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Abstract 18 

 19 

Cellular senescence is a critical component of aging and many age-related diseases, but 20 

understanding its role in human health is challenging in part due to the lack of exclusive or 21 

universal markers. Using neural networks, we achieve high accuracy in predicting senescence 22 

state and type from the nuclear morphology of DAPI-stained human fibroblasts, murine 23 

astrocytes and fibroblasts derived from premature aging diseases in vitro. After generalizing this 24 

approach, the predictor recognizes an increasing rate of senescent cells with age in H&E-25 

stained murine liver tissue and human dermal biopsies. Evaluating corresponding medical 26 

records reveals that individuals with increased senescent cells have a significantly decreased 27 

rate of malignant neoplasms, lending support for the protective role of senescence in limiting 28 

cancer development. In sum, we introduce a novel predictor of cellular senescence and apply it 29 

to diagnostic medical images, indicating cancer occurs more frequently for those with a lower 30 

rate of senescence.  31 

 32 

  33 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435987doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435987


 

Page 3 of 34 
 

Introduction 34 

 35 

Cellular senescence is widely recognized as a fundamental process in aging, both as a primary 36 

causal factor in the decline of tissue homeostasis and as a consequence of other aging 37 

processes such as inflammation and DNA damage1–3. Due to its critical role in disease etiology, 38 

senescence is increasingly recognized as a target for pharmaceutical intervention4. It also 39 

serves as a biomarker for aging5, possibly providing a more nuanced measure of age-related 40 

health in model organisms beyond simple chronological age. However, the role of senescence 41 

in human health is not clearly understood. Senescent cells present a complex and diverse 42 

phenotype, which varies significantly by cell type and source6,7. There is considerable overlap 43 

between molecular factors that associate with senescence, DNA damage repair, inflammation, 44 

and other processes8. Some of the most common markers of senescence are beta-45 

galactosidase, produced by increased expression from lysosome activity, and the cell cycle 46 

inhibitors p16 and p21. Nevertheless, there is no single marker that reliably and consistently 47 

identifies senescence9–11. Importantly, senescent cells often exhibit an altered morphology, 48 

including expanded nuclei and an irregular, flattened appearance12,13, making senescence 49 

amenable to analysis with computer vision and machine learning methods14. 50 

 51 

We present deep learning models that can predict cellular senescence with high accuracy 52 

based on nuclear morphology. These methods can further distinguish between multiple types of 53 

senescence, including radiation-induced damage and replicative exhaustion. Notably, predicted 54 

senescence correlates substantially with DNA damage markers gH2AX and 53BP1 foci counts. 55 

Our senescence predictor was developed using normal human fibroblast lines, but it also 56 

identifies increased senescence when applied to multiple types of premature aging diseases, 57 

including Hutchinson-Gilford progeria syndrome (HGPS), ataxia telangiectasia (AT), and 58 
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Cockayne syndrome (CS). We also evaluated the predictor on mouse astrocytes and found it 59 

indicated increased senescence in cells subjected to ionizing radiation, confirming its relevance 60 

to different cell types and organisms. These methods were applied to H&E-stained mouse liver 61 

tissue, where we found an increasing rate of senescence with age.  Further, these methods 62 

were applied to H&E-stained human tissue sections and predict an age-dependent increase in 63 

senescence. Using the National Patient Register, which records all ambulatory and in-patient 64 

contacts with Danish hospitals, we investigated how predicted senescence relates to human 65 

disease. We found a highly statistically significant relationship between malignant neoplasm 66 

incidence and fewer predicted senescent cells, which fits the hypothesis that senescence is a 67 

mechanism to limit cancer15,16. In our study of 169 individuals, we found that a predicted 68 

senescent cell load above the age-dependent average correlated with reduced incidence of 69 

malignant skin-diagnosis at 33.3%, compared to 48.9% for patients with predicted senescence 70 

below average. Further, a predicted senescent cell load above the age-dependent average 71 

correlated with reduced incidence of non-skin related cancer at 16.0% compared to 29.5% for 72 

patients with predicted senescence below average. While oncogenic events are associated with 73 

the formation of senescent cells15, we speculate that individuals with higher propensity toward 74 

developing senescent cells have reduced formation of malignant neoplasm and are at lower risk 75 

of cancer. 76 

 77 

Results 78 

 79 

Several fibroblast cell lines, maintained in cell culture, were treated to induce senescence by 80 

ionizing radiation (IR) or passaged until they reach replicative senescence (RS) (Fig. S1a, b, c). 81 

After fluorescent staining with DAPI to highlight the nuclear DNA, the cells were imaged with a 82 

high content microscope. Nuclei were detected using a deep convolutional neural network 83 
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based on U-net, which produced output images containing the detected nuclear regions. Each 84 

detected nucleus was extracted into a cutout for subsequent analysis. We applied several 85 

methods to normalize features in images, such as removing the background, standardizing the 86 

size of the nuclei, and even masking inner details of the nuclei (Fig. 1a, b). 87 

 88 

 89 

Senescent Cells Display Altered Nuclear Morphology 90 

 91 

A morphological analysis of the detected nuclei was performed to compare control cells to those 92 

that were senescent. There was a significant difference in nuclear area for each of the three 93 

groups with increased nuclear area as previously reported12. In addition, IR senescent cells 94 

were significantly larger than RS cells (Fig. 1c). Aging and certain premature aging diseases 95 

have been associated with greater irregularities or folds in the nuclear envelope17,18. We 96 

therefore evaluated convexity, which is a ratio of nuclear area to convex hull area, as a measure 97 

of the nuclear envelope regularity. Convexity showed the shape of control cells were more 98 

regular compared to both IR and RS, which had a more irregular boundary (Fig. 1d). RS has 99 

the lowest convexity value, indicating the highest irregularity (or lowest regularity). This indicates 100 

convexity is another measure of senescence, with lower values corresponding to increased 101 

senescence. In addition, we looked at aspect ratio, a measure of width compared to height 102 

(measured as the longest compared to shortest dimensions of a minimized rectangle around 103 

each nucleus) and found that both IR and RS had higher values compared to controls (Fig. 1e). 104 

We compared area and convexity per nuclei, observing overlapping clusters for the three states 105 

with area of RS overlapping both control and IR, and convexity of RS and IR overlapping (Fig. 106 

1f).  Interestingly, the distribution of the area of the IR senescent cells was bimodal, with the 107 

lower mode matching RS and a higher mode at almost twice the area of the RS, perhaps 108 

suggesting IR induced aneuploidy or stalling at the G2 checkpoint of the cell cycle (Fig. 1f, 109 
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upper histogram distribution of joint scatter plot). Simple nuclear morphological measures 110 

appear to be a viable method for assessing cellular senescence in vitro. 111 

 112 

 113 

A Deep Learning Classifier Accurately Predicts Senescence Based on DAPI staining 114 

 115 

Given the rich structure of nuclei and potentially broad set of features, we applied deep neural 116 

networks to better assess senescence. A custom convolutional neural network was trained 117 

using 80% of the samples, while 20% was held out for validation. After seeing accuracy 118 

converge to a steady level, the model was applied to validation data. We also compared our 119 

custom network to Xception, one of the top performing models for image classification that has 120 

been often applied to biomedical classification19,20. Xception achieved superior results with an 121 

f1-score of 94%, accuracy of 95%, and AUC of 0.99 with validation data (Fig. 1g, h, i). To 122 

eliminate any potential overfitting on the experimental context and cell lines, we evaluated the 123 

model on an independent data set of two additional cell lines, which were prepared and imaged 124 

separately. This achieved an f1-score of 92%, accuracy of 94%, and AUC of 0.96 (Fig. S2a, b, 125 

c). The mean probability of senescence per nuclei is 0.18 for controls, 0.86 for RS, and 0.91 for 126 

IR (Fig. 1j), indicating senescence for 12.7% of controls, 92.0% of RS, and 95.6% for IR using 127 

the standard threshold (Fig. 1k). 128 

 129 

In another experiment, deep neural networks were trained to detect control compared to 130 

different senescent types, IR and RS. Xception, trained similar to the dual state experiment 131 

above, produced a mean class accuracy of 78.6% in detection of the three states, with 83.3% 132 

for controls, 75.7% for RS, and 76.8% for IR (Fig. S2d, e). It achieved a relatively high AUC of 133 

0.9 for RS and 0.95 for IR. In sum, nuclear morphology represents a strong predictor of both 134 

replicative and DNA damage induced senescence. 135 
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 136 

 137 

Nuclear Shape Is A Central Predictive Feature in Senescent Cells 138 

 139 

Nuclei images contain several features that could be used for classification; however, it is 140 

unclear what the deep neural network is using as its basis for assessment. Nuclear area, 141 

staining intensity and even the image background itself could contain a signal that the neural 142 

network is picking up on. To provide some insight into how much these potential factors 143 

contribute to senescence classification, we trained several models based on reduced forms of 144 

the cutout library. Our base model already includes brightness standardization. First, the 145 

background of the nuclei was masked, by excluding all areas outside of the U-Net detected 146 

nuclear region. Next, we applied size normalization, such that the greater of the width and 147 

height was set to a standard pixel size. Finally, we converted the interior of nuclei to a single-148 

color value, essentially masking all internal structure. With each reduction, we observed a slight 149 

decrease in classification accuracy when applied to independent test lines (Fig. 1l). The 150 

background masking produced 86% for the f1-score and 88% for accuracy, a small reduction 151 

indicating limited reliance of the background. With background masked and size normalized, a 152 

trained model produced 87% for f1-score and 88% for accuracy, showing area and size played 153 

little role in senescent detection. This model was further reduced by completely masking the 154 

internal structure of the nuclei, which led to an f1-score of 80% and accuracy of 78% (Fig. S2f, 155 

g). While masking was a significant reduction in accuracy, it is remarkable that so much 156 

information could be removed from nuclear images and still obtain a relatively accurate 157 

classification of senescence. These experiments suggest that classification is largely based on 158 

the overall shape of the nuclei. We explored this further by evaluating Pearson correlation 159 

between predicted senescence and several morphological metrics, finding that area was 160 

moderately correlated but both convexity and aspect ratio were weaker (Fig. 1m). The deep 161 
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learning model appears to be picking up on the nuclear shape in a more sophisticated manner 162 

than simply aspect ratio or convexity. 163 

 164 

The final reduced model yields an overall accuracy of 78%, and it shows an imbalanced per 165 

class accuracy of 73.9% for control, 69.3% for RS, and 91.4% for IR. It maintains a good AUC 166 

of 0.88. With similar reductions, the three-state senescent type detector model shows overall 167 

accuracy of only 58% (Fig. S2h, i). The RS state has poor accuracy at 31.3%, but 87.7% for 168 

controls and 56.1% for IR. The AUC has declined to 0.71 for RS and 0.6 for IR. Despite 169 

lowering accuracy, the feature standardization and reduction makes the model less influenced 170 

by a large number of technical variations such as image intensity, choice of staining method, 171 

magnification and others that could impact the utility of the predictor.  172 

 173 

 174 

Classification with Confidence 175 

 176 

While overall accuracy per-nuclei was relatively high, a sizable number of nuclear images were 177 

ambiguous, which can be interpreted as the model being uncertain in its prediction. Extending 178 

neural networks with Bayesian properties has several advantages, most notably providing a 179 

measure of confidence for predictions21. The Bayesian Neural Networks (BNN) allows for the 180 

construction of a posterior probability distribution which can be used for interval estimation, 181 

compared to a single prediction from a classic neural network. Samples can be filtered to 182 

reduce the ambiguous cases by requiring higher mean probability from the BNN. Using 183 

Tensorflow Probability, we developed several BNNs. Our custom model converted to a BNN 184 

performed adequately for raw cutouts, but it would not train well for the masked/normalized 185 

nuclei. We partially converted Xception to utilize Flipout nodes22, leaving the separable 186 

convolutions as point estimate nodes. We also fully converted InceptionV3 as an alternative 187 
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model. Our partial BNN of Xception produced an f1-score of 84%, accuracy of 86%, and AUC of 188 

0.92 (Fig. S2j, k). The full BNN for InceptionV3 gave an f1-score of 79%, accuracy of 80%, and 189 

AUC of 0.87 (Fig. S2l, m). The BNN models can be thus be used to understand the probability 190 

distribution of the data but at a lower accuracy. 191 

 192 

 193 

A Deep Neural Network Ensemble Increases Predictive Power 194 

 195 

After training the senescent classifier through different sessions, we saw variance in the 196 

predictions for a subset of samples. Exploring a large multidimensional solution space during 197 

training, neural networks select a relatively good solution that is often biased to favor certain 198 

classes23. Using an ensemble of deep models, the predictions can be combined as though 199 

consulting a collection of experts (or interpreted as the “wisdom of the crowd”). To achieve this, 200 

we trained an ensemble with random initial weights, potentially allowing convergence to different 201 

local minima. We found that there is consistent agreement for the majority of samples, however, 202 

there is a significant percent of edge cases with a high variance in predictions among the model 203 

instances (Fig. 2a).  204 

 205 

We therefore speculate that using an ensemble of deep models for inference and aggregating 206 

the results provides predictions with less bias and higher confidence (Fig. 2b). Evidently, some 207 

models balance the accuracy of each class in the middle of the range (75-80%), while other 208 

models skew toward one class at the expense of the other (for example, obtaining ~85% on one 209 

but ~70% on the other). While ensembles have benefits like a BNN, they can be less biased 210 

since each ensemble member can specialize around a solution, while a BNN is confined to a 211 

single local minima in solution space. Accordingly, we obtained good results with the ensemble 212 

method, with an f1-score of 91%, accuracy of 94%, AUC of 0.98 (Fig. 2c, d). More importantly, 213 
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the ensemble provides a higher confidence and less biased approach by combining multiple 214 

models that specialize in predicting different classes.  215 

 216 

An ensemble of neural networks outperforms Bayesian neural networks. 217 

We also tried Bagging, where bootstrapping with replacement selects a subset of the samples 218 

to use in training independent models. This method did not provide a significant improvement 219 

over the basic deep ensemble method (Fig. 2e). The BNN models can be used to improve 220 

confidence but sacrifice performance, while the ensemble models provide both (Fig. 2e). We 221 

therefore further evaluated the deep ensemble method with masked and normalized samples. 222 

This produced an f1-score of 80%, accuracy of 82%, and AUC of 0.89 (Fig. 2f, g), which 223 

improved upon the single model. The ensemble method was also applied to the tri-state model 224 

to distinguish senescent type, which achieved overall accuracy of 66% and AUC of 0.81 for RS 225 

and 0.92 for IR (Fig. 2h, i). While this is lower accuracy, it is an overall improvement of 23.64% 226 

compared to the single normalized tri-state model. With all states well above the 33.3% 227 

accuracy expected from random predictions, this model is capable of recognizing type of 228 

senescence given an adequate sample size. 229 

 230 

Due to the lower performance of senescent type prediction, we trained deep models on each 231 

type of senescence exclusively, training for control vs RS-only or control vs IR-only. This left the 232 

other state undefined, assessing each type of senescence separately. Both models classified IR 233 

with high accuracy, but the RS-only model recognized RS with ~13% higher accuracy, while the 234 

IR-only misclassified those as control (Fig. 2j, k). Ensembles of deep neural networks clearly 235 

allow for greater accuracy for senescence prediction. 236 

 237 

 238 

 239 
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Modifying Thresholds Increases the Accuracy of Prediction and Improves Confidence 240 

 241 

Deep neural networks utilizing one-hot node outputs with the softmax function are trained to 242 

produce numerical values that are sometimes treated as the probability for each state. They 243 

should not be interpreted as model confidence, but by sampling from a BNN or deep ensemble, 244 

we can utilize the distribution to determine uncertainty21. We evaluated the predictions for the 245 

BNN and deep ensemble (Fig. S3a, b). Correct predictions are indeed oriented toward the 246 

lower and higher range of the softmax output, representing greater certainty about a sample’s 247 

state. In both cases, the incorrect predictions are clustered toward the center with the 0.5 248 

threshold. Different models could be biased toward either state by shifting those ambiguous 249 

samples across the threshold.  250 

 251 

We can assume higher confidence in a model’s predictions by raising the classification 252 

threshold (of both one-hot states, thereby filtering the predictions in the middle). We therefore 253 

evaluated the accuracy using a range of thresholds from 0.5 up to 0.95 in the single model, the 254 

Xception BNN, the ensemble of models, and the ensemble of fully normalized models (Fig. S3c, 255 

d, e, f). In all cases, we see a significant increase in accuracy as the threshold is raised, due to 256 

the ambiguous samples being discarded. By raising the threshold, the Xception-based BNN 257 

goes from 85.6% to 96.0%, while the ensemble of normalized models goes from 81.6% 258 

accuracy to 97.2%. A similar approach was applied to other models, including the IR-only and 259 

RS-only models (Fig. S3g, h). Raising the threshold, these also showed a gain in accuracy of 260 

10-15%. Unfortunately, this led to a significant reduction in the number of samples considered. 261 

There is a tradeoff between number of predictions and accuracy, which must be balanced for 262 

each application to ensure suitable power for analysis.  263 

 264 
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The tri-state model, which distinguishes between IR and RS, showed lower accuracy, especially 265 

when applied to the fully normalized samples (Fig. S2h, i). As a deep ensemble, we see 266 

accuracy of 86.8% for control, 50.3% for RS, and 61.7% for IR. Since there are three states, 267 

even the 50.3% accuracy with RS places the majority of its samples in the correct category, with 268 

40.3% a FN appearing as control and 9.4% as IR. It’s ROC curve has AUC of 0.81 and 0.92 for 269 

IR. Applying threshold adjustments, we see the overall accuracy go from 80% up to 95%. 270 

Maintaining a majority of samples, a threshold of 0.8 exceeds 90% accuracy. 271 

 272 

 273 

DNA Damage Foci and Area Correlates with Senescent Prediction 274 

 275 

Senescent cells are associated with permanent increase in nuclear foci of the DNA damage 276 

markers gH2AX and 53BP124,25. We characterized the DNA damage response (DDR) foci for our 277 

cell lines and investigated how these foci relate to predicted senescence. Our base data set 278 

including control, RS, and IR lines were examined for damage foci. Using high content 279 

microscopy, we counted DNA damage foci per nuclei and found the mean count of gH2AX and 280 

53BP1 foci to be below 1 each (0.9 and 0.6, respectively) for controls, while RS had 4.0 gH2AX 281 

and 2.0 53BP1 foci and IR had 3.4 Hg2AX and 3.0 53BP1 foci (Fig. 3a, b, S4a). To study how 282 

the presence of damage foci relates to predicted senescence we calculated the Pearson 283 

Correlation between predicted senescence and gH2AX and 53BP1 foci counts. We found that 284 

across all conditions there is a moderately strong correlation of around 0.5 (Fig. 3c). This 285 

association is also visible when simply plotting foci counts and senescence prediction which 286 

shows predicted senescence flipping from low to high, along with shifts in foci counts (Fig. S4b). 287 

The same pattern applies to area, with shifts in the concentration of area along with shifts in the 288 

predicted senescence, aligning well with cell conditions. Within senescent subtypes RS and IR, 289 
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the correlation is slightly weaker, perhaps indicating that the senescent probability score for 290 

each subtype has some correlation with foci count. Our feature reduction including masking 291 

means that internal nuclear structure was not used in assessment, but it is nonetheless notable 292 

that senescence prediction (overall and by subtype) correlates with foci count. We also 293 

compared the correlation between predicted senescence and area. Here too, we see a 294 

correlation of around 0.5, and slightly weaker for the subtypes. In sum, there is a considerable 295 

correlation between foci counts and senescence. 296 

 297 

 298 

Progeria Cell Lines Display Increased Senescence  299 

 300 

Patients suffering from premature aging, or progeria, represent genetically well-defined models 301 

to understand the molecular basis of aging26,27. To test if cell lines from progeria patients display 302 

accelerated aging in vitro, we applied the senescent classifier to primary fibroblasts isolated 303 

from Hutchinson-Gilford progeria syndrome (HGPS), ataxia telangiectasia (AT) and Cockayne 304 

syndrome (CS) (Fig. 3d). Evaluating the area of the nuclei of progeria cells, we found that in 305 

general their mean is significantly larger than controls. Notably ataxia-telangiectasia cells have 306 

the largest nuclei at 25% higher than controls, while Hutchinson-Gilford progeria and Cockayne 307 

syndrome are both 15% higher (Fig. 3e). We also investigated DNA damage foci and observe 308 

that most prematurely aged lines have higher gH2AX and 53BP1 foci counts (Fig. 3f, g and Fig. 309 

S4c). Further, despite diverse mechanisms, the classifier recognized these cell lines having 310 

significantly greater probability of senescence (Fig. 3h). All progeria lines have high mean 311 

probability of senescence at 0.7, indicating that the average cell in each group is considered 312 

senescent, while controls are below the standard threshold at 0.3. These observations suggest 313 

that our classifier may be able to discriminate rates of aging in vitro. 314 

 315 
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The senescent classifier translates across species and cell types  316 

 317 

To broaden the applicability of our classifier we speculated that it might apply to nuclei from 318 

other cell lines and species. We therefore evaluated the model on mouse astrocytes, which 319 

were treated with IR (Fig. 3i). We first compared the nuclei area and found that the IR treated 320 

astrocytes had slightly but significantly larger nuclei than controls (Fig. 3j). To test if senescence 321 

classification is based on area, we calculated the Pearson Correlation Coefficient between 322 

these two measures. With a PCC=0.12 and p-value 4.6x10-69, we find only a weak relationship 323 

between area and senescence. Evaluating DNA damage foci, we see that IR treated astrocytes 324 

have substantially higher foci count as expected (Fig. 3k, l, and S4d). We next applied the 325 

ensemble of deep models (without normalization) and found that the IR treated cells had a 9% 326 

higher probability of senescence than controls (Fig. 3m).  327 

 328 

We also applied the model to H&E stained liver tissue from C57Bl6 mice at taken at 48, 58, and 329 

78 weeks of age. After imaging the tissue sections at 20x, we used a deep learning 330 

segmentation model trained on 18 tiles to extract nuclei from 16,187 tiles (Fig. 3n). We first 331 

analyzed morphological metrics, finding an insignificant increase in nuclear area (Fig. 3o). 332 

However, we saw a significant decrease in convexity and increase in aspect ratio, both 333 

indicating increased senescence with age (Fig. 3p, q). Nuclei were evaluated for senescence 334 

using the normalized RS-only and IR-only models, of which the RS model indicated increasing 335 

senescence with age while the IR model did not significantly increase (Fig. S4e, f).  Using the 336 

probability, we calculated the percent of senescent cells, finding ~36% for RS and ~99% for IR.  337 

The predictor is trained on in vitro DAPI stained fibroblasts representing a considerable 338 

difference in context, it is therefore likely that the algorithm should be tuned to evaluate other 339 

data sources.  Applying thresholds of 0.8 and 0.94 for RS and IR, respectively, the percent was 340 

brought down to roughly 1-2% each to match the reported senescent rate in the liver28. With 341 
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these thresholds, the percent of senescent cells per mouse increased with age (Fig. 3r,s). 342 

Given the differences in human and mouse nuclei as well as between cell types, it is notable 343 

that the senescent state can be captured through the relative difference in assessed probability. 344 

It therefore appears that our predictor may be able to determine senescence across cell types 345 

and species. 346 

 347 

 348 

The human dermis shows age-dependent increase in senescent nuclei 349 

 350 

To further investigate if the predictor could be applied in a clinical context, we tested the 351 

algorithm on human skin samples of 169 individuals aged 20-86 years. The senescent classifier 352 

was evaluated on the dermal nuclei from biopsy samples stained with H&E and imaged in a 353 

slide scanner at 20x. We applied U-Net to detect nuclei, extracted nuclear regions, and 354 

converted the nuclei to the normalized and masked form (Fig. 4a). We first evaluated several 355 

morphological metrics, including area, convexity, and aspect ratio. Across age, we see no 356 

change in area (Fig. 4b), an insignificant change in convexity (Fig. 4c), and a significant change 357 

in aspect ratio (Fig. 4d). Applying the senescent predictor, the probability of senescence 358 

increases with age of patients for RS but is relatively flat for IR (Fig. S5a, b). We applied the 359 

standard softmax threshold and evaluated the percent of cells considered senescent, which 360 

yielded means of 25% for RS and 40% for IR. The percent was significantly higher than we’d 361 

expect for human dermal nuclei, ranging from mean of ~1% in young to ~15% in old28. Our fully 362 

normalized model has a relatively high FP rate (20% for RS and 12% for IR), and human dermal 363 

nuclei are disproportionately non-senescent, likely exaggerating the predicted senescence. We 364 

therefore adjusted the threshold to reduce false positives and attempt to compensate for the 365 

large biological difference. To calibrate the model to the level of senescence expected for 366 

dermal nuclei, we set the cutoff to 0.7 for RS and 0.85 for IR, which lowered the percent for all 367 
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patients to a mean of ~6% each and showed an age-dependent increase in percent of 368 

senescence (Fig. 4e, f). We also evaluated the correlation between morphological metrics and 369 

predicted senescence and found moderate correlation for several metrics, but RS was more 370 

correlated with convexity while IR was more correlated with area and aspect ratio, perhaps 371 

indicating morphological aspects of each type of senescence in vivo (Fig. S5c). Interestingly, 372 

we found that area was anti-correlated with both forms of predicted senescence and predicted 373 

probability of IR was inverse to aspect ratio (Fig. S5c, d). This again emphasizes the difference 374 

between senescence in vitro and in tissue and also affirms that the IR and RS model are picking 375 

up on different aspects of senescence. 376 

 377 

 378 

Senescent dermal nuclei are inversely associated with neoplasms 379 

 380 

Given the large variation in predicted senescence, we speculated that these values could 381 

represent meaningful health outcomes. To investigate, we retrieved ICD-10 diagnosis codes 382 

collected in the Danish National Patient Register from 1977 to 2018 for all the individuals in the 383 

study (Fig. 4g). We looked for associations between individuals with diagnosed conditions and 384 

predicted senescence above or below the age-dependent mean (those above or below the 385 

trendline in Fig. S5a, b, specifically using residuals from linear regression of RS versus age or 386 

IR versus age), using the chi-square test for the frequency of occurrence between the two 387 

groups (Fig. 4h, i). Remarkably, we found a significant correlation between a rate of 388 

senescence below the age-matched mean and the presence of ICD-10 Chapter II Neoplasm 389 

diagnosis codes for both RS and IR, with p-values of 0.0002 and 0.002, respectively (Fig. 4j). 390 

Narrowing down the analysis we determined the association was based on malignant (versus 391 

benign or unknown) codes within ICD-10 Chapter II Neoplasm with IR p-value at 0.037 and RS 392 

at 0.018 (Fig. 4k). Furthermore, grouping specific cancer codes together, we determined that 393 
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RS is significant for both skin and non-skin cancer, with p-values at 0.041 and 0.037 394 

respectively (Fig. 4l, m). IR was non-significant for non-skin and on the edge of significance for 395 

skin with p-value at 0.053. Notably, RS better represents replicative senescence which occurs 396 

naturally with age, while IR better represents DNA damage, although there is considerable 397 

overlap in predictions between the two with this model. Overall, we found that high assessed 398 

senescence corresponds to fewer neoplasms and malignancies, including both skin and non-399 

skin. 400 

 401 

 402 

Discussion 403 

 404 

In this paper we present a neural network that can predict cellular senescence based on nuclear 405 

morphology. Trained on fibroblasts maintained in cell culture, the classifier achieves very 406 

accurate results, which was confirmed by applying it to independent cell lines. We also trained 407 

models to correctly distinguish between senescence caused by radiation induced damage and 408 

replicative exhaustion. By training additional models on samples with reduced features, we infer 409 

that the shape of the nucleus alone provides a significant signal to indicate senescent state. 410 

DAPI-stained nuclei with background removed, size normalized, and internal structure masked 411 

are still classified with high accuracy. These feature reduction methods serve a secondary 412 

purpose, making a model robust to technical variation - our neural network trained on reduced 413 

samples can make predictions on nuclei that were prepared in other experimental and imaging 414 

contexts. Indeed, the predictor distinguished senescent astrocytes, predicted an age-related 415 

increase in senescent liver cells, and confirmed senescence in cell lines from patients suffering 416 

from premature aging. Although it is still debated if universal markers of senescence exist, our 417 
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findings suggest that at least morphological alterations in nuclei may be common across some 418 

tissues and species. 419 

 420 

Our data shows that individuals with a predicted higher rate of senescent cells have reduced 421 

neoplasms and malignant cancer, in comparison to those with a lower rate of senescence.  422 

This is highly consistent with the notion that senescence is a likely mechanism to control cancer 423 

development by limiting uncontrolled proliferation29. Further, premalignant tumors express 424 

markers of senescence, which are absent in malignancies, and malignant tumors can regress 425 

and undergo senescence by switching off oncogenes15, supporting the protective role of 426 

senescence in blocking the progression of neoplasms to malignancies. In addition, loss of 427 

central senescence inducers such as p16 are very common in many cancer types30. Of note, 428 

there is also evidence suggesting that cellular senescence promotes malignancy through the 429 

inflammatory senescence associated secretory phenotype (SASP)31, that senescent cells may 430 

appear in areas where tumors tend to subsequently develop32, and that senescent cells and 431 

SASP induced by cancer treatment led to worse survival and healthspan33. While the role of 432 

senescence in cancer is highly complex, our results based on clinical data support the overall 433 

protective role for senescence in human health. 434 

 435 

We also investigated how our deep learning predictor results correspond to other measures of 436 

senescence. Nuclear area is known to expand during senescence12,34,35, and we confirmed this 437 

in our in vitro data set, with significant differences in IR and RS senescent cells. On a per nuclei 438 

basis, we found a moderate correlation between area and predicted senescence. However, due 439 

to our size normalization, it is unlikely this classic feature is the primary signal for our deep 440 

learning model (at least for the size-normalized version). We also identified convexity and 441 

aspect ratio as key morphological properties that differ between control and senescent cells in 442 

vitro and found moderate correlation between each of these properties and predicted 443 
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senescence. Interestingly, we found no increase in area with age in the human dermis, but a 444 

significant increase in aspect ratio and significant decrease in convexity, indicating nuclei 445 

becoming stretched and irregular with advancing age in humans. These observations confirm 446 

that size normalization is necessary to generalize our neural network classifier. It also 447 

demonstrates the value of our feature-neutral approach, where the neural network is trained to 448 

identify senescence from rich image data, and it is only later reduced through feature removal. 449 

 450 

In sum, our deep neural network model is capable of accurately predicting the senescent state 451 

and type from nuclear morphology using several imaging techniques and has been 452 

demonstrated with several diverse applications. We applied the predictor to human skin 453 

samples and observed an age dependent increase in senescence. Remarkably, individuals who 454 

appear to have higher rates of senescent cells show reduced incidence of malignant 455 

neoplasms. This supports the long-standing hypothesis that senescence is a mechanism to limit 456 

cancer.  457 

 458 

Methods 459 

 460 

Cell culture 461 

All human-derived primary skin fibroblast cells were purchased from Coriell Institute (USA). 462 

Control fibroblasts included AG08498 (male, 1 year), GM22159 (male, 1 day), GM22222 (male 463 

1 day), GM03349 (male, 10 years) and GM05757 (male, 7 years). Cells were cultured at 37C 464 

and 5% CO2 either in 1:1 mix of DMEM GlutaMAX (Gibco, 31966047) and F-12 media (Gibco, 465 

31765068) for AG08498, GM22159 and GM22222 or in EMEM media (Biowest, L0415-500) for 466 

GM03349 and GM05757. Fibroblasts derived from Hutchinson-Gilford progeria syndrome 467 

patients included AG06917 (male, 3 years), AG06297 (male, 8 years) and AG11513 (female, 8 468 
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years). Fibroblasts sampled from ataxia telangiectasia and Cockayne syndrome patients were 469 

GM03395 (male, 13 years) and GM01428 (female, 8 years), correspondingly. Cells were 470 

cultured at 37C and 5% CO2 in MEM media (Lonza, BE12-662F). Freshly isolated primary 471 

mouse astrocytes were kindly provided by the Department of Drug Design and Pharmacology, 472 

University of Copenhagen. Cells were cultured at 37C and 5% CO2 in DMEM GlutaMAX (Gibco, 473 

31966047). All used media were supplemented with 10% fetal bovine serum (Sigma-Aldrich, 474 

F9665) and 100 U/mL penicillin-streptomycin (Gibco, 15140163). 475 

 476 

 477 

Senescence induction 478 

To achieve replicative senescence control fibroblasts at early passages were seeded in T25 cell 479 

culture flasks (200 000 cells) and cultured over 32 weeks. After each splitting cell number was 480 

recorded and population doubling level (PDL) was calculated as Log2(cell number during 481 

harvesting/cell number during seeding). Experiment was terminated when PDL reached zero. 482 

DNA damage-induced senescence was performed according to reference36. Briefly, control 483 

fibroblast cells at yearly passages were seeded in 96 well plates (Corning, 3340) in a density of 484 

2 000 cells per well. Day after cells were exposed to 10Gy of ionizing radiation and cultured for 485 

the next nine days. Medium was replaced every two days. Three days before radiated cells 486 

reached senescence state, fibroblast cells from the same stock were seeded (2 000 cells/well) 487 

as mock-irradiated control.  488 

 489 

Immunocytochemistry, SA-bGAL detection and image preparation 490 

For detection of persistent DNA damage foci, fibroblast cells were washed once with warm PBS, 491 

fixed in 4% paraformaldehyde (PFA) for 15 min followed by permeabilization step with 492 

incubation for 10 min in PBS-0.1% Triton X100. Blocking was performed in 1% BSA-PBS-0.1% 493 

Tween 20 overnight at 4C. Next day cells were incubated with primary antibodies (gH2AX, 494 
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1:1000, Millipore, 05-636 and 53BP1, 1:2000, Novus, NB100-304) for 1h at RT, washed three 495 

times with PBST and incubated with secondary antibodies (1:200 Alexa-Flour 488, Invitrogen, 496 

10424752 and 1:200 Alexa-Flour-568, Invitrogen, 10348072) for 1h at RT. Cells were incubated 497 

with DAPI solution (AppliChem, A4099) for 10 min and stored in PBS at 4C until the analysis. 498 

SA-bGAL was detected using senescence cells histochemical staining kit (Sigma-Aldrich, 499 

CS0030) according to manufacturer's protocol. Cell colonies were imaged using INcell analyzer 500 

2200 high content microscopy at 20x magnification to produce 1199 images with 2048x2048 501 

pixel resolution. Due to system constraints for object detection, each image was split into four 502 

tiles of 1024x1024 pixel resolution.  503 

 504 

 505 

Nuclei Detection 506 

A base library was prepared using controls, irradiated (IR), and cells serially passaged until they 507 

reached senescence (replicative senescence, RS). A deep neural network model was applied to 508 

detect DAPI-stained nuclei. The samples were used to build a training set for nuclei recognition. 509 

Several images were selected arbitrarily from each group for a total of ~20 samples, and using 510 

custom software all nuclei in the training samples were annotated by selecting the nuclear 511 

region. U-NET, a 23-layer fully convolutional network for image segmentation, was trained using 512 

the samples, learning to associate the DAPI images with annotation masks indicating nuclear 513 

regions. Our implementation of U-NET is largely based on the original U-NET37, but includes a 514 

dropout layer after each of the convolutional and deconvolutional layers to reduce overfitting. 515 

After training for 1000 epochs, the U-NET model was used to detect nuclei for all 4796 tiles 516 

(1199 images x 4 tiles/image), producing output images of predicted nuclei regions. The images 517 

with predicted nuclei were scanned for recognition regions of area between 500 and 15,000 518 

pixels. Each detected nucleus was extracted along with its surrounding context as a centered 519 

128x128 pixel region and used to assemble a base library of 95,152 nuclei. In addition, the 520 
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recognition region itself was cutout, providing a two-color reduction of the detected nuclei, and 521 

assembled into a secondary library of nuclei masks. 522 

 523 

 524 

Nuclear Morphology 525 

An analysis of the nuclei was performed to assess morphological properties. The cutout nuclei 526 

were analyzed using image processing methods, such as Gaussian blur and Otsu thresholding. 527 

While these methods generally performed well for DAPI-stained nuclei, it was unsuitable for 528 

related data sets (H&E-stained histology images). Instead, the two-color masks library was 529 

used, since it provided a universal representation of the detected nuclei (with U-NET detector 530 

models that have good coverage of the nuclei region). Nuclear morphology was assessed using 531 

several metrics, including area, perimeter, moments, convexity, and aspect ratio. Convexity is 532 

the ratio of perimeter to convex hull perimeter, which provides a size-neutral measure of 533 

boundary regularity. The convex hull is a polygon that connects the outer edges of nuclei like an 534 

envelope. 535 

 536 

 537 

Senescent Classification 538 

After assembling a library of senescent cells, a deep neural network was trained to classify 539 

DAPI-stained nuclei as senescent or non-senescent. Training samples were randomized and 540 

split into 80% for training and 20% for validation. Due to experimental setup, the sample classes 541 

are unbalanced, with 75.2% control, 11.2% RS, and 13.6% IR. The samples were balanced 542 

during training by applying class weights with inverse proportion to the class abundance (for 543 

example, senescent samples composed of IR and RS were fewer in number and therefore 544 

valued 3x higher than controls). Image samples were normalized for brightness/intensity by 545 

adjusting each image’s mean intensity to 0 and standard deviation to 1. Augmentation was also 546 
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applied during training, randomly modifying samples: adjusting size from 80% to 120%, 547 

changing normalized brightness from 70% to 130%, flipping horizontally and vertically, and 548 

rotating up to 180 degrees. For each epoch, one augmentation cycle was performed. Training 549 

was done with Xception, a 48-layer model, initialized with ImageNet weights but set to allow 550 

weight adjustment of all layers during training.  The top layer was replaced by a layer of one-hot 551 

nodes to indicate the state as controls or senescent (or as a tri-state model with controls, IR, or 552 

RS to indicate the type of senescence). With this minor adjustment, the model provided 553 

37,640,234 trainable parameters. Training was done using Adam with the learning rate set to 554 

1x10-4 for 10 epochs, in which time accuracy rapidly converged to a steady level. In addition, a 555 

simpler custom model was tested, with three convolutional layers with ReLU activation and two 556 

dense layers with L1/L2 regularization of 0.05/0.05 and 30% dropout. This model required 557 

713,296 parameters. For both network designs, we trained with raw images along with several 558 

modified image sets, where the background was removed, the nuclei were size normalized, and 559 

the inner details of nuclei were entirely masked (Fig. 1a). All three techniques were based on 560 

the detected nuclei. To remove the background, the area outside of the nuclei was set to 0. Size 561 

was normalized by rescaling all nuclei so the larger of the two dimensions was a standard size 562 

of 80 pixels. Finally, the size-normalized detection region was used for the masked nuclei set. 563 

 564 

 565 

Bayesian Neural Network 566 

We used Tensorflow Probability to create a Bayesian neural network (BNN). We first converted 567 

the simple custom model, replacing nodes with the comparable FlipOut version22, which 568 

assumes that the kernel and bias are drawn from a normal distribution. During a forward pass, 569 

kernels and biases are sampled from posterior distribution. Targets were encoded as above, 570 

and the loss function used was cross entropy plus KL divergence divided by number of batches. 571 

We also partially converted Xception to a BNN by replacing all dense and convolutional layers 572 
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to FlipOut nodes, leaving separable convolutions unconverted since a FlipOut version was not 573 

available. In addition, we fully converted InceptionV3 for evaluation. Inference was done by 574 

evaluating the model 20 times to produce a distribution of predictions, and then taking the mean 575 

probability for each sample. 576 

 577 

 578 

Deep Neural Network Ensemble 579 

To improve accuracy and provide a more robust solution, we also worked with an ensemble of 580 

deep learning models. This method utilized 10 models of Xception, each trained on the same 581 

data set with different random weight initialization. To generate predictions, each model 582 

instance was applied, and the results combined by taking the mean prediction. We also tried 583 

bagging, also known as bootstrap aggregation. Similar to the deep ensemble, this method trains 584 

different model instances with bootstrap selection of samples for n=1-1/e. With each instance 585 

trained on a different subset of samples, this method produces multiple models that in theory 586 

can specialize to different sets of data. 587 

 588 

 589 

Statistical Methods 590 

All comparisons with between groups of samples were made using one-way ANOVA f-tests to 591 

evaluate differences in the means, followed by pair-wise tests using Tukey’s HSD (Honest 592 

Significant Difference) to calculate p-values between groups. Linear regression methods were 593 

evaluated with R and p-value statistics. Groups of patients were compared using the chi-594 

squared test to detect significant differences between frequencies. Correlation was evaluated 595 

using the Pearson colocalization coefficient. 596 

 597 

 598 
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Pathology sample selection 599 

The individuals were sampled from patients for whom samples of naevi on non-sun exposed 600 

skin had undergone pathology without malignant findings at a major pathology department in 601 

Copenhagen. The patient sample was selected to have flat distribution of age. We selected 602 

patient samples from the Danish National Register of Pathology requisitioned in 2007-2017 and 603 

coded with one or more PatoSNOMED topology code: T02530 (Skin on penis), T76330 604 

(Foreskin) ,T80200 (Mons pubis), T02471(Skin on nates), T02480 (Skin on abdomen), T02430 605 

(Skin on breasts) and one or more procedure code: P30620 (resect), P306X0 (ectomy 606 

preparation), P30611 (excision biopsy) and one or more morphology code: M87400 (junction 607 

naevus), M87500 (dermal naevus), M87600 (compound naevus). 608 

 609 

 610 

Senescence and Human Morbidity 611 

We collected ICD-10 diagnosis codes from the Danish National Patient Register in the period 612 

1977-2018 of each of the patients in this study. We further grouped diagnoses into each of 21 613 

ICD-10 chapters. We calculated the linear regression residuals of the relationship between age 614 

at pathology examination and the predicted senescent cell load (IR, RS metrics) for each of the 615 

patients. We then constructed contingency tables counting the number of patients with and 616 

without a specific diagnosis and with a predicted senescent cell load above or below the age-617 

dependent average. We used Pearson's chi-squared test to determine whether patients with a 618 

predicted senescent cell load above or below the age-dependent average were associated with 619 

a higher or lower incidence of specific diagnosis codes (or diagnosis within a specific ICD-10 620 

chapter.) 621 

 622 

 623 

 624 
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Animals 625 

Male C57BL/6J mice were acquired from Janvier Labs (Le Genest Saint Isle, France). Animals 626 

arrived at 5-8 weeks of age and were housed in a controlled environment (12 h light/dark cycle, 627 

21 ± 2 °C, humidity 50 ± 10%). Stratification and randomization into individual diet groups were 628 

based on baseline body weight. Mice had ad libitum access to tap water and chow (2018 Teklad 629 

Rodent Diet, Envigo, Madison, WI, United States; Altromin 1324, Brogaarden, Hoersholm, 630 

Denmark). The study was approved by The Institutional Animal Care and Use Committee at 631 

MedImmune (Gaitherburg, MD, United States) and The Danish Animal Experiments 632 

Inspectorate (license: 2017-15-0201-01378) and performed in accordance with internationally 633 

accepted principles for the use of laboratory animals.  634 

 635 

 636 

Liver histology  637 

Terminal liver samples were dissected from the left lateral lobe immediately after sacrificing the 638 

animal and subsequently fixed overnight in 4% paraformaldehyde. The liver tissue was then 639 

paraffin-embedded and sectioned at a thickness of 3 µm. Sections were stained with 640 

hematoxylin-eosin (HE, Dako, Glostrup, Denmark). Slides were scanned by ScanScope AT 641 

System (Aperio, Vista, CA, United States). 642 

 643 
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Figure legends 749 

Figure 1 Nuclear morphology is an accurate senescence predictor in vitro.  a Analysis 750 

workflow. b Sample nuclei for controls, replicative senescence (RS) and ionizing radiation (IR) 751 

induced senescent cells. c Area of identified nuclei (n=6,976-68,971, mean ± 95% CI). d 752 

Convexity of identified nuclei (n= 6,976-68,971, mean ± 95% CI). e Aspect ratio of identified 753 

nuclei (n= 6,976-68,971, mean ± 95% CI). f Scatter plot of individual nuclei, with overall 754 

distributions for each to the top and right. g Accuracy of a deep neural network (DNN) predictor 755 

on validation data. h Receiver operating characteristics (ROC) curve of the DNN. i 756 

Precision/recall curve. j Predicted senescence probability of nuclei for independent cell lines (n= 757 

2,504-22,481, mean ± 95% CI). k Percent of nuclei in each state classified as senescent for 758 

independent cell lines. l Accuracy of DNNs trained and predicting after different normalization 759 

methods. m Correlation between morphological metrics and predicted senescence by class, 760 

BG: background.  761 

 762 

Figure 2 Predictions from deep ensembles.  a  Heatmap of variation in predictions by 763 

members of ensemble (500 sample nuclei as rows, ensemble members as columns). Blue is 764 

young/control and white is senescent. b Heatmap of per-class accuracy for control and 765 

senescent by ensemble model.  c Accuracy of deep ensemble. d ROC curve for the deep 766 

ensemble. e Accuracy of single model, Bayesian neural networks, deep ensemble, and 767 

bagging. f Accuracy of deep ensemble with normalized samples.  g ROC curve for the deep 768 

ensemble with normalized samples.  h Accuracy of three-state senescence ensemble model.  i 769 

ROC curve for the type ensemble model. j Accuracy of RS-only model. k Accuracy of IR-only 770 

model. 771 

 772 

Figure 3 Senescence can be predicted across tissues and species. a Number of ɣH2AX 773 

foci by type of senescence (n=1,831-15,560, mean ± 95% CI).  b Number of 53BP1 foci by type 774 
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of senescence (n= 1,831-15,560, mean ± 95% CI).  c Correlation between foci count and 775 

predicted senescence. d Representative immunohistochemistry micrographs of premature 776 

aging nuclei with DNA damage foci staining. e Nuclear area for premature aging diseases 777 

(n=4,340-15074, mean ± 95% CI), HGPS: Hutchinson-Gilford Progeria Syndrome, AT: ataxia 778 

telangiectasia, CS: Cockayne Syndrom.  f Number of gH2AX foci for premature aging diseases 779 

(n= 5,162-17,584, mean ± 95% CI). g Number of 53BP1 foci by premature aging diseases (n= 780 

5,162-17,584, mean ± 95% CI). h Predicted probability of senescence for premature aging 781 

disease (n=5,162-17,584, mean ± 95% CI). i Representative immunohistochemistry 782 

micrographs of senescent murine astrocytes with DNA damage foci staining. j Area of murine 783 

astrocytes (n=4,888-13,549, mean ± 95% CI). k Number of gH2AX foci for murine astrocytes 784 

(n=4,918-13,661, mean ± 95% CI).  l Number of 53BP1 foci for murine astrocytes (n= 4,918-785 

13,661, mean ± 95% CI). m Predicted senescence for murine astrocytes (n= 4,918-13,661, 786 

mean ± 95% CI). n Analysis workflow. o Mean nuclear area per mouse by age (n=5).  p Mean 787 

nuclear convexity per mouse by age (n=5). q Mean nuclear aspect ratio per mouse by age 788 

(n=5).  r Predicted percent that are RS senescent (n=5).  s Predicted percent that are IR 789 

senescent (n=5).  790 

 791 

Figure 4 Nuclear morphology predict senescence and cancer risk in humans.  a Analysis 792 

workflow. b Mean nuclear area per patient by age (n=148).  c Mean nuclear convexity per 793 

patient by age (n=148). d Mean nuclear aspect ratio per patient by age (n=148).  e Predicted 794 

percent that are RS senescent (n=169).  f Predicted percent that are IR senescent (n=169). g 795 

Number of cases for most common cancer conditions. h Volcano plot of conditions based on IR 796 

senescence residuals and chi-square p-values. i Volcano plot of conditions based on RS 797 

senescence residuals and chi-square p-values. j Contingency table between neoplasms and 798 

residuals of predicted senescence. k Contingency table between malignant skin neoplasms and 799 

residuals of predicted senescence. l Contingency table between all malignant neoplasms and 800 
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residuals of predicted senescence. m Contingency table between malignant non-skin 801 

neoplasms and residuals of predicted senescence. 802 

 803 

 804 
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