NA 93.7% 91.3% 2.63E-01 50.5% 63.9% 1.54E-04 

log10VL 0 0 NA 2.82 ± 1.23 2.66 ± 1.24 8.44E-02 2.16 ± 0.69 2.05 ± 0.48 1.34E-01 

cannabis use 88.4% 56.9% 2.40E-11 84.5% 73.4% 2.21E-04 50.8% 29.1% 3.83E-06 

cocaine use NA NA NA 75.3% 66.0% 4.34E-03 NA NA NA 

stimulant use NA NA NA 36.9% 39.9% 4.08E-01 NA NA NA 

opiate use NA NA NA 42.3% 44.2% 6.27E-01 NA NA NA 

YSCCS: Yale Stress Center Cohort Study; VACS: Veterans Aging Cohort Study; WIHS: Women’s Interagency HIV Study. 

HAD: Heavy Alcohol Drinking; MAD: Moderate Alcohol Drinking; LAD: Light Alcohol Drinking; NAD: Non-Alcohol Drinking. 
AA: African American, AUDIT: Alcohol Use Disorders Identification Test, AUDIT-C:  Alcohol Use Disorders Identification Test-Consumption, VL: 
viral load. 

Welch’s two-sample t-test for testing two groups mean; chi-square test for testing two groups percentage. 

Significant phenotypes are in bold. 

The cannabis, cocaine, stimulant, and opiate use in VACS were defined as case (>0) and control (=0).  
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Table 2. Association between EAA/AMAR and alcohol consumption 
Measure Cohort Method beta 95% CI p MD 

EAA 

YSCCS 

MonoDNAmAge 0.040 (-0.031, 0.112) 2.68E-01 0.129 

HorvathDNAmAge 0.044 (-0.008, 0.096) 1.00E-01 0.415 

HannumDNAmAge 0.028 (-0.026, 0.083) 3.11E-01 0.786 

PhenoDNAmAge -0.031 (-0.111, 0.049) 4.42E-01 -0.856 

GrimDNAmAge 0.033 (-0.013, 0.079) 1.57E-01 0.767 

VACS 

MonoDNAmAge 0.477 (0.153, 0.802) 3.99E-03 1.603 

HorvathDNAmAge 0.056 (-0.141, 0.253) 5.77E-01 0.135 

HannumDNAmAge 0.237 (0.038, 0.436) 2.00E-02 0.711 

PhenoDNAmAge 0.375 (0.122, 0.628) 3.76E-03 1.632 

GrimDNAmAge 0.138 (-0.079, 0.356) 2.13E-01 1.520 

WIHS 

MonoDNAmAge -1.627 (-2.463, -0.791) 1.56E-04 -2.656 

HorvathDNAmAge -0.704 (-1.054, -0.353) 9.73E-05 -0.806 

HannumDNAmAge -0.676 (-1.115, -0.236) 2.75E-03 -1.084 

PhenoDNAmAge -0.843 (-1.374, -0.312) 1.98E-03 -0.914 

GrimDNAmAge -0.406 (-0.658, -0.153) 1.74E-03 -0.746 

AMAR 

YSCCS 

MonoDNAmAge -0.003 (-0.0064, 0.0012) 1.84E-01 -0.056 

HorvathDNAmAge 0.003 (0.0007, 0.0044) 7.29E-03 0.026 

HannumDNAmAge 0.004 (0.0021, 0.0065) 1.33E-04 0.051 

PhenoDNAmAge -0.003 (-0.0058, 0.0001) 6.32E-02 -0.052 

GrimDNAmAge 0.005 (0.0025, 0.0070) 3.31E-05 0.057 

VACS 

MonoDNAmAge 0.012 (0.0054, 0.0185) 3.55E-04 0.034 

HorvathDNAmAge 0.002 (-0.0026, 0.0063) 4.19E-01 0.003 

HannumDNAmAge 0.004 (0, 0.0088) 4.85E-02 0.012 

PhenoDNAmAge 0.011 (0.0054, 0.0161) 9.16E-05 0.031 

GrimDNAmAge 0.010 (0.0044, 0.0157) 4.89E-04 0.030 

WIHS 

MonoDNAmAge -0.046 (-0.0668, -0.0247) 2.54E-05 -0.092 

HorvathDNAmAge -0.015 (-0.0241, -0.0062) 1.00E-03 -0.013 

HannumDNAmAge -0.012 (-0.0234, -0.0004) 4.35E-02 -0.009 

PhenoDNAmAge -0.028 (-0.0426, -0.013) 2.61E-04 -0.057 

GrimDNAmAge -0.002 (-0.0099, 0.0052) 5.43E-01 0.002 

EAA: Epigenetic Age Acceleration; AMAR: Apparent Methylation Age Rate.  
YSCCS: Yale Stress Center Cohort Study; VACS: Veterans Aging Cohort Study; WIHS: Women’s 
Interagency HIV Study. 
95% CI: 95% confidence interval for coefficient beta. 
The p-values in bold indicate the values less than 5.00E-02.  
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Fig. 1. The workflow of establishing a monocyte DNA methylation “clock” using a 

feature selection method. YSCCS: Yale Stress Center Cohort Study; VACS: Veterans 

Aging Cohort Study; WIHS: Women’s Interagency HIV Study; EWAS: Epigenome-Wide 

Association Studies; ENR: Elastic Net Regularization; EAA: Epigenetic Age 

Acceleration, the residuals of regressing DNA methylation age on chronological age; 

MDEAA: The mean difference of EAA between different groups for phenotypes of 

interest; AMAR: Apparent Methylation Age Rate, the ratio of DNA methylated age to 

chronological age; MDAMAR: The mean difference of AMAR between different groups for 

phenotypes of interest. 
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Fig. 2. MonoDNAmAge development and performance. (a) Feature selection using 

elastic net regularization (ENR) for estimating MonoDNAmAge. The figure shows the 

Pearson correlation coefficients for the training and the testing data sets from MESA. 

(b) Trait enrichment of the selected 186 CpGs for MonoDNAmAge. (c) Overlapping 

CpG sites among four epigenetic clocks. (d) Correlation between MonoDNAmAge and 

chronological age in three independent cohorts: Yale Stress Center Cohort Study 

(YSCCS); Veterans Aging Cohort Study (VACS); and Women’s Interagency HIV Study 

(WIHS).  
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Fig. 3. Comparison of MonoDNAmAge-based estimations of biological aging for 

HIV-positive and HIV-negative participants. (a) Violin plots showing significant 

differences in the Epigenetic Age Acceleration (EAA, the residuals of regressing 

MonoDNAmAge on chronological age) between HIV-positive (HIV+) and HIV-negative 

(HIV-) groups. (b) Lollipop plots for EAA between HIV+ and HIV-. (c) Density plots for 

Apparent Methylation Age Rate (AMAR, the ratio of MonoDNAmAge to chronological 

age) between HIV+ and HIV-. VACS: Veterans Aging Cohort Study; WIHS: Women’s 

Interagency HIV Study. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.22.436488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436488


 

 31 

 

Fig. 4. Relationships between DNA methylation age (DNAmAge) based on 

different approaches and alcohol consumption. The three rows correspond to Yale 

Stress Center Cohort Study (YSCCS), Veterans Aging Cohort Study (VACS), and 

Women’s Interagency HIV Study (WIHS). (a) The parabola shows the relationship 

between DNAmAge and the Alcohol Use Disorders Identification Test (AUDIT) score in 

the YSCCS. (b) The parabola shows the relationship between DNAmAge and the 

natural logarithm of Phosphatidylethanol (ln(PEth)) in the VACS. (c) The linear 

regression line shows the negative relationship between DNAmAge and the number of 

drinks per week (NDRNKWK) in the WIHS. (d)-(f) Violin plots for Epigenetic Age 
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Acceleration (EAA) (the residuals of regressing DNA methylation age on chronological 

age) for different groups of alcohol consumption in the three cohorts. (d) Comparison of 

heavy alcohol drinking (HAD) (AUDIT>=7 for men and AUDIT>=8 for women) and 

moderate alcohol drinking (MAD) (AUDIT<7 for men and AUDIT<8 for women) in the 

YSCCS. (e) Comparison of HAD (PEth>=20) and MAD (PEth<20) in the VACS. (f) 

Comparison of light alcohol drinking (LAD) (0<NDRNKWK<7) and non-alcohol drinking 

(NAD) (NDRNKWK=0) in the WIHS. 
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Fig. 5. Correlation between five epigenetic clocks and cell-type proportions. 

Comparison of heavy alcohol drinkers (HAD) (AUDIT>=7 for men and AUDIT>=8 for 

women) and moderate alcohol drinkers (MAD) (AUDIT<7 for men and AUDIT<8 for 

women) in the Yale Stress Center Cohort Study (YSCCS); HAD (PEth>=20) and MAD 

(PEth<20) in the Veterans Aging Cohort Study (VACS); light alcohol drinkers (LAD) 

(0<NDRNKWK<7) and non-alcohol drinkers (NAD) (NDRNKWK=0) in the Women’s 

Interagency HIV Study (WIHS). ***indicates p-value<1.00E-03; ** indicates p-

value<1.00E-02; * indicates p-value<5.00E-02.  
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