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ABSTRACT 

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of 

protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 

variants, including B.1.1.7, P1, and B.1.351, some of which appear to be less effectively targeted 

by current monoclonal antibodies and vaccines. Here we report a high resolution and 

comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain 

(RBD), which is the target of most neutralizing antibodies, using computational structural 

analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, 

we classified antibodies by RBD residue binding determinants using unsupervised clustering. We 

also identified the energetic and conservation features of epitope residues and assessed the 

capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies 

predicted to effectively target recently described viral variants. This detailed structure-based 

reference of antibody RBD recognition signatures can inform therapeutic and vaccine design 

strategies. 
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INTRODUCTION 

Over the past year, the SARS-CoV-2 pandemic has resulted in a massive and growing global 

death toll and disease burden. A number of vaccines (Krammer, 2020), monoclonal antibodies 

(Jiang et al., 2020), and small molecule therapies (Simonis et al., 2021) that target SARS-CoV-2 

have been developed. However, viral variants have raised the possibility of viral escape from, or 

reduced efficacy of, current vaccines and therapeutics (Liu et al., 2021a; Madhi et al., 2021; Starr 

et al., 2021; Wang et al., 2021b; Wang et al., 2021c; Wu et al., 2021).  

 

Several recent studies have used in vitro experimental approaches to test human sera (Greaney et 

al., 2021a; Wang et al., 2021b) and sets of monoclonal antibodies (Greaney et al., 2021b; Liu et 

al., 2021b; Starr et al., 2021; Wang et al., 2021b) to profile SARS-CoV-2 antibody resistance. 

The rapidly expanding set of experimentally determined structures of antibodies targeting the 

spike glycoprotein provides the opportunity to use computational biology tools to map key 

features of antibody-spike recognition. At the same time, the impact of viral variability can be 

predicted, which can provide insights into effective targeting and neutralization of SARS-CoV-2 

and enable selection and engineering of anti-spike therapeutics and vaccines. 

 

Here we report detailed structural analysis of a large set of high resolution antibody-spike 

complexes that have been collected in our database, CoV3D (Gowthaman et al., 2021). 

Structure-based mapping of antibody footprints on the receptor binding domain (RBD) and 

unsupervised clustering led to the identification of four major antibody groups based on their 

recognition signatures. These antibody-spike complexes were assessed for key energetic features 

using computational alanine mutagenesis of all RBD interface residues to identify shared and 
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distinct binding hotspots on the RBD. The structure-based antibody clusters were also assessed 

both for residue conservation with SARS-CoV-1, and predicted effects of individual RBD 

substitutions from circulating SARS-CoV-2 variants, showing substantial differences between 

groups of RBD-targeting antibodies. These structural features and clusters can serve as a 

reference for rational vaccine design and therapeutic efforts, and updated antibody cluster 

information based on this analysis is available to the community on the CoV3D site: 

https://cov3d.ibbr.umd.edu/antibody_classification. 

 

RESULTS 

Clustering of antibody-RBD interaction modes  

To identify common recognition modes and key features of antibody recognition of the spike 

glycoprotein, we analyzed a set of high resolution structures of antibody-spike complexes from 

the CoV3D database (Gowthaman et al., 2021), which were originally obtained from the Protein 

Data Bank (Rose et al., 2011). We focused on the SARS-CoV-2 RBD, which is the primary 

target of neutralizing antibodies (Zost et al., 2020) and is the target of the vast majority of 

structurally characterized SARS-CoV-2 antibodies. Structures were filtered by resolution (< 4.0 

Å) and nonredundancy, resulting in 70 antibody-RBD complex structures, representing different 

antibody formats (heavy-light antibody, nanobody) and a range of IGHV genes (Table S1). 

Notably, these complex structures include multiple therapeutic monoclonal antibodies that have 

been under clinical investigation: REGN10933 and REGN10987 (casirivimab/imdevimab; 

REGN-COV2) (Weinreich et al., 2021), LY-CoV555 (bamlanivimab) (Chen et al., 2021), and 

S309 which is the basis for VIR-7831 (GSK4182136; sotrovimab) (Tuccori et al., 2020). 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2021.03.21.436311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.21.436311
http://creativecommons.org/licenses/by-nd/4.0/


5 
	

To assess prevalent or shared binding modes in antibody-RBD recognition, pairwise root-mean-

square-distances (RMSDs) between antibody heavy chain and nanobody chain orientations were 

calculated after superposition of RBD coordinates into a common reference frame, and the 

RMSDs were input to hierarchical clustering analysis (Figure 1). This analysis identified a set of 

17 complexes with a common binding mode and shared heavy chain germline genes (IGHV3-53, 

IGHV3-66), a feature that has been noted in previous studies describing SARS-CoV-2 antibody-

RBD complex structures (Barnes et al., 2020b; Yuan et al., 2021). Other sets of co-clustered 

antibodies within the 8 Å RMSD cutoff were limited to antibody pairs, with the exception of a 

set of five antibodies, of which three (2-15, Ab2-4, C121) share the IGHV1-2 heavy chain 

germline gene, suggestive of another germline-mediated binding mode. However, other 

antibodies possessing the IGHV1-2 germline gene exhibited distinct binding modes based on the 

clustering analysis (298, S2E12), indicating that the heavy chain CDR3 sequence and light chain 

are relevant factors for that orientation. An example of co-clustered antibodies based on this 

analysis is shown in Figure 1B, showing a shared RBD binding mode (heavy chain orientation 

RMSD: 2.9 Å) for neutralizing antibodies S304 (Piccoli et al., 2020) and EY6A (Zhou et al., 

2020).  

 

High resolution antibody footprinting and clustering analysis 

To further delineate features underlying antibody-RBD recognition, we analyzed detailed 

antibody footprints on the RBD with unsupervised clustering, using the number of atomic 

contacts by an antibody to each RBD residue as input. Individual antibody footprints and 

resultant clusters are shown in Figure 2, along with calculated and previously reported properties 

of the antibodies for reference, including interface buried surface area (BSA), neutralization 
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(SARS-CoV-2 neutralization or SARS-CoV-1/SARS-CoV-2 cross neutralization), ACE2 

blocking, and capability to bind the RBD in the context of the closed (or down) spike 

conformation. This separated the antibodies into four main clusters; these are similar but not 

identical to previously described SARS-CoV-2 antibody classifications described by Barnes et 

al. (Barnes et al., 2020a), which are shown as the “BBclass” colored sidebar in Figure 2. 

Inspection of the heatmap indicates that Clusters 1 and 4 are most distinct, which is supported by 

high bootstrap confidence levels (100% and 99% respectively; Figure S1), while Clusters 2 and 

3 are more diverse, and have bootstrap confidence levels of 87% and 83% (Figure S1). 

Visualization the distribution of the antibody positions on the RBD surface (Figure 3) shows that 

Clusters 1 and 2 are spatially proximal and overlap with the ACE2 binding site, and the 

relatively constrained positions of Cluster 1 antibodies are reflective of our RMSD-based 

analysis and known conserved binding mode of that set. Cluster 3 extends to the RBD hinge and 

N-glycan at RBD position N343, while Cluster 4 occupies a distinct region of the RBD. Principal 

component analysis using the antibody atom contact data as input enabled visualization of the 

antibody distributions along the first two principal components, which collectively represent 

approximately 50% of the data (Figure S2), and generally supports the hierarchical clustering. 

 

The contact-based clusters in Figure 2 highlight several notable features within and between sets 

of RBD-targeting antibodies. Cluster 1 antibodies all neutralize SARS-CoV-2, block ACE2 

binding, can only bind the spike in its open conformation, and have relatively high RBD 

interface buried surface area (BSA). Cluster 2 contains antibodies that can bind the closed spike, 

some of which can engage multiple RBDs in that context, and all are predicted or confirmed to 

block ACE2 binding. Cluster 3 is dominated by antibodies that can bind the closed spike, and 
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most are predicted block ACE2 binding through steric hindrance and/or binding site overlap. In 

Cluster 4, which is mapped closer to the N- and C-termini and the hinge that connects the RBD 

to the spike (Figure 3), multiple antibodies are confirmed to be cross-neutralizing between 

SARS-CoV-2 and SARS-CoV-1 (Liu et al., 2020; Lv et al., 2020; Piccoli et al., 2020), and no 

antibodies are predicted to recognize spike in the RBD-closed conformation. The mapped 

antibody footprints show varying degrees of overlap with ACE2 binding site residues (gray bars 

at top of Figure 2) among the clusters. Residues highlighted in Figure 2 that are associated with 

viral variants of concern (E484, K417, N501) show that Cluster 2 is primarily associated with 

E484 engagement, while Cluster 1 is associated with engagement of K417 and N501. Antibodies 

in Clusters 3 and 4 exhibit few or no contacts with those residues, suggesting that they are less 

susceptible to binding disruption and viral resistance due to variability at those sites. 

 

Binding energetic features and hotspots 

To provide a more detailed and comprehensive view of key residues and energetic features 

underlying antibody-RBD recognition, all interface structures were analyzed for hydrogen bonds 

with RBD residues (Figure 4) and energetically important RBD residues based on computational 

alanine scanning (Figure 5). Hydrogen bonding patterns in RBD-targeting antibodies (Figure 4) 

showed clear preferences for hydrogen bond RBD residue interactions among Cluster 1 

antibodies, with frequently observed interactions with residues R403, K417, D420, Y421, N487, 

and Y505. Many Cluster 2 antibodies exhibit hydrogen bond interactions with residue E484 

and/or Q493, whereas antibodies from Clusters 3 and 4 have limited shared RBD residues 

involved in hydrogen bond interactions.  
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To map key RBD sites and energetic hotspots in the set of antibody-RBD interfaces, we 

performed computational alanine scanning (Figure 5) using a predictive protocol in Rosetta 

(Kortemme et al., 2004). The protocol used for this analysis was selected based on predictive 

performance from benchmarking of nine computational methods using approximately 350 

experimentally determined alanine mutant ΔΔG values for antibody-antigen interfaces (Table 

S2). While many energetically important residues identified by this analysis are reflective of the 

key residues identified by hydrogen bond analysis, including residues N487 and E484 (Cluster 1) 

and E484 (Cluster 2), numerous hydrophobic RBD residues were additionally identified as 

important for binding within antibody clusters. These residues include Y505 (Cluster 1), F486 

and Y489 (Clusters 1 and 2), and Y449 and F490 (Clusters 2 and 3). As with the analysis of 

RBD residue contacts, analysis of hydrogen bonds and computational alanine scanning support 

the overall importance of N417 and Y501 for Cluster 1 antibodies, and E484 for Cluster 2 

antibodies. 

 

Epitope conservation and targeting of escape variants 

To assess the degree to which antibodies and antibody classes to target sites that are conserved 

among sarbecoviruses, the fraction of RBD epitope residues conserved between SARS-CoV-2 

and SARS-CoV-1 was calculated for each antibody-RBD interface (Figure 6). Clusters 1-3 

exhibit limited conservation (approximately 50% or lower conserved antibody contact residues), 

with the exception of S309, which shows over 80% epitope residue conservation; this result is in 

accordance with the observed cross-neutralizing capability for that antibody (Pinto et al., 2020). 

In contrast with the other antibody clusters, antibodies in Cluster 4, which includes three 

confirmed cross-neutralizing antibodies (Figure 2), exhibit markedly higher epitope 
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conservation, with all values 78% or higher. This highlights the potential importance of this 

conserved site, which is not accessible in the closed spike structure, in targeting of and immunity 

to emerging sarbecoviruses. 

 

To directly assess the effects of RBD mutations present in recently described SARS-CoV-2 

variants of concern, we performed computational mutagenesis to gauge whether antibody 

binding affinities are predicted to be disrupted by individual RBD substitutions. For these 

simulations, we utilized the same protocol that was used for computational alanine scanning; we 

found this method to have similar predictive performance for point residue substitutions to all 

residue types in comparison with performance for alanine-only substitutions (Pearson 

Correlation Coefficient (PCC) with experimental ΔΔGs of 0.5 for all residues, versus 0.53 for 

alanine-only; Table S2). RBD substitutions K417N, K417T, E484K, and N501Y were modeled 

in all interfaces and assessed for antibody ΔΔGs; these substitutions are collectively represented 

in variants B.1.1.7 (N501Y), B.1.351 (501Y.V2; K417N, E484K, N501Y), P1 (484K.V2; 

K417T, E484K, N501Y), B.1.525 (E484K), and a recently reported variant of concern, B.1.526 

(E484K) (Annavajhala et al., 2021). Comparison of predicted ΔΔGs (Figure 7) shows that 

K417N, K417T, and to a lesser extent N501Y, are predicted to predominantly affect antibodies 

in Cluster 1, whereas disruptive effects of E484K are primarily observed for antibody Cluster 2, 

with the exception of two antibodies with predicted ΔΔG values of over 1 Rosetta Energy Unit 

(REU), in Cluster 3. In contrast, antibodies in Cluster 3 and 4 exhibit little overall effects from 

those variant RBD substitutions. We also tested predicted binding effects using a different 

modeling tool (FoldX), which uses a distinct modeling and scoring protocol from Rosetta, and 

found similar trends among antibody classes for the effects of the variants (Figure S4). Finally, 
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two additional RBD substitutions (L452R, S477N) from other described SARS-CoV-2 variants 

that have unclear associations with transmissibility or antibody resistance (e.g. B.1.429+B.1.427, 

which contains L452R) were tested for effects in the antibody-RBD interfaces; neither was 

predicted to have a pronounced effect on recognition for any of the antibody clusters (Figure 

S5). 

 

DISCUSSION 

Utilizing a curated set of experimentally determined antibody-RBD complex structures, we have 

performed detailed mapping of antibody recognition determinants on the SARS-CoV-2 RBD, 

which were used to generate antibody clusters that exhibit distinct structural and energetic 

signatures. Notably, these clusters exhibited different destabilizing effects from RBD 

substitutions found in circulating variants, underscoring and expanding upon previous 

observations by others that indicate that specific groups of antibodies are affected by specific 

substitutions, including E484K (Barnes et al., 2020a). We found that Cluster 2 antibodies, which 

overlap with Class 2 antibodies reported by Barnes et al. (Figure 2), are susceptible to resistance 

from viruses with the E484K substitution, which include B.1.351, P1, B.1.525, and B.1.526, but 

not B.1.1.7, whereas other antibodies are not likely to be affected by that substitution. In 

contrast, substitutions at residues K417 and N501, which are found in several variants of 

concern, were primarily associated with binding disruption to Cluster 1 antibodies based on our 

computational mutagenesis. Given that the E484K substitution appears specifically associated 

with viral escape, as noted by others (Altmann et al., 2021) and supported by recent studies of 

monoclonal and polyclonal antibody neutralization of variant viruses and specific mutants 
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(Wang et al., 2021b; Wu et al., 2021), our work highlights the relative importance of Cluster 2 

antibodies in the neutralizing response against SARS-CoV-2. 

 

Though effects from RBD substitutions on ACE2 recognition were not considered in this study, 

due to its focus on antibody recognition and mutational escape, others have reported 

computational (Chen et al., 2020; Laurini et al., 2020) and experimental (Starr et al., 2020) RBD 

substitutions associated with loss of, or improvement of, ACE2 binding. As ACE2 binding 

effects can impact viral infectivity and fitness, a prospective combination of datasets from our 

study and a profile of ACE2 binding effects can provide a more comprehensive view of the 

landscape of viral fitness and immune escape. Such integrative work could identify SARS-CoV-

2 RBD variants with functional implications through computational structural analysis which are 

not yet identified in circulating variants, and can be prioritized for experimental characterization, 

and potentially with targeted therapies and updated vaccines, if they do appear. Additionally, 

new viral variant sequences can be rapidly assessed for possible mutational escape using our 

computational analysis pipeline. 

 

This study is distinguished from other recently described structure-based (Barnes et al., 2020a) 

and binding competition-based (Dejnirattisai et al., 2021; Piccoli et al., 2020) reports to compare 

and classify antibodies, as we directly assessed detailed antibody binding footprints on the RBD 

with structural analysis to generate the identified clusters. The unsupervised clustering used here 

corroborated and expanded upon previously identified classes (Barnes et al., 2020a), though 

several distinctions in classifications were also observed in our analysis. To provide an updated 

reference to the community, we report these clusters on our CoV3D site of coronavirus protein 
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structures (Gowthaman et al., 2021) (https://cov3d.ibbr.umd.edu/antibody_classification), which 

includes the 70 complexes reported in this study as well as newly reported complexes. We also 

provide a prototype interface on the CoV3D site for researchers to input new experimentally 

determined structures or models of antibody-RBD or protein-RBD complexes to characterize the 

binding footprint and provide the contact-based cluster.  

 

New datasets reporting large-scale experimental mapping of antibody binding determinants can 

expand upon our analysis and provide additional insights. While in this work we report 

systematic computational alanine scanning to identify key energetic determinants of a large set 

of monoclonal antibodies that target the SARS-CoV-2, other studies have reported experimental 

global alanine scanning of antibody interactions with viral glycoproteins, such as hepatitis C 

virus E1E2, to map binding determinants (Colbert et al., 2019; Gopal et al., 2017; Keck et al., 

2019; Pierce et al., 2016). These datasets were used to cluster antibodies and E1E2 positions by 

binding profiles in several of those studies (Colbert et al., 2019; Keck et al., 2019; Pierce et al., 

2016). Though based on deep mutational scanning rather than direct measurement of binding 

affinities, recent studies provide information on the impact of RBD substitutions to alanine and 

other residues on recognition by sets of monoclonal antibodies (Greaney et al., 2021b; Starr et 

al., 2021), and such data could be inspected with respect to residue and mutation-level impact on 

antibody clusters identified here. 

 

Certain elements of our analysis of antibody binding determinants can be expanded in future 

studies. Some omissions from the calculation of antibody contacts and energetic determinants on 

the RBD include lack of inclusion of certain non-protein atoms, such as water molecules and N-
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glycans, and lack of explicit calculation of adjacent RBD contacts, outside of noting likely closed 

spike cross-protomer binding, which was the case for a small fraction of antibodies considered 

here. Water molecules, which could mediate hydrogen bonds between antibody and RBD, were 

not included here, to avoid bias due to varying experimental structural resolutions which in many 

cases could not resolve water molecules, necessitating modeling of explicit water molecules 

which would lead to additional uncertainties in subsequent calculations (Lensink et al., 2014). 

Likewise, the N-glycans of the RBD, specifically the glycan at residue N343, has varying 

occupancies in experimentally determined structures. Though this glycan is contacted by the 

S309 antibody (Pinto et al., 2020), such antibody-RBD glycan contacts appear to be rare, at least 

for structurally characterized neutralizing antibodies, of which most compete with ACE2 binding 

and thus target regions sites that are not proximal to that N-glycan. One potential avenue for 

expansion of this analysis includes antibodies that target other regions of the spike glycoprotein, 

specifically the N-terminal domain (NTD). While the current set of experimentally determined 

SARS-CoV-2 antibody-NTD complex structures (March, 2021) is currently limited to six 

antibodies (4A8, FC05, DH1050.1, 2-51, COVOX-159, DH1052) (Cerutti et al., 2021; Chi et al., 

2020; Dejnirattisai et al., 2021; Li et al., 2021; Wang et al., 2021a), recent structural and 

antigenic mapping studies of antibody recognition of this domain (Cerutti et al., 2021; McCallum 

et al.) indicate that a focused computational analysis would be useful, particularly as more 

structures of antibodies targeting this domain are reported. We currently represent this set in the 

“non-RBD” antibody class on the CoV3D site. 

 

In addition to providing a view of the detailed landscape of antibody-RBD recognition 

determinants and key sites, our results indicate that certain sets of antibodies are associated with 
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limited likely viral resistance from circulating variants (Clusters 3 and 4) as well as higher 

epitope sequence conservation (Cluster 4). Many of the antibodies in these sets have been 

experimentally confirmed to neutralize SARS-CoV-1 or cross-neutralize SARS-CoV-1 and 

SARS-CoV-2. Prospective structure-based antigen design studies could potentially focus the 

antibody response to the corresponding epitopes of the SARS-CoV-2 RBD, versus the epitopes 

collectively targeted by antibodies in Clusters 1 and 2. As binding of Cluster 4 antibodies is 

prevented in the context of the closed-RBD spike conformation, open spike antigen designs or 

RBD-only antigens would facilitate elicitation of these antibodies. Several recent studies have 

reported success using RBD displayed on self-assembling nanoparticles (Cohen et al., 2021; 

Walls et al., 2020a; Zhang et al., 2020), and structure-guided RBD optimization in the context of 

such a platform could lead to improved elicitation of desired antibody profiles. Integrating 

computational structural analysis and design with experimental characterization is a promising 

avenue toward effective combatting of SARS-CoV-2 variants and future emerging viruses.  

 

MATERIALS AND METHODS 

Structure assembly and curation 

Structures of antibody-RBD complexes were downloaded from the CoV3D database 

(Gowthaman et al., 2021), which identifies and antibody-RBD structures in the Protein Data 

Bank (Rose et al., 2011) on a weekly basis through sequence similarity to coronavirus reference 

protein sequences in conjunction with identification and annotation of antibody chains. The set 

of antibody-RBD structures (downloaded in February 2021) was filtered for antibody 

nonredundancy based on antibody name and sequence identity, as well as resolution (< 4.0 Å). In 

cases of an antibody present in multiple antibody-RBD complex structures, the structure with 
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highest resolution was selected for analysis. To permit consistency among antibody-RBD 

complex structures, and to facilitate calculations, antibodies were truncated to include variable 

domains, and full spike glycoproteins were truncated to include only RBD residues (residues 

330-530) of the sole or major target of the antibody. To provide uniform input structures for 

atomic contact and other calculations, non-amino acid HETATMs were removed prior to 

structural analysis, and to resolve double occupancies and add missing side chain atoms, 

structures were pre-processed by the “score” application in Rosetta version 3.12 (Leman et al., 

2020). Two complexes with missing side chain atoms in the experimental PDB coordinates were 

processed using the FastRelax protocol in Rosetta (Khatib et al., 2011), to perform constrained 

local minimization  and to resolve unfavorable energies due to clashes from rebuilt side chains. 

These complexes Parameter flags used in FastRelax (“relax” executable in Rosetta 3.12) are: 

-relax:constrain_relax_to_start_coords 

-relax:coord_constrain_sidechains 

-relax:ramp_constraints false 

-ex1 

-ex2aro 

-no_optH false 

-flip_HNQ 

-renumber_pdb F 

-nstruct 1 

Antibody-RBD structures were aligned into a common reference frame through superposition of 

RBD coordinates using least-squares fitting in PyMOL (Schrodinger, Inc.). This set of pre-

processed and aligned structures is available through the CoV3D site (Gowthaman et al., 2021), 
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at: https://cov3d.ibbr.umd.edu/download (“Nonredundant RBD-antibody complex structures” 

link). 

 

Information regarding neutralization of SARS-CoV-2 and SARS-CoV-1 was obtained from the 

CoV-AbDab site (Raybould et al., 2020), as well as references from the literature for certain  

antibodies, where noted in Table S1.  

 

Computational structural analysis 

RMSD values between antibody heavy chain or nanobody orientations were determined by 

superposition of one antibody variable domain onto another using the FAST structure alignment 

tool (Zhu and Weng, 2005), and calculation of backbone RMSD between superposed and non-

superposed variable domain (in the context of a common RBD reference frame, as noted above).  

Interface contacts are defined as inter-atomic distance between non-hydrogen atoms of less than 

5 Å, and antibody-RBD residue contact maps were generated based on the total number of 

antibody atom contacts with each RBD residue. Hierarchical clustering of antibody RMSDs was 

performed in R version 4.0.3 (www.r-project.org) with the distance matrix of RMSDs as input, 

and Ward’s minimum variance method (“ward.D2” method in hclust). Hierarchical clustering of 

antibodies and RBD positions based on contact data was performed in R, using Manhattan 

distance to compute differences in contact profiles between antibodies or RBD positions, and 

Ward’s minimum variance method for clustering. Hierarchical clustering of RBD positions based 

on hydrogen bond or calculated ΔΔG values, for the respective heatmap figures, was likewise 

performed in R, using Manhattan distances and Ward’s clustering algorithm. RBD residue 

dimension reduction for representation in heatmap (Figure 2) was performed by selecting 
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exemplar residues from 100 hierarchical clusters, which removed residues with highly similar 

contact profiles with respect to those shown in the heatmap. Generally, the omitted residues had 

low numbers of total antibody contacts, as Manhattan distances, based on total atomic contacts 

with each antibody, were used for contact-based distance calculations between RBD residues. 

The pvclust method (Suzuki and Shimodaira, 2006), as implemented in R, was used to calculate 

bootstrap confidence of contact-based hierarchical clusters of antibodies, using 20,000 bootstrap 

replicates. Principal component analysis of antibody-RBD contact profile data was performed 

with the scikit-learn Python module. 

 

Buried surface areas (BSAs) were calculated using the naccess program (v. 2.1.1) (Hubbard and 

Thornton, 1993), subtracting the solvent accessible surface area of the antibody-RBD complex 

structure from the total solvent accessible surface area of the separate antibody and RBD 

structures, dividing by two to avoid double-counting interface area and to make BSA values 

commensurate with those from other tools including PISA 

(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html). Antibody-RBD interface hydrogen bonds were 

calculated using the hbplus program (v. 3.15) (McDonald and Thornton, 1994), with default 

parameters.  

 

Structure-based calculations of antibody blocking of ACE2 binding to RBD were calculated 

using the ACE2-RBD complex structure (PDB code 6LZG) (Wang et al., 2020). After 

superposition of ACE2-RBD and antibody-RBD complexes by RBD, the number of inter-atomic 

clashes, defined as non-hydrogen atom pairs with distances < 2.5 Å, was calculated between 

ACE2 and each antibody structure. Antibodies with > 20 atomic clashes with ACE2 were 
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classified as likely to block ACE2 binding. Structure-based calculations of antibody binding to 

the closed spike structure were performed using the SARS-CoV-2 closed spike structure reported 

by Walls et al. (PDB code 6VXX) (Walls et al., 2020b). Antibodies with < 100 atomic clashes 

with spike atoms outside of the target RBD structure and chain after superposition of the 

antibody-RBD complex onto the 6VXX structure were classified as predicted to bind the closed 

spike. Clash thresholds were selected based on agreement with structures and experimental data 

regarding ACE2 blocking and closed spike binding, when available. Four antibodies that 

engaged the closed spike and exhibited cross-protomer binding, as confirmed by inspection of 

antibody-spike complex structures (S2M11, C144, mNb6, LY-CoV555; PDB codes 7K43, 7K90, 

7KKL, 7L3N) (Barnes et al., 2020a; Jones et al., 2020; Schoof et al., 2020; Tortorici et al., 

2020), were annotated accordingly in the contact heatmap. 

 

Computational mutagenesis 

Computational modeling and prediction of antibody binding energy changes (ΔΔGs) for alanine 

and other residue point substitutions was performed using Rosetta version 2.3 (Kortemme et al., 

2004), Rosetta version 3.12 (Leman et al., 2020), and FoldX version 4 (Schymkowitz et al., 

2005). Benchmarking of computational alanine scanning predictive performance was performed 

using a subset of the AB-Bind dataset (Sirin et al., 2016) that contains alanine point substitutions 

with quantified experimental ΔΔG measurements and known wild-type complex structures (347 

mutants and ΔΔG values). A larger set with all point substitutions (including non-alanine 

substitutions) was also tested (531 mutants and ΔΔG values). Pearson correlation coefficients 

(PCC) between measured and predicted ΔΔG values, and receiver operating characteristic area 

under the curve (AUC) values for prediction of hotspot residues (measured ΔΔG for alanine 
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residue substitution > 1 kcal/mol), were calculated using scipy and scikit-learn (sklearn) Python 

libraries, respectively. 

 

Prior to running ΔΔG calculations in Rosetta, antibody-RBD complex structures were pre-

processed using Rosetta’s FastRelax protocol (Khatib et al., 2011), using the flags noted above, 

to perform backbone and side chain constrained minimization to resolve unfavorable energies 

and anomalies that would bias energetic calculations. Rosetta 2.3 ΔΔG calculations were 

performed using the “interface” protocol (Kortemme and Baker, 2002; Kortemme et al., 2004). 

An example command line is: 

rosetta.mactel -interface -intout pdb.ddgs.out -ignore_unrecognized_res -safety_check -

skip_missing_residues -mutlist pdb.muts.txt -extrachi_cutoff 1 -ex1 -ex2 -ex3 -constant_seed -

jran 12 -yap -s input.pdb 

The input files specified on the command line denote the input PDB file (“input.pdb”) and the 

list of mutations (“pdb.muts.txt”). The default protocol only models the mutant residue for ΔΔG 

calculation (“Ros2.3_norepack” in Table S2), and additional flags were used on the command 

line to perform minimization of mutation-proximal side chains (“-min_interface -int_chi” flags; 

“Ros2.3_minint_chi” in Table S2), minimization of mutation-proximal side chains and backbone 

(“-min_interface -int_bb -int_chi” flags; “Ros2.3_minint_bb_chi” in Table S2), and rotamer-

based packing of mutation-proximal side chains (“-repack” flag, “Ros2.3_repack” in Table S2). 

 

Rosetta 3 ΔΔG calculations were performed with two available computational mutagenesis 

protocols. One Rosetta 3 computational alanine scanning protocol was downloaded from a public 

resource containing benchmarks and Rosetta tools (S et al., 2015), and represents a separate 
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implementation of the Rosetta 2.3 mutagenesis protocol noted above (Kortemme and Baker, 

2002; Kortemme et al., 2004). This protocol was recently used to predict TCR-peptide-MHC 

interface ΔΔG values (Wu et al., 2020). In addition to the default protocol that does not repack 

neighboring side chains (“Ros3_norepack” in Table S2), we also tested this protocol with 

repacking of neighboring side chains (“Ros3_repack” in Table S2). 

An example command line for running this protocol is:  

rosetta_scripts.static.linuxgccrelease -s input.pdb -parser:protocol alascan.xml -parser:view -

inout:dbms:mode sqlite3 -inout:dbms:database_name rosetta_output.db3 -no_optH true -

parser:script_vars pathtoresfile=input.resfile chainstomove=1,2 -ignore_zero_occupancy false 

 

We additionally tested the alanine scan using the flex ddG protocol, which was developed 

recently in Rosetta 3 (Barlow et al., 2018). This protocol uses the backrub algorithm  (Smith and 

Kortemme, 2008) to sample protein backbone conformations at the interface, and the average 

ΔΔG values are calculated over a number of models. We tested two sets of ΔΔG scores that are 

output by flex ddG, representing different scoring functions reported by the authors (Barlow et 

al., 2018); they are shown as “flex_ddG-fa_talaris2014” and “flex_ddG-fa_talaris2014-gam” in 

Table S2. 

An example command line used for flex ddG calculations in this study is: 

rosetta_scripts.linuxgccrelease -s input.pdb -parser:protocol flexddg.xml -parser:script_vars 

chainstomove=1,2 mutate_resfile_relpath=input.resfile number_backrub_trials=35000 

max_minimization_iter=5000 abs_score_convergence_thresh=1.0 

backrub_trajectory_stride=7000 -restore_talaris_behavior -in:file:fullatom -

ignore_unrecognized_res -ignore_zero_occupancy false -ex1 -ex2 
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For ΔΔG calculations in FoldX (Schymkowitz et al., 2005), complex structures were pre-

processed using the FoldX RepairPDB protocol, and ΔΔG values were calculated using the 

FoldX PSSM protocol. 

 

Sequence conservation 

Assessment of sequence conservation of SARS-CoV-2 RBD positions in the SARS-CoV-1 

sequence was performed using SARS-CoV-2 (GenBank: QHD43416) and SARS-CoV-1 

(GenBank: AAP13441) spike reference sequences aligned with BLAST (Altschul et al., 1990). 

The epitope residues of each antibody were defined as any SARS-CoV-2 residue within 5 Å of 

any antibody residue. An in-house Perl script was used to analyze SARS-CoV-2 antibody-

antigen interfaces and calculate epitope conservation. 

 

Figures 

Figures of structures were generated using PyMOL version 1.8 (Schrodinger, Inc.). Boxplots and 

dendrograms were generated using the ggplot2 (Wickham, 2016) and factoextra (Kassambara 

and Mundt, 2020) packages in R, and heatmaps were generated using the ComplexHeatmap 

package (Gu et al., 2016) in R. 
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FIGURE LEGENDS 

Figure 1. Hierarchical clustering of SARS-CoV-2 RBD antibody binding modes. (A) Pairwise 

root mean square distances (RMSDs) between heavy chain or nanobody binding orientations 

were determined for 70 antibody-RBD complex structures and used to perform hierarchical 

clustering. Boxes denote clusters containing multiple antibodies at distance cutoff of 7 Å (shown 

as dashed horizontal line). (B) Example of co-clustered antibodies S304 (PDB code 7JX3)  

(Piccoli et al., 2020) and EY6A (PDB code 6ZCZ) (Zhou et al., 2020) with a shared RBD 

binding mode (2.9 Å heavy chain orientation RMSD; far right cluster in panel (A)). Structures 

are superposed by RBD (gray), and S304 and EY6A heavy and light chains are colored 

separately as indicated.  

 

Figure 2. High resolution mapping and clustering of SARS-CoV-2 RBD antibody binding. RBD 

residue contact profiles were generated for each antibody based on number of antibody atomic 

contacts for each RBD residue within a 5 Å distance cutoff. RBD residues and antibodies are 

ordered using hierarchical clustering analysis, with dendrograms shown on top and left. The 

antibodies are separated into four major clusters based on contact profiles, and cluster numbers 

(1-4) are indicated on left. Contacts in heatmap are colored by number of RBD residue antibody 

atomic contacts, as indicated in the key. For reference, antibody type (Antibody: heavy-chain 

antibody, Nanobody: single-chain antibody), binding to RBD-closed spike conformation (Closed 

spike), ability to block ACE2 binding (ACE2 block), SARS-CoV-2 neutralization or SARS-

CoV-2/SARS-CoV-1 cross-neutralization (“Y” and “Cross”, respectively, under Neutralization), 

interface buried surface area (BSA, Å2), and antibody classifications from a recent study 

(BBclass, with  ND: antibody-RBD complex structure not described in the study)(Barnes et al., 
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2020a) are shown on the left sidebars. Closed spike binding and ACE2 blocking were calculated 

based on the structures, as described in the Methods. The top bar above the heatmap indicates 

RBD residues contacted by ACE2 (5 Å distance cutoff) in an ACE2-RBD complex structure 

(PDB code 6LZG) (Wang et al., 2020). For clarity, 100 RBD residues are shown in heatmap; a 

heatmap with the full set of 139 contacted RBD residues which was used to cluster the antibodies 

in this figure is shown in Figure S1. RBD residues that are mutated in SARS-CoV-2 variants of 

concern (K417, E484, N501) are labeled at bottom and highlighted with gray boxes in heatmap. 

 

Figure 3. Distribution of antibody clusters on the receptor binding domain. Each antibody is 

represented as a sphere at the paratope center (centroid of all non-hydrogen atoms within 5Å of 

the RBD), and colored by contact-based antibody cluster (1: blue, 2: green, 3: red, 4: magenta). 

A representative RBD structure (from PDB code 7KN5) is shown in gray, and the N-glycan at 

residue N343 from that structure is shown as orange sticks. For reference, the superposed RBD-

bound ACE2 structure (PDB code 6LZG) is shown as tan cartoon. 

 

Figure 4. RBD hydrogen bond contacts of SARS-CoV-2 antibodies. Hydrogen bonds to RBD 

residue side chains were calculated for all antibody-RBD complexes using the hbplus program 

(McDonald and Thornton, 1994). Each hydrogen bond contact is colored by number of hydrogen 

bond interactions, as indicated on the key, and RBD positions are ordered by hierarchical 

clustering based on hydrogen bond profile similarities, with corresponding dendrogram shown at 

top. Antibodies (rows) are ordered and clustered as in Figure 2, based on the RBD contact 

profile similarities. 
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Figure 5. Computational mapping of SARS-CoV-2 RBD hotspot residues. Computational 

alanine scanning of RBD residues in antibody-RBD interfaces was performed using Rosetta 

(Kortemme et al., 2004), to generate binding energy change (ΔΔG) values for alanine 

substitutions at each RBD position based on modeling of residue substitutions and scoring using 

an energy-based function. ΔΔG values are in Rosetta Energy Units (REU) which are comparable 

to energies in kcal/mol. Alanine residues in the native complex were mutated to glycine for ΔΔG 

calculations, and glycine RBD residues were omitted from the analysis. In order to highlight 

substantial predicted binding energy changes, only ΔΔGs with absolute values > 0.5 REU are 

represented. RBD residues are ordered by hierarchical clustering based on ΔΔG profile 

similarities, with corresponding dendrogram shown at top. Antibodies (rows) are ordered and 

clustered as in Figure 2, based on the RBD contact profile similarities. 

 

Figure 6. Epitope residue conservation in SARS-CoV-1 by antibody cluster. Epitope 

conservation, defined as the fraction of RBD epitope residues (< 5 Å distance to antibody) 

conserved between SARS-COV-1 and SARS-COV-2, was calculated for 70 antibody-RBD 

complex structures, and conservation values are shown as a boxplot grouped by antibody 

clusters, with all conservation values shown as points. The outlier point for Cluster 3 (S304 

antibody) is labeled, and the total numbers of points are 17 (Cluster 1), 32 (Cluster 2), 9 (Cluster 

3), and 12 (Cluster 4). 

 

Figure 7. Profiling antibody binding disruption of RBD substitutions from circulating SARS-

CoV-2 variants. Computational mutagenesis in Rosetta (Kortemme et al., 2004) was used to 

predict binding affinity effects (ΔΔGs) of RBD variant substitutions K417N, K417T, E484K, 
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and N501Y for 70 antibodies that target the RBD. ΔΔG values are in Rosetta Energy Units 

(REU), which are comparable to energies in kcal/mol, and shown as boxplots grouped by 

antibody clusters, with all ΔΔG values shown as points. The total numbers of points are 17 

(Cluster 1), 32 (Cluster 2), 9 (Cluster 3), and 12 (Cluster 4). 
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