
1

1 Personalized Closed-Loop Brain Stimulation for Effective Neurointervention Across 

2 Participants 

3

4 Nienke E.R. van Buerena,b,† Thomas L. Reeda,† Vu Nguyenc, James G. Sheffielda, Sanne 

5 H.G. van der Venb, Michael A. Osborned, Evelyn H. Kroesbergenb, Roi Cohen Kadosha*

6

7 †Shared first author

8

9 aWellcome Centre for Integrative Neuroimaging, Department of Experimental 

10 Psychology, University of Oxford, UK 

11 bBehavioural Science Institute, Radboud University Nijmegen, 6525 HR, Nijmegen, the 

12 Netherlands

13 cDepartment of Materials, University of Oxford, OX2 6HT, Oxford, United Kingdom

14 dDepartment of Engineering Science, University of Oxford, OX1 3PJ, Oxford, United 

15 Kingdom

16

17 *Corresponding author: Roi Cohen Kadosh

18 Email:  roi.cohenkadosh@psy.ox.ac.uk

19

20

21

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.436018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436018
http://creativecommons.org/licenses/by/4.0/


2

23 Abstract

24 Accumulating evidence from human-based research has highlighted that the prevalent 

25 one-size-fits-all approach for neural and behavioral interventions is inefficient. This 

26 approach can benefit one individual, but be ineffective or even detrimental for another. 

27 Studying the efficacy of the large range of different parameters for different individuals is 

28 costly, time-consuming and requires a large sample size that makes such research 

29 impractical and hinders effective interventions. Here an active machine learning 

30 technique is presented across participants—personalized Bayesian optimization (pBO)—

31 that searches available parameter combinations to optimize an intervention as a function 

32 of an individual’s ability. This novel technique was utilized to identify transcranial 

33 alternating current stimulation frequency and current strength combinations most likely to 

34 improve arithmetic performance, based on a subject’s baseline arithmetic abilities. The 

35 pBO was performed across all subjects tested, building a model of subject performance, 

36 capable of recommending parameters for future subjects based on their baseline 

37 arithmetic ability. pBO successfully searches, learns, and recommends parameters for an 

38 effective neurointervention as supported by behavioral, stimulation, and neural data. The 

39 application of pBO in human-based research opens up new avenues for personalized and 

40 more effective interventions, as well as discoveries of protocols for treatment and 

41 translation to other clinical and non-clinical domains.

42
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46 1. Introduction

47 There is no doubt that the human organism is complex, and the impact of nature and 

48 nurture, as well as their interaction, increases variability between humans. It is therefore 

49 not surprising that interventions aimed at altering human behavior are not effective for all 

50 individuals. This variability in effectiveness is partly due to the one-size-fits-all approach 

51 that currently dominates behavioral intervention research. Accumulating evidence has 

52 indicated that this approach is inefficient, and that a treatment that benefits one individual 

53 can be ineffective or even detrimental for another individual (1–8). Personalized 

54 medicine aims to address this challenge by adjusting treatments to the individual or to a 

55 subset of patients (9, 10). Due to the complexity of individual differences, there is an 

56 increasing need for personalized medicine for a wide range of drugs, biomedical 

57 treatments, and diseases. Without this, the one-size-fits-all approach often only alleviates 

58 symptoms in clinical studies without curing the disease (11). This demand for 

59 personalization is especially true in the field of transcranial stimulation, where electrical 

60 currents targeting specific brain regions are used to alter behavior. Whilst tailoring a 

61 stimulation protocol is ideal, identifying the optimal stimulation protocol for an 

62 individual proves problematic in large parameter spaces, where the systematic testing of 

63 each parameter combination can lead to overly costly and time-consuming protocols. For 

64 instance, one stimulation technique that is gaining popularity is transcranial alternating 

65 current stimulation (tACS) (12). tACS utilizes an alternating current delivered via 

66 multiple electrodes placed on the scalp, which is capable of propagating through the scalp 

67 and modulating the activity of the underlying neurons. The applied alternating current 

68 promotes oscillatory activity at the stimulation frequency (13), allowing direct 

69 modulation of brain oscillations that subserve cognitive processes (14). Through this 

70 process, tACS provides an attractive way to investigate causal predictors of behavior and 

71 to use such knowledge to improve human capabilities or health. However, exploring the 

72 effects of all tACS parameters on the performance of different individuals requires an 

73 exhausting amount of testing when considering different current (0-2 mA) and frequency 

74 (0-100 Hz) combinations. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.436018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436018
http://creativecommons.org/licenses/by/4.0/


4

75 One recently proposed method for selecting parameters in brain stimulation is 

76 Bayesian optimization (BO) (15, 16). BO is an active machine learning technique that 

77 aims to find the global optimum of a black-box function 𝑓(𝑥) by making a series of 

78 evaluations. To select the next evaluation, BO first constructs a probabilistic model 

79 (surrogate model) for 𝑓(𝑥) and exploits this model to make decisions. This results in a 

80 procedure that can find the maximal value of difficult non-concave functions with 

81 relatively few evaluations, at the cost of performing more computations to determine the 

82 next point (at minimal cost when compared with the effort of evaluating the function at 

83 more points) (17). Hence, BO is particularly valuable when there is a need to explore a 

84 large experimental space in as few evaluations as possible. Generally, BO involves two 

85 procedures: 1) fitting an appropriate model to function 𝑓(𝑥) and 2) choosing an 

86 acquisition function α(x) that steers sampling in the direction where improvement over 

87 the current best evaluation is most likely. 

88 The present work was inspired by previous work that used BO in human-based 

89 research (15, 16, 18–20) In these previous BO studies, all iterations of the process are run 

90 on the same individual, allowing the experimenters to achieve person-specific results. 

91 However, to do this, the entire BO process must be run for each individual that requires 

92 stimulation - a lengthy and costly process. A workable solution is to base the algorithm 

93 on a measurable characteristic that varies across subjects, such as baseline ability in the 

94 behavioral task of interest. Therefore, we developed a novel personalized (p)BO for 

95 human-based research. In pBO, the algorithm is trained on an initial small set of data 

96 (burn-in phase), and then iteratively selects stimulation parameters across subsequent 

97 subjects, with the aim of identifying the optimal stimulation parameters for improving 

98 behavioral performance, whilst considering personalized information. i.e. baseline 

99 arithmetic ability (Figure 1).

100

101

102
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Figure 1 | Illustration of the personalized Bayesian optimization procedure. (1) The Gaussian process (GP) 
is fitted to the existing data and models the expected performance along parameter and personalized 
dimensions. (2) The acquisition function identifies the next point to evaluate along the value of the 
personalized variable relevant to the participant. (3) Once the data is collected at this new point the GP is 
updated and a new point selected. (4) This cycle continues until either a new subject is tested, in which case 
a different value for the personalized variable will be recorded; a pre-set stopping criterion is reached, such 
as the number of subjects to be tested; or until the potential improvement is considered negligible 
(convergence). In this study, we utilized a pre-set stopping criterion of 50 subjects, after which testing was 
ceased.
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120 This BO algorithm can incorporate personalized information (21), including an 

121 individual’s data, such as age, gender, neural activity or cognitive profile. Based on the 

122 vast literature that highlights the impact of individual differences on stimulation efficacy 

123 (22, 23), we personalized the BO to subject’s cognitive ability in this study. We focused 

124 on optimizing arithmetic performance considering its importance in the success of one’s 
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125 future career and socio-economic status (24) and its impairment in acquired and 

126 congenital brain disorders (25, 26). Skills needed for solving arithmetic problems vary 

127 greatly in the typical and atypical populations (27, 28). Similarly, a recent study on 

128 arithmetic skills highlighted the individual differences in both neural correlates and 

129 behavioral response in healthy people (29). The left frontoparietal network has been 

130 implicated in playing an important role in arithmetic processing and can be targeted by 

131 tACS (30, 31).  We recognize that other brain stimulation techniques have been used in 

132 the field of arithmetic (32-37, for reviews see 31, 38, 39). However, we utilized tACS 

133 since this method allows for stimulation at a range of specific frequencies to explore 

134 those that might impact arithmetic performance.

135 We examined whether we could tailor tACS parameters to improve arithmetic 

136 performance using a pBO that takes baseline ability into account in healthy subjects. To 

137 do this, the individual's baseline arithmetic ability was initially measured, after which the 

138 stimulation parameters to be used were automatically selected either at random, if 

139 subjects were in the initial burn-in phase, or by the pBO algorithm. Subjects then 

140 completed a block of the arithmetic behavioral task whilst receiving stimulation using the 

141 selected parameters (Figure 2). Stimulation parameter selection and behavioral testing 

142 were repeated in each subject until three blocks of different arithmetic problems were 

143 completed. Note that these three blocks were included to select more samples to allow 

144 optimization based on the pBO across subjects, rather than optimizing performance over 

145 these three iterations. The tACS parameters that were altered were current intensity and 

146 frequency, and the pBO algorithm aimed to identify the optimal parameter combination 

147 for improving arithmetic ability given a subject’s baseline arithmetic ability. To target the 

148 ability to solve arithmetic problems more precisely we used diffusion modeling, which 

149 allowed us to target specifically the drift rate, a measure of cognitive ability, rather than 

150 auxiliary components such as non-decision response time or response conservativeness 

151 (40). Furthermore, we ran different computational simulations to demonstrate the 

152 efficiency of our proposed pBO in comparison to random sampling and a standard BO 

153 algorithm (i.e., pBO without a personalized variable). We also recorded 

154 electrophysiological frequency band power and connectivity at baseline and after 
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Figure 2 | An overview of the experimental paradigm. a) An overview of the behavioral paradigm. Subjects 
(n = 50) watched a fixation point that indicated the start of a trial. After 3000 ms an arithmetic multiplication 
was shown with two possible answer options on the left and right side with a difference of 10. Subjects 
responded by pressing either the left or right button on a response box. Lastly, subjects received either 
‘correct’ or ‘incorrect’ as feedback to continuously capture attention. b) Subjects first completed a baseline 
rs-EEG of four minutes, after which 10 practice trials of multi-digit times single-digit multiplications were 
presented. This was followed by the baseline task, which comprised five blocks of 10 different 
multiplications. Three different tACS frequency-current combinations were proposed by the BO algorithm 
after the completion of the multiplications. Between these tACS combinations, post-block rs-EEGs were 
recorded before the subjects moved on to the next tACS combination. Validation of the blinding of the 
stimulation and perceived sensations were assessed after completion of a stimulation block. c) An 
illustration of the tACS electrode montage. Stimulation was applied over the left frontoparietal area (F3 and 
P3) with one return electrode (Cz).

155 applying combinations of tACS parameters to link behavioral changes to 

156 electrophysiological (EEG) outcomes, while we report this finding, we note that it is not 

157 the main focus of the present study. 
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173 2. Results

174 2.1. Group-level Personalized Bayesian Optimization 

175 As Figure 3 shows, the optimal stimulation parameters depended on the 

176 participants’ baseline ability: we found a shift from higher frequencies and currents in 

177 lower (poor) baseline abilities, to lower frequencies and currents in higher (better) 
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Figure 3 | Results of the personalized Bayesian optimization model at several different baseline abilities (n = 
49). From left to right, the figure shows the predictions from the Gaussian process model for low baseline 
ability (1 standard deviation (SD) below the mean), mean baseline ability (mean = 0.055), and for high 
baseline ability (1 SD above the mean). The y-axis shows the frequency range of the applied stimulation (0-
50 Hz) and the x-axis the current of the stimulation (0-1.6 mA, peak-to-peak). Arithmetic performance is 
indicated in color based on the normalized drift rates (tACS block/baseline block). Low drift rates are shown 
in dark blue and high drift rates in yellow. A best-inferred point for arithmetic performance according to a 
specific frequency-current combination is indicated by a red square in all three panels. Note that this figure is 
not based on different groups of participants as in moderation analysis, but represents a three dimensional 
view of the GP’s surrogate surface at three different points for visualization purposes. 

178 baseline abilities (mean - 1SD (38.67 Hz, 0.97 mA), mean (16.67 Hz, 0.88 mA), mean + 

179 1SD (18 Hz, 0.6 mA), mA values are peak-to-peak). Baseline ability is a continuous 

180 parameter and it should be considered that the best inferred tACS combination differs 

181 along this continuum. 
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195 A more in-depth visualization of the efficacy of the pBO procedure revealed that 

196 the overall fluctuation in performance improvement (e.g., normalized to the baseline 

197 performance without stimulation) across subjects with low and high baseline abilities was 

198 similar (Figure 4a). This result indicates that the success of our approach is equally 

199 effective for people with either low or high arithmetic baseline ability. The optimal 

200 frequency-current tACS parameter combinations proposed by the pBO algorithm 

201 confirms a shift from higher frequencies and currents in low-baseline ability subjects to 
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Figure 4 | Results of optimizing behavior with personalized Bayesian optimization (pBO) (n = 49). a) In-
depth visualization of the normalized performance according to baseline ability during pBO. Subjects on the 
lower part of the baseline ability spectrum showed a similar arithmetic performance improvement during 
tACS compared to subjects on the higher baseline ability spectrum. Note that a normalized performance 
score of 1 indicates no difference with baseline arithmetic performance when no stimulation was applied. A 
normalized performance score higher than 1 indicates improved performance as measured with drift rate. 
The blue shaded area indicates 95% credibility intervals. b) The change in frequency-amplitude tACS 
parameters proposed by the pBO algorithm based on the individualized baseline ability in arithmetic at the 
end of optimization. c)  Predicted best performance at each iteration (i.e., different blocks), calculated as the 
best performance predicted by the GP at any parameter combination. Three subsequent iterations were 
assessed for each participant. Surrogate uncertainty is shown by the shaded area in pink. Note that during 
some iterations uncertainty is higher due to new baseline abilities introduced in the pBO and due to outliers. 
These outliers are retested later which then reduces uncertainty.

202 lower frequencies and currents when baseline ability increases (Figure 4b; see also 

203 Figure 3). In addition, the black-box function f(x) is reliably optimized over the course of 

204 the iterations, as shown by an increase in the individual’s ability to solve arithmetic 

205 problems (Figure 4c). 
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229 2.2. Personalized Bayesian Optimization Simulation Analysis

230 To demonstrate the efficiency of our proposed pBO, we examined the optimization 

231 performance on a Hartmann 3-dimensional function (41). This 3-dimensional function is 

232 a suitable benchmark representing our real experiments including three variables 

233 (frequency, current, and baseline ability). When running a Hartmann 3-dimensional 

234 optimization using the expected improvement (EI) (42) as an acquisition function in the 

235 pBO algorithm, the pBO algorithm outperformed a standard BO algorithm as well as 

236 random sampling (Figure 5). In other words, higher drift rate values are attained more 

237 quickly when using the EI pBO procedure in comparison with BO and random sampling 

238 (Figure 5a), and the pBO algorithm was shown to identify an optima closer to the true 

239 optima of the Hartmann function (Figure 5b). When the noise variance 𝜎2
𝑛 increases, the 

240 pBO performance is closer to the performance of random sampling and standard BO 

241 (Figure 5). As further mentioned in section 4.13 relating to hyperparameter 

242 considerations, the estimate of  𝜎2
𝑛 from our observed data which varies by iterations 

243 ranged between 0.01 and 2. 

244 Thus, if the behavioral evaluations of the experimental procedure are too noisy, the 

245 pBO procedure’s ability to make correct judgements about the optimum parameters is 

246 diminished but it is still able to outperform random sampling. Critically, as Figure 5 

247 illustrates within these estimated noise variance ranges our pBO leads to improved 

248 optimization compared with the standard BO approach that does not take baseline ability 

249 into account. In particular, the standard BO is unable to enhance performance, thus 

250 highlighting the benefit of personalization vs. the one-size-fits-all approach. 

251
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Figure 5 | Results of simulating the ability of pBO, BO and random search algorithms on identifying the 
optima in the Hartmann 3-dimensional surface. The simulation was run 30 times on each of the six different 
levels of noise, lines represent the mean performance and shaded areas the standard deviation of 30 repeats. 
a) Shows the best found value identified by each algorithm at each iteration, demonstrating that the pBO 
algorithm is able to find higher values more quickly than the BO and random search algorithms. b) Shows 
the Euclidean distance of the identified optima from the true optima of the Hartmann function (i.e., accuracy 
of the algorithm). The pBO algorithm is shown to be more accurate than the BO and random search 
algorithms, except at very high levels of noise, where they are comparable.
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277 2.3. Baseline Electroencephalography and Arithmetic Ability

278 To examine whether our results are supported by neurophysiology we used baseline 

279 electroencephalography (EEG). Previous EEG studies suggest a positive relationship 

280 between left frontoparietal theta (4-8 Hz) connectivity and high-level cognitive 

281 processing (43–46). However, none was found when running a regression model trying to 

282 predict baseline arithmetic ability from baseline left frontoparietal connectivity in the 

283 theta range (all p > .3). The same applied to frontal theta power (p = .88), theta/beta ratio, 

284 and beta (14-30 Hz) connectivity (all p > .1). However, our findings from the pBO 

285 models highlight an optimal performance effect in the beta frequency range (14-30 Hz) in 

286 subjects with average and high baseline ability, whilst low baseline ability individuals 

287 benefit from stimulation in the gamma frequency range (> 30 Hz). We therefore 

288 examined the relationship between baseline ability and baseline frontal beta power in an 

289 exploratory manner. Higher (gamma) frequencies could not be recorded reliably with the 

290 equipment. We found that subjects with higher arithmetic baseline ability have higher 

291 baseline beta power in comparison to subjects with lower arithmetic baseline skills (non-

292 parametric (Spearman) correlation: rs = .29, p = .03). This neurophysiological finding 

293 corroborates the group-level pBO model results, where the pBO algorithm chose the 

294 tACS frequency that mirrors baseline neurophysiological activity in those individuals. 

295 3. Discussion

296 Most interventions in humans are not tailored to the individual’s characteristics, 

297 such as behavior or brain function, but use a one-size-fits-all approach that leads to 

298 inefficient or even ineffective interventions (1–8). This lack of progress is rooted mainly 

299 in the complexity of personalizing interventions, due to the immense burden on time and 

300 resources. The results of the empirical and simulation experiments performed in the 

301 present study demonstrate that our pBO algorithm is capable of tailoring different current 

302 strengths and frequencies of tACS to an individual’s baseline ability. Specifically, we 

303 demonstrated that the optimal stimulation parameters, determined by the pBO algorithm, 

304 differ in low and high arithmetic baseline individuals. This suggests that there are either 

305 different cognitive processes involved or differing effects of stimulation in these groups. 

306 For example, a recent multiplication study indicated possible behavioral constraints of a 
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307 one-size-fits-all brain stimulation protocol on performers in a certain subgroup of the 

308 population (e.g., high performers) (47). Notably, the present results cannot be explained 

309 by a placebo (sham) stimulation, as we controlled for placebo effects of stimulation by 

310 including 0 mA in the search space of the pBO algorithm, as well as other very weak 

311 currents that are assumed to be ineffective. In addition, if our effects could be explained 

312 by a placebo effect, it should have led to the parameters that yielded the strongest 

313 sensation, which was not the case (Figure S2 and S3 in Supporting Information). 

314 Similarly, our results cannot be attributed to the participants learning effects as 

315 improvement in arithmetic performance was based on an improvement across 

316 participants, and not within. 

317 Highlighting the significance of our results, the majority of previous brain 

318 stimulation studies that aimed to determine stimulation parameters have only tested a 

319 small number of different parameters to observe their differential effects (31). However, 

320 this approach leaves a large amount of stimulation parameter combinations unexplored, 

321 as such exploration is both expensive and time consuming. Whilst a small number of 

322 studies have utilized BO, they have focused on running the entire BO paradigm on one 

323 individual to find their best stimulation parameters (15, 16). This approach, while 

324 providing many advantages, does not allow for the convenient transfer of parameters 

325 optimized for one subject to new subjects, and does not allow its usage in contexts that do 

326 not permit repeated sampling in the same individual due to ethical constraints, potential 

327 side effects, or time pressure. In contrast, our pBO algorithm provides further 

328 advancements by including the following novel processes. Firstly, our algorithm receives 

329 personalized data, in this study baseline cognitive data from a subject, and suggests the 

330 stimulation parameters to test that are conditioned on the baseline data. Due to the ability 

331 to recommend personalized stimulation parameters solely based on a baseline measure, 

332 our work on a pBO algorithm represents a significant advance in this area. To illustrate, 

333 our experimental findings demonstrate that pBO preferentially selects more successful 

334 tACS parameters to optimize the interventional outcome, in this case arithmetic 

335 performance (Figure 4). Secondly, our study shows that non-personalized interventions, 

336 as in standard BO, are ineffective due to the inability to optimize performance effectively 
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337 (Figure 5). Our simulations further show that pBO is reliable even when there is a 

338 considerable amount of noise present in the models. Previously, most BO applications 

339 have been in a noise-free context, in contrast with human-based studies that are prone to 

340 noisy evaluations. More precisely, as noise increases, the pBO algorithm is less able to 

341 evaluate the stimulation parameters correctly, but still outperforms random sampling and 

342 the standard BO algorithms. This furthermore applies to the estimated noise variance 

343 ranges that were observed from our data.

344 In addition, the behavioral and simulation results support our electrophysiological 

345 evidence that pBO can provide new protocols for intervention as well as mechanistic 

346 insights. In the present study, pBO highlighted the importance of frontal beta frequencies 

347 (14-30 Hz) as indicated by the BO group-level model in subjects with average and high 

348 arithmetic abilities. In line with our group-level pBO models, we showed that high 

349 baseline ability subjects have higher frontal beta power in comparison with low baseline 

350 ability subjects. In addition, subjects with low baseline abilities benefit more from tACS 

351 in the gamma frequency range, which is in line with responses linked to spike timing 

352 dependent plasticity (STDP) (48). However, gamma frequencies could not be recorded 

353 reliably with EEG due to low-pass filtering properties of the skin and skull together with 

354 a low signal-to-noise ratio (49), and was therefore not statistically explored. This 

355 limitation can be overcome by magnetoencephalography (MEG), as was shown by a 

356 study indicating frequency-specific neural entrainment by tACS (50). Our EEG results 

357 provide a causal inference of the involvement of baseline oscillatory brain activity due to 

358 the overlap between the result of our pBO model and baseline EEG correlates, which in 

359 the field of mathematical cognition was so far based on correlation (31, 51).

360 One constraint of this approach that should be considered, is that the distribution of 

361 subject baseline abilities in this study was weighted towards the lower end of the ability 

362 range, leading to fewer subjects with higher baseline ability being tested (Figure S1 in 

363 Supporting Information). Therefore, results in the lower baseline ability spectrum are of 

364 higher confidence regarding an estimation of the optimum frequency-current tACS 

365 combination. This notion is especially relevant on account of the similar results in our 

366 group-level pBO model for the mean and high baseline abilities. Additionally, the 
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367 subjects that participated were mainly university (under)graduates, which might have led 

368 to a small arithmetic ability range when compared to the population. A possibility exists 

369 that our pBO models will differ slightly when testing more subjects with higher baseline 

370 abilities. Moreover, while we demonstrated the personalization of intervention based on 

371 two dimensions (i.e., the current and frequency of tACS) and a personalized feature, our 

372 algorithm allows for the inclusion of many more dimensions (e.g., phase, brain region, 

373 and duration of stimulation) in future interventions. Additionally, the personalized 

374 variables are pervasive in human-based research and can include multiple variables such 

375 as behavioral data, neural activity, age, and gender. For example, the presented findings 

376 could translate to other neurointerventions, such as other forms of transcranial electrical 

377 stimulations, transcranial magnetic stimulation (TMS) or to sensing-enabled brain 

378 stimulation such as deep brain stimulation (DBS) and the responsive neurostimulation 

379 system (RNS). Similar to tACS, these interventions use a broad range of stimulation 

380 parameters whereby it is uncertain which parameters are more successful to optimize the 

381 interventional outcome due to individual differences in healthy subjects or patients (52–

382 54). Our pBO approach overcomes this limitation by personalizing the intervention based 

383 on the selection of stimulation dimensions together with a personalized feature. Taken 

384 together, the use of our pBO approach is widely applicable, and can simultaneously 

385 model multiple dimensions together with a wide range of choices of personalized 

386 variables. Further investigations into closed-loop algorithms for individualized 

387 interventions may greatly improve the reliability of those interventions. This is 

388 particularly important in a clinical setting where the aim is to optimize symptom 

389 improvement. 

390 To conclude, we have demonstrated a more efficient research process, taking as a 

391 working model the field of brain stimulation to overcome the problem of selecting 

392 stimulation parameters for each individual. The method we suggest here can be extended 

393 with minimal or no changes to different fields in which the optimal parameters are 

394 unknown and/or expensive to assess, including drug discovery, invasive and non-invasive 

395 brain stimulation, and physical and mental training in both typical and atypical 

396 populations.
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397 4. Methods

398 4.1.  Subjects and Ethical Permission

399 Fifty subjects gave written consent before the start of the study. All met the safety 

400 criteria for transcranial electrical stimulation (tES) and received financial compensation 

401 of £20. In addition to this compensation, subjects had the chance of winning an additional 

402 £50 based on their performance. Behavioral data from all 49 subjects aged between 18-30 

403 years old (31 of whom were female) were used for the pBO (mean age = 22.52 ± standard 

404 deviation (SD) = 4.09). All were right-handed. One completed their education at GCSE 

405 level, 14 at A-level, 17 were undergraduates and 18 were postgraduates. In the UK 

406 educational system GCSE refers to secondary education and A-level refers to an 

407 advanced level that can lead to university. All subjects reported no counterindications to 

408 electrical stimulation or any history of dyscalculia, dyslexia or attentional deficits. The 

409 proposed study received ethical approval from The University of Oxford Medical 

410 Sciences Interdivisional Research Ethics Committee (protocol number: MSD-IDREC-

411 C2-2014-033). Additionally, we pre-registered the present study on the Open Science 

412 Framework; see https://osf.io/bg2pd.

413 4.2.  Overview of Experimental Paradigm and Stimuli

414 Over the course of the experiment, subjects completed four blocks of fifty 

415 multiplication problems - one baseline block and three stimulation blocks (see Figure 2). 

416 After recording an initial 4-minute baseline resting state EEG, the task was explained to 

417 the subjects and they completed 10 practice trials, followed by the baseline block during 

418 which no tACS was administered. In each block, subjects had to indicate which answer 

419 was correct as accurately and as fast as possible (see Figure 2a). Subjects indicated the 

420 correct answer by pressing either the left or the right button on a response box situated in 

421 front of them. They underwent three blocks of multiplications in which they received 

422 tACS. Prior to each tACS block, the pBO algorithm was run to determine the stimulation 

423 parameters (current intensity and frequency) to be delivered during the upcoming 

424 experimental block based on the individual subject’s performance in the baseline block. 

425 The stimulation parameters were automatically selected by the algorithm and 

426 administered whilst maintaining blinding in both the subject and experimenter (for a 
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427 complete list of the applied current and frequency, see Tables S1 and S2, in the 

428 Supporting Information. Rs-EEG was recorded again after each stimulation block. 

429 4.3.  Behavioral Stimuli 

430 Arithmetic performance was tested using an arithmetic calculation paradigm, 

431 consisting of problems involving a single-digit number multiplied by a two-digit number, 

432 with a three-digit outcome. A calculation paradigm was used instead of a retrieval 

433 paradigm since calculation has been associated with an increased activation in the 

434 frontoparietal network (30, 55, 56). None of the multiplications included operands with 

435 the digits 0, 1, or 2 to prevent variations in difficulty. In addition, the two-digit operand 

436 was not smaller than 15, did not use repeated digits, and was not a multiple of 10. 

437 Subjects were visually presented with a multiplication problem on a screen with a correct 

438 and incorrect answer positioned under the multiplication problem on the left and right 

439 side. The position of the correct and incorrect answer was randomly allocated to the right 

440 and left sides of the screen and they always differed by 10. Each problem was presented 

441 only once, and their order was randomized. 

442 4.4.  Measurement of Baseline Abilities

443 An arithmetic baseline task containing 50 different arithmetic multiplications was 

444 presented to measure individual arithmetic ability in terms of response times and 

445 accuracy. Subsequently, baseline drift rates were calculated for each subject according to 

446 the two-choice EZ-diffusion model (40). This approach allowed us to dissect the different 

447 components in the chain of information processing by modeling the decision process and 

448 targeting the cognitive component of interest (the drift rate, which reflects ability and task 

449 difficulty by modeling response time and accuracy), rather than auxiliary components 

450 (40, 57). This model was chosen to combine reliably the response time and accuracy in 

451 one outcome that could be optimized through the pBO procedure. The 50 trials completed 

452 in the baseline block were randomly divided into two sets, and for both sets a separate 

453 drift rate was calculated. One was used as a measure of the subject’s baseline ability, 

454 whilst the other was used to normalize the drift rates calculated during the optimization 

455 phase (e.g., during the experimental procedure of the pBO). This was done to eliminate 

456 dependency between the subject’s baseline ability score and the normalized score in each 
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457 stimulation block (58). To reduce fatigue, subjects had a break of 30 s after every 10 

458 trials. After completing the baseline task, subjects had a short break (~3 minutes) before 

459 they continued with the experimental procedure of the pBO. 

460 4.5.  Experimental Procedure of the pBO

461 Before the start of the pBO procedure, a burn-in phase was used that consisted of 60 

462 random tACS parameters assigned to the first 20 subjects to initiate the pBO procedure. 

463 After the burn-in phase, the pBO procedure was run prior to each behavioral block 

464 subjects completed. The pBO algorithm selected stimulation parameters for the subject, 

465 with the aim of improving behavioral performance given their baseline ability. This was 

466 done in an iterative process across 30 subjects, with the algorithm’s estimate of the 

467 optimal stimulation parameter, at any given baseline ability, becoming more accurate as 

468 more subjects were tested. At each run of the pBO algorithm, all previously collected 

469 data was used, including data collected in the burn-in phase and the GP was refitted to 

470 model all the data. As we a priori defined in our preregistration, we utilized a pre-set 

471 stopping criteria of 50 subjects, after which testing was ceased. 

472 Our rationale to set the sample size to 50 subjects was as follows: For BO without 

473 noise (59), n=10–20 per dimension is often used. For BO with noise, a recent work set 

474 the number of evaluations to 25 per dimension (60). However, to take into account the 

475 possibility that we might deal with increased noise in the present study, we set it to n=50 

476 per dimension (50 subjects x 3 blocks each, equals 150 evaluations to account for three 

477 dimensions (frequency, current, and baseline ability). 

478 In total, 150 diverse multiplication problems (three blocks of 50 trials) were 

479 administered during the experimental procedure. After each block, performance drift 

480 rates were calculated immediately, another rs-EEG was measured for four minutes, and 

481 then for the next block the combination of tACS parameters (frequency and current) was 

482 changed. Thus, behavioral performance optimization relied on the frequency and current 

483 of tACS together with the baseline cognitive ability as indicated by the drift rate. Each 

484 subject received three different frequency-current tACS combinations.

485 4.6.  Transcranial Alternating Current Stimulation
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486 The alternating current stimulation was administered over the left frontoparietal 

487 network (see Figure 2c). The tACS was delivered via two stimulation (3.14 mm 

488 diameter) NG Pistim Ag/AgCl electrodes (F3 and P3) with one return electrode (Cz) 

489 using the Starstim 32 (Neuroelectrics, Barcelona). The impedances of the electrodes were 

490 held at < 10 kΩ. The stimulation intensity ranged between 0.1-1.6 mA peak-to-peak in 

491 steps of 0.1 for the burn-in phase of the study. For the optimization phase, 0 mA was 

492 added to control for possible sham influences. We chose the maximum stimulation 

493 intensity based on a small pilot study on three subjects to determine the maximum 

494 comfortable intensity. The stimulation frequency ranged between 5-50 Hz in steps of 1 

495 Hz for the whole experiment.

496 Stimulation was administered in a double-blind manner during the three 

497 experimental blocks with a maximum of 10 minutes for each block. Stimulation started 

498 45 s before the start of the block and changed after every block. If the subjects received a 

499 stimulation intensity of 0 mA during a block (sham stimulation), a ramp-up and a ramp-

500 down of 30 s was initiated to provide the initial skin sensations during stimulation to 

501 ensure blinding. When the subject completed a block within 10 minutes, stimulation was 

502 ramped down for 30 s and the subject proceeded to the four-minute rs-EEG. Note that in 

503 cases where subjects completed the task in under 10 minutes, they did not receive the full 

504 length of stimulation. These stimulation blocks did not differ from the stimulation block 

505 in which the subject received the full length of stimulation except for performance. 

506 Twenty-four of the 150 stimulation blocks had a duration of less than 10 minutes but 

507 more than 7.50 minutes, and 126 stimulation blocks had a duration of more than 10 

508 minutes. This posed no problem, since the present study only investigated the online 

509 effects of tACS on arithmetic behavior. After completing a block related to one tACS 

510 combination, the subjects filled out a questionnaire in which they were asked several 

511 questions designed to gauge the level of sensation experienced during stimulation (see the 

512 Supporting Information for the full questionnaire). We used this data to assess the 

513 relationship between the intensity rating of every sensation and tACS amplitude.

514 4.7.  Resting State-EEG Recordings and Pre-processing 
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515 Resting state-EEG recordings were made at the start of the study (before baseline 

516 measurements) and immediately after every stimulation block. Electrophysiological data 

517 were obtained with eight gel Ag/AgCl electrodes (F3, P3, F4, P4, Fz, Cz, Pz, AF8) 

518 according to the international 10/10 EEG system using the wireless Starstim R32 sensor 

519 system (Neuroelectrics, Barcelona, Spain), with no online filters. The ground consisted of 

520 adhesive active common mode sense (CMS) and passive driven right leg (DRL) 

521 electrodes which were positioned on the right mastoid. All EEG measurements had a 

522 duration of four minutes in which the subjects had their eyes open while watching a 

523 fixation point in the middle of the screen. Raw EEG data were recorded and used for 

524 offline analysis using EEGLAB 13.6.5b (61), which is an open source toolbox running on 

525 Matlab R2018b (64). Data were high-pass filtered at 0.1 Hz, and low-pass filtered at 50 

526 Hz. Visual inspection was carried out to remove artefacts caused by muscle movement. 

527 We rejected an EEG recording from analysis if more than 25 percent of the data in a 

528 given block were removed. This resulted in four rejected datasets (2% of the data). 

529 Independent component analysis was used to remove blinks and noisy components. On 

530 average, 1.23 ± 0.62 SD components were rejected per subject, with a maximum of three 

531 components and a minimum of zero. 

532 4.8.  Sensation Analysis

533 In line with a previous study (62), and as stated in our pre-registration, we expected 

534 higher sensitivity ratings of the tACS parameters with higher current values compared 

535 with lower currents. Therefore, we predicted a positive correlation between the intensity 

536 rating for itching, pain, burning, phosphenes, warmth, and fatigue. We performed a 

537 separate correlation analysis to calculate the bivariate Pearson’s coefficient (r) or 

538 Spearman’s rho (rs) depending on normality to assess the relationship between the 

539 intensity of different sensations induced by tACS and height of tACS current (Figures S2 

540 and S3 in Supporting Information). 

541 4.9.  Bayesian Optimization

542 Bayesian optimization uses 𝑓 to denote an unknown objective function (e.g., black-

543 box function) for which we do not have a closed-form expression, but we could have an 
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544 infinite number of queries. Furthermore, this black-box function is expensive and time 

545 costly to evaluate. Formally, let 𝑓: 𝑋→ 𝑅 (𝑅 is the set of all real numbers, representing the 

546 values from ―∞ 𝑡𝑜 + ∞) be a well-behaved function, defined on a subset 𝑋 ⊆  𝑅𝑑 

547 whereby d is the number of dimensions. The standard BO approach is aimed at solving 

548 the following global optimization problem: 

549 𝒙∗ =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑥 ∈ 𝑋

 𝑓(𝑥) (1)

550 The BO algorithm is aimed at finding the global optimum of arithmetic performance, as 

551 indicated by drift rates, of the black-box function 𝑓(𝑥) by making a series of evaluations 

552 at 𝑥1,𝑥2,…,𝑥𝑇. 

553 4.10. Personalized Bayesian Optimization

554 While our approach could personalize a given treatment based on any individual 

555 characteristic, such as neural or biometric data, we chose cognitive ability, as the 

556 literature provides more supporting evidence for its moderating effect (1–3, 7, 8, 45, 63), 

557 especially as it is closely related to our desired behavioral outcome. Each subject has 

558 their individual arithmetic baseline ability: this value is considered as the personalized 

559 value. We needed to measure this value 𝑝 separately for every subject, as was done 

560 during the baseline task. We expected to see that the optimal parameters will vary with 

561 different baseline abilities. That is, the optimal parameter 𝑥∗ depends on the different 

562 values of 𝑝. For this reason, the standard BO presented in the previous section may not 

563 have been appropriate. Therefore, we proposed to solve the following optimization 

564 problem, defined formally as:

565 𝒙∗(𝑝) =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑥 ∈ 𝑋

 𝑓(𝑥,𝑝) (2)

566 where 𝑝 is the baselines ability given for each subject. The optimal parameter 𝑥∗ is not 

567 defined globally, but specifically to a variable 𝑝. This is the key difference of our pBO in 

568 comparison with the standard BO, while we acknowledge related research in BO with 

569 environmental variables (21, 65, 67).
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570 4.11. Objective Function

571 In the present tACS study, we used the following objective function 𝑓(𝑥,𝑝):

572 𝑓(𝑥,𝑝) =
𝑉𝑠𝑡𝑖𝑚
𝑉𝑏𝑎𝑠𝑒

573 where Vstim is the drift rate during the 50 trials of an arithmetic multiplication block 

574 normalized by the Vbase (the drift rate calculated over 25 random trials from the baseline 

575 task). To determine improvement between the baseline and the stimulation block, a 

576 second Vbase was calculated over the other 25 trials from the baseline task. A Pearson 

577 correlation was calculated to determine if the two drift rates from the baseline and the one 

578 used for the improvement index are related (r = 57, p < .001). The acquisition functions 

579 are carefully designed to allow a trade-off between exploration of the search space and 

580 the exploitation of current promising regions. A burn-in phase of 60 random tACS 

581 frequency-current combinations was used. These were assigned to the first 20 subjects of 

582 the BO design to determine the amount of variation induced by stimulation. We decided 

583 to use a large burn-in in our paradigm to design a reliable BO algorithm that was based 

584 on a large amount of data.

585 4.12. Personalized Gaussian Process for Joint Modeling of Target Function and 

586 Baseline Ability

587 Standard BO models 𝑓 with a GP, 𝑓 ∼ 𝐺𝑃(𝑚,𝑘), where m is the mean function and 

588 k is the covariance function (63). This flexible distribution allowed us to associate a 

589 normally distributed random variable at every point in the continuous input space. 

590 Therefore, we obtained the predictive distribution for f at a new observation 𝑥 that also 

591 follows a Gaussian distribution. Its mean (µ) and variance (𝜎2) are given by:

592 µ(𝑥′) =  𝑘(𝑥′;𝑋)𝐾(𝑋;𝑋)―1𝑦

593 𝜎2(𝑥′) =  𝑘(𝑥′;𝑥′) ―  𝑘(𝑥′;𝑋)𝐾(𝑋;𝑋)―1𝑘(𝑥′;𝑋)𝑇 (3)

594
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595 where 𝐾(𝑈;𝑉) is a covariance matrix whose element (𝑖;𝑗) is calculated as 𝑘𝑖,𝑗  =  𝑘(𝑥𝑖; 𝑥𝑗

596 ) with 𝑥𝑖 ∈ 𝑈 and 𝑥𝑗 ∈ 𝑉. Behavioral observations are typically associated with noise that 

597 can be accommodated in a GP model. Namely, every 𝑓(𝑥) processes extra variance due 

598 to independent noise:

599 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 where 𝜖𝑖 ∼ 𝑁(0,𝜎2
𝑛) and 𝜎2

𝑛 is the noise variance.                (4)

600 When considering noise, the output follows the GP as 𝑦 ∼ 𝐺𝑃(𝑚,𝑘 + 𝜎2
𝑛𝛿𝑖,𝑗), where 𝛿𝑖,𝑗

601 = 1 if 𝑖 = 𝑗 is the Kronecker’s delta. The covariance function for a noisy process 

602 becomes the sum of the signal covariance and the noise covariance. Specifically, the 

603 exponentiated-quadratic covariance function between two observations can be computed 

604 as:

605    𝑘(𝑥𝑖; 𝑥𝑗) = 𝑒𝑥𝑝 ( ―
(𝑥𝑖 ― 𝑥𝑗)2

2𝜎2
𝑙   

) + 𝜎2
𝑛𝛿𝑖,𝑗                            (5)

606 For a more elaborate overview of GPs, we refer the interested reader to Rasmussen and 

607 Williams (66).

608 In our personalized setting, one of the possible solutions is to build a GP and 

609 optimization for each value 𝑝. However, such a simplistic approach faces a critical 

610 problem of data efficiency, because the number of data samples is not sufficient to 

611 estimate each value p separately. Therefore, we extended the GP surrogate to jointly 

612 model our target function 𝑓 and the additional personalized dimension 𝑝, rather than 

613 using a separate GP for every subject. Specifically, the GP covariance becomes:

614 𝑘({𝑥𝑖,𝑝𝑖};{𝑥𝑗,𝑝𝑗}) = 𝑘(𝑥𝑖,𝑥𝑗) × 𝑘(𝑝𝑖,𝑝𝑗) (6)

615 where 𝑘(𝑥𝑖,𝑥𝑗) is defined in equation (5) and 𝑘(𝑝𝑖,𝑝𝑗) = 𝑒𝑥𝑝 ( ―
(𝑝𝑖 ― 𝑝𝑗)2

2𝜎2
𝑝   

) . These 

616 covariance functions correspond to the parameters and baselines, respectively. We note 

617 that the length scale parameter 𝜎2
𝑝 used in 𝑘(𝑝𝑖,𝑝𝑗) is different from 𝜎2

𝑥 used in 𝑘(𝑥𝑖,𝑥𝑗). 

618 For example, if the baseline ability length-scale 𝜎2
𝑝 is extremely large, it means the 

619 performance is not changing with respect to the baseline performance. On the other hand, 
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620 if 𝜎2
𝑝 is small, it means the performance function is changing rapidly with the baseline 

621 performance. We later maximized the marginal likelihood to estimate these length scale 

622 parameters directly from the data (66). Under our modification for the GP, we could 

623 estimate the predictive mean and predictive variance: 

624 µ(𝑥,𝑝) =  𝑘({𝑥,𝑝};𝑍)𝐾(𝑍;𝑍)―1𝑦 

625 𝜎2(𝑥,𝑝) =  𝑘({𝑥,𝑝};{𝑥,𝑝}) ―  𝑘({𝑥,𝑝};𝑍)𝐾(𝑍;𝑍)―1𝑘({𝑥,𝑝};𝑍)𝑇 (7)

626 Where we denoted 𝑍 = [𝑋,𝑃], the personalized covariance matrix 𝑘 is defined in equation 

627 (6).

628 4.13. Acquisition Function

629 To select the next point to evaluate, the acquisition function 𝛼(𝑥) was chosen to 

630 construct a utility function based on the GP surrogate model mentioned above. Instead of 

631 maximizing the expensive original function 𝑓, we maximized the cheaper acquisition 

632 function to select the next most optimal point:

633 𝒙𝒕+𝟏 =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑥 ∈ 𝑋

 𝛼(𝑥) 

634 In this auxiliary maximization problem, the acquisition function form is known and can 

635 be easily optimized by standard numerical techniques. One of the most common choices 

636 for the acquisition function is the GP upper confidence bound (GP-UCB):

637 𝛼(𝑥,𝑝) = 𝜇(𝑥,𝑝) + 𝜅 × 𝜎(𝑥,𝑝)

638 where 𝜇(𝑥,𝑝) and 𝜎(𝑥,𝑝) are the GP predictive mean and variance defined in equation (7) 

639 and 𝜅 is the hyperparameter controlling the exploration-exploitation trade-off. One can 

640 follow Srinivas et al. to specify the value of 𝜅 to achieve the theoretically-guaranteed 

641 performance (67). The second common acquisition function is the expected improvement 

642 (EI) (42). The EI finds the next sampling point given the highest chance of expectation to 

643 improve upon the best-found value so far. Using the analytical expression of Gaussian 

644 distribution, we have the EI in closed-form as:

645 𝛼𝐸𝐼(𝑥,𝑝) = [𝜇(𝑥,𝑝) ― 𝑓+] × 𝛷(𝑧) + 𝜎(𝑥,𝑝) × 𝜙(𝑧)
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646 where 𝑧 = 𝜇(𝑥,𝑝) ― 𝑓+

𝜎(𝑥,𝑝)  and 𝑓+ is the best observed value up to the current iteration, 𝛷(𝑧) is 

647 the standard normal cumulative distribution function and 𝜙(𝑧) is the standard normal 

648 probability density function. When the uncertainty is zero 𝜎(𝑥,𝑝) = 0, the 𝛼𝐸𝐼(𝑥,𝑝) = 0.

649 Hyperparameters considerations

650 Personalized Bayesian optimization relies on a personalized Gaussian process 

651 surrogate model to select a next point for testing. This personalized GP model (defined in 

652 Section 4.12) involves several hyperparameters including the length scales 𝜎𝑙 in Eq. (5), 

653 𝜎𝑝 in Eq. (6), and the noise variance 𝜎2
𝑛 in Eq. (4). We make use of the property of the 

654 Gaussian process to estimate these hyperparameters directly from the observed data by 

655 maximizing the log marginal likelihood of a GP model (65). For robustness, we have also 

656 normalized the input 𝑥 ∈ [0,1]2, 𝑝[0,1] and standardized the output score 𝑁(0,1) as 

657 popularly used in previous work (67). Given this normalized space, the estimated 

658 hyperparameters vary by iterations within the range as follows 𝜎𝑙 ∈ [0.03,0.4], 𝜎𝑝

659 ∈ [0.07,0.5] and 𝜎2
𝑛 ∈ [0.01,2].

660 One can optimize the EI (42, 70) over the current best result or the GP-UCB (27). 

661 In short, it is more likely that the UCB selects evaluations with both a high mean and 

662 high variance. The EI and UCB have been shown to be efficient in the number of 

663 function evaluations required to find the global optimum of many multimodal black-box 

664 functions (67, 69). During the present study, the EI was applied to find the optimum in 

665 arithmetic performance. Lastly, we decided to remove one extreme drift rate value of 3.6 

666 during the experimental procedure due to possible ceiling effects of the BO for sampling 

667 the same stimulation parameters. However, the Supporting Information shows that the 

668 inclusion of this data point did not significantly alter our results. For similar results 

669 without exclusion of this data point, see Figure S4 in Supporting Information. In total, 

670 we acquired 148/150 iterations. In addition, due to technical problems another data point 

671 was not included in the BO procedure.  

672 4.14. Simulation Analysis
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673 Simulations were run to validate the pBO procedure during arithmetic performance 

674 and tACS. This analysis aimed to show that pBO can outperform both a ‘standard’ BO 

675 algorithm and random sampling when identifying an optima in a noisy environment. Note 

676 that the present study contained three dimensions, namely frequency, current, and 

677 individualized baseline ability. Therefore, we utilized a Hartmann function (41) that 

678 included four local minima in three dimensions as an example, to enable our simulations 

679 to be comparable to our experimental data. As human-based studies are prone to noisy 

680 evaluations, we decided to introduce noise in the simulation by running the same 

681 Hartmann 3-dimensional function whilst adding different noise variation values (𝜎2
𝑛). The 

682 pBO algorithm presented in this work was compared to a standard BO algorithm which 

683 did not incorporate the personalized dimension into its evaluations, as well as a random 

684 sampling algorithm. Performance in these simulations was compared in terms of the best 

685 found value at each of the 60 iterations, as well as the distance from the known optima 

686 location with the Euclidean distance as a metric. Each simulation was repeated 30 times 

687 at each level of noise, and the three algorithm’s mean performance and standard deviation 

688 over these repeats was calculated. Note that it is not possible to calculate the Euclidean 

689 distance between subsequent stimulation pairs due to the inclusion of a personalized 

690 variable.

691 4.15. EEG Analysis of Spectral Power and Frontoparietal Theta Connectivity 

692 The rs-EEG data of the remaining datasets were separated in 2 second segments 

693 with an overlap of 1 second and windowed with a Hann window. Subsequently, data 

694 were transformed into the frequency domain via fast Fourier transformation (FFT). Theta 

695 (4-8 Hz) and beta (14-30 Hz) frequency bands were calculated according to their relative 

696 power (μV2) and normalized by dividing the absolute frequency power of each frequency 

697 band by the average absolute power in the 1.5-30 Hz range. In addition, we also 

698 normalized the power by dividing the absolute frequency power by the average absolute 

699 power in the 4-50 Hz range. The weighted phase lag index (wPLI) in the theta and beta 

700 range was computed to determine the phase lag synchronization between the left frontal 

701 and parietal areas at baseline and after every tACS block. This computation was made for 

702 the complementary channels F3 and P3. The theta wPLI was calculated for 4-8 Hz in 
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703 steps of 1 Hz and the beta wPLI was calculated from 14-30 Hz in steps of 4 Hz. 

704 Furthermore, we normalized wPLI by calculating the wPLI at the applied tACS 

705 frequency divided by the baseline wPLI at the same frequency. 

706 First, outliers were removed with Cook’s distance before running statistical models. 

707 To focus on the relation between arithmetic baseline ability and spectral power, separate 

708 regression models were run with theta and beta power as dependent factors. Likewise, we 

709 tested whether there was a relation between frontoparietal theta and beta connectivity 

710 scores by running several regression models in steps of 1 Hz for theta wPLI and steps of 

711 4 Hz for beta wPLI. 

712 4.16. Statistical Analysis 

713 All the reported inferential statistical analysis was done with RStudio version 

714 1.2.5042 with significance defined as p ≤ 0.05 (71).  All data is presented as mean ± SD 

715 with n = 50 for electrophysiology analysis and n = 49 for the pBO analysis. Pre-

716 processing of electrophysiological data was done with EEGLAB 13.6.5b (61) which is an 

717 open source toolbox running on MatlabR2018b (64). Subsequently, normalized 

718 electrophysiological data was checked for outliers with cook’s distance and entered in 

719 log-transformed regression models with spectral power or connectivity measures as 

720 dependent variables and arithmetic baseline ability as independent variable. A correlation 

721 analysis on normally distributed datasets was run to calculate the bivariate Pearson’s 

722 coefficient (r) to investigate differences in sensation and blinding, and a non-parametric 

723 (Spearman’s rho (rs)) correlation on non-normalized datasets. Generalized linear mixed 

724 effects models (GLMM) were run to explore EEG changes induced by tACS during 

725 arithmetic performance (see Supporting Information)  The pBO algorithm and 

726 simulations were run with Python version 3.6 (72). Note that no inferential statistics such 

727 as a GLMM is able to reliably investigate performance gains due to the inability to 

728 disentangle the exploration and exploitation trade-off of the pBO algorithm between 

729 blocks.  

730

731
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| Histogram plot showing the number of subjects in every baseline ability (n = 50). 
More subjects were on the lower part of the spectrum of the baseline ability range than the higher part.

Figure S1 | Histogram plot showing the number of subjects in every baseline ability (n = 50). 
More subjects were on the lower part of the spectrum of the baseline ability range than the higher part.
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Figure S2 | Side effects of different tACS frequency-current combinations.                
Different side-effects are shown according to the indicated sensation on a scale from 1-10 (n = 150 based on 
50 subjects). 1 was indicated as a low sensation (‘I did not feel the sensation’) and 10 is a strong sensation 
(‘I felt the sensation to a considerable degree’). The high value for fatigue at 0.1 mA is likely to be due to the 
low number of subjects (n = 2) who received this stimulation, and it might reflect a general state.

984 Supplementary Results and Discussion

985 Sensations and Blinding of tACS

986 All subjects reported a low level of sensation during stimulation, with no serious 

987 adverse side effects, which complies with the previous literature (73). Interestingly, 

988 itching and fatigue were more frequently reported than sensations such as burning, pain, 

989 phosphenes, and warmth (Figure S2 in Supporting Information). No reliable correlations 

990 were found between the intensity ratings for all sensations and tACS amplitude (all p 

991 >.10). Moreover, the blinding efficacy of tACS was at chance level (Figure S3 in 

992 Supporting Information). However, the correct indication of real stimulation increased 

993 with the current of the applied stimulation.
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Figure S3 | Blinding efficacy of tACS. 
The figure shows the percentage of correct indications that stimulation was real for every applied current 
(n = 150 based on 50 subjects). Blinding efficacy of tACS is at change level (~50%).
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Figure S4 | Best found value of the personalized Bayesian optimization (pBO) procedure without 
exclusion of data point 46 (n = 50). Arithmetic performance in terms of drift rate for every best-found 
value for f(x) and for every iteration of the pBO procedure during stimulation without exclusion of data 
point number 46. 
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1063

Current 
(mA)

N (number 
of subjects)

0 0
0.1 2
0.2 4
0.3 6
0.4 4
0.5 16
0.6 15
0.7 10
0.8 10
0.9 14
1.0 18
1.1 8
1.2 13
1.3 10
1.4 7
1.5 8
1.6 3

1064
1065                                                           
1066

1067

1068

1069

1070

1071

1072

1073

1074

Table S1 | Number of subjects (n) according to the different currents (mA) received in one stimulation 
block.
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1075

Frequencies 
(Hz)

N (number 
of subjects)

Frequencies 
(Hz)

N 
(number 
of 
subjects)

5 3 29 2
6 3 30 2
7 2 31 1
8 2 32 7
9 3 33 8
10 4 34 1
11 3 35 4
12 1 36 5
13 2 37 5
14 1 38 4
15 1 39 1
17 6 40 1
18 3 41 1
19 7 42 2
20 4 43 9
21 3 44 5
22 1 45 4
23 4 46 8
24 2 47 3
25 4 48 4
26 1 49 1
27 1 50 3
28 2

1076

1077

1078

1079

1080

1081

1082

1083

Table S2 | Number of subjects (n) according to the different frequencies (Hz) received in one 
stimulation block.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.436018doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.436018
http://creativecommons.org/licenses/by/4.0/


43

1084 EEG and Arithmetic Performance

1085 As stated in our pre-registration, we also investigated EEG changes induced by 

1086 tACS during arithmetic performance (see Tables S1 and S2 in Supporting Information). 

1087 To do this reliably, we computed power (electrode Fz) and wPLI scores (electrodes F3 

1088 and P3) for each tACS block and normalized these values according to the baseline rs-

1089 EEG values. This normalization was undertaken to exclude possible frequency band 

1090 specific power changes induced by stimulation at a fixed frequency. For example, 

1091 stimulation at 10 Hz could lead to an increased entrainment in the 10 Hz frequency band 

1092 (74). A four-way interaction was found between arithmetic baseline ability, EEG power, 

1093 current, and frequency when predicting arithmetic performance (SE = 0.01, df = 71, t = 

1094 3.48, p < .001). To look more closely at this interaction, we investigated the interaction 

1095 between EEG power, current, and frequency in subjects with low and high baseline 

1096 abilities separately in a mixed effects model by performing a median split (median = -

1097 2.85). We revealed a 3-way interaction for subjects with low baseline ability (n = 25) 

1098 (Table S3 and Figure S5 in Supporting Information). In contrast, for high baseline 

1099 ability subjects (n = 24), there was no three-way interaction present (all p > .08) (Table 

1100 S4 in Supporting Information). In short, for low ability subjects, a high current (1.6 mA) 

1101 leads to a steeper increase in arithmetic performance and EEG power when frequencies 

1102 are low (4 Hz) (Figure S5 in Supporting Information). This pattern decreased as 

1103 frequency increased and flipped to a decreased performance and power when the 

1104 applied tACS frequency was in the 50 Hz frequency range. When running the same 

1105 analysis for connectivity, no three-way interaction was found for low and high ability 

1106 subjects (p > .05). 

1107 Our electrophysiological findings after stimulation indicated an interaction between 

1108 tACS parameters, oscillatory brain activity, and arithmetic performance for subjects with 

1109 low baseline ability (Table S3 in Supporting Information). Interestingly, this interaction 

1110 between brain stimulation and brain activity was not found for high baseline ability 

1111 subjects. Our preferred explanation for this finding is that tACS strongly entrains neural 

1112 oscillations when there is a high-performance gain due to low baseline ability. However, 

1113 when looking at our group-level pBO model (Figure 3) there are no differential effects of 
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1114 tACS on performance levels between subjects with low and high baseline ability. Neural 

1115 entrainment due to tACS could possibly serve as a compensatory mechanism to improve 

1116 performance for subjects with low baseline ability (50). 

1117

1118 Table S3 | Fixed effects of the mixed effects model for arithmetic performance in 

1119 low ability subjects (n = 25). Note: **p < 0.05; **p <0.01.

Predictors Estimates CI (95%) df t-value p-value
(Intercept) 0.04 -0.43 – 0.52 36 0.20 0.83
EEG power -0.99 -1.63 – -0.35 36 -3.13 0.003**
tACS current 0.21 -0.22 – 0.66 36 1.00 0.31
tACS frequency 0.002 -0.01 – 0.02 36 0.36 0.71
Power x current 0.80 0.19 – 1.41 36 2.66 0.01*
Power x frequency 0.02 0.01 – 0.05 36 2.83 0.007**
Current x frequency -0.003 -0.02 – 0.01 36 -0.40 0.68
Power x current x frequency -0.02 -0.04 – -0.00 36 -2.53 0.01*
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1123

1124

1125

1126

1127

1128

1129

1130
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1136

1137 Table S4 | Fixed effects of the mixed effects model for arithmetic performance for high 

1138 ability subjects (n = 24). Note: **p < 0.05; **p < 0.01.

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

Predictors Estimates CI (95%) df t-value p-value
(Intercept) 0.05 -0.37 – 0.47 38 0.24 0.80
Power 0.53 -0.08 – 1.16 38 1.75 0.08
tACS current 0.17 -0.34 – 0.70 38 0.68 0.49
tACS frequency 0.004 -0.01 – 0.02 38 0.73 0.46
Power x current -0.51 -1.27 – 0.25 38 -1.36 0.17
Power x frequency -0.01 -0.03 – 0.00 38 -1.78 0.08
Current x frequency -0.006 -0.02 – 0.01 38 -0.88 0.38
Power x current x frequency 0.01 -0.01 – 0.04 38 1.32 0.19
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Figure S5 | The interaction between EEG power, current, and frequency in predicting arithmetic performance 
for subjects with low arithmetic baseline ability (n = 25). Arithmetic performance (log transformed drift rates) 
during stimulation is shown on the y-axis and the normalized (post stimulation/pre stimulation) EEG power 
μV2/Hz (log transformed) based on the applied tACS frequency after stimulation is shown on the x-axis for four 
different tACS frequencies (4 Hz, 15 Hz, 30 Hz, and 50 Hz). Current intensity is indicated by the blue line (0.1 
mA), the black line (1 mA), and the grey line (1.6 mA). Shaded areas indicate 95% confidence intervals. Note 
that different tACS categories and current intensities are presented for visualization purposes, to allow a better 
grasp of an interaction that is based on continuous variables. 
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1190 Questionnaire Items: Sensation levels experienced during stimulation

1191 After every block in which the subject received stimulation, the following items were 

1192 presented: 

1193 Do you believe that you received real or placebo stimulation?

1194 1) Real 

1195 2) Placebo

1196 3) I do not know

1197 4)

1198 Please indicate whether you experienced any discomfort during the stimulation by typing 

1199 the corresponding number:

1200             1      = None (I did not feel the sensation) 

1201             2-3   = Mild (I mildly felt the sensation) 

1202             4-6   = Moderate (I felt the sensation)

1203             7-10  = Strong (I felt the sensation to a considerable degree)

1204  for Pain, Burning, Warmth/Heat, Fatigue/Decreased alertness, Flashing lights

1205 In the case of perceived sensations: How much did these sensations affect your general 

1206 state?

1207             1 = Not at all

1208             2 = Slightly

1209             3 = Considerably

1210             4 = Much

1211             5 = Very much           

1212 How long did the sensations last? (0 to 10 minutes)? 
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