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Abstract 

Large-scale profiling of intact glycopeptides is critical but challenging in 

glycoproteomics. Data independent acquisition (DIA) is an emerging technology with 

deep proteome coverage and accurate quantitative capability in proteomics studies, but 

is still in the early stage of development in the field of glycoproteomics. We propose 

GproDIA, a framework for the proteome-wide characterization of intact glycopeptides 

from DIA data with comprehensive statistical control by a 2-dimentional false 

discovery rate approach and a glycoform inference algorithm, enabling accurate 

identification of intact glycopeptides using wide isolation windows. We further adapt a 

semi-empirical spectrum prediction strategy to expand the coverage of spectral libraries 

of glycopeptides. We benchmark our method for N-glycopeptide profiling on DIA data 

of yeast and human serum samples, demonstrating that DIA with GproDIA outperforms 

the data dependent acquisition (DDA) based methods for glycoproteomics in terms of 

capacity and data completeness of identification, as well as accuracy and precision of 

quantification. We expect that this work can provide a powerful tool for glycoproteomic 

studies. 
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Main 

Protein glycosylation is one of the most abundant and heterogeneous post-translational 

modifications (PTMs) that provides great proteomic diversity and plays a key role in 

various biological processes1-3, even the host–pathogen interaction of the ongoing 

coronavirus disease 2019 pandemic4. Precise characterization of protein glycosylation 

is critical for understanding mechanism of diseases5,6, discovery of biomarkers for 

diagnosis7, and development of drugs and vaccines8. The high heterogeneity of glycans 

across glycosites results in an increased number of glycoproteoforms. Profiling of intact 

glycopeptide provides the opportunity of simultaneous analysis of glycans, glycosite 

occupancy and site-specific glycosylation on a proteome-wide scale9, and is an 

imperative but still challenging component to modern glycoproteomic studies10. 

Currently, liquid chromatography coupled with tandem mass spectrometry (LC-

MS/MS) is the method of choice widely used in proteomics and glycoproteomics11,12. 

Novel MS/MS fragmentation methods derived from higher-energy collisional 

dissociation (HCD) and electron transfer dissociation (ETD), such as stepped collision 

energy HCD (SCE-HCD)13 and ETD with supplemental HCD (EThcD)14, have been 

proven powerful for intact glycopeptides profiling. The most common strategy for 

peptide identification uses the data-dependent acquisition (DDA) approach, in which 

MS/MS (MS2) fragmentation is triggered by precursor ions observed in a full mass 

range survey scan (MS1). Various software tools15, such as pGlyco 2.016, MSFragger-

Glyco17 and O-Pair Search18, have been developed for the interpretation of DDA data 

of intact glycopeptides. However, a major bottleneck of the DDA approach is that the 

precursor selection constitutes a stochastic element19, resulting in the “missing value” 

problem. 

To overcome this limitation, data-independent acquisition (DIA) methods have been 

proposed20-22, including a representative variant named sequential window acquisition 

of all theoretical mass spectra (SWATH-MS)23, where the instrument acquires 

fragmentation information of all precursor ions within defined isolation windows in a 

systematic manner. DIA has been reported to achieve deep proteome coverage 

capabilities with quantitative consistency and accuracy for large-scale proteomic 
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studies24, and is now starting to be applied to the field of glycoproteomics25. Based on 

standard DIA protocols developed for proteomics, DIA methods have been established 

for targeted analysis of intact N-glycopeptides26-29, in which spectral libraries were built 

by adding manually curated glycan fragment Y ions. Zhou et al. developed a SWATH-

MS method with optimized variable windows for a set of target glycopeptides to allow 

accurate glycoform measurement30. These methods have achieved better sensitivity 

than DDA for analyzing glycoforms of several or a dozen of glycoproteins. In 2019, Ye 

et al. proposed Glyco-DIA, a DIA-based strategy for O-glycoproteomics, enabling 

high-throughput quantitative O-GalNAc type glycoproteomic analysis in complex 

biological samples31. 

Error rate control for glycopeptide identification is essential but particularly 

complicated in DIA analyses due to the increased complexity of DIA MS/MS spectra 

originated from multiple co-eluted precursors, especially when using wide isolation 

windows. In the case of HCD MS/MS, the same set of fragment ions could be generated 

for glycopeptides common in peptide sequence but different in glycan, resulting in a 

high level of misinterpretations of DIA data25. Although a few studies have elucidated 

error rate estimation for DDA-based glycopeptide analyses16,32-34, statistical control of 

DIA-based proteome-wide glycopeptides analyses, to the best of our knowledge, has 

not been properly addressed. 

Herein, we propose GproDIA, a pipeline that applies the concept of peptide-centric 

DIA analysis to proteome-wide characterization of intact glycopeptides. GproDIA 

provides comprehensive statistical control by a 2-dimentional false discovery rate (FDR) 

approach and a glycoform inference algorithm, enabling accurate glycopeptide 

identification using wide isolation windows. We further adapt a semi-empirical 

spectrum prediction strategy to expand the coverage of spectral libraries for 

glycopeptides. We benchmark GproDIA for N-glycopeptide profiling on DIA data of 

yeast and human serum samples, demonstrating that DIA with GproDIA outperforms 

DDA in terms of capacity and data completeness of identification, as well as accuracy 

and precision of quantification. 
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Results 

GproDIA enables characterization of intact glycopeptides from DIA data 

GproDIA was developed based on the principle of peptide-centric analysis, which has 

been commonly used for detection of peptides from DIA data24. The workflow is 

presented in Fig. 1. First, a spectral library of glycopeptides is built by DDA with pre-

fractionation or using a long LC gradient. As LC conditions are different from those 

used for non-glycosylated peptides, instead of using iRT35 as exogenous standards for 

retention time (RT) normalization, an extra DDA injection of the glycopeptides sample 

is performed with the same LC condition as that used for DIA experiments. The shared 

identifications between different LC conditions are used as internal standards to 

calibrate library RT to the gradient used in DIA. An example of RT calibration is shown 

in Supplementary Fig. 1. The spectral library contains the RT of glycopeptides, the 

precursor m/z, and m/z and intensities of annotated fragments in SCE-HCD MS/MS 

including peptide fragments (b/y, with or without one HexNAc residue and its cross-

ring fragment) and intact peptide with glycan fragments (Y) (Fig. 1a). Next, three types 

of decoy libraries are generated by adding random mass shifts to glycan fragment 

peaks36 (glycan decoy), reversing the peptide sequences (peptide decoy), and 

performing the two operations successively (both decoy) (Fig. 1b). 

Then OpenSWATH37 is used to extract chromatogram data of the target 

glycopeptides and the decoys from the DIA data (Fig. 1c), and the extracted peak group 

features are scored using a semi-supervised learning approach implemented by 

PyProphet38. A 2-dimentional FDR approach is used to estimate error rates of 

identification (Fig. 1d). In brief, the distributions of discriminant scores (D-scores) of 

the targets and decoys are fitted using a bivariate four-groups mixture model. Local 

FDR (namely posterior error probability, PEP) of each target peak group is computed 

from D-score density (Supplementary Fig. 2). Global FDR (q-value) is then derived 

from PEPs. Finally, TRIC39 is used for multi-run alignment to reduce missing values 

(Fig. 1e). 
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Fig. 1. The workflow of GproDIA. (a) Building a spectral library of glycopeptides 

containing peptide ions (blue lines for b/y, and green lines for b/y with one HexNAc or 

its cross-ring fragment) and glycan Y ions (red lines) by DDA. “J” in peptide sequence 

indicates the N-glycosylation site. The glycan symbols are as follows: a green circle or 

“H” represents Hex; a blue square or “N” represents HexNAc. (b) Generating peptide 

decoys, glycan decoys and both decoys. (c) Extracting chromatogram features from the 

DIA data. (d) Scoring the extracted features and estimating error rates by a 2-

dimentional FDR approach. (e) Performing multi-run alignment to reduce missing 
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values. (c-e) Green color indicates target peak groups, yellow indicates peptide decoy 

peak groups, blue indicates glycan decoy peak groups, and red indicates both decoy 

peak groups. 

 

Benchmarking using data from yeast samples 

For benchmark purposes, we performed DDA and DIA experiments using an 1 h LC 

gradient with 4 technical replicates, as well as a DDA using a 6 h LC gradient with 3 

technical replicates, on a sample of fission yeast (Schizosaccharomyces pombe) 

glycopeptides. pGlyco 2.016 was used for database searching of the DDA data, and 1% 

GPSM-level FDR cutoff was used. A sample-specific spectral library (fission yeast SSL, 

Supplementary Table 1) was built using the 6 h DDA data for DIA data analysis by 

GproDIA. For DIA, results with q-value < 5% in each run and q-value < 1% in at least 

one run at peak group level, as well as q-value < 1% at glycopeptide level in the global 

context38, were reported. Statistics of the results are shown in Fig. 2 and 

Supplementary Fig. 3-5. In average, 418 ± 2 (mean ± standard deviation, sic passim) 

glycopeptide precursors corresponding to 348 ± 2 site-specific glycans were detected 

per replicate run from the DIA data (Fig. 2a and Supplementary Fig. 5a), more than 

those identified from the 1 h DDA (357 ± 16 precursors and 293 ± 9 site-specific 

glycans, Supplementary Fig. 3a) and the 6 h DDA (351 ± 12 precursors and 289 ± 9 

site-specific glycans, Supplementary Fig. 4a). Notably, we use the term “site-specific 

glycan” referring glycans on specific glycosylation sites in a group of glycoproteins 

that are not distinguishable by protein inference16, rather than positions of glycans on 

peptide sequences. Indeed, it is not very common that an N-glycopeptide has more than 

one potential glycosylation sites. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.20.436117doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.20.436117
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

 

Fig. 2. Performance comparison of DDA and DIA on the fission yeast sample at the 

site-specific glycan level. (a) Numbers of identifications per run. “Full” represents 

identifications observed in all the runs; “shared >50%” represents identifications 

observed in >50% runs; “shared ≤50%” represents identifications observed in >1 but 

≤50% runs; “unique” represents identifications observed in only 1 run. (b) Numbers of 

cumulative identifications across runs. “Full” represents identifications shared in the 

cumulative runs; “sparse” represents identifications observed in at least one run in the 

cumulative runs. (c) Comparison of numbers of identifications shared in >50% runs 

using DDA with an 1 h LC gradient, DDA with a 6 h LC gradient, and DIA with an 1 h 
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LC gradient. (d) Coefficients of variation (CVs) of quantification results. Medians are 

indicated. 

 

From the 4 DIA replicate runs, 433 glycopeptide precursors corresponding to 358 

site-specific glycans on 142 protein glycosites were detected totally. Among them, 91% 

(392) precursors, 93% (332) site-specific glycans, and 96% (136) glycosites were 

shared in all the replicates (Fig. 2b and Supplementary Fig. 5b), indicating much 

fewer missing values than those of 1h DDA (122/666 = 18% at precursor level, 119/504 

= 24% at site-specific glycan level, and 98/190 = 52% at glycosite level, 

Supplementary Fig. 3b) and 6 h DDA (246/461 = 53% at precursor level, 209/370 = 

56% at site-specific glycan level, and 102/139 = 73% at glycosite level, 

Supplementary Fig. 4b). Considering identifications shared in >50% replicate runs, 

DIA detected 21% more (418/346) glycopeptide precursors, 20% more (346/288) site-

specific glycans, and 19% more (139/117) protein glycosites than 6 h DDA, as well as 

84% more (418/227) precursors, 66% more (346/208) site-specific glycans, and 14% 

more (139/122) protein glycosites than 1 h DDA (Fig. 2c and Supplementary Fig. 5c). 

It should be noticed that a less strict error rate control was applied on DDA results (only 

a GPSM-level FDR cutoff) than that on DIA results (peak group q-value and global 

glycopeptide q-value). Coefficients of variation (CVs) of glycopeptide precursor, site-

specific glycan and protein glycosite quantification results were calculated among the 

technical replicates as shown in Fig. 2d and Supplementary Fig. 3c, 4c and 5d. The 

median CVs were ~11% using DIA, much smaller than those using 1 h DIA (~17% at 

precursor level, ~23% at site-specific glycan level, and ~37% at protein glycosite level) 

and 6 h DDA (>32%). We also present the DIA results without multi-run alignment (1% 

peak group q-value and 1% global glycopeptide q-value) in Supplementary Fig. 6, 

wherein glycopeptides identification and quantification results close to the ones with 

multi-run alignment were obtained. The results indicate that the DIA workflow using 

GproDIA outperforms DDA not due to the multi-run alignment, but originated from the 

inherent feature of systematic and panoramic MS/MS recording in DIA that provides 

broadly informative data. 
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As an alternative to sample-specific libraries, community spectral libraries such as 

Pan-Human40 can be effectively used for peptide-centric DIA data analysis41. We tested 

the feasibility of using a lab repository-scale spectral library (fission yeast LRL, 

Supplementary Table 1) generated by combining the SSL library and fission yeast 

data of previous projects in our labs. The results are presented in Supplementary Fig. 

7. Using LRL, 18% more (495/418) glycopeptide precursors, 14% more (394/346) site-

specific glycans, and 3% more (143/139) protein glycosites were detected in >50% 

replicate runs than using SSL, while the CVs (~11%) were very close to those using 

SSL. DIA analysis was also performed on a budding yeast (Saccharomyces cerevisiae) 

sample with 3 technical replicates in an 1 h LC gradient, using a spectral library built 

from budding yeast DDA data (Supplementary Table 1). Low levels of missing values 

and CVs were also observed (Supplementary Fig. 8). All the results suggest that, 

within the tested condition, DIA with GproDIA improves the number of identifications 

and reproducibility of glycopeptide characterization compared to DDA-based 

workflows. 

 

Inference of glycoforms in wide isolation windows 

We further compared DDA and DIA on a human serum sample acquired with 3 

technical replicates using the 1 h LC gradient (Supplementary Fig. 9 and 10). The DIA 

data were analyzed using a sample-specific spectral library built by DDA with pre-

fractionation (serum SSL, Supplementary Table 1). Unlike high-mannose-type 

glycans of yeast, glycans in human serum have more complex compositions, presenting 

greater challenges for DIA analysis. For yeast samples, glycopeptides with the same 

peptide sequence and different glycans (HexNAc2Hexn) have mass differences of at 

least one hexose residue (162 Da), and are hardly co-fragmented in an isolation window 

(25 m/z in this study). For human serum samples, however, DIA analysis suffers from 

potential interference of glycopeptides with the same peptide sequence but different 

glycans (referred to as “glycoforms”) in the same isolation window. Therefore, although 

a large number of glycopeptides were reported by DIA (Supplementary Fig. 10), the 

results can have high error rates of identification in the glycan part. 
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Fig. 3. Inference of glycoforms. (a) Generating theoretical Y fragment ions as 

identification transitions (dashed lines) for the target glycopeptide and all potential 

glycoforms. “J” in peptide sequence indicates the N-glycosylation site. The glycan 

symbols are as follows: a green circle or “H” represents Hex; a blue square or “N” 
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represents HexNAc; a red triangle or “F” represents Fuc; a purple diamond or “A” 

represents NeuAc. (b) Extracting chromatograms of identification transitions from the 

DIA data and performing transition-level scoring to get the PEPs of transitions. (c) 

Integrating the precursor and transition PPs to glycoform PPs using a Bayesian 

hierarchical model. (d) Numbers of identifications without (w/o GF) or with (GF) 

glycoform inference of the fission yeast sample using the entrapment libraries. 

 

Inspired by IPF42, a DIA data analysis tool for peptides carrying PTMs, we further 

developed an algorithm to evaluate the global FDR (q-value) at glycoform level. The 

workflow is illustrated in Fig. 3a-c and Supplementary Fig. 11. In brief, all theoretical 

Y fragment ions (called “identification transitions”) are generated in silico for each 

target glycopeptide precursor and the corresponding potential glycoforms within the 

isolation window when building the spectral library. The potential glycoforms were 

collected from the pGlyco 2.0 built-in glycan database16, containing 3065 glycan 

structures, and might not present in the original library. Signals of precursors of target 

glycopeptides and identification transitions of the target glycopeptides/glycoforms are 

traced during chromatogram extraction from DIA data. The PEP of MS2 peak groups 

(PEPMS2), precursors (PEPMS1) and identification transitions (PEPtransition) are integrated 

using a Bayesian hierarchical model (BHM), leading to a glycoform-level posterior 

probability (PP) for each detected peak group, from which the global FDR (q-value) at 

glycoform level can be derived. 

The performance of the glycoform-level FDR control was tested on the fission yeast 

data using an entrapment strategy by adding glycopeptides with peptide sequences 

(peptide entrapment) or glycans (glycan entrapment) or both (both entrapment) from 

human serum SSL to the fission yeast SSL library. In all the analyses, we kept the 

number of entrapment glycopeptide precursors similar to that of the yeast library 

(Supplementary Table 1). Since we focus on investigating the performance of the 

glycoform-level error rate control, multi-run alignment was not performed, and no 

global glycopeptide-level q-value filter was applied. The DIA analyses results are 

presented in Fig. 3d. Using the entrapment library containing human glycopeptides 
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(both entrapment), fewer identifications were observed compared to those using the 

fission yeast library, because the entrapment library contains a large fraction of “false 

targets” that are not detectable in the sample (referred to as π0
38), compromising the 

detection sensitivity. Nevertheless, no entrapment identifications were observed at 1% 

peak group-level q-value. Similar results were obtained using the entrapment library 

containing glycopeptides with peptide sequences from human and glycans from yeast 

(peptide entrapment), suggesting satisfactory performance of error rate control in the 

peptide part. Using the entrapment library containing glycopeptides with peptide 

sequences from yeast and glycans from human (glycan entrapment), although 1% peak 

group-level q-value filter was applied, there were in average 14% of entrapment 

identifications (to all of those identified) remaining per run without glycoform inference. 

After applying 1% glycoform-level q-value filter, despite a loss of 15% yeast 

identifications due to poor signals of precursors and/or glycoform-specific fragments, 

the entrapment percentage declined to ~1%. 

 

Benchmarking using data from human serum and mixed-organism samples 

GproDIA was then tested on the human serum data with glycoform inference enabled. 

In addition to the sample-specific library (serum SSL), a lab repository-scale spectral 

library (serum LRL, Supplementary Table 1) was also used for DIA data analysis. 

Global glycopeptide-level q-value cutoff was 1%. After multi-run alignment, results 

with glycoform-level q-value < 5% in each run and < 1% in at least one run were finally 

reported (Supplementary Fig. 12 and 13). Comparison between DDA and DIA results 

is illustrated in Fig. 4a-d. At site-specific glycan level, compared to DDA, DIA using 

SSL and LRL brought 14% more (539/474) and 35% more (638/474) identifications, 

respectively, in average per run, whereas fewer missing values (463 shared in all 

replicates/559 in total using SSL, and 531/733 using LRL) by DIA were observed than 

DDA (262/717). Considering identifications shared in >50% replicate runs, DIA using 

SSL and LRL detected 26% more (556/443) and 47% more (650/443) site-specific 

glycans, respectively, than DDA. CVs using DIA (12.8% with SSL and 12.2% with 

LRL) were significantly smaller than that using DDA (26.1%). 
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Fig. 4. Performance comparison of DDA and DIA on the human serum and mixed-

organism samples at the site-specific glycan level. (a) Numbers of identifications from 

the serum sample per run. “Full” represents identifications observed in all the runs; 

“shared” represents identifications observed in 2 runs; “unique” represents 

identifications observed in only 1 run. (b) Numbers of cumulative identifications from 

the serum sample across runs. “Full” represents identifications shared in the cumulative 

runs; “sparse” represents identifications observed in at least one run in the cumulative 

runs. (c) Comparison of numbers of identifications from the serum sample shared 

in >50% runs using DDA, DIA with the sample-specific library (SSL), and DIA with 

the lab repository-scale library (LRL). (d) Coefficients of variation (CVs) of 
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quantification results. Medians are indicated. (e) Box plot visualization of fold change 

of the quantification results of the mixed-organism samples. Percent changes were 

calculated based on the mean quantities in three replicates of each sample. The medians 

are indicated. The boxes indicate the interquartile ranges (IQR), and whiskers indicate 

1.5 × IQR values; no outliers are shown. The dashed lines indicate theoretical fold 

changes of the organisms (1:0.9:0.8 (S10:S12:S15) for human and 1:1.1:1.2 

(S10:S12:S15) for yeast). 

 

The performance of GproDIA was further evaluated on data of mixed-organism 

samples containing glycopeptides from budding yeast and human serum with different 

abundance (S10, S12, and S15). DIA analysis was performed using a combined library 

of the budding yeast library and the serum SSL library, as well as a combined library of 

the budding yeast library and the serum LRL library, respectively (Supplementary 

Table 1 and Supplementary Fig. 14-16). Based on the mean quantities in three 

replicates of each sample, fold changes of detected site-specific glycans of samples 

S12/S10 and S15/S10 were calculated and visualized in Fig. 4e. Fold changes of human 

and yeast glycopeptide abundance were closer to the theoretical values using DIA-

based quantification at both MS1 and MS2 level with the yeast + serum SSL library 

than those using DDA. Using the yeast + serum LRL library, fold changes of human 

glycopeptide abundance were overestimated, while fold changes of yeast glycopeptides 

were measured accurately. In addition, the distribution of fold changes was less 

dispersed using DIA than that using DDA. All the results underline the high quality of 

DIA-based glycopeptide characterization using GproDIA with glycoform inference that 

outperforms DDA-based workflows in terms of numbers of identifications, as well as 

accuracy and precision of quantification. 

 

Extending library coverage semi-empirically 

In peptide-centric DIA data analysis, the capability of detection is limited due to the 

incomplete coverage of spectral libraries. For this reason, we propose a computational 

approach to expand the coverage of spectral libraries of glycopeptides semi-empirically, 
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wherein the MS2 spectra of predicted glycopeptides are generated by swapping and 

combining the peptide and glycan fragment peaks in experimental spectra of different 

glycopeptides using a k-nearest neighbor (KNN) strategy (Fig. 5a). The RT of the 

predicted glycopeptides are the weighted mean RT of experimentally identified 

glycopeptides with the same peptide sequences and close monosaccharide 

compositions by the KNN strategy. 

Cross validations of the prediction were conducted using the fission yeast LRL 

library and the budding yeast library, wherein the library entry of each glycopeptide 

precursor was pulled out from the library, and meanwhile the rest of the library entries 

were used to generate the predicted library entry of the glycopeptide precursor. 

Different numbers of nearest neighbors (k) were tested. Dot products (DPs) were 

computed between the predicted and experimental MS/MS intensities (Supplementary 

Fig. 17a and 18a). With k = 3, the median DP was 0.820 for the fission yeast library 

and 0.922 for the budding yeast library, higher than those without KNN and with k = 2 

or 4. Increasing k can lead to higher prediction accuracy, but fewer glycopeptides can 

be predicted because at least k neighboring entries for generating the peptide part and 

the glycan part are required in the experimental library. Therefore, we chose k = 3 to 

achieve the trade-off between prediction accuracy and library coverage. With k = 3, the 

interquartile ranges (IQRs) of the differences between predicted and experimental RTs 

were <0.6 min (Supplementary Fig. 17b and 18b). Pearson correlation coefficients (r) 

of predicted and experimental RTs were >0.99 (Fig. 5d, Supplementary Fig. 17c and 

18c). The serum SSL library was also used for the cross validation with k = 3. The 

median DP was 0.865 (Fig. 5b), the IQR of RT differences was 1.1 min (Fig. 5c), and 

the r of RTs was >0.98 (Fig. 5d). The prediction on human serum glycopeptides is less 

accurate compared to yeast due to the high complexity of human serum glycopeptides. 

DPs, RT differences and r were also computed among replicate experimental spectra, 

which can be considered as possible upper limit of prediction accuracy 

(Supplementary Fig. 19), showing that there are still rooms for improvement. 

Nevertheless, due to the limit of current available data size of glycopeptides and the 

highly complex isomeric glycan structures, more accurate prediction by machine 
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learning and deep learning strategies can hardly be applied at this stage. 

Next, we built a semi-empirical library based on the fission yeast SSL library, which 

was then merged with the SSL to form an extended library (fission yeast EXL, 

Supplementary Table 1), containing 331 extra precursors and 288 site-specific glycans 

that are not present in the SSL (Supplementary Fig. 20a). From the fission yeast DIA 

data, 5% more (365/346) site-specific glycans were detected in >50% runs using EXL 

than those using SSL, while the CVs stayed unchanged approximately (Fig. 5e and 

Supplementary Fig. 21). Performance of error rate control when using extended 

libraries was also evaluated using the entrapment strategy (Supplementary Fig. 22). 

An extended library (serum EXL, Supplementary Table 1) was also generated from 

the serum SSL library. To avoid combinatorial explosion of peptides and glycans, we 

collected a list of glycopeptides combined from the serum LRL library and a publication 

on N-linked intact glycopeptides in human serum43, and only peptide-glycan 

combinations in the glycopeptide list were taken into consideration when generating 

the extended library. Consequently, the EXL library containing 1990 extra precursors 

and 927 site-specific glycans that are not present in the serum SSL (Supplementary 

Fig. 20b). Combining all the 3 replicates, 118 protein glycosites were detected in total 

using both the SSL and EXL libraries. Among them, on 39 glycosites, more glycoforms 

were detected using EXL than using SSL, while on 23 glycosites, more glycoforms 

were detected using SSL (Fig. 5f). The increase in the detected glycoforms can be 

attributed to the greater proportion of fucosylated glycans (145 site-specific glycans 

with fucosylation and without sialylation, as well as 208 with both fucosylation and 

sialylation) detected using EXL than using SSL (124 with fucosylation and without 

sialylation, as well as 177 with both fucosylation and sialylation). It should be noted 

that the semi-empirical approach does not increase the protein glycosites. The CVs 

stayed unchanged approximately using the human serum EXL (Supplementary Fig. 

23). 
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Fig. 5. Generating and utilizing semi-empirical spectral libraries. (a) Generating semi-

empirical MS/MS spectra by combining the peptide and glycan fragment peaks in the 

experimental spectra of different glycopeptides. “J” in peptide sequence indicates the 

N-glycosylation site. The glycan symbols are as follows: a green circle or “H” 

represents Hex; a blue square or “N” represents HexNAc; a red triangle or “F” 

represents Fuc; a purple diamond or “A” represents NeuAc. (b) The distributions of dot 

products computed between the predicted and experimental MS/MS peak intensities. 
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(c) The differences between predicted and experimental retention times (RTs). The 

medians are indicated. The boxes indicate the interquartile ranges (IQR), and the 

whiskers show the ranges between 2.5% and 97.5% percentiles (R95%); no outliers are 

shown. (d) Pearson correlation coefficients (r) between predicted and experimental RTs. 

“n” indicates the number of generated MS2 spectra or RT values by the prediction 

method. (e) Comparison of numbers of identifications shared in >50% runs using the 

sample-specific library (SSL), the lab repository-scale library (LRL), and the extended 

library by the semi-empirical approach (EXL). (f) Comparison of numbers of 

glycoforms per glycosite detected from serum using SSL and EXL. Proportions of 

glycan composition types are shown in the pie charts. Glycosites with high variabilities 

in glycoforms are indicated on the figure. 

 

Discussions 

With more efficient usage of ions, DIA can provide a significant increase in the 

identification efficiency of glycopeptides compared to DDA25,44. We have benchmarked 

our DIA-based workflow against the DDA-based glycoproteomics, demonstrating that 

short-gradient DIA can outperform DDA under the same conditions or even with a 

much longer gradient in terms of detectable glycopeptides as well as measurement 

reproducibility. It has been reported that DIA copes well with shortening of the LC 

gradient length because the deterministic nature of the MS2 sampling in DIA attenuates 

the attrition in number of identifications for shorter separation gradients, while the 

number of acquired MS/MS spectra and identifications decrease proportionally with 

the gradient length in DDA mode24. As a less time-consuming approach for intact 

glycopeptides profiling, short-gradient DIA is favorable for large-scale quantitative 

glycoproteomic analyses. 

Interference from other co-eluted and co-fragmented glycopeptides is the main 

challenge for DIA data analysis that may result in a high level of misinterpretations. In 

GproDIA, we adapt a 2-dimensional FDR approach and a glycoform inference strategy, 

providing comprehensive statistical control for glycopeptide identification. Glycoform 

inference can be used as an option to perform more strict assessment by utilizing signals 
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of precursors and glycan-specific fragments to resolve interference from potential 

glycoforms. In this study, glycoform inference was enabled when multiple glycopeptide 

precursors with the same peptide sequence and different glycans are arranged to be 

fragmented in one isolation window. Despite the herein proposed strategies to control 

error rates when using wide isolation windows, we still recommend to design the 

isolation windows properly according to the mass distribution of glycopeptides30, if 

possible, for improving the detection sensitivity. Recent advances in ion mobility 

spectrometry (IMS) including high field asymmetric waveform ion mobility 

spectrometry (FAIMS)45 and parallel accumulation-serial fragmentation (diaPASEF)46 

have achieved rapid improvements in the sensitivity of DIA analysis. We expect that 

DIA-based glycopeptides profiling can benefit from the enhanced separation of 

glycoforms by IMS. 

Spectral library coverage determines the upper limit of the identification capacity by 

peptide-centric DIA analysis. To date, the majority of DIA studies have used DDA-

based sample-specific spectral libraries, frequently with pre-fractionation (for the 

serum sample in this study), or sometimes by repeated DDA analysis of non-

fractionated samples (for the fission yeast sample)24. Other sources can also be 

considered as a supplement for library completeness. We achieve the best coverage by 

using repository-scale libraries integrating data from multiple previous projects in our 

lab. We envision that more “off-the-shelf” glycopeptide libraries will be built and 

published by the community, just like those for proteomic studies40, which can then be 

used for glycopeptide DIA data analysis. 

Since repository-scale libraries may not always be available, we have built semi-

empirical libraries as an attempt to extend the library coverage. In such predicted 

libraries, it is common that a significant fraction of glycopeptides are actually not 

present in the samples at a detectable level, and the large query space may increase the 

multiple testing burden and compromise detection sensitivity24. Instead of enumerating 

all the peptide-glycan combinations in a spectral library, we suggest researchers focus 

on a subset of glycoproteins/glycoproteoforms of interest for their specific biological 

questions. The current proposed strategy facilitates detection of more glycoforms by 
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DIA on protein glycosites that are observed by DDA, but cannot increase the coverage 

at glycosite level. However, deep learning-based tools such as Prosit47 and DeepDIA48 

have been developed for generating in silico peptide spectral libraries directly from 

peptide sequences, and we anticipate that predicted libraries will break through the 

limitation on coverage of glycopeptide libraries by DDA in the future when large scale 

glycopeptide libraries are built by the community. 

Although it is demonstrated here in the context of N-glycoproteomics, the principle 

of comprehensive statistical control in GproDIA is also applicable to O-glycopeptides 

for peptide sequence and glycan identification. O-glycopeptides generally have 

multiple serine and/or threonine residues that serve as potential glycosites. 

Unfortunately, HCD is not sufficient for glycosite localization for O-glycopeptides10, 

and to date, HCD is the only method of choice for DIA. We hope that further 

instrumental development implements ETD-based DIA methods for site-specific O-

glycopeptide analyses. 

 

Code availability 

A test version of GproDIA is available on request to the correspondence author at 

liang_qiao@fudan.edu.cn. 
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