| 2        |    |                                                                                                                                                         |
|----------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>⊿   |    |                                                                                                                                                         |
| -+<br>5  |    |                                                                                                                                                         |
| 6        |    |                                                                                                                                                         |
| 7        | 1  | Title                                                                                                                                                   |
| 8        |    |                                                                                                                                                         |
| 9        | С  | Effects of groon manure application on soil microhial communities and activities in the                                                                 |
| 10       | Z  | Effects of green manufe application on son microbial communities and activities in the                                                                  |
| 11       |    |                                                                                                                                                         |
| 12       | 3  | decontaminated sandy soil paddy field in Fukushima Japan                                                                                                |
| 13       | •  |                                                                                                                                                         |
| 14       |    |                                                                                                                                                         |
| 15       | 4  |                                                                                                                                                         |
| 17       |    |                                                                                                                                                         |
| 18       |    |                                                                                                                                                         |
| 19       | 5  | Authors                                                                                                                                                 |
| 20       |    |                                                                                                                                                         |
| 21       | 6  | Chol Gun Lool 23 Vulco Mitando4 Sob Sugibaro24 Tajjabiro Ookowo24 Harvo Tanako4                                                                         |
| 22       | 0  | Choi Oyu Lee <sup>1, -, o</sup> , Tuko misuda <sup>1</sup> , Son Suginara <sup>-, +</sup> , Tancinio Ookawa <sup>-, +</sup> , Haiuo Tanaka <sup>+</sup> |
| 23       |    |                                                                                                                                                         |
| 24       | 7  |                                                                                                                                                         |
| 25       |    |                                                                                                                                                         |
| 26       |    |                                                                                                                                                         |
| 27       | 8  | Affiliations                                                                                                                                            |
| 20<br>29 |    |                                                                                                                                                         |
| 30       |    |                                                                                                                                                         |
| 31       | 9  | <sup>1</sup> Graduate School of Bio-Applications and Systems Engineering, Tokyo University of                                                           |
| 32       |    |                                                                                                                                                         |
| 33       | 10 | Agriculture and Technology Reganci Televe 194 9599 Janan                                                                                                |
| 34       | 10 | Agriculture and recimology, Roganer, rokyo, ro4-8588, Japan                                                                                             |
| 35       |    |                                                                                                                                                         |
| 36       | 11 | <sup>2</sup> Institute of Global Innovation Research Tokyo University of Agriculture and                                                                |
| 3/       |    |                                                                                                                                                         |
| 38       |    |                                                                                                                                                         |
| 40       | 12 | Technology, Fuchu, Tokyo, 183-8538, Japan                                                                                                               |
| 41       |    |                                                                                                                                                         |
| 42       |    |                                                                                                                                                         |
| 43       | 13 | <sup>3</sup> Japan Collection of Microorganisms, RIKEN BioResource Research Center,                                                                     |
| 44       |    |                                                                                                                                                         |
| 45       | 1/ | Tsukuba Ibaraki 305 0074 Japan                                                                                                                          |
| 46       | 14 | I Sukuba, Ibaraki 505-0074, Japan                                                                                                                       |
| 47       |    |                                                                                                                                                         |
| 48       | 15 | <sup>4</sup> Graduate School, Institute of Agriculture, Tokyo University of Agriculture and                                                             |
| 49<br>50 |    |                                                                                                                                                         |
| 51       |    |                                                                                                                                                         |
| 52       | 16 | Technology, Fuchu, Tokyo, 183-8509, Japan                                                                                                               |
| 53       |    |                                                                                                                                                         |
| 54       | 47 |                                                                                                                                                         |
| 55       | 1/ | - institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu,                                                                      |
| 56       |    |                                                                                                                                                         |
| 57       | 18 | Tokyo 183-8509 Japan                                                                                                                                    |
| 58       | 10 | 101,0,100 0007, <b>vu</b> pun                                                                                                                           |
| 59       |    |                                                                                                                                                         |
| 60       |    |                                                                                                                                                         |

> **Corresponding author**

### Haruo Tanaka

e-mail: haruo@cc.tuat.ac.jp TEL/FAX: +81-42-367-5846

.367-5.

| 3 | Abstract |
|---|----------|
|   |          |

| f 48 | (which was not certified by peer review) isୁମ୍ପା ବିୟାରୀମସାନ୍ୟରମ୍ଭ ନାହାରୁ ନାର୍ଥ୍ୟ ହୋଇଥିବର୍ଷି No reuse allowed without permission. |
|------|----------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                  |
| 23   | Abstract                                                                                                                         |
| 24   | On March 11, 2011, Japan experienced an unprecedented earthquake off the Pacific                                                 |
| 25   | coast of Tohoku, and suffered the direct and long-term effects of the earthquake and                                             |
| 26   | tsunami in the area. In Fukushima prefecture, agricultural land contaminated with                                                |
| 27   | radioactive Cesium from the Fukushima Daiichi Nuclear Power Plant. Therefore,                                                    |
| 28   | surface soil were removed for deconamination, and low fertility sandy soil was covered.                                          |
| 29   | Organic matter input is necessary to increase soil organic matter and green manure                                               |
| 30   | application is an effective method to improve soil fertility in the paddy field. Soil                                            |
| 31   | microbes and enzyme activities are sensitively responded to organic matter addition, but                                         |
| 32   | their dynamics on the dressed field are not well investigated. In this study, we focused                                         |
| 33   | on changing the microbial community, diversity and enzyme activities along with the                                              |
| 34   | green manure decomposition process in the sandy soil dressed paddy field in Japan. The                                           |
| 35   | green manure of hairy vetch and oat were harvested and incorporated in May 2020 and                                              |
| 36   | their decomposition process as cellulose and hemicellulose contents were determined.                                             |
| 37   | Soil bacterial communities were analyzed using 16S amplicon sequencing. The green                                                |
| 38   | manure was rapidly decomposed within the first 13 days, and they did not remain 50                                               |
| 39   | days after green manure incorporation. Soil microbial biomass carbon was higher in the                                           |
| 40   | M treatment after GM treatment, but was not significant between treatments after 50                                              |
|      | 3                                                                                                                                |
|      | http://mc.manuscriptcentral.com/sspn                                                                                             |
|      |                                                                                                                                  |

| 2                      |  |
|------------------------|--|
| ر<br>۸                 |  |
| 4                      |  |
| 5                      |  |
| 6                      |  |
| 7                      |  |
| 8                      |  |
| a                      |  |
| 10                     |  |
| 10                     |  |
| 11                     |  |
| 12                     |  |
| 13                     |  |
| 14                     |  |
| 15                     |  |
| 16                     |  |
| 10                     |  |
| 17                     |  |
| 18                     |  |
| 19                     |  |
| 20                     |  |
| 21                     |  |
| 21                     |  |
| 22                     |  |
| 23                     |  |
| 24                     |  |
| 25                     |  |
| 26                     |  |
| 27                     |  |
| 28                     |  |
| 20                     |  |
| 29                     |  |
| 30                     |  |
| 31                     |  |
| 32                     |  |
| 33                     |  |
| 31                     |  |
| 24                     |  |
| 35                     |  |
| 36                     |  |
| 37                     |  |
| 38                     |  |
| 39                     |  |
| 40                     |  |
| <del>т</del> 0<br>// 1 |  |
| 41                     |  |
| 42                     |  |
| 43                     |  |
| 44                     |  |
| 45                     |  |
| 46                     |  |
| 17                     |  |
| 4/                     |  |
| 48                     |  |
| 49                     |  |
| 50                     |  |
| 51                     |  |
| 52                     |  |
| 52                     |  |
| 55                     |  |
| 54                     |  |
| 55                     |  |
| 56                     |  |
| 57                     |  |
| 58                     |  |
| 50                     |  |
| 59                     |  |
| 60                     |  |

| 41 | days. Dehydrogenase and $\beta$ -glucosidase activities changed during the harvesting period, |
|----|-----------------------------------------------------------------------------------------------|
| 42 | but did not correlate with GM decomposition. Microbial diversity (OTU numbers and             |
| 43 | Shannon index) also changed with GM application, but they were not associated with            |
| 44 | GM decomposition. Soil prokaryotic communities and some bacteria (Baciili and                 |
| 45 | Chlorolfexi) are significantly influenced by GM treatment. However, Clostrida was not         |
| 46 | affected by GM. Mixed green manure treatment showed significantly rapid                       |
| 47 | hemicellulose decomposition than other treatments. In this process, Anaerolineae were         |
| 48 | negatively correlated with the decreasing of hemicellulose in this treatment. These           |
| 49 | results showed that GM treatment affected microbial communities, and their response           |
| 50 | was active during the decomposition process.                                                  |
| 51 |                                                                                               |
| 52 | Key words                                                                                     |
| 53 | 16S rRNA, Enzyme activity, Decontaminated soil, Mixing effect                                 |
| 54 |                                                                                               |
| 55 | Introduction                                                                                  |
| 56 | The Great East Japan Earthquake and tsunami on 11 March 2011, caused damage to                |
| 57 | the Fukushima Daiichi Nuclear Power Plant (NPP), resulting in serious radioactive             |
| 58 | pollution throughout Eastern Japan. The radioactive fallout extensively polluted              |
| 59 | agricultural lands, including paddy fields, with radioactive Cs (MEXT 2011). The Cs           |

| 60 | contaminated agricultural soil were removed for depth 10cm, and the sandy soils with         |
|----|----------------------------------------------------------------------------------------------|
| 61 | low soil carbon and nitrogen content (total carbon is 8.29 g kg soil-1 and total nitrogen is |
| 62 | 0.74 g kg soil-1) were covered as decontamination. The decline of soil organic carbon        |
| 63 | negatively impacts crop productivity and sustainability of agriculture (Lal 2004;            |
| 64 | Agegnehu et al. 2016). Organic amendments can provide available nutrients for plants,        |
| 65 | and the coupling of carbon and nutrient transformation during organic matter                 |
| 66 | decomposition strongly interacts with plant nutrient uptake (Kaye and Hart, 1997). The       |
| 67 | application of organic materials to rice fields for yield increase has a long history in     |
| 68 | Asian countries. Recent studies have focused on re-considering traditional fertilization     |
| 69 | practices to enhance soil organic input by amendments of crop residues, green manure,        |
| 70 | and farmyard manure (Liu et al. 2009). The most useful organic matter in the paddy           |
| 71 | field is rice straw. However, the rice yields in this decontaminated paddy field in          |
| 72 | Fukushima are less than half the average yield in Japan, therefore, not enough rice straw    |
| 73 | can be applied to increase soil fertility. Livestock wastes are another important organic    |
| 74 | amendment; however, the stock rising was not restarted yet in this area. The application     |
| 75 | of green manure (GM) to paddy fields is considered a good management practice                |
| 76 | (Zhang et al. 2017). GM application has been reported to increase soil organic matter,       |
|    |                                                                                              |

| 77 | and fertility, and nutrient retention, reducing the occurrence of plant disease and long-    |
|----|----------------------------------------------------------------------------------------------|
| 78 | term green manure incorporation increases rice yields (Gao et al. 2013; Li et al. 2019).     |
| 79 | Soil microbes play an important role in maintaining soil fertility and productivity and      |
| 80 | drive most soil processes, e.g. decomposition of organic materials, nutrient availability    |
| 81 | and retention, and soil organic matter sequestration (Coleman et al., 2004). Soils with      |
| 82 | high fertility generally possess larger microbial biomass, higher enzyme activities, and     |
| 83 | better soil structure than those with low fertility (Fontaine et al. 2011; Lang et al. 2012) |
| 84 | could provide a suitable environment for substrate utilization by microbes. However,         |
| 85 | microbial communities, abundance, and their activities that respond to plant residue         |
| 86 | decomposition in the sandy soil are still limited. For recovering SOM in the covered         |
| 87 | sandy paddy field after decontamination in Fukushima, it is essential to investigate         |
| 88 | microbial response to SOM decomposition. It was reported that the mixing of different        |
| 89 | species of GM can effectively improve soil fertility than a single GM application            |
| 90 | (Fageria et al., 2005; Tosti et al., 2014). The mixtures of plant residue at rates faster    |
| 91 | than expected from the average of the decomposition rates of the plant types                 |
| 92 | component. This phenomenon is termed the "mixing effect" and the hypotheses                  |
| 93 | proposed to explain it include physical, chemical, and biological mechanisms. The aim        |
| 94 | of this study is to investigate the effects of GM application on soil enzyme activity and    |
|    |                                                                                              |

| 2        |     |                                                                                                                          |
|----------|-----|--------------------------------------------------------------------------------------------------------------------------|
| 3<br>4   |     |                                                                                                                          |
| 5        |     |                                                                                                                          |
| 6<br>7   | 95  | microbial community during the GM decomposition process in sandy soil                                                    |
| 8        |     |                                                                                                                          |
| 9<br>10  | 96  | decontaminated paddy fields in Fukushima Prefecture.                                                                     |
| 11<br>12 | 97  |                                                                                                                          |
| 13       | -   |                                                                                                                          |
| 14<br>15 | 98  | Material and Methods                                                                                                     |
| 16<br>17 | 99  | Sampling fields                                                                                                          |
| 18       |     |                                                                                                                          |
| 19<br>20 | 100 | The paddy field was located in Tomioka town. Fukushima Prefecture, Japan (37°20'N.                                       |
| 21       |     |                                                                                                                          |
| 22<br>23 | 101 | 140°60'E). The fields are about 12km away from Fukushima 1st NPP. The soil was                                           |
| 24<br>25 |     |                                                                                                                          |
| 26       | 102 | sandy loam soil (Fluvaquents) in the top 0.5 m, with 78.7 % sand, 17.7 % silt and 3.6 %                                  |
| 27<br>28 |     |                                                                                                                          |
| 29<br>30 | 103 | clay. Soil physicochemical properties in the field were shown in Table 1. Two species                                    |
| 31       |     |                                                                                                                          |
| 32<br>33 | 104 | of green manures were used, i.e., oat (A: Avena strigosa cv. Hayoats) and hairy vetch                                    |
| 34       | 105 | (VI. Visia villes a sy. Evijement). These measure source of more stars and in and                                        |
| 35<br>36 | 105 | (v. vicia villosa cv. Fujiemon). These species were sown as pure crops at an ordinary                                    |
| 37       | 100 | convince note (4 log of heims sucted and 15 log oct coch in 100-1) and co a mintum with the                              |
| 38<br>39 | 106 | sowing rate (4 kg of hairy vetch and 15 kg oat each in 10a <sup>-</sup> ) and as a mixture with the                      |
| 40<br>41 | 107 | same quantity (M <sup><math>\cdot</math></sup> 4 kg of hairy yetch and 15 kg of oat 10a <sup>-1</sup> ) Non-green manure |
| 42       | /   | Junite Aumine) (                                                                                                         |
| 43<br>44 | 108 | treatment plots (control: C) were included in the experiments. The experimental design                                   |
| 45<br>46 |     |                                                                                                                          |
| 47       | 109 | was a randomized complete block with three replicates. Each plot size was 225 $m^2$ (15                                  |
| 48<br>49 |     |                                                                                                                          |
| 50<br>51 | 110 | m×15m). GM was cultivated from 1 November 2018 to 5 May 2019.                                                            |
| 52       | 111 |                                                                                                                          |
| 53<br>54 |     |                                                                                                                          |
| 55       | 112 | Litterbag experiments                                                                                                    |
| 50<br>57 |     |                                                                                                                          |
| 58       |     |                                                                                                                          |
| 59       |     |                                                                                                                          |

| 3<br>4         |   |
|----------------|---|
| 5<br>6<br>7    | 1 |
| 8<br>9<br>10   | 1 |
| 12<br>13       | 1 |
| 14<br>15<br>16 | 1 |
| 17<br>18<br>19 | 1 |
| 20<br>21<br>22 | 1 |
| 23<br>24<br>25 | 1 |
| 20<br>27<br>28 | 1 |
| 29<br>30<br>31 | 1 |
| 32<br>33<br>34 | 1 |
| 35<br>36<br>37 | 1 |
| 38<br>39<br>40 | 1 |
| 41<br>42<br>43 | 1 |
| 44<br>45       | 1 |
| 46<br>47<br>48 | 1 |
| 49<br>50<br>51 | 1 |
| 52<br>53<br>54 | 1 |
| 55<br>56<br>57 | 1 |
| 58<br>59<br>60 | 1 |

| 113 | Each green manure was harvested from randomly selected 2 points ( $0.5m \times 0.5m$ ) in       |
|-----|-------------------------------------------------------------------------------------------------|
| 114 | each treatment on 5 May. The yields and chemical properties of each GM were shown               |
| 115 | in Table 1. The GM dried at 70 °C and powdered. The litterbags (1mm mesh size) were             |
| 116 | filled with 30g of air-dried paddy field soil mixed with each GM. The amount of each            |
| 117 | GM input was equal to the amount of input carbon rate in the field (0.05 $\%$ of O and V        |
| 118 | treatment and 0.11% of M treatment) (Table 2). A total of 72 litterbags (4 treatment $\times$ 6 |
| 119 | sampling times × 3 replicants) were prepared. All litterbags were incorporated in each          |
| 120 | control plot of the paddy field on 30 May 2020. Within each plot, 24 litterbags (4              |
| 121 | treatments and 6 were incorporated into the soil by burying them at 15cm depth. Each            |
| 122 | litterbag from each plot was removed chronologically from 12 June (13 days), 3 July             |
| 123 | (34 days), 30 July (50 days), 21 August (72 days), and 4 October (116 days). One gram           |
| 124 | of soil in the litterbags were transported to the laboratory using an icebox and processed      |
| 125 | immediately after their removal from the field.                                                 |
| 126 |                                                                                                 |
| 127 | Soil chemical properties                                                                        |
| 128 | Total carbon and nitrogen contents were measured with a NC analyzer (SUMIGRASH                  |
| 129 | NC-80, Sumitomo Chemical Co. Ldt., Tokyo, Japan). Cellulose and hemicellulose                   |
| 130 | content were determined with colormetric anthrone-sulfuric acid method (Koehler                 |

131 1952) after hydorolysis of component sugars by Oades et al. (1970). The cellulose and

| 3         |
|-----------|
| 4         |
| 5         |
| 6         |
| 7         |
| ,<br>Q    |
| 8         |
| 9         |
| 10        |
| 11        |
| 12        |
| 13        |
| 14        |
| 1-        |
| 15        |
| 16        |
| 17        |
| 18        |
| 19        |
| 20        |
| 20        |
| ∠ I<br>22 |
| 22        |
| 23        |
| 24        |
| 25        |
| 26        |
| 27        |
| 20        |
| 20        |
| 29        |
| 30        |
| 31        |
| 32        |
| 33        |
| 34        |
| 35        |
| 26        |
| 20        |
| 3/        |
| 38        |
| 39        |
| 40        |
| 41        |
| 42        |
| /3        |
| 45        |
| 44        |
| 45        |
| 46        |
| 47        |
| 48        |
| 49        |
| 50        |
| 50        |
| 51        |
| 52        |
| 53        |
| 54        |
| 55        |
| 56        |
| 57        |
| 57        |
| 20        |
| 59        |

1 2

| 132 | hemicellulose content of the control at that time was subtracted from each treatment                     |
|-----|----------------------------------------------------------------------------------------------------------|
| 133 | section to obtain the cellulose and hemicellulose content at that time. The content at the               |
| 134 | time of treatment was set to 100, and the degradation rate was determined.                               |
| 135 | Soil biological properties                                                                               |
| 136 | Soil enzyme activity was determined as below. Dehydrogenase activity was                                 |
| 137 | determined with the reduction of iodonitrotetrazolium chloride (INT) by Von Mersi and                    |
| 138 | Schinner (1991). $\beta$ -glucosidase activities were assayed on the basis of p-Nitrophenyl- $\beta$ -   |
| 139 | D-glucopyranoside (PNG) hydrolysis after cleavage of enzyme-specific synthetic                           |
| 140 | substrates by Hayano (1973). Microbial biomass carbon and nitrogen were determined                       |
| 141 | by chloroform fumigation-extraction method with $0.5 \text{ M K}_2\text{SO}_4$ at 1:4 soil to extraction |
| 142 | ratio (Moore et al. 2000)                                                                                |

# 143 DNA extraction and microbial community analysis

DNA was extracted from 0.5 g of soil using the ISOIL for bead beating kit (Nippon
Gene Co., Ltd., Tokyo, Japan), according to the manufacturer's instructions. DNA
quantification and integrity were measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and gel visualization (0.8% agarose in
Tris/acetic acid/ethylenediaminetetraacetic acid buffer), respectively. The V4 region of

**Statistical analysis** 

> the 16S rRNA gene of each sample was amplified by PCR using the bacterial and archaeal universal primers 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGAC-TACVSGGGTATCTAA-3') (Caporaso et al. 2011). A library was prepared by adaptor ligation with the PCR primer pairs using the TruSeq Nano DNA Library Prep Kit (Illumina, Inc., San Diego, CA, USA). When two or more bands were detected using 1.5%-agarose gel electrophoresis, PCR products of approximately 300 bp in length were excised from the gel, non-specific amplicons were removed, and the products were purified using a MonoFas DNA purification kit for prokaryotes (GL Sciences, Inc., Tokyo, Japan). Each PCR amplicon was cleaned twice to remove the primers and short DNA fragments using the Agencourt AMPure XP system (Beckman Coulter, Inc., Brea, CA, USA) and quantified using a Oubit Fluorometer (Invitrogen Corporation, Carlsbad, CA, USA). The PCR products were adjusted to equimolar concentrations and subjected to unidirectional pyrosequencing, which was performed by Bioengineering Lab. Co., Ltd. (Kanagawa, Japan) using a MiSeq instrument (Illumina, Inc.). Overall, 3,521,651 sequences were obtained from the 72 samples (Supplemental Table 1). Sequencing data were deposited in the DNA Database of Japan Sequence Read Archive under the accession number DRA006673.

| 169 | Illuming sequence data were sorted based on unique bareades and quality controlled          |
|-----|---------------------------------------------------------------------------------------------|
| 100 | munima sequence data were sorted based on unique bareodes and quanty-controlled             |
| 169 | using the Quantitative Insights Into Microbial Ecology Qiime2 (version 2017.8,              |
| 170 | https://docs.qiime2.org/2017.8/) with plugins demux (https://github.com/qiime2/q2-          |
| 171 | demux), dada2 (Callahan et al., 2016) and feature-table (McDonald et al., 2012). Alpha      |
| 172 | and beta diversity analyses were performed by using plugins alignment (Katoh and            |
| 173 | Standley, 2013), phylogeny (Price et al., 2010), diversity (https://github.com/qiime2/q2-   |
| 174 | diversity), and emperor (Vazquez-Baeza et al., 2013). A pre-trained Naive Bayes             |
| 175 | classifier based on the Greengenes 13_8 99% OTUs database (http://greengenes.               |
| 176 | secondgenome.com/), which has been trimmed to include the v4 re- gion of 16S rRNA           |
| 177 | gene, bound by the 515F/806R primer pair, was applied to paired-end sequence reads to       |
| 178 | generate taxonomy tables. Taxonomic and compositional analyses were conducted by            |
| 179 | using plu- gins feature-classifier (https://github.com/qiime2/q2-feature- classifier), taxa |
| 180 | (https://github.com/qiime2/q2-taxa) and composition (Mandal et al., 2015). The              |
| 181 | significant difference among each treatment was analyzed by Tukey-Kramer HSD                |
| 182 | method using R. Beta diversity was measured according to Bray-Curtis distances which        |
| 183 | were calculated by R, and displayed using Principal Coordinate Analysis (PCoA). The         |
| 184 | significance of grouping in the PCoA plot was tested by analysis of similarity              |
| 185 | (ANOSIM) in R with 999 permutations. The interacted factor between cellulose,               |
|     |                                                                                             |

| 5                    |     |                                                                                           |
|----------------------|-----|-------------------------------------------------------------------------------------------|
| 6<br>7               | 186 | hemicellulose, and carbon decomposition and related microbes were analyzed using          |
| 8<br>9<br>10         | 187 | Spearman's rank correlation. The correlation coefficients (Rho value) less than -0.4      |
| 11<br>12<br>13       | 188 | were defined as negatively correlated microbes and more than 0.4 were defined as          |
| 14<br>15<br>16       | 189 | positively correlated microbes.                                                           |
| 17<br>18<br>19<br>20 | 190 |                                                                                           |
| 20<br>21<br>22       | 191 | Results                                                                                   |
| 23<br>24<br>25       | 192 | The dynamics of GM content during the harvesting period                                   |
| 26<br>27<br>28       | 193 | GM, which mainly consists of cellulose and hemicellulose, was mainly degraded in 31       |
| 29<br>30<br>31       | 194 | days after GM treatment. At the 13 days, 56-72% of cellulose was decomposed, and the      |
| 32<br>33<br>34       | 195 | degradation rate did not differ among the treatments (Fig. 1). After 31 days, 5 to 14% of |
| 35<br>36<br>37       | 196 | cellulose remained in all treatments and they remained unchanged through the              |
| 38<br>39<br>40       | 197 | harvesting period. Hemicellulose contents also decreased significantly over 13 days, but  |
| 41<br>42<br>43       | 198 | they differed among treatments: M treatment, a mixture of V and A treatment,              |
| 44<br>45<br>46       | 199 | decreased significantly (99%) compared to the other treatments (50% in V and 23% in       |
| 47<br>48<br>49       | 200 | A). Thereafter, the residues remained below 10% until day 116. In the V treatment, the    |
| 50<br>51<br>52       | 201 | rate of residues reached 33% on day 72, but they did not significantly differ from the    |
| 53<br>54<br>55       | 202 | other treatments. Total carbon and total nitrogen contents were gradually decreased in    |
| 56<br>57<br>58<br>59 | 203 | all treatments and the highest in M on 34 days after GM treatment (Figure 1). After 50    |
| 60                   |     |                                                                                           |

| 204 | days, TC and TN contents were similar among each GM treatment. Therefore, GM            |
|-----|-----------------------------------------------------------------------------------------|
| 205 | might be completely decomposed until this time. Total carbon content in each field was  |
| 206 | also changed during the harvesting stage, though they were not different between the    |
| 207 | treatments (Supplemental figure 1). After the rice harvesting, soil carbon and nitrogen |
| 208 | content, cellulose, and hemicellulose were not different among the treatment (Table 3). |
| 209 |                                                                                         |
| 210 | Dynamics of microbial biomass, community structure, diversity, and enzyme               |
| 211 | activities response to GM application                                                   |
| 212 | Soil microbial biomass carbon was significantly increased in M treatment followed by    |
| 213 | A, V, and C treatment on 13 and 34 days after GM treatment (Figure 2). They             |
| 214 | significantly decreased and were not significantly different among the treatments after |
| 215 | 50 days. Dehydrogenase activities were increased 34 days after treatment, and they in A |
| 216 | treatment showed the highest activities than other treatments. After 50days, the        |
| 217 | activities decreased and were not significantly different among the treatment. Beta-    |
| 218 | glucosidase activities were drastically changed during the harvesting stage; however,   |
| 219 | they were not significantly different among the treatments. Soil microbial diversity,   |
| 220 | OTU numbers and Shannon index, did not differ among treatments on days 13 and 34.       |
| 221 | They were the highest in M treatment compared to other treatments on 50 days and then   |

| 222 | decreased. On day 72 and 116, they in V treatment were higher than A treatment and M         |
|-----|----------------------------------------------------------------------------------------------|
| 223 | treatment, respectively.                                                                     |
| 224 | The main prokaryotic phyla in the field were Firmicutes and Proteobacteria (Figure 4).       |
| 225 | They were occupied more than 50% in all treatments and sampling times. In class level,       |
| 226 | Bacilli were the most dominant bacteria in all treatments followed by Clostridia,            |
| 227 | Alphaproteobacteria, and unidentified Proteobacteria (Figure 5). The relative abundance      |
| 228 | of <i>Bacilli</i> was decreased on day 31 compared with that on 13 days, then was again high |
| 229 | in the C and A treatments at day 50. Chloroflexi was higher in the M treatment than in       |
| 230 | the V treatment at day 50; the relative abundance of <i>Clostridia</i> did not differ among  |
| 231 | treatments (Figure 6). Soil prokaryotic communities were affected by GM treatment            |
| 232 | (anosim $p < 0.05$ ). PCoA analysis based on Bray-crutis analysis showed that                |
| 233 | prokaryotic communities were roughly clustered by sampling times (Figure 7).                 |
| 234 | Prokaryotes sampled in 13 and 31 days were clustered by sampling times. But their            |
| 235 | communities were not clustered in sampling time after 50 days. We analyzed the               |
| 236 | microbes correlated between total carbon, hemicellulose, and cellulose contents (Table       |
| 237 | 4). Lachnospiraceae and Clostridiales belonged to Clostridia positively correlated to        |
| 238 | cellulose and hemicellulose content, and Bacillus correlated to total carbon content.        |
| 239 | Cellulose contents were negatively correlated ( $\rho < -0.4$ ) Anaerolineae SJA15 and       |

| 240 | unidentified Chloflexi belonged to Chloflexi, and Rhizobiales belonged to                 |
|-----|-------------------------------------------------------------------------------------------|
| 241 | Alphaproteobacteria. Hemicellulose contents were negatively correlated to                 |
| 242 | Anaerolineae SJA15 and unidentified Chloflexi belonged to Chloflexi, unidentified         |
| 243 | betaproteobacteria, Pedosphaera belonged to Verrcomicrobia, Chrolobi, and                 |
| 244 | Methanomicrobia belonged to Euryarchaeota. Total carbon was negatively correlated         |
| 245 | with Ktedonobacteria and unidentified Chloroflexi belonged to Chloroflexi, Rhizobiales    |
| 246 | belonged to Alphaproteobacteria, and Chlorobi BSV26. We compared the correlation          |
| 247 | between hemicellulose content and each microbe among the GM treatments (Table 5).         |
| 248 | Bacillus were positively correlated to hemicellulose content in all treatments, and       |
| 249 | Lachnospiraceae belonging to Clostridia positively correlated with E and M treatment.     |
| 250 | On the other hand, Anaerolineae were negatively correlated in A and E treatment,          |
| 251 | respectively, but not in M treatment. Some methanogen (Methenomicrobia and                |
| 252 | Methanogulaceae) were negatively correlated with hemicellulose content only in M          |
| 253 | treatment.                                                                                |
| 254 |                                                                                           |
| 255 | Discussion                                                                                |
| 256 | Microbial communities and activities during GM decomposition process                      |
| 257 | GM is used as a useful organic matter in the paddy field and it increases soil organic    |
| 258 | carbon and nitrogen (Lee et al. 2010; Hwang et al. 2015). Gao et al. (2016) reported that |

| 259 | about 70% of wheat residue was mineralized under the anaerobic condition as well as                    |
|-----|--------------------------------------------------------------------------------------------------------|
| 260 | aerobic condition in a Cambisol after 12-month in a field experiment. Zech et al. (1997)               |
| 261 | concluded that 30-45 % of plant residue carbon was accumulated in the soil after 1 year                |
| 262 | treated with various SOM conditions. In Japanese field, 67 to 79 % of carbon from rice                 |
| 263 | residues was decomposed during one year (Shiga et al. 1985). On the other hand, in our                 |
| 264 | fields, cellulose and hemicellulose were decomposed within 50 days and soil carbon                     |
| 265 | was not accumulated after the rice harvesting period. The aboveground biomass of                       |
| 266 | green manure (barley and hairy vetch) in past related studies ranges from 3.66 to 11 t                 |
| 267 | ha <sup>-1</sup> and is incorporated into the field (Tosti et al. 2014; Jeon et al. 2008, Hwang et al. |
| 268 | 2015). However, in our field, only 1.24-2.55 t ha <sup>-1</sup> of GM was harvested due to the cold    |
| 269 | climate of Fukushima and low soil fertility of the covered sandy soil (Table 1). Another               |
| 270 | possibility of the rapid GM decomposition is the sandy textured soil property. Most                    |
| 271 | sandy soils have low soil organic matter content and show low water holding capacity                   |
| 272 | and high permeability due to their coarse texture (Rutkowska and Pikuła, 2013;                         |
| 273 | Šimanský and Bajčan, 2014). Some studies showed that organic amendments generally                      |
| 274 | decompose rapidly in sandy soils due to high temperatures and aeration (Glaser et al.,                 |
| 275 | 2002). Xu et al. (2019) showed that mineralization of residue carbon after 360 days of                 |
| 276 | incubation was higher in low fertility soils than in high fertility soils. Low fertility soils         |

| 277 | have a higher C/N ratio than high fertility soils. In this case, soil microorganisms that    |
|-----|----------------------------------------------------------------------------------------------|
| 278 | are deficient in nitrogen nutrients will use nitrogen derived from the residue pool, which   |
| 279 | is more easily decomposed, and will preferentially decompose plant residues to meet          |
| 280 | their nitrogen requirements. These two factors might contribute to the rapid degradation     |
| 281 | of GM.                                                                                       |
| 282 | Dehydrogenase is an intracellular enzyme that participates in oxidative                      |
| 283 | phosphorylation in microorganisms and basically depends on the metabolic state of the        |
| 284 | soil microbes (Tabatabai et al. 1994; Insam, 2001). β-glucosidase is an extracellular        |
| 285 | enzyme that contributes to the degradation of cellulose and other $\beta$ -1,4 glucans to    |
| 286 | glucose and is considered to be one of the proximate agents of organic matter                |
| 287 | decomposition (Sinsabaugh et al., 2008). Soil organic matter is the substrate for these      |
| 288 | soil enzymes, therefore, dehydrogenase and beta-glucosidase are positively correlated        |
| 289 | with soil organic matter (Bhattacharyya et al. 2012). However, in our study, each            |
| 290 | enzyme activity was not correlated with soil carbon, cellulose, and hemicellulose            |
| 291 | contents. Moreover, no microbes were correlated with each enzyme activity. The soil          |
| 292 | microbial biomass carbon in this study (13.4 to 87.4 mg C kg soil-1) was much lower          |
| 293 | than that in the previous study (more than 200 mg C kg soil <sup>-1</sup> ) (Lu et al. 2002; |
| 294 | Bhattacharyya et al. 2012; Zheng et al. 2016). Because the amount of green manure            |

| 295 | input was low, the small amount of enzymes may be secreted, and no difference was           |
|-----|---------------------------------------------------------------------------------------------|
| 296 | observed between the treatment. Moreover, $\beta$ -glucosidase is an extracellular enzyme;  |
| 297 | therefore, it was leached from the outside of the litter bag in the flooded paddy field and |
| 298 | contaminated each treatment.                                                                |
| 299 | Clostridia, organic matter degradation bacteria under anaerobic conditions, is known to     |
| 300 | increase during the degradation process under flooded conditions (Weber and Conrad          |
| 301 | 2001; Shrestha et al. 2011). Lee et al. (2017) showed that dried rice callus cells, a       |
| 302 | model of easily degradable plant residues, are mainly degraded by Clostridia under          |
| 303 | anaerobic conditions. In contrast, the abundance Clostridia did not change during the       |
| 304 | harvest period and was positively correlated with cellulose and hemicellulose content.      |
| 305 | Bacillus, the dominant aerobic bacteria in the field, was also significantly reduced        |
| 306 | during the harvest period. Soil condition might be anaerobic and it is favorable for        |
| 307 | Clostridia increasing. Clostridia and Bacilli are known for rapidly increasing bacteria     |
| 308 | response to organic matter addition (Bao et al. 2019). Therefore, it was suggested that     |
| 309 | they might be involved in the fast decomposition of GM and then they dominated.             |
| 310 | Thereafter, they could not grow because of low substrates. Compared with their              |
| 311 | decreasing, bacteria belonging to Chloroflexi, Rhizobiales, Betaproteobacteria, and         |
| 312 | Chlorobi BSV26 negatively correlated to soil carbon and plant cell wall content. They       |

| 313                                                                                                                | are well-known oligotrophic bacteria (Fierer et al. 2007; Tian et al. 2015). They can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 314                                                                                                                | grow in the low nutrient soil as oligotrophs, nitrogen-fixing, sulfate-reduction, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 315                                                                                                                | photosynthesis. In this study, there was no effect of GM treatment on carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 316                                                                                                                | accumulation in soil. On the other hand, we revealed that the soil microbial community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 317                                                                                                                | was affected by GM treatment. The microbial community associated with carbon from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 318                                                                                                                | GM accumulation was also increased. In the future, the microbes involved in carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 319                                                                                                                | sequestration and link it to the implementation of soil improvement and rice production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 320                                                                                                                | in the covered field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 321                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 322                                                                                                                | Mixing effect on GM decomposition and microbial properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 322                                                                                                                | Mixing effect on GM decomposition and microbial properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 322<br>323                                                                                                         | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 322<br>323<br>324                                                                                                  | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue<br>decomposition is correlated with C/N ratio of each plant (). The combination of barley                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 322<br>323<br>324<br>325                                                                                           | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue<br>decomposition is correlated with C/N ratio of each plant (). The combination of barley<br>and hairy vetch optimizes the C/N ratio, which can favor the mineralization of organic                                                                                                                                                                                                                                                                                                                                                       |
| 322<br>323<br>324<br>325<br>326                                                                                    | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue<br>decomposition is correlated with C/N ratio of each plant (). The combination of barley<br>and hairy vetch optimizes the C/N ratio, which can favor the mineralization of organic<br>substrates in soil (USDA, 2011). In this study, C/N ratio of V was 12 and that of E was                                                                                                                                                                                                                                                            |
| <ul> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> <li>327</li> </ul>                           | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue<br>decomposition is correlated with C/N ratio of each plant (). The combination of barley<br>and hairy vetch optimizes the C/N ratio, which can favor the mineralization of organic<br>substrates in soil (USDA, 2011). In this study, C/N ratio of V was 12 and that of E was<br>61, therefore, we hypothesized the decomposition rate was V > M > E. Cellulose                                                                                                                                                                          |
| <ul> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> <li>327</li> <li>328</li> </ul>              | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue<br>decomposition is correlated with C/N ratio of each plant (). The combination of barley<br>and hairy vetch optimizes the C/N ratio, which can favor the mineralization of organic<br>substrates in soil (USDA, 2011). In this study, C/N ratio of V was 12 and that of E was<br>61, therefore, we hypothesized the decomposition rate was V > M > E. Cellulose<br>decomposition rates were not different among the treatment, while M treatment showed                                                                                  |
| <ul> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> <li>327</li> <li>328</li> <li>329</li> </ul> | Mixing effect on GM decomposition and microbial properties<br>The types of GM also affected their decomposition rate. In general, plant residue<br>decomposition is correlated with C/N ratio of each plant (). The combination of barley<br>and hairy vetch optimizes the C/N ratio, which can favor the mineralization of organic<br>substrates in soil (USDA, 2011). In this study, C/N ratio of V was 12 and that of E was<br>61, therefore, we hypothesized the decomposition rate was V > M > E. Cellulose<br>decomposition rates were not different among the treatment, while M treatment showed<br>the highest hemicellulose decomposition rates compared with other treatments. |

| 3<br>4             |     |
|--------------------|-----|
| 5<br>6<br>7        | 331 |
| 8<br>9<br>10<br>11 | 332 |
| 12<br>13           | 333 |
| 15<br>16<br>17     | 334 |
| 18<br>19<br>20     | 335 |
| 21<br>22<br>23     | 336 |
| 24<br>25<br>26     | 337 |
| 27<br>28<br>29     | 338 |
| 30<br>31<br>32     | 339 |
| 33<br>34<br>35     | 340 |
| 36<br>37<br>38     | 341 |
| 39<br>40<br>41     | 342 |
| 42<br>43<br>44     | 343 |
| 45<br>46<br>47     | 344 |
| 48<br>49<br>50     | 345 |
| 51<br>52<br>53     | 346 |
| 54<br>55<br>56     | 347 |
| 57<br>58<br>59     |     |
| 60                 |     |

| 31  | faster than expected decomposition speed and single litter types. Cuchietti et al (2014)  |
|-----|-------------------------------------------------------------------------------------------|
| 32  | explained that the fast-slow mixture decomposition rate is greater than expected due to   |
| 33  | the fast decomposing GM. In chemical aspects, the carbon limitation for decomposing       |
| 34  | fast decomposing plant residue and the slow decomposing plant residue it contains high    |
| 35  | CN ratio, will supply the carbon for carbon decomposition, therefore, decomposition       |
| 36  | will be accelerated. They indicated that fast-decomposing species would transfer          |
| 37  | nutrients to slow decomposing species, thereby increasing the decomposition rate of the   |
| 38  | slow decomposition species. Microbial communities also influence the mixing effect.       |
| 39  | Our results showed that microbes affected by hemicellulose decomposition in single and    |
| 40  | mixed treatment showed differently. Methanogens negatively correlated with                |
| 841 | hemicellulose content only in M treatment. They are faculty anaerobic, use $H_2/CO_2$ and |
| 42  | formate as a substrate for methanogenesis, and acetate is required for growth. The        |
| 43  | microbes involved in the mixing effect are not well studied. Our study provides some      |
| 844 | evidence that can shed light on some mechanisms of in the sandy soil environemnt, but     |
| 45  | on microbial and to the mechanisms proposed is critical.                                  |
|     |                                                                                           |

347 Acknolwgement

| 3<br>4                          |     |                                                                                              |
|---------------------------------|-----|----------------------------------------------------------------------------------------------|
| 5<br>6 .<br>7 <sup>5</sup><br>8 | 348 | We thank Mr. Nobiru Watanabe for his supporing for management the paddy field. We alslo      |
| 9 .<br>10 <sup>1</sup>          | 349 | thank the members of Soil Science laboratory and crop production laboratory of Tokyo         |
| 11<br>12<br>13                  | 350 | University of Agriculture and Technology for helping green manure sowing incorporating. This |
| 14<br>15<br>16                  | 351 | work was supported by the Fukushima Innovation Coast Framework Promotion Project and in      |
| 17<br>18 .<br>19 <sup>5</sup>   | 352 | part by the the Japan Society for Promotion of Science (JSPS) Grant-in-Aid for Scientific    |
| 20<br>21 .<br>22                | 353 | Research Grant Number 20H05583 (Post-Koch Ecology) and No.20H03113 (Scientific               |
| 23<br>24 .<br>25                | 354 | Research B).                                                                                 |
| 26<br>27<br>28                  | 355 |                                                                                              |
| 29<br>30<br>31 ·<br>32          | 356 |                                                                                              |
| 33<br>34<br>35                  | 357 | Reference list                                                                               |
| 36<br>37<br>38                  | 358 | Agegnehu, G., Bass, A. M., Nelson, P. N., and M. I. "Bird. 2016. "Benefits of biochar,       |
| 39<br>40<br>41                  | 359 | compost and biochar-compost for soil quality, maize yield and greenhouse gas                 |
| 42<br>43<br>44                  | 360 | emissions in a tropical agricultural soil." Science of the Total Environment 543:295-        |
| 45<br>46<br>47                  | 361 | 306. https://doi.org/10.1016/j.scitotenv.2015.11.054                                         |
| 48<br>49<br>50                  | 362 | Bao, Y., J. Dolfing, B. Wang, R. Chen, M. Huang, Z. Li, Z. Lin, and Y. Feng. 2019.           |
| 51<br>52<br>53                  | 363 | "Bacterial communities involved directly or indirectly in the anaerobic degradation          |
| 54<br>55 5<br>56                | 364 | of cellulose." Biology and Fertility of Soils 55:201–211.                                    |
| 57<br>58<br>59                  | 365 | https://doi.org/10.1007/s00374-019-01342-1                                                   |

| 5        |     |                                                                                       |  |  |  |  |  |
|----------|-----|---------------------------------------------------------------------------------------|--|--|--|--|--|
| 6        | 366 | Bhattacharyya, P., Roy, K., Neogi, S., Adhya, T., Rao, K., and M. Manna. 2012.        |  |  |  |  |  |
| /<br>8   |     |                                                                                       |  |  |  |  |  |
| 9        | 367 | "Effects of rise straw and nitrogen fartilization on greenhouse as emissions and      |  |  |  |  |  |
| 10       | 507 | Effects of fice straw and hitrogen fertilization on greenhouse gas emissions and      |  |  |  |  |  |
| 12       |     |                                                                                       |  |  |  |  |  |
| 13       | 368 | carbon storage in tropical flooded soil planted with rice." Soil & Tillage            |  |  |  |  |  |
| 14       |     |                                                                                       |  |  |  |  |  |
| 15<br>16 | 369 | Research 124:119-130. https://doi.org/10.1016/j.still.2012.05.015                     |  |  |  |  |  |
| 17       |     |                                                                                       |  |  |  |  |  |
| 18       | 370 | Canoraso IG C L Lauber W A Walters D Berg-Lyons C A Lozupone P L                      |  |  |  |  |  |
| 19<br>20 | 570 | Caporaso 50, C. E. Lauber, W. A. Waters, D. Derg Lyons, C. A. Lozapone, T. 5.         |  |  |  |  |  |
| 20<br>21 |     |                                                                                       |  |  |  |  |  |
| 22       | 371 | Turnbaugh, N. Fierer, and R. Knight. 2011 "Global patterns of 16S rRNA diversity      |  |  |  |  |  |
| 23       |     |                                                                                       |  |  |  |  |  |
| 24<br>25 | 372 | at a depth of millions of sequences per sample." Proceedings of the Natural Academy   |  |  |  |  |  |
| 26       |     |                                                                                       |  |  |  |  |  |
| 27       | 373 | of Sciences of the United States of Aerica 108 S4516-4522                             |  |  |  |  |  |
| 28<br>20 |     |                                                                                       |  |  |  |  |  |
| 30       | 274 |                                                                                       |  |  |  |  |  |
| 31       | 374 | https://doi.org/10.10/3/pnas.100008010/                                               |  |  |  |  |  |
| 32       |     |                                                                                       |  |  |  |  |  |
| 34       | 375 | Coleman, D.C., D. A. Crossley, and P. F. Hendrix. 2004. "Fundamentals of Soil         |  |  |  |  |  |
| 35       |     |                                                                                       |  |  |  |  |  |
| 36       | 376 | Ecology." Elsevier, New York. pp386                                                   |  |  |  |  |  |
| 37<br>38 |     |                                                                                       |  |  |  |  |  |
| 39       | 377 | Cuchiatti A Marcotti E Gurvich D E Cingolani A M N Páraz Harquindaguy                 |  |  |  |  |  |
| 40       | 577 | Cuchicut, A., Marcotut, E., Gurvien, D. E., Chigolani, A. M., N. Ferez Hargundeguy.   |  |  |  |  |  |
| 41       |     |                                                                                       |  |  |  |  |  |
| 43       | 378 | 2014. "Leaf litter mixtures and neighbour effects: low-nitrogen and high-lignin       |  |  |  |  |  |
| 44       |     |                                                                                       |  |  |  |  |  |
| 45<br>46 | 379 | species increase decomposition rate of high-nitrogen and low-lignin neighbours."      |  |  |  |  |  |
| 47       |     |                                                                                       |  |  |  |  |  |
| 48       | 380 | Applied Soil Ecology 82:44-51 https://doi.org/10.1016/j.apsoil.2014.05.004            |  |  |  |  |  |
| 49<br>50 |     |                                                                                       |  |  |  |  |  |
| 51       | 201 | Chammer S. K. and C. W. Kash. 2007. "What have a fiding mite stable and some thereing |  |  |  |  |  |
| 52       | 381 | Chapman, S. K., and G. W. Koch. 2007. What type of diversity yields synergy during    |  |  |  |  |  |
| 53<br>54 |     |                                                                                       |  |  |  |  |  |
| 54<br>55 | 382 | mixed litter decomposition in a natural forest ecosystem?" Plant and Soil 299 (1):    |  |  |  |  |  |
| 56       |     |                                                                                       |  |  |  |  |  |
| 57       | 383 | 153-162. https://doi.org/10.1007/s11104-007-9372-8                                    |  |  |  |  |  |
| эө<br>59 |     |                                                                                       |  |  |  |  |  |
| 60       |     |                                                                                       |  |  |  |  |  |

| 2<br>3                                                                                                                                                                                           |     |                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------|
| 4<br>5                                                                                                                                                                                           |     |                                                                                         |
| 6<br>7<br>8                                                                                                                                                                                      | 384 | Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P.    |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 385 | Holmes. 2016. "DADA2: High-resolution sample inference from Illumina amplicon           |
|                                                                                                                                                                                                  | 386 | data." Nature Methods 13: 581-583. https://doi.org/10.1038/nmeth.3869                   |
|                                                                                                                                                                                                  | 387 | Fageria, N.K., V. C. Baligar and B. A. Bailey. 2005. "Role of cover crops in improving  |
|                                                                                                                                                                                                  | 388 | soil and row crop productivity". Communications in Soil Science and Plant Analysis      |
|                                                                                                                                                                                                  | 389 | 36, 2733–2757. https://doi.org/10.1080/00103620500303939                                |
|                                                                                                                                                                                                  | 390 | Fierer, N., M. A. Bradford, R. B. Jackson 2007. "Toward an ecological classification of |
|                                                                                                                                                                                                  | 391 | soil bacteria." <i>Ecology</i> 88:1354–1364. https://doi.org/10.1890/05-1839            |
|                                                                                                                                                                                                  | 392 | Fontaine S, C, Henault, A, Aamor, N, Bdioui, J. M. G. Bloor, V. Maire, B. Mary, S.      |
|                                                                                                                                                                                                  | 393 | Revaillot, P. A. Maron. 2011. "Fungi mediate long term sequestration of carbon and      |
|                                                                                                                                                                                                  | 394 | nitrogen in soil through their priming effect." Soil Biology & Biochemistry 43:86–96.   |
|                                                                                                                                                                                                  | 395 | https://doi.org/10.1016/j.soilbio.2010.09.017                                           |
| 41<br>42<br>43                                                                                                                                                                                   | 396 | Gao, J.S., M.G. Xu, C.H. Dong, J. Huang, W.D. Cao, X.B. Zeng, S.L. Wen, and J. Nie.     |
| 44<br>45<br>46                                                                                                                                                                                   | 397 | 2013. "Effects of long-term rice-rice-green manure cropping rotation on rice yield      |
| 47<br>48<br>49                                                                                                                                                                                   | 398 | and soil fertility." Acta Agronomica Sinica 39: 343.                                    |
| 50<br>51<br>52                                                                                                                                                                                   | 399 | https://doi.org/10.1100/2012/279641                                                     |
| 53<br>54<br>55                                                                                                                                                                                   | 400 | Gao, H., X., Chen. J., Wei, Y., Zhang, L., Zhang, J., Chang, and M. L. Thompson.        |
| 57<br>58<br>59<br>60                                                                                                                                                                             | 401 | 2016. "Decomposition dynamics and changes in chemical composition of wheat              |

| 3<br>⊿   |      |                                                                                             |
|----------|------|---------------------------------------------------------------------------------------------|
| 5        |      |                                                                                             |
| 6<br>7   | 402  | straw residue under anaerobic and aerobic conditions." PLoS One 11:e0158172.                |
| 8        |      |                                                                                             |
| 9        | 403  | https://doi.org/10.1371/journal.pone.0158172                                                |
| 10<br>11 |      |                                                                                             |
| 12       | 404  | Claser B. J. Lehmann and W. Zech 2002 "Ameliorating physical and chemical                   |
| 13       | 404  | Glaser, D., J., Leminann, and W. Zeen. 2002. Amenorating physical and chemical              |
| 14<br>15 |      |                                                                                             |
| 16       | 405  | properties of highly weathered soils in the tropics with charcoal—a review." <i>Biology</i> |
| 17       |      |                                                                                             |
| 18       | 406  | and Fertility of Soils 35: 219-230. https://doi.org/10.1007/s00374-002-0466-4.              |
| 20       |      |                                                                                             |
| 21       | 407  | Gong, Z., N., Deng, Q., Song, and Z., Li. 2018. "Decompositing characteristics of maize     |
| 22       |      |                                                                                             |
| 24       | 408  | straw returning in Songnen plain in long-term located experiment "Transactions of           |
| 25       | 400  | straw returning in Songhen plan in long-term located experiment. Transactions of            |
| 26<br>27 |      |                                                                                             |
| 28       | 409  | the Chinese Society of Agricultural. Engineering 34: 139–145.                               |
| 29       |      |                                                                                             |
| 30<br>31 | 410  | https://doi.org/10.1007/s10705-019-09999-8                                                  |
| 32       |      |                                                                                             |
| 33<br>34 | 411  | Hayano. K. 1973. "A method for the determination of $\beta$ -glucosidase activity in soil." |
| 34<br>35 |      |                                                                                             |
| 36       | 412  | Soil Science and Plant Nutrition 19(2): 103-108                                             |
| 37<br>38 | 112  | Son seience una Fiam Hammon 19(2). 105 100.                                                 |
| 39       | 44.0 |                                                                                             |
| 40       | 413  | https://doi.org/10.1080/00380/68.19/3.10432524                                              |
| 41<br>42 |      |                                                                                             |
| 43       | 414  | Hwang, H. Y., G. W. Kim. Y. B. Lee, P. J. Kim, and S.Y. Kim. 2015. "Improvement of          |
| 44       |      |                                                                                             |
| 45<br>46 | 415  | the value of green manure via mixed hairy vetch and barley cultivation in temperate         |
| 40<br>47 |      |                                                                                             |
| 48       | 416  | naddy soil "Field Crops Research 183: 138-146                                               |
| 49<br>50 | 110  |                                                                                             |
| 51       | 417  | https://doi.org/10.1016/j.for 2015.09.001                                                   |
| 52       | 417  | https://doi.org/10.1010/j.ici.2013.08.001                                                   |
| 53<br>54 |      |                                                                                             |
| 55       | 418  | Insam, H. 2001. "Developments in soil microbiology since the mid 1960's."                   |
| 56       |      |                                                                                             |
| 57<br>58 | 419  | Geoderma 100, 389-402. https://doi.org/10.1016/S0016-7061(01)00029-5                        |
| 59       |      |                                                                                             |
| 60       |      |                                                                                             |

| 4<br>5               |     |                                                                                          |
|----------------------|-----|------------------------------------------------------------------------------------------|
| 6<br>7<br>8          | 420 | Jeon, W.T., M. T. Kim, K. Y. Seong, and I.S. Oh. 2008. "Changes of soil properties and   |
| 9<br>10<br>11        | 421 | temperature by green manure under rice-based cropping system." Korean Journal of Crop    |
| 12<br>13             | 422 | <i>Science</i> 53: 413-416.                                                              |
| 14<br>15<br>16       | 423 | Katoh, K., and D.M. Standley. 2013. "MAFFT multiple sequence alignment software          |
| 17<br>18<br>19       | 424 | version 7: improvements in performance and usability." Molecular Biology of              |
| 20<br>21<br>22       | 425 | Evolution. 30: 772-780. https://doi.org/10.1093/molbev/mst010                            |
| 23<br>24<br>25       | 426 | Kaye, J.P., and S. C. Hart. 1997. "Competition for nitrogen between plants and soil      |
| 20<br>27<br>28       | 427 | microorganisms." Trends in Ecology & Evolution. 12: 139–143.                             |
| 29<br>30<br>31       | 428 | https://doi.org/10.1016/S0169-5347(97)01001-X                                            |
| 32<br>33<br>34       | 429 | Koehler, L. H. 1952. "Differentiation of carbohydrates by anthrone reaction rate and     |
| 35<br>36<br>37       | 430 | color intensity." Analytical Chemistry 24(10): 1576-1579.                                |
| 39<br>40             | 431 | Lal, R. 2004. "Soil carbon sequestration impacts on global climate change and food       |
| 41<br>42<br>43       | 432 | security." Science 304:1623-1627. https//:doi:10.1126/science.1097396                    |
| 44<br>45<br>46       | 433 | Lang J, J. Hu, R. Wei, Y. Xu, and Q. Shen. 2012. "Control of cotton Verticillium wilt    |
| 47<br>48<br>49       | 434 | and fungal diversity of rhizosphere soils by bio-organic fertilizer." Biology and        |
| 50<br>51<br>52       | 435 | Fertilty of Soils 48:191-203. https://doi.org/10.1007/s00374-011-0617-6                  |
| 53<br>54<br>55       | 436 | Lee, C.H., K. Do Park, K. Y. Jung, M. A. Ali, D. Lee, J. Gutierrez, and P. J. Kim. 2010. |
| 50<br>57<br>58<br>59 | 437 | "Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice          |
| 60                   |     |                                                                                          |

| 4                          |     |                                                                                         |
|----------------------------|-----|-----------------------------------------------------------------------------------------|
| 5<br>6<br>7<br>8           | 438 | productivity and methane emission in paddy soil." Agriculture Ecosystem &               |
| 9<br>10<br>11              | 439 | Environment 138: 343-347. https://doi.org/10.1016/j.agee.2010.05.011                    |
| 12<br>13                   | 440 | Lee, C. G., T. Watanabe. and S. Asakawa. 2017. "Bacterial community incorporating       |
| 14<br>15<br>16             | 441 | carbon derived from plant residue in an anoxic non-rhizosphere soil estimated by        |
| 17<br>18<br>19             | 442 | DNA-SIP analysis." Journal of Soils and Sediment 17: 1084–1091.                         |
| 20<br>21<br>22             | 443 | https://doi.org/10.1007/s11368-016-1621-0                                               |
| 23<br>24<br>25             | 444 | Li, T., J. Gao, L. Bai, Y. Wang, J. Huang, M. Kumar, and X. Zeng. 2019. "Influence of   |
| 20<br>27<br>28             | 445 | green manure and rice straw management on soil organic carbon, enzyme activities,       |
| 29<br>30<br>31             | 446 | and rice yield in red paddy soil." Soil & Tillage Research 195:104428.                  |
| 32<br>33<br>34             | 447 | https://doi.org/10.1016/j.still.2019.104428                                             |
| 35<br>36<br>37             | 448 | Liu, M. F. Hu, X. Chen, Q. Huang, J. Jiao, B. Zhang, and H. Li. 2009. "Organic          |
| 38<br>39<br>40             | 449 | amendments with reduced chemical fertilizer promote soil microbial development          |
| 41<br>42<br>43             | 450 | and nutrient availability in a subtropical paddy field: The influence of quantity, type |
| 44<br>45<br>46             | 451 | and application time of organic amendments." Applied Soil Ecology 42: 166-175.          |
| 47<br>48<br>49             | 452 | https://doi.org/10.1016/j.apsoil.2009.03.006                                            |
| 50<br>51<br>52             | 453 | Lu, Y., A, Watanabe, and M. Kimura. 2002. "Contribution of plant-derived carbon to      |
| 53<br>54<br>55             | 454 | soil microbial biomass dynamics in a paddy rice microcosm." Biology and Fertility       |
| 56<br>57<br>58<br>59<br>60 | 455 | of Soils 36, 136–142. https://doi.org/10.1007/s00374-002-0504-2                         |

| 2<br>3               |     |                                                                                       |
|----------------------|-----|---------------------------------------------------------------------------------------|
| 4<br>5               |     |                                                                                       |
| 6<br>7<br>8          | 456 | Mandal, S., W. Van Treuren, R. A. White, M. Eggesbo, R. Knight, and S. D. Peddada.    |
| 9<br>10<br>11        | 457 | 2015. "Analysis of composition of microbiomes: a novel method for studying            |
| 12<br>13             | 458 | microbial composition." Microbial Ecology in Health and Disease 26: 27663.            |
| 14<br>15<br>16       | 459 | http://dx.doi.org/10.3402/mehd.v26.27663                                              |
| 17<br>18<br>19       | 460 | McDonald, D., M. Price, J. Goodrich, E. P. Nawrocki, T. Z. DeSantis, A. Probst, G. L. |
| 20<br>21<br>22       | 461 | Andersen, R. Knight, and P. Hugenholtz. 2012. "An improved Greengenes taxonomy        |
| 23<br>24<br>25       | 462 | with explicit ranks for ecological and evolutionary analyses of bacteria and          |
| 20<br>27<br>28       | 463 | archaea." The ISME Journal 6: 610-618. https://doi.org/10.1038/ismej.2011.139         |
| 30<br>31<br>32       | 464 | Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) 2011.    |
| 33<br>34<br>35       | 465 | Monitoring information of environmental radioactivity level. Available from URL:      |
| 36<br>37<br>38       | 466 | http://radioactivity.mext.go.jp/en/ [cited 17 December 2016].                         |
| 39<br>40<br>41       | 467 | Moore, J., S. Klose, and M. Tabatabai. 2000. "Soil microbial biomass carbon and       |
| 41<br>42<br>43       | 468 | nitrogen as affected by cropping systems. Biology and Fertility of Soils 31, 200-210. |
| 45<br>46<br>47       | 469 | https://doi.org/10.1007/s003740050646                                                 |
| 48<br>49<br>50       | 470 | Oades, J.M., M. A. Kirkman, and G. H. Wagner. "1970. The use of gas-liquid            |
| 50<br>51<br>52<br>53 | 471 | chromatography for the determination of sugars extracted from soils by sulfuric       |
| 55<br>55<br>56       | 472 | acid." Soil Science Society of American Proceeding 34(2): 230-235.                    |
| 57<br>58<br>59<br>60 | 473 | https://doi.org/10.2136/sssaj1970.03615995003400020017x                               |

| 4  |  |
|----|--|
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 28 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 44 |  |
| 45 |  |
| 46 |  |
| 47 |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 53 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 57 |  |
| 58 |  |
| 59 |  |
| 60 |  |

## 474 Price, M.N., P. S. Dehal, and A. P. Arkin. 2010. "FastTree 2—approximately

- 475 maximum-like-lihood trees for large alignments." *PLoS One* 5, e9490.
- 476 https://doi.org/10.1371/journal.pone.0009490
- 477 Rutkowska, A., and D. Pikuła. 2013. Effect of crop rotation and nitrogen fertilization on
- 478 the quality and quantity of soil organic matter M.C. Hernandez Soriano (Ed.), Soil
- 479 Processes and Current Trends in Quality Assessment 249-267
- 480 Shiga, H., N. Ouyama, K. Maeda, M. Suzuki. 1985. "An evaluation of different organic
- 481 materials based on their decomposition patterns in paddy soils." Bulletin of the
  - 482 *National Agriculture Research Center* 5:1–19 (in Japanese).
- 483 Shrestha, M., P. M. Shrestha, and R. Conrad. 2011. "Bacterial and archaeal com-
- 484 munities involved in the *in situ* degradation of  $^{13}$ C-labelled straw in the rice
- 485 rhizosphere." *Environmental Microbiology Reports* 3:587–596.
- 486 https://doi.org/10.1111/j.1758-2229.2011.00267.x
  - 487 Sinsabaugh, R.L., C.L. Lauber, M. N. Weintraub, B. Ahmed, S. D. Allison, C.
  - 488 Crenshaw, A. R. Contosta, D. Cusack, S. Frey, M. E. Gallo, T. B. Gartner, S. E.
- 489 Hobbie, K. Holland, B. L. Keeler, J. S. Powers, M. Stursova, C. Takacs-Vesbach, M.
  - 490 P. Waldrop, M. D. Wallenstein, D. R. Zak, and L. H. Zeglin. 2008. "Stoichiometry of

soil enzyme activity at global scale." Ecology Letters 11:1252-1264.

R.W. Weaver, S Augle, P.J. Bottomly, D. Bezdicek, S. Smith, A. Tabatabai, A. Woll

um (Eds.), Methods of soil analysis. Part 2. Microbiological and biochemical

Tian, W., L. Wang, Y. Li, K. Zhuang, G. Li, J. Zhang, X. Xiao, and Y. Xi. 2015

"Responses of microbial activity, abundance, and community in wheat soil after three

years of heavy fertilization with manure- based compost and inorganic nitrogen."

Environment

213:219-227.

Agronomy 54:34–39.

X

Tosti, G., P. Benincasa, M. Farneselli, F. Tei, and M. Guiducci. 2014. "Barley-hairy

Journal

vetch mixture as cover crop for green manuring and the mitigation of N leaching

of

properties, No. 5, Soil Science Society of America, Madison. 775-833.

https://doi.org/10.1111/j.1461-0248.2008.01245.x

https://doi.org/10.2136/sssabookser5.2.c37

Ecosystem

htpps://doi:10.1016/j.agee.2015.08.009

https://doi.org/10.1016/j.eja.2013.11.012

Tabatabai, M. A. 1994. Enzymes

Agriculture

risk." European

| 3<br>4         |     |
|----------------|-----|
| 5<br>6<br>7    | 491 |
| 8<br>9<br>10   | 492 |
| 11<br>12<br>13 | 493 |
| 14<br>15<br>16 | 494 |
| 17<br>18<br>19 | 495 |
| 20<br>21<br>22 | 496 |
| 23<br>24<br>25 | 497 |
| 26<br>27<br>28 | 498 |
| 29<br>30<br>31 | 499 |
| 32<br>33<br>34 | 500 |
| 35<br>36<br>37 | 501 |
| 38<br>39<br>40 | 502 |
| 41<br>42<br>43 | 503 |
| 44<br>45<br>46 | 504 |
| 40<br>47<br>48 | 505 |
| 49<br>50<br>51 | 506 |
| 52<br>53<br>54 | 507 |
| 55<br>56<br>57 | 507 |
| 58<br>59       | 200 |

60

1

29

Vazquez-Baeza, Y., M. Pirrung, A. Gonzalez, and R. Knight. 2013. "EMPeror: a tool for

visualizing high-throughput microbial community data." Gigascience 2:16.

http://mc.manuscriptcentral.com/sspn

| 4<br>5         |     |                                                                                          |
|----------------|-----|------------------------------------------------------------------------------------------|
| 6<br>7<br>8    | 509 | https://doi.org/10.1186/2047-217X-2-16                                                   |
| 9<br>10        | 510 | Von Mersi, W. and Schinner, F. 1991. "An improved and accurate method for                |
| 12<br>13       | 511 | determining the dehydrogenase activity of soils with iodonitrotetrazorium chloride."     |
| 14<br>15<br>16 | 512 | Biology and Fertility of Soils 11:216-220. https://doi.org/10.1007/BF00335770            |
| 17<br>18<br>19 | 513 | Weber, S., S. Stubner, and R. Conrad. 2001. "Bacterial populations colonizing and        |
| 20<br>21<br>22 | 514 | degrading rice straw in anoxic paddy soil." Appled Environmental Microbiology            |
| 23<br>24<br>25 | 515 | 67:1318–1327. https//doi:10.1128/AEM.67.3.1318-1327.2001                                 |
| 26<br>27<br>28 | 516 | Xu, Y., F. Ding, X. Gao, Y. Wang, M. Li, and J. Wang. 2019. "Mineralization of plant     |
| 29<br>30<br>31 | 517 | residues and native soil carbon as affected by soil fertility and residue type." Journal |
| 32<br>33<br>34 | 518 | of Soils and Sediments 19:1407-1415. https://doi.org/10.1007/s11368-018-2152-7           |
| 35<br>36<br>37 | 519 | Zech, W., N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. M. Miano, A.             |
| 38<br>39<br>40 | 520 | Miltner, and G. Schroth. 1997 "Factors controlling humification and mineralization       |
| 41<br>42<br>43 | 521 | of soil organic matter in the tropics." Geoderma 79:117-                                 |
| 44<br>45<br>46 | 522 | 161.https://doi.org/10.1016/S0016-7061(97)00040-2                                        |
| 47<br>48<br>49 | 523 | Zhang, X., R. Zhang, J. Gao, X. Wang, F. Fan, X. Ma, H. Yin, C. Zhang, K. Feng, and      |
| 50<br>51       | 524 | Y. Deng. 2017. "Thirty-one years of rice-rice-green manure rotations shape the           |
| 52<br>53<br>54 | 525 | rhizosphere microbial community and enrich beneficial bacteria." Soil Biology &          |
| 55<br>56<br>57 | 526 | <i>Biochemistry</i> 104:208–217 https://doi.org/10.1016/i.soilbio.2016.10.023            |
| 58<br>59<br>60 | 520 | 20000002010.10.020 217. https://woi.org/10.1010/j.sonoio.2010.10.025                     |

|                                                                                    | - |  |  |
|------------------------------------------------------------------------------------|---|--|--|
| 2345678911123456789012345678901233456789012334567890123456789012345678901234567890 |   |  |  |

527 Zheng J, J. Chen, G. Pan, X. Liu, X. Zhang, L. Li, R. Bian, K. Cheng, and Z. Jinwei.

- 528 2016. "Biochar decreased microbial metabolic quotient and shifted community
- 529 composition four years after a single incorporation in a slightly acid rice paddy from
- 530 southwest China." *Science of the Total Environment* 15:571:206-17.
- 531 https://doi.org/10.1016/j.scitotenv.2016.07.135.

for review

| 4          |  |
|------------|--|
| 5          |  |
| 6          |  |
| 7          |  |
| ,<br>o     |  |
| 0          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 11         |  |
| 14         |  |
| 15         |  |
| 16         |  |
| 17         |  |
| 18         |  |
| 19         |  |
| 20         |  |
| 20<br>21   |  |
| 21         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 20         |  |
| 20         |  |
| 29         |  |
| 30         |  |
| 31         |  |
| 32         |  |
| 33         |  |
| 31         |  |
| 24         |  |
| 22         |  |
| 36         |  |
| 37         |  |
| 38         |  |
| 39         |  |
| 40         |  |
| <u>Δ</u> 1 |  |
| 4 J        |  |
| 42         |  |
| 43         |  |
| 44         |  |
| 45         |  |
| 46         |  |
| 47         |  |
| 48         |  |
| ⊿0         |  |
| 77         |  |
| 50         |  |
| 51         |  |
| 52         |  |
| 53         |  |
| 54         |  |
| 55         |  |
| 56         |  |
| 50         |  |
| 5/         |  |
| 58         |  |
| 50         |  |

1 2 3

## **Figure legends** 534

535

| 536 | Figure 1. Dynamics of cellulose, hemicellulose, total cabon and nitrogen contents in        |
|-----|---------------------------------------------------------------------------------------------|
| 537 | each treatment during the harvesting period                                                 |
| 538 | Error bars indicate standard deviations. Statistically significant treatments in each       |
| 539 | sampling days are indicated by alphabetic labels (Tukey HSD analysis, $p < 0.05$ ).         |
| 540 |                                                                                             |
| 541 | Figure 2. Dynamics of microbial biomass, and each enzyme acticity during the                |
| 542 | harvesting period                                                                           |
| 543 | Error bars indicate standard deviations. Statistically significant treatments in each       |
| 544 | sampling days are indicated by alphabetic labels (Tukey HSD analysis, $p < 0.05$ ).         |
| 545 |                                                                                             |
| 546 | Figure 3. Dynamics of microbial diversity and richness during the harvesting                |
| 547 | period                                                                                      |
| 548 | Error bars indicate standard deviations. Error bars Statistically significant treatments in |
| 549 | each sampling days are indicated by alphabetic labels (Tukey HSD analysis, $p < 0.05$ ).    |
| 550 |                                                                                             |
|     |                                                                                             |

| 2                                      |     |                                                                                       |
|----------------------------------------|-----|---------------------------------------------------------------------------------------|
| 4                                      |     |                                                                                       |
| 5<br>6<br>7                            | 551 | Figure 4. Changing the relative abundance of prokayoric communities during the        |
| 9<br>10<br>11                          | 552 | harvesting period in genus level                                                      |
| 12<br>13<br>14                         | 553 | The date indicated the sampling days and the alphabet at the bottom indicated each    |
| 15<br>16<br>17                         | 554 | treatment.                                                                            |
| 18<br>19<br>20                         | 555 |                                                                                       |
| 21<br>22<br>23                         | 556 | Figure 5. Changing the relative abundance of prokayoric communities during the        |
| 24<br>25<br>26                         | 557 | harvesting period in order level                                                      |
| 27<br>28<br>29                         | 558 | The date indicated the sampling days and the alphabet at the bottom indicated each    |
| 30<br>31<br>32                         | 559 | treatment.                                                                            |
| 33<br>34<br>35                         | 560 |                                                                                       |
| 36<br>37<br>38                         | 561 | Figure 6. Dynamics of each microbes during the harvesting period                      |
| 39<br>40<br>41                         | 562 | Error bars indicate standard deviations. Statistically significant treatments in each |
| 42<br>43<br>44                         | 563 | sampling days are indicated by alphabetic labels (Tukey HSD analysis, $p < 0.05$ ).   |
| 45<br>46<br>47                         | 564 |                                                                                       |
| 48<br>49<br>50                         | 565 | Figure 7. Beta diversity: principal coordinate analysis (PCoA) of prokaryotic         |
| 51<br>52<br>53                         | 566 | community structure based on Buray–Curtis distances for each treatments during        |
| 54<br>55<br>56<br>57<br>58<br>59<br>60 | 567 | the harvesting period.                                                                |

Sample names were assigned x/y-z in which x, y and z indicate the date of sampling and replication number, respectively (ex, 6/12-1 was sampled at 12 June and the replication 1). 

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436377; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the action of the action of the preprint and the preprint of the prepr

| 1        |  |
|----------|--|
| 2        |  |
| -<br>२   |  |
| 1        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 27       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 27       |  |
| 5Z       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 42<br>12 |  |
| 45       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 52       |  |
| 22       |  |
| 54       |  |
|          |  |

Table 2. Yields and chemical properties of each GM

|   | Yields | ТС   | TN    | CN ratio |
|---|--------|------|-------|----------|
|   | t/ha   | t/ha | t/ha  |          |
| V | 1.24   | 0.53 | 0.045 | 11.8     |
| А | 1.31   | 0.61 | 0.01  | 61.0     |
| М | 2.55   | 0.9  | 0.03  | 30.0     |

review

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436377; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the acient for th

| 587 |   |                             |                       |                            |
|-----|---|-----------------------------|-----------------------|----------------------------|
| 588 |   |                             |                       |                            |
| 589 |   |                             |                       |                            |
| 590 |   |                             |                       |                            |
| 591 |   |                             |                       |                            |
|     |   | Table 3. Inpu               | ts of GM in the       | litter bag                 |
|     |   | Input amount                | Input carbon contents | Input nitrogen<br>contents |
|     |   | mg litter bag <sup>-1</sup> | (mg kg⁻¹)             | (mg kg <sup>-1</sup> )     |
|     | С | 0                           | 0                     | 0                          |
|     | V | 37.2                        | 500                   | 42.3                       |
|     | А | 39.3                        | 500                   | 8.3                        |
| 502 | M | 76.5                        | 1000                  | 50.7                       |
| 592 |   |                             |                       |                            |
| 593 |   |                             |                       |                            |
| 595 |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |
|     |   |                             |                       |                            |

# Table 4. Soil chemical and microbial properties after the harvesting stage

| TC             | NT      | Cellulose | Hemicellulose | Microbial<br>biomass C | beta-<br>glucosidase | Dehydrogenase   | OTU<br>number | Shannon<br>index |
|----------------|---------|-----------|---------------|------------------------|----------------------|-----------------|---------------|------------------|
| C 5.52±0.39.0  | 43±0.03 | 238±17    | 391±18        | 27.3±16.5              | 0.09±0.02            | 0.27±0.17       | 1271±323      | 6.39±0.45        |
| V 5.84±0.36 0  | 48±0.04 | 226±32    | 397±6         | 28.1±14.5              | $0.11 \pm 0.08$      | $0.35 \pm 0.01$ | 1893±389      | 7.03±0.25        |
| A 5.61±0.88 0  | 49±0.06 | 222±49    | 370±38        | 25.5±17.8              | 0.16±0.04            | $0.41 \pm 0.15$ | 1334±375      | 6.37±0.31        |
| M 6.66±0.66 0. | 56±0.06 | 282±51    | 422±30        | 24 9±4 4               | $0.15\pm 0.04$       | 0.48±0.2        | 838±125*      | 5.69±0.19*       |

## Table 5. Correlations between each microbes and cellulose, hemicellulose, and soil carbon content

| ,        |     |                 |                    |           |               |              |
|----------|-----|-----------------|--------------------|-----------|---------------|--------------|
| 8        |     | Phylum          | Closest relatives  | Cellulose | Hemicellulose | Total Carbon |
| 9        |     | Firmicutes      | Lachnospiraceae    | 0.606     | 0.679         | 0.242        |
| 10       |     |                 | Clostridiales      | 0.46      | 0.401         | 0.203        |
| 11       |     |                 | Bacillus           | 0.261     | 0.285         | 0.759        |
| 12       |     | Chloroflexi     | Anaerolineae SJA15 | -0.474    | -0.551        | -0.347       |
| 13       |     |                 | Ktedonobacteria    | -0.205    | -0.053        | -0.438       |
| 14       |     |                 | Unidentified       | 0.41      | 0.400         | 0 417        |
| 15       |     |                 | Chloroflexi        | -0.41     | -0.406        | -0.417       |
| 17       |     | Proteobacteria  | Rhizobiales        | -0.457    | -0.292        | -0.757       |
| 18       |     |                 | Unidentified       | -0.394    | -0.45         | -0.173       |
| 19       |     | .,              | Betaproteobacteria | 0,070     | 0,104         | 0,11,5       |
| 20       |     | Verrucomicrobia | Pedosphaerales     | -0.3/3    | -0.404        | -0.088       |
| 21       |     | Chlorobi        | BSV26              | -0.2//    | -0.496        | -0.401       |
| 22       | 600 | Euryarchaeota   | Methanomicrobia    | -0.097    | -0.435        | -0.219       |
| 23       | 000 |                 |                    |           |               |              |
| 24       | 601 |                 |                    |           |               |              |
| 25       |     |                 |                    |           |               |              |
| 26       |     |                 |                    |           |               |              |
| 27       |     |                 |                    |           |               |              |
| 28       |     |                 |                    |           |               |              |
| 29       |     |                 |                    |           |               |              |
| 30       |     |                 |                    |           |               |              |
| 31       |     |                 |                    |           |               |              |
| 32       |     |                 |                    |           |               |              |
| 33       |     |                 |                    |           |               |              |
| 34<br>25 |     |                 |                    |           |               |              |
| 35<br>26 |     |                 |                    |           |               |              |
| 20<br>27 |     |                 |                    |           |               |              |
| 20       |     |                 |                    |           |               |              |
| 30       |     |                 |                    |           |               |              |
| 40       |     |                 |                    |           |               |              |
| 41       |     |                 |                    |           |               |              |
| 42       |     |                 |                    |           |               |              |
| 43       |     |                 |                    |           |               |              |
| 44       |     |                 |                    |           |               |              |
| 45       |     |                 |                    |           |               |              |
| 46       |     |                 |                    |           |               |              |
| 47       |     |                 |                    |           |               |              |
| 48       |     |                 |                    |           |               |              |
| 49       |     |                 |                    |           |               |              |
| 50       |     |                 |                    |           |               |              |
| 51       |     |                 |                    |           |               |              |
| 52       |     |                 |                    |           |               |              |
| 53       |     |                 |                    |           |               |              |
| 54       |     |                 |                    |           |               |              |

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436377; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the action remained Rianging definition of the copyright holder for this preprint Page 40 of 48

| c   |                                  |                             |           |         |             |
|-----|----------------------------------|-----------------------------|-----------|---------|-------------|
| 502 |                                  |                             |           |         |             |
| 503 |                                  |                             |           |         |             |
| 504 |                                  |                             |           |         |             |
| 505 |                                  |                             |           |         |             |
| 505 |                                  |                             |           |         |             |
|     | Table 6. Correlations between ea | ach microbes and, hem       | icellulos | e conte | nts in eacl |
|     | Dydum                            | Clocost rolativos           | ^         | E       | М           |
|     | Fyldm<br>Firmicutes              | Bacillus                    | 0.46      | 0.50    | 0.45        |
|     |                                  | Lachnospiraceae             | -0.08     | 0.45    | 0.41        |
|     |                                  | ,<br>Ruminococcaceae        | 0.32      | -0.43   | 0.24        |
|     | Chloroflexi                      | Anaerolineae                | -0.41     | -0.42   | -0.01       |
|     |                                  | Unidntified Chloroflexi     | -0.49     | 0.05    | -0.37       |
|     | Proteobacteria                   | Desulfobulbaceae            | 0.01      | -0.44   | -0.10       |
|     | Chlorobi                         | Becapioleobacteria<br>BSCV6 | 0.00      | -0.42   | -0.25       |
|     | Eurvarchaeota                    | Methanomicrobia             | 0.05      | -0.23   | -0.41       |
|     |                                  | Methanoregulaceae           | -0.02     | -0.05   | -0.45       |
| 506 |                                  |                             |           |         |             |
| 607 |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  |                             |           |         |             |
|     |                                  | 40                          |           |         |             |

Page 41 of 48

3 4

6

Soil Science and Plant Nutrition



Soil Science and Plant Nutrition

Lee et al. Fig 2 Page 42 of 48





Soil Science and Plant Nutrition

Lee et al. Fig 4 Page 44 of 48

| <sup>35</sup> 6/12 7/3 7/30 | 8/21   10/4   6/1 | 2   7/3   7/30   8/21   10/ | 4 6/12 7/3 7/30 8/21 10/4                  | 6/12   7/3   7/30   8/21   10/4 |
|-----------------------------|-------------------|-----------------------------|--------------------------------------------|---------------------------------|
| 37 C<br>38                  | ■ Eirmicutes      | A<br>Proteobactoria Chlored | V<br>Ievitus com (Tr Acidobacteria Dianeto | M M                             |
| 39<br>40<br>41              | Euryarchaeota     | Verrucomicrobia Chlorol     | oi ■Actinobacteria ■Others                 | myoetes                         |

Soil Science and Plant Nutrition

# Lee et al. Fig 5







# Supplemental Figure 1. Changing the soil carbon content in the paddy field

