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Abstract 

Many complex traits are subject to assortative mating (AM), with recent molecular genetic 

findings confirming longstanding theoretical predictions that AM alters genetic architecture by 

inducing long range dependence across causal variants. However, all marker-based heritability 

estimators assume mating is random. We provide mathematical and simulation-based evidence 

demonstrating that both method-of-moments estimators and likelihood-based estimators produce 

biased estimates in the presence of AM and that common approaches to account for population 

structure fail to mitigate this bias. Then, examining height and educational attainment in the UK 

Biobank, we demonstrate that these biases affect real world traits. Finally, we derive corrected 

heritability estimators for traits under equilibrium AM.  
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Introduction 

Primary phenotypic assortative mating (hereafter simply "AM"; the phenomenon whereby mate-

choice is based on phenotypic similarity) has been observed for a variety of heritable traits in 

human and non-human animals [1–4]. A century ago, Fisher demonstrated that AM induces long-

range positive correlations between trait-increasing allele counts at causal loci across the genome, 

thereby increasing genetic variance across successive generations until it approaches a stable 

equilibrium [5]. Since Fisher’s time, it has been established that many human traits are subject to 

AM, and that estimates of genetic and environmental variance from twin and family designs, which 

assume random mating, can be biased in the presence of AM [6]. However, to date there has been 

no study of how AM influences marker-based heritability estimators. Moreover, many traits that 

have been focal in the scientific discourse regarding the so-called still-missing heritability—for 

example, height and educational attainment—are precisely those traits for which both phenotypic 

and genetic data is consistent with primary phenotypic assortment [4, 7–9], further motivating the 

need to understand how AM influences marker-based heritability estimates. 

Here, we address this gap in knowledge by characterizing the impact of AM on two major families 

of marker-based heritability estimators: method of moments estimators (MoM; typified by 

univariate Haseman-Elston (HE) regression [10] but also including PCGC regression and LD score 

regression [LDSC] [11, 12]), and residual maximum likelihood (REML [13]; typified by GCTA 

and BOLT-REML [14, 15]). We assume Fisher’s classical model of AM, which describes the 

equilibrium properties of a heritable trait for which mates’ genotypes are conditionally 

independent given their phenotypes, and which has formed the theoretical foundation for recent 

investigations of AM using measured genetic data [4, 8]. We provide mathematical and simulation-

based arguments demonstrating that AM induces a modest but nevertheless non-negligible bias in 

both classes of estimators that is not addressed by conventional methods of accounting for 

population structure. In the process, we extend results in random matrix theory and classical 

quantitative genetics by characterizing the higher-order moments of causal variants and the 

limiting spectral distribution of the genomic relatedness matrix (GRM) under AM, thereby 

providing intuition with respect to the observation that genomic principal components do not 

capture the effects of AM. Additionally, we provide empirical results using data from the UK 

Biobank that are congruent with our theoretical predictions regarding the influence of AM on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.436091doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

marker-based heritability estimators. Finally, we provide guidelines for using and interpreting the 

results of marker-based heritability estimators when applied to traits subject to AM. 

Results 

Our theoretical results depend on several key parameters: 𝑟 denotes the phenotypic correlation 

between mates on a phenotype 𝑌; ℎ0
2 denotes the panmictic heritability, what the heritability of the 

phenotype would be in the absence of AM; ℎ∞
2  denotes the true equilibrium heritability under AM; 

and 𝑍 denotes the 𝑛 × 𝑚 matrix of 𝑛 unrelated individuals’ standardized genotypes at 𝑚 causal 

loci with effects vector 𝑢. We initially assume that all causal variants are present in 𝑍 (i.e., that all 

the narrow-sense heritability is explained by measured variants); we later relax this condition. The 

rows of 𝑍  (individuals’ genotypes) are independent random vectors with 𝑚 × 𝑚  covariance 

matrix Υ , which quantifies the correlation between loci. Under random mating, Υ ≔ Υ0  is 

approximately block diagonal such that causal variants are largely (aside from linkage 

disequilibrium between nearby variants) stochastically independent. However, under equilibrium 

AM, Υ ≔ Υ∞  is dense due to the presence of positive long-range correlations among trait-

increasing allele counts within and across chromosomes. As the elements of Υ∞ agree in sign with 

the corresponding elements of 𝑢𝑢𝑇  (i.e., trait increasing alleles are positively correlated), the 

equilibrium genetic variance under AM, 𝜎𝑔,∞
2 , is considerably greater than the panmictic genetic 

variance 𝜎𝑔,0
2 . That is, 𝜎𝑔,∞

2 = 𝑢𝑇Υ∞𝑢 > 𝜎𝑔,0
2 ≈ 𝑢𝑇𝑢 (Figure 1). 

Haseman-Elston regression estimates under AM 

We first derive the influence of AM on heritability estimates from HE regression [10], which is 

perhaps the simplest MoM marker-based heritability estimator. Let 𝑦̃  denote the standardized 

(zero-mean unit-variance) phenotype. The HE regression estimator ℎ̂HE
2  of ℎ2 is the slope of the 

subdiagonal elements of the phenotypic outer product, 𝑦̃𝑦̃𝑇, regressed on the subdiagonal elements 

of the GRM,  𝑚−1𝑍𝑍𝑇. We demonstrate that ℎ̂HE
2  is upwardly biased relative to both ℎ0

2 and ℎ∞
2  

under AM. Intuitively, this is because the phenotypic outer product accurately reflects increases in 

genetic variance due to positive associations across all pairs trait increasing alleles, whereas the 

effect of AM on the GRM, the elements of which represent individuals’ average similarity at 

homologous diploid loci but not across distinct pairs of loci, is negligible. This latter point is itself 

notable as some studies have erroneously claimed that AM leads to detectable increases in average 
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genomic similarity between mates [17], but the actual increase is trivial (of order 𝑂(𝑚−1) relative 

to the increase in genetic variance) and all but undetectable for highly polygenic traits [18]. With 

respect to the influence of AM on HE regression estimates, and assuming that all the narrow-sense 

heritability is explained by measured variants, we establish the following general result: 

𝔼[ℎ̂HE
2 ] = (

𝑚 ⋅ 𝑢𝑇Υ∞
2 𝑢

𝜎𝑔,∞
2 ⋅ tr[Υ∞

2 ]
) ℎ∞

2 ≥ ℎ∞
2 . (1) 

Under AM, the bracketed quantity is greater than one, and thus ℎ̂HE
2  is biased upwards. Under the 

stricter assumption of exchangeable loci (i.e., each causal variant explains equal variance in the 

phenotype), we derived the following approximate expression, dependent only on the panmictic 

heritability and phenotypic correlation between mates: 

𝔼[ℎ̂HE
2 ] ≈ (

1

1 − 𝑟𝑔,∞
) ℎ∞

2 , (2) 

where 𝑟𝑔,∞ ≔ 𝑟 ∙ ℎ∞
2  is the equilibrium genetic correlation between mates (Figure 1; see Supp. 

Materials S3.1 for greater details and proofs). Under exchangeable loci for known 𝑟, we define 

estimators of the panmictic and equilibrium heritabilities by applying the following 

transformations to ℎ̂HE
2  :  

ℎ̂0
2 ≔ 𝔼[ℎ0

2|ℎ̂HE
2 ] =

ℎ̂HE
2

1 + 2𝑟ℎ̂HE
2 + 𝑟(𝑟 − 1)ℎ̂HE

4
,            ℎ̂∞

2 ≔ 𝔼[ℎ∞
2 |ℎ̂HE

2 ] =
ℎ̂HE

2

1 + 𝑟ℎ̂HE
2

. (3) 

Large scale simulations using realistic genotype data across a variety of scenarios (see Online 

Methods) demonstrate that the above approximations are accurate even when the exchangeable 

loci assumption is violated (mean relative error across simulations = -0.009; Figure 1). 

In addition, our simulations confirmed that LD score regression [12], which is mathematically 

equivalent to HE regression when LD scores are exact [19], is analogously biased upwards (Figure 

4a). However, the impact of this bias in real world applications depends not only on the extent of 

AM, but also on the degree to which estimated LD scores reflect the true LD structure in a given 

population, and therefore no straightforward correction is available. 

Residual maximum likelihood estimates under AM 

In contrast to HE regression, for which the upward bias is independent of sample size, we show 
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that the REML estimator, ℎ̂REML
2 , exhibits large upward biases in small samples but converges 

towards ℎ0
2  (which is less than the true equilibrium value, ℎ∞

2 ) from above in large samples. 

Formally, under the assumption of exchangeable loci, we prove that 

ℎ̂REML
2 →

𝑃
ℎ0

2,      as 𝑛, 𝑚 → ∞, (4) 

where 𝑛/𝑚 → 𝑐 ∈ (0, ∞) ; i.e., for polygenic traits, ℎ̂REML
2  is a consistent estimator of ℎ0

2 . In 

essence, the parameter values that maximize the residual likelihood function depend only on the 

eigenvalues of the GRM and the long-range dependence among causal variants induced by AM is 

“weak” in the sense that the distributions of the eigenvalues (i.e. spectral distributions) of the GRM 

under random mating and under AM are asymptotically equivalent. However, in finite samples, 

we show via simulation that this convergence can be extremely gradual, requiring samples 

approaching millions of individuals before estimates reasonably approach ℎ0
2 (Figure 2a, Figure 

2b). Thus, the direction (relative to ℎ∞
2 ) and magnitude of the bias of ℎ̂REML

2  depend on sample size 

in addition to the panmictic heritability and strength of AM. On the other hand, the number of 

causal variants, the total number of measured SNPs, and the ratios of these with sample size have 

no apparent influence on the bias of ℎ̂REML
2  (Supp. Figure S1). 

Conventional means of addressing population structure do not mitigate AM-induced bias 

Inclusion of ancestral principal components as covariates failed to mitigate the AM-induced bias 

in both the MoM and the REML estimates (Figure 4a). Indeed, we demonstrate that the AM has a 

negligible effect on the spectral distribution of the GRM in high-dimensional settings (Supp. 

Materials S2.4). Similarly, these biases are not mitigated by modeling multiple genetic variance 

components by partitioning SNPs according to LD score and minor allele frequency (Figure 4a) 

or by partitioning SNPs by chromosome (results not shown). 

AM-induced bias persists when not all causal variants are measured 

In real-world applications, measured genotypes will often include some fraction of the total 

number of causal variants. To assess the impact of AM when not all variants are measured, we 

compared HE regression and REML heritability estimates in synthetic data including 100%, 50%, 

or 25% of both causal and non-causal SNPs by discarding variants at random (Figure 3b). As 

expected, this resulted in attenuated estimates commensurate with the fraction of missing data. On 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.436091doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

average, heritability estimates were 8.4% (se=0.009%) and 17.6% (se=0.009%) lower after 

randomly discarding 50% and 75% of SNPs, respectively (the degree of attenuation was smaller 

than the proportion of SNPs dropped due to linkage disequilibrium between retained and discarded 

SNPs). Nevertheless, while estimates were lower, the pattern of bias due to AM when some of the 

heritability was missing appeared roughly the same as when no heritability was missing. To test if 

ℎ̂2 attenuation varied across methods, we fixed sample size at 𝑛=128,000 and regressed ℎ̂2 on the 

interaction between the fraction of SNPs discarded (0%, 50%, or 75%) and method (HE=1 vs. 

REML=0). Similarly, to test if ℎ̂2 attenuation varied with sample size, we regressed ℎ̂2 on the 

interaction between the fraction of SNPs discarded and log10 sample size. We found that the linear 

relationship between ℎ̂2 and the fraction of SNPs discarded did not depend on method (𝛽̂=0.036, 

95% CI: [-0.011, 0.083]) nor on log10 sample size (𝛽̂=0.031, 95% CI: [-0.059, 0.120]). 

AM in the UK Biobank 

In addition to the experiments using synthetic data described above, we sought to verify our 

theoretical predictions by examining the relationship between sample size and heritability 

estimates in a sample 335,551 unrelated European-ancestry individuals in the UK Biobank [20]. 

We a priori selected four phenotypes based on evidence (height, years of education) or lack of 

evidence (body mass index [BMI], bone mineral density [BMD]) for primary phenotypic AM in a 

previous study [8]. We then computed HE regression and REML heritability estimates in pairs of 

small (𝑛=16,000) versus large (𝑛=𝑁–16,000) non-overlapping subsamples, where 𝑁 depended on 

the available sample size for each phenotype (Table 1). Congruent with theoretical expectations 

and simulation results, REML and HE estimates diverged with increasing sample size for height 

and years of education such that the differences between REML estimates in smaller versus larger 

subsamples were larger than those of HE estimates (mean difference of differences 

𝛿̅ ≔mean 𝛿REML-𝛿HE=0.024, 𝑝=5.24e-4; 𝛿̅=0.015, 𝑝=3.94e-4; respectively), but not for BMI or 

BMD (𝛿̅=5.84e-3, 𝑝=9.42e-2; 𝛿̅=-3.41e-3, 𝑝=0.302; respectively; Figure 3). This was consistent 

with a previous report that quantified the degree of AM for various traits by correlating polygenic 

scores between odd- versus even-numbered chromosomes also found that height and educational 

attainment, but not BMI or BMD, showed signatures of AM [8]. Unlike this previous approach, 

however, our approach is agnostic to variant direction and effect size. Thus, applying the REML 

estimator across subsamples of varying sizes provides an alternative and independent way to detect 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.18.436091doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

genomic signatures of AM. 

We used previously reported estimates of spousal correlations [2, 4] for height and educational 

attainment in order to correct HE regression heritability estimates (Table 1) via the estimators in 

Equation (3). Relative to the corrected equilibrium SNP-heritability estimates, HE regression 

estimates were inflated by 14% and 7% for height and years of education, respectively. 

Discussion 

Summary of findings 

Despite the long-standing understanding that AM alters the genetic architecture of heritable traits, 

abundant evidence that many phenotypes are subject to AM, and concentrated research activity in 

marker-based variance component estimation, the effects AM has on these estimators has remained 

unknown. In the present investigation, we demonstrated that AM biases heritability estimates and 

that these biases behave differently for MoM estimators versus REML estimators as a function of 

sample size. In the process, we extended previous results in quantitative genetics and random 

matrix theory by characterizing the full equilibrium joint distribution of causal variants, 

demonstrating that the empirical spectral distribution of the resulting relatedness matrix converges 

to the Marčenko-Pastur law, and thereby proving that REML produces a consistent estimator of 

the panmictic heritability of polygenic traits in very large samples (see Supp. Materials S2, S3). 

However, REML estimates of heritability of traits subject to AM behave peculiarly in finite 

samples, decreasing with larger samples and yielding estimates greater than the true equilibrium 

heritability in sample sizes typical of those published in the literature (Figure 2b). On the other 

hand, MoM estimators yield upwardly biased estimates that are higher than REML estimates and 

remain stable across sample sizes (Figure 2a, Figure 4a). Using UK Biobank data, we observed 

this differential behavior of estimates for two traits that with previous evidence for AM but not for 

two negative control traits. 

Implications 

Researchers have previously argued that the impact of AM on the heritability of common traits is 

likely to be “at most modest” [21]. Our results speak to a related but distinct phenomenon: the 

impact of AM on heritability estimators that use molecular genetic data. Notably, this impact is 

likely to be most salient for “benchmark” traits like height, which has served as a focal point for 
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the discourse surrounding the missing and still-missing heritability phenomena [9, 22]. Our results 

suggest that the still-missing heritability may be somewhat larger than currently thought for traits 

subject to AM.  For instance, for a trait subject to AM, the REML estimator will produce higher 

heritability estimates when applied whole-genome sequence data collected from a smaller number 

of individuals relative to estimates derived from larger samples for whom only sparse array data 

are available. On the other hand, twin studies are expected to underestimate the total heritability 

of an additive trait subject to AM [23], implying that the true discrepancy between the total 

heritability and that which is currently discernible from dense marker data may be greater than 

previously believed. Our simulations demonstrate that differences in REML heritability estimates 

derived in samples of 32,000 versus 128,000 individuals are on the order of those induced by 

randomly omitting 75% of measured SNPs (Figure 2a , Figure 4a). As such, caution is warranted 

when comparing heritability estimates across methods or across sample sizes for traits subject to 

AM.  

Interpreting heritability estimates in the presence of AM 

As we have demonstrated, existing methods do not produce unbiased heritability estimates for 

traits subject to primary phenotypic assortment in real world use cases. Although we provide 

unbiased estimators of both the equilibrium and panmictic heritabilities (by correcting ℎ̂HE
2  to 

obtain  ℎ̂∞
2  and  ℎ̂0

2  as per Equation [3]), these rely on the strong assumption of equilibrium. 

Likewise, though REML provides an asymptotically unbiased estimator of the panmictic 

heritability, the sample sizes required to approach unbiasedness are currently unavailable and 

computationally impractical. Still, it is possible to derive theoretically-sound bounds on the true 

values of the present day and panmictic heritabilities using existing methods applied to realistic 

sample sizes in disequilibrium. Specifically, as a population approaches equilibrium over 

successive generations of assortative mating, the current heritability at generation 𝑡, ℎ𝑡
2, is bounded 

in expectation from above by ℎ̂HE
2 , with equality at 𝑡 = 0 (panmixis), and from below by  ℎ̂∞

2 =

𝔼[ℎ∞
2 |ℎ̂HE

2 ; 𝑡 = ∞], with equality as 𝑡 → ∞  (equilibrium). Likewise, the panmictic heritability ℎ0
2 

is bounded in expectation from below by ℎ̂0
2 = 𝔼[ℎ0

2|ℎ̂HE
2 ; 𝑡 = ∞], with equality as 𝑡 → ∞, and 

from above by ℎ̂REML
2  (with equality at all generations as 𝑛 → ∞). Thus, as long as the strength of 

AM isn’t decreasing across generations, [ℎ̂∞
2 , ℎ̂HE

2 ] provide probabilistic bounds encompassing the 

true present day heritability, and [ℎ̂0
2, ℎ̂REML

2 ] provide probabilistic bounds encompassing the true 
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panmictic heritability under disequilibrium with ℎ̂∞
2  and ℎ̂0

2 providing conservative point estimates 

of ℎ∞
2  and ℎ0

2, respectively (Figure 1). 

Limitations and future directions  

There are several limitations of the current approach. First among these are assumptions inherent 

to the primary phenotypic AM model. Some of these assumptions, including equilibrium and 

constancy of the phenotypic mating correlations across generations, provide mathematical 

tractability and are to some extent inessential to the resulting phenomena. For example, while the 

problem of characterizing the joint distribution of causal variants becomes substantially more 

difficult in a population subject to AM that has not reached equilibrium, we observed (results not 

shown) that estimators behave in a similar, albeit less extreme, fashion relative to their behavior 

in an equilibrium population. Other assumptions, such as the absence of gene-environment 

correlation and the conditional independence of mates’ genotypes given their phenotypes (which 

may be violated in structured populations), are more difficult to evaluate and deserve consideration 

in future investigations. Additional limitations pertain to our theoretical analysis of the REML 

estimator, which is rooted in a high-dimensional asymptotics framework. The exact causes of the 

peculiar behavior of the REML estimator in finite samples, particularly regarding the slow rate of 

convergence to the panmictic heritability, remain unclear to us. Whether this problem is 

addressable from an asymptotic perspective or instead requires an alternative, non-asymptotic 

framework, is an open question and is a target for future theoretical work. Finally, when the 

phenotypic correlation between mates is known, our results provide a prescription for rectifying 

AM-induced biases (by adjusting ℎ̂HE
2  per Equation [3]) under the assumption of equilibrium, 

which is difficult to verify, and only provide broad bounds on the extent of said biases for 

populations at disequilibrium. As such, these results should provide motivation and a starting place 

for the development of new methods that can provide unbiased estimates of genomic variance in 

the presence of AM. 

Online Methods 

Theoretical framework 

The primary phenotypic assortment model 

Here we introduce the model of AM as proposed by Fisher [5] and further developed by Nagylaki 
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and others [16, 24] (see Supp. Materials S1 for a detailed exposition). Briefly, we consider a 

phenotype as a random vector composed of independent heritable and non-heritable components: 

𝑌 = 𝑍𝑢 + 𝐸,               𝐸 ∼
𝑖.𝑖.𝑑.

𝒩(0, 𝜎𝑒
2), (5) 

where the rows of 𝑍 , representing individuals’ standardized genotypes, are independent 𝑚 -

dimensional random vectors following a multivariate discrete distribution with finite moments and 

finite and which we assume are independent under panmixis. The vector of allele substitution 

effects 𝑢, which we treat as fixed, is such that 𝑢𝑇𝑢 = 𝜎𝑔,0
2 . Further, we assume that 1) parent-

parent-offspring trios’ phenotypes are jointly Gaussian; 2) the phenotypic correlation between 

mates, 𝑟 is constant across generations; and 3) there exists 𝑐0 ∈ (0,∞) such that 𝑚𝑎𝑥
𝑘=1,…,𝑚

|𝑢𝑘| ≤ 𝑐0 ⋅

𝑚−1/2 ; that is, as traits become increasingly polygenic, the maximal variance attributable to 

individual variants decreases commensurately. 

The equilibrium distribution of causal variants 

Over successive generations, the correlation between mates’ phenotypes induces positive 

correlations across trait increasing allele counts independent of physical position on the genome 

and thereby increases the total genetic variance of the trait. The genetic variance rapidly 

approaches a stable equilibrium after several generations (typically within ten generations), at 

which point the within-individual and cross-mate correlations among causal variants are equal to 

one another. Using the results of Nagylaki [16], we can express the equilibrium covariance matrix 

between causal variants as a low rank perturbation of a diagonal matrix of the form: Υ∞ = 𝐷 +

2𝜙𝜙𝑇 , where 𝜙  is a known vector-valued function of the substitution effects and mating 

correlation (Supp. Materials S1.2) with elements 𝜙𝑘 = 𝑂(𝑚−1/2) uniformly. 

Higher order moments and the limiting spectral distribution of GRM 

Employing tools from the study of thermodynamic equilibria, we extend these classical results to 

bound moments of higher orders (Supp. Materials S2.1, Supp. Materials S2.4). Using these results, 

we extend the widely-known Marčenko-Pastur theorem, which describes the limiting distribution 

of the spectrum of sample covariance matrices corresponding to random matrices with independent 

sub-Gaussian elements [25], to the case of random matrices with independent rows meeting 

particular moment conditions (Supp. Materials S2.3). Together, these results establish the limiting 

spectral distribution of the sample GRM (i.e., the distribution of the eigenvalues of the sample 
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GRM as both sample size and the number of variants examined become large) under AM (Supp. 

Materials S2.4), providing the necessary theoretical foundation to characterize the asymptotic 

behavior of the REML estimator. Further, these results explain why controlling for principal 

components fails to remove AM-induced biases: the impact of AM on the spectrum of the GRM 

is asymptotically negligible. 

Haseman-Elston regression under AM 

The HE regression heritability estimator [26] is obtained by regressing the subdiagonal elements 

of the standardized phenotypic outer product 𝑦̃𝑦̃𝑇  on the subdiagonal elements of the GRM 

𝑚−1𝑍𝑍𝑇. Whereas elements of the outcome (the phenotypic outer product) reflect the dependences 

among all pairs of causal loci: 

𝔼[{𝑦̃𝑦̃𝑇}𝑖,𝑗<1 ] ∝ ∑ ∑ 𝑢𝑘𝑢𝑙𝔼[𝑧𝑖𝑘𝑧𝑗𝑙] + 𝑒𝑖𝑒𝑗
𝑚
𝑙=1

𝑚
𝑘=1 , (6) 

elements of the GRM only capture the dependences among haploid loci that at the same diploid 

site:

𝔼[{𝑍𝑍𝑇}𝑖,𝑗<1 ] ∝ ∑ 𝔼[𝑧𝑖𝑘𝑧𝑗𝑙]
𝑚
𝑘=𝑙 . (7) 

As a result, the variance of the outcome increases whereas the variance of predictor remains largely 

unaffected, leading to overestimation of the true equilibrium heritability, potentially producing 

estimates greater than one for strong assortment (Figure 1; see Supp. Materials S3.1 for formal 

further details and proof). In contrast to the REML estimator, the HE regression estimator is 

upwardly biased irrespective of sample size (Figure 2a). 

REML and the spectrum of the GRM under AM 

The REML estimator [13] models the phenotype as a random vector with marginal distribution, 

𝑦 ∼ ℳ𝒱𝒩(𝑋𝛽, 𝑚−1𝑍𝑍𝑇𝜎𝑔
2 + 𝐼𝜎𝑒

2), (8) 

where 𝑋  is an 𝑛 × 𝑐 matrix of covariates with fixed effects 𝛽  and the covariance structure is 

comprised of a heritable component (𝜎𝑔
2 times the GRM) and a non-heritable component (𝜎𝑒

2 times 

the identity). The heritability estimator ℎ̂REML
2 = 𝜎̂𝑔

2/(𝜎̂𝑔
2 + 𝜎̂𝑒

2) is derived by finding the values of 

the variance components that satisfy the equation, 

∇ℓ(𝜎̂𝑔
2, 𝜎̂𝑒

2|𝐴𝑇𝑦) = 0, (9)  

where ℓ denotes the marginal log likelihood of the transformed random variable 𝐴𝑇𝑦 for 𝐴𝑇: ℝ →
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(col 𝑋)⊥ ⊆ ℝ𝑛−𝑐, 𝐴𝑇𝐴 = 𝐼. The conditional expectation of ∇ℓ given the genotypes is a function 

of the eigenvalues of the GRM and, as a result, the asymptotic behavior of ℎ̂REML
2  is governed by 

the asymptotic distribution of the eigenvalues of 𝑚−1𝑍𝑍𝑇. A foundational result in random matrix 

theory states that for zero-mean unit-variance sub-Gaussian random matrices 𝑊 ∈ ℂ𝑛×𝑚  with 

independent elements, the empirical spectral distribution function of  𝑚−1𝑊𝑊𝑇 converges almost 

surely to the Marčenko-Pastur distribution [25]. Employing this result, Jiang and colleagues [27] 

demonstrated that, in the case of independent causal variants, REML consistently estimates the 

true heritability in high dimensional settings and is robust to certain forms of model 

misspecification. In Supp. Materials S2.3, Supp. Materials S2.4, we demonstrate that even though 

AM induces dependence among causal variants, this dependence is “weak” in the sense that it 

doesn’t change the limiting spectral distribution of the GRM, thereby allowing us to apply 

arguments in line with those of Jiang and colleagues’ (Supp. Materials S3.2). Intuitively our result 

can be summarized as follows: as the sample size and the number of causal variants become large, 

the eigenvalues of the GRM under AM behave as if the causal variants were independent (as is 

largely the case under random mating). The behavior of the REML estimator is determined by the 

behavior of the eigenvalues of the GRM, and thus ℎ̂REML
2  converges to what the heritability would 

be if the causal variants were independent, i.e., the panmictic heritability. 

Simulation studies  

We employed a realistic forward-time simulation framework to generate genotypic and phenotypic 

data. We then used these data to motivate and verify theoretical results. Below, we describe the 

general framework and specific simulations we performed.  

Simulation framework 

Given a recombination map and 𝑛input individuals’ phased biallelic genotypes at 𝑝 diploid loci as 

input, we divided the genome into 𝑘 ≪ 𝑝 contiguous-within-chromosome, non-overlapping 50kB 

intervals to obtain a block representation. Recombination events, which occurred with probabilities 

dictated by the recombination map, were restricted to interval boundaries, thus dramatically 

reducing the number of haplotypes that had to be tracked while maintaining high genomic 

resolution. To achieve a target population size 𝑁sim > 𝑛input, 𝑁sim pairs of the 𝑛input individuals 

were non-monogamously ‘mated’ (i.e., matched and subject to meiosis), resulting in a new 

generation of 𝑁sim individuals whose genomes were could be represented in terms of the which of 
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the 𝑛input haplotype blocks they inherited at each of the 𝑘 intervals. We then repeated this random 

mating procedure for an additional five generations, resulting in 𝑁sim chimeric combinations of 

the original 𝑛input genotypes while maintaining the linkage disequilibrium structure of the original 

data. These discretized genotypes comprised the input for the principal AM simulations. 

At the beginning of each particular AM simulation with prespecified panmictic heritability ℎ0
2 =

𝜎𝑔,0
2 /(𝜎𝑔,0

2 + 𝜎𝑒
2), phenotypic correlation between mates 𝑟 , p SNPs, and m diploid causal loci 

𝑧1, … , 𝑧𝑚 , 𝑚 ≪ 𝑝 , the standardized allele substitution effects 𝑢1, … , 𝑢𝑚 , were independently 

drawn from a Gaussian distribution with expectation zero and variance 𝜎𝑔,0
2 /𝑚. Unless otherwise 

stated, all simulations used 𝑝 = 106 SNPs. At each generation, phenotypes were constructed via 

𝑦 = 𝑍𝑢 + 𝑒 where 𝑒 was i.i.d. Gaussian with zero expectation and variance 𝜎𝑒
2. Next, mates were 

matched according to their respective phenotypes 𝑦𝑖 , 𝑦𝑗  such that corr(𝑦𝑖 , 𝑦𝑗) ≈ 𝑟 . This was 

achieved by drawing 𝑁sim independent doubles {(𝑤∗, 𝑤∗∗)𝑇}𝑘=1
𝑁sim ∼ 𝒩 (0, (

1 𝑟
𝑟 1

)) from which 

𝑁sim pairs of indices {(𝑖, 𝑗)}𝑘=1
𝑁sim  were constructed such that (𝑖, 𝑗)𝑘 were the positions of 𝑤𝑘

∗  and 

𝑤𝑘
∗∗ after concatenating and sorting each element of {(𝑤∗, 𝑤∗∗)𝑇}𝑘=1

𝑁sim . Similarly, 𝑁sim  indices 

𝑙 = 𝑙1, … , 𝑙𝑁sim
 were constructed such that 𝑙𝑘  indexed the 𝑘 th largest of the 𝑁sim  simulated 

phenotypes. Finally, each 𝑘 th mating pair was determined by taking the 𝑙⌊𝑖𝑘/2⌋ th and 𝑙⌊𝑖𝑗/2⌋ th 

replicates. Having chosen mates, meiosis occurred as previously detailed to construct the next 

generations’ genotypes.  

Simulations using UK Biobank data 

For each simulation, the input data were derived from phased, imputed genotypes at 𝑝 = 106 

randomly selected imputed SNP loci in a sub-sample of 𝑛input = 435,301 European UK Biobank 

participants [20]. All SNPs were chosen to meet the following criteria: minor allele frequency 

greater than 0.01, Hardy-Weinberg 𝑝-value greater than 10-6, INFO score of at least 0.95, and 

presence on the 1,000 Genomes Phase 3 (1KG3) reference panel [28]. Genotype data were then 

phased to the 1KG3 reference panel in batches of 40,000 individuals using Eagle v2.4 [29]. This 

input data was then grown to a population of 𝑁sim = 106 chimeric genotypes and subjected to an 

additional five generations of random mating as described in the preceding section. 

We conducted AM simulations for varying mating correlations, 𝑟 ∈ {0, .25, .5, .75} and numbers 
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of causal variants, 𝑚 ∈ {104, 105}, with panmictic heritability fixed at ℎ0
2 = .5. Each simulation 

consisted of fifteen generations of AM and produced results congruent with classical theory. Prior 

to heritability estimation, close relatives 𝜋̂ ≥ .05 , were removed using GCTA v1.93.1 [14], 

resulting in an average sample size of 141,667 across simulated datasets. Additionally, we ran a 

limited number of larger, more computationally intensive simulations (𝑁sim = 3×106) with mating 

correlations fixed at 𝑟 =  .5 to investigate the large sample behavior of the REML estimator, 

resulting in at least 648,000 unrelated individuals across simulated datasets. There were no 

apparent differences across simulations as a function of the number of causal variants or the 

simulated population size. 

Heritability estimation in simulated data 

We split each simulated genotype-phenotype dataset into collections of random subsamples 

mutually exclusive within collection but not across collections, yielding 16 samples of 16,000 

individuals, 8 samples of 16,000, 4 samples of 32,000 individuals, 2 samples of 64,000 individuals, 

and 1 sample of 128,000 individuals. We then performed HE regression and single-component 

REML for each subsample (Figure 2a). We used GCTA v1.91.3b [14] to construct genomic related 

matrices and perform HE regression. We obtained REML heritability estimates using BOLT-

LMM v2.3.4 [30] for computational efficiency; though BOLT-LMM uses a randomized algorithm, 

its numerical accuracy is comparable to that of the exact algorithm implemented GCTA [31]. 

We also performed a variety of supplementary analyses for a limited set of simulation parameters 

( 𝑟 =  .5 , ℎ0
2 = .5 , and 𝑚 ∈ {104, 105}, 𝑁 = 106 ). To demonstrate that including genomic 

principal components (PCs) as covariates does not mitigate the impact of AM, we included 10 PCs 

as covariates in the HE regression and REML analyses. For the former, HE regression was 

conducted in LDAK v5.0 [32], as the HE regression implementation in GCTA cannot 

accommodate covariates.  To demonstrate that the behavior of LD score regression under AM is 

equivalent to that of HE regression (assuming that the LD scores accurately reflect the LD structure 

of the sample), we used PLINK v1.9 [33] to obtain GWAS summary statistics and LDSC v1.0.1 

[12] to estimate within-sample LD scores using a one centiMorgan sliding window and to perform 

LD score regression (Figure 4a). To demonstrate that multiple variance component (also known 

as partitioned approaches [34, 35]) do not mitigate the impact of AM, we fit multicomponent HE 

regression and REML after partitioning SNPs by minor allele frequency and LD score (Figure 4a). 
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Finally, to assess the scenario wherein a non-trivial fraction of causal variants aren’t included in 

the model, we estimated HE regression and REML models after removing 50% or 75% of 

simulated SNPs at random (Figure 4b). 

Empirical results 

Sampling procedures 

We analyzed 1,211,273 biallelic 1KG3 SNPs with in-sample minor allele frequency greater than 

0.01, Hardy-Weinberg 𝑝-value greater than 10-6, and INFO scores of at least 0.95, in a sample of 

335,551 unrelated European UK Biobank participants [20]. We selected phenotypes a priori on 

the basis of previous evidence for AM; we chose height (𝑛 = 335,551) and years of education 

(𝑛 = 331,480) as traits with previous evidence of AM, whereas we chose BMI (𝑛 = 335,551) and 

BMD  (𝑛 = 191,330) as negative control traits [8]. We measured years of education following the 

procedures detailed in [36]. 

Analysis/resampling 

We tested for evidence of AM by comparing HE and REML heritability estimates in small and 

large samples. In the presence of AM, our theoretical results imply that HE regression estimates 

are consistent across all small and large subsamples, whereas REML estimates should decrease 

with increasing sample size. On the other hand, in the absence of AM, neither HE nor REML 

estimates should systematically vary with sample size. To this end, we randomly selected ten 

mutually exclusive subsamples of 16,000 individuals for each trait and compared HE and REML 

estimates in each subsample to the non-overlapping complementary subsample comprised of the 

remaining  𝑛 − 16,000 individuals, controlling for sex, age, genotyping batch, testing center, and 

the first 10 genomic ancestry principal components. To eliminate variance in heritability estimates 

due to chance differences in covariate effect estimates across subsamples, we adjusted genotypes 

and phenotypes in the full sample prior to all following analyses. To our knowledge, existing 

software is incapable of efficient REML analysis using adjusted genotypes (analogous to dosages) 

in large samples; e.g., BOLT-REML requires hard-calls as input, whereas GCTA and LDAK have 

cubic complexity in the number of individuals and markers and would require multiple weeks to 

run on a high thread-count server. We therefore utilized a modified Python implementation of the 

REML algorithm presented in [31] (code available by request). We used LDAK 5.0 to obtain 

adjusted HE regression estimates [32]. In order to quantify the divergence of the REML and HE 
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estimators in large versus small samples we performed the following test, analogous to a 𝑡 test of 

the interaction effect in a 2×2 within-subjects experimental design: 

 
𝐻0: 𝛿̅ ≔ (ℎ̂REML

2 (𝑆)  − ℎ̂REML
2 (𝑆𝐶)) − (ℎ̂HE

2 (𝑆)  − ℎ̂HE
2 (𝑆𝐶)) = 0,

𝐻1: 𝛿̅ ≠ 0,

where 𝑆 denotes a given subsample and S
c
 its complementary subsample. Though this procedure 

accounts for the dependence among estimates derived in the same subsamples, the individual 

observations were derived from various partitionings of the same data and do not constitute 

independent observations. This limitation is not easily avoidable, and the results of this procedure 

(Figure 3) should be interpreted as descriptive despite our application of inferential procedures. 
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Phenotype 𝒓 𝒏 𝒉̂𝐇𝐄
𝟐  [se] 𝒉̂∞

𝟐  [se] 𝒉̂𝐑𝐄𝐌𝐋
𝟐  [se] 𝒉̂𝟎

𝟐 [se] 𝒉̂𝐇𝐄
𝟐 /𝒉̂∞

𝟐  [se] 

Height 0.240 334,798 0.567 [4.68e-3] 0.499 [4.23e-3] 0.525 [2.22e-3] 0.467 [3.37e-3] 1.14 [8.70e-4] 

Years of Education 0.412 332,198 0.174 [2.64e-3] 0.163 [2.46e-3] 0.155 [2.01e-3] 0.153 [2.06e-3] 1.07 [9.46e-4] 

Table 1. Inflation of heritability estimates for select UK Biobank traits 

Spousal correlations (as previously reported in British cohorts [2, 4]) and heritability estimates for height and years of education in  the 

UK Biobank, selected a priori on the basis of previous evidence for primary phenotypic AM. Assuming equilibrium, ℎ̂∞
2  and ℎ̂0

2 (defined 

in Equation 3) provide unbiased estimates of the present day and panmictic heritabilites, respectively.  Under disequilibrium, they 

respectively provide probabilistic lower bounds, with ℎ̂HE
2  and ℎ̂REML

2  providing complementary upper bounds. The ratio ℎ̂HE
2 /ℎ̂∞

2  

reflects the extent to which HE regression overestimates the true heritability under the assumption of equilibrium. 
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Figure 1. Theoretical and empirical behavior of existing and corrected estimators 

Theoretical and empirical behavior of HE regression REML at equilibrium for varying phenotypic correlations 

among mates (𝑟) and fixed panmictic heritability (ℎ0
2 = .5) across simulated datasets with sample size fixed at 

𝑛 =64,000. HE regression ( ℎ̂HE

2
) produces upwardly biased estimates consistent with our closed-form 

approximation under the assumption of exchangeable loci, 𝔼[ℎ̂HE

2
]. Further, our corrected estimators, ℎ̂∞

2
 and ℎ̂0

2
, 

recover the true equilibrium and panmictic heritabilities for a trait at equilibrium. For a trait at disequilibrium, the 

present day heritability ℎ𝑡
2 is bounded in expectation between ℎ̂HE

2
 and ℎ̂∞

2
 (represented by the teal shaded region), 

whereas the panmictic heritability ℎ0
2 is bounded in expectation between ℎ̂REML

2
 and ℎ̂0

2
 (represented by the red 

shaded region). 
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Figure 2. REML and HE estimates across varying sample sizes in simulated data  

(a) Comparison of HE regression and REML heritability estimates as functions of sample size for varying 

phenotypic mating correlation (𝑟) and fixed panmictic heritability (ℎ0
2 = .5) in simulated data. We computed 

multiple estimates per sample size for each estimator and parameter combination by applying estimators to 

independent sub-samples. Whereas HE regression estimates are upwardly biased independent of sample size, 

REML estimates slowly converge to the panmictic heritability as sample sizes increase. 

(b) Extended simulations demonstrating high-dimensional behavior of the REML estimator as a function of 

sample size for fixed phenotypic mating correlation (𝑟 = .5) and panmictic heritability (ℎ0
2 = .5). Forward time 

simulations required a larger population size (𝑁sim = 3e6) to obtain samples of up to 𝑛 = 648,000 unrelated 

individuals. Obtaining REML estimates for samples larger than this was not computationally feasible, but the 

dashed red line shows predicted values for larger sample sizes extrapolated from a regression model including 

first and second order log-linear components. Results are consistent with theoretical predictions that the REML 

estimator converges to the panmictic heritability in very large samples (e.g., >1e6). 
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Figure 3. REML and HE estimates across varying sample sizes in UK Biobank data 

Comparison of HE regression and REML estimators as a function of sample size for real traits in a sample of 

unrelated European ancestry UK Biobank participants. Points connected by thin lines represent estimates derived 

from pairs of complementary disjoint subsamples of size 16,000 and 𝑁 − 16,000, whereas thick lines reflect 

average log-linear trends. Two negative control traits (body mass index and bone mineral density) and two traits 

with previous evidence for AM (height and years of education) were selected for analysis a priori. Consistent 

with theoretical predictions, height and years of education demonstrated significant estimator divergence with 

increasing sample size (𝑝=5.24e-4, 𝑝=3.94e-4, respectively), whereas body mass index and bone mineral density 

did not (𝑝=9.42e-2, 𝑝=0.302, respectively).  
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Figure 4. Naïve approaches to addressing AM induced bias and the impact of missing data 

(a) Simulations demonstrate that neither partitioned heritability nor principal component adjusted methods 

mitigate the impact of assortative mating on HE regression and REML estimates. Additionally, simulations 

confirm that LD score regression (LDSC), which is mathematically equivalent to HE regression, is subject to 

equivalent biases. “Single component” refers to standard infinitesimal single genomic variance component 

models, “Single comp. + 10 PCs” included the first ten within-sample principal components as covariates, and 

“Partitioned” included four annotation-based variance components generated by median splits of within-sample 

minor allele frequencies and linkage disequilibrium scores. Phenotypic mating correlation and panmictic 

heritability were fixed (𝑟 = .5 , ℎ0
2 = .5 , respectively) across simulations. (b) Simulations demonstrate that 

conclusions regarding estimator bias do not change when only a portion of the genetic variance is explained by 

measured SNPs. Shown are HE regression and REML estimators when 100%, 50%, or 25% of randomly selected 

SNPs (both causal and non-causal) were included in the model under the same simulation conditions described 

in (a). As expected, estimates were attenuated when SNPs were missing but overall patterns remained consistent.  
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