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Abstract  

Gene-environment correlations can bias associations between genetic variants and complex traits in 

genome-wide association studies (GWASs). Here, we control for geographic sources of gene-

environment correlation in GWASs on 56 complex traits (N=69,772–271,457). Controlling for 

geographic region significantly decreases heritability signals for SES-related traits, most strongly for 

educational attainment and income, indicating that socio-economic differences between regions induce 

gene-environment correlations that become part of the polygenic signal. For most other complex traits 

investigated, genetic correlations with educational attainment and income are significantly reduced, 

most significantly for traits related to BMI, sedentary behavior, and substance use. Controlling for 

current address has greater impact on the polygenic signal than birth place, suggesting both active and 

passive sources of gene-environment correlations. Our results show that societal sources of social 

stratification that extend beyond families introduce regional-level gene-environment correlations that 

affect GWAS results.  
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Introduction  

Genome-wide association studies (GWASs) are an important tool for the investigation of the 

epidemiology and biology of mental and physical health outcomes. GWASs are viewed as essential 

herein, because individual differences in almost all outcomes in life are a consequence of the effects of 

a multitude of genetic and environmental influences.1 The aim of a GWAS is to estimate associations 

between common genetic variants and complex traits.2 GWASs set out to estimate the effect of 

substituting one allele for an alternate allele on the value of a trait or probability of a disease, usually for 

millions of genome-wide loci. As actual physical substitution of alleles in an experimental setup in 

humans is ethically undesirable and methodologically challenging, the associations of naturally 

occurring common genetic variations with naturally occurring trait or disease variations are estimated. 

One of the underlying assumptions of a GWAS is therefore that estimated relationship between an allele 

and an outcome is reflective of a causal effect of that allele on the outcome. For the estimated 

observational effect and the underlying causal effect to be equal, requires the absence of, or adequate 

statistical control for confounding factors that may introduce allele-trait associations. Confounding is 

often a result of the presence of unmodeled gene-environment correlation. Three major sources of gene-

environment correlation are: 1) population stratification, 2) familial confounding, and 3) confounding 

due to regional differences in socio-economic factors, which we will refer to as geographic confounding. 

Confounding due to population stratification can occur when cultural, behavioral, disease, or other 

characteristic differences between groups with different ancestries co-occur with allele frequency 

differences between the ancestries.3,4 Allele frequency differences between populations are readily 

introduced by genetic drift and/or natural selection. Even within reasonably homogenous populations 

these effects can manifest.5-7 These ancestry differences generally show strong correlations with 

geography,5-8 which can result in correlations with environmental influences that show regional 

differences. To reduce biased genetic estimates in GWASs due to population stratification, it is common 

practice to run analyses in one of the major ancestral groups (e.g., Europeans, Africans, Asians) and to 

-within this group- compute principal components (PCs) that reflect the strongest axes of (ancestral) 

genetic variation and include these as covariates in GWASs.9 The efficacy of this method in reducing 

biases due to population stratification has been evaluated with LD score regression, a method that 

enables differentiation between confounding (cryptic relatedness and population stratification) from 

polygenicity in GWASs.10 This work revealed that correction for PCs greatly reduced, but did not always 

fully remove, confounding introduced by ancestral confounding. Recent work has shown that residual 

traces of ancestral confounding can bias parameter estimates in analyses that use genome-wide summary 

data to infer the presence or absence of (negative) selection on a trait in recent history.11,12 

A second process that introduces gene-environment correlations and may bias parameter estimates 

in GWASs is familial confounding. Here, the parental genotype influences a child’s outcome via the 

rearing environment (indirect genetic effect), while half of those genotypes are transmitted to the child 

asserting a direct genetic effect on the outcome. The presence of indirect genetic effects has been 

demonstrated for genes associated with educational attainment on a variety of outcomes.13 When not 

accounted for, familial confounding will bias genetic effect estimates in GWASs. Moreover, familial 

confounding is not detectable in LD score regression analysis, as the indirect genetic effect is a true 

genetic effect, albeit not directly through the effect of the child’s genotype on the trait, but indirectly via 

its rearing environment. A point worth making is that the precise mechanism underlying the indirect 

genetic effect remains unclear. Some refer to it as “nature of nurture”13, implying indirect effect arises 
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by ways of parenting or nurturing a child. Others call it “dynastic effects”14, suggesting that indirect 

effects can arise, for example, from the succession of (economic) (dis)advantage accumulated by parents 

to their children, improving their child’s (socio-economic) position at birth. It is important to realize that 

while most statistical designs rely on family data to infer the presence of an indirect genetic effect, this 

does not mean that all indirect genetic effects arise specifically due to parental influences. As families 

are nested in neighborhoods, regions, and other social structures, accounting for family level effects may 

partly account for effects that take place at various other levels of analysis as well. 

A third source of confounding is gene-environment correlations due to regional differences in, 

often socio-economic, environmental factors, which we, from hereon, will refer to as geographic 

confounding. Geographic confounding can entail both active and passive processes. Active processes 

include for example selective migration or brain drain.15 Selective migration is a form of active gene-

environment correlation, where individuals with favorable genetic predispositions can leverage their 

skills to improve their environmental circumstances by moving to an economically/socially more 

favorable  region, which in turn improves their outcomes in life. Migration influenced by genotype may 

improve the rearing environment for offspring as well, and thus socioeconomic confounding through 

active gene-environment correlation in one generation may induce familial confounding in the next 

generation. Passive sources of regional gene-environment correlation could be induced by government 

policies that affect certain socio-economic strata of the population more than others; when the affected 

groups have different genetic predispositions than non-affected groups, this can introduce a correlation 

between genotype and (un)favorable environments. For instance, a policy change that makes insulin 

more expensive and therefore more difficult to purchase for low income groups, will introduce a 

correlation between alleles related to educational success (which relate to income and SES) and those 

related to consequences of untreated diabetes. Our analyses are designed to detect the effect of active 

and passive gene-environment correlation, but for various reasons we outline in the discussion, our 

results require careful interpretation. 

We argue that current GWAS designs generally adequately (but perhaps not fully) deal with 

population stratification and that designs exist to detect and correct for familial confounding as 

well.13,16,17 However, geographic confounding has been shown to exist,15 and current GWAS approaches 

do not model for it adequately. We further argue that active gene-environment correlation driven by 

socio-economic processes could have consequences for the way in which genetic associations are 

interpreted, even when these estimates are obtained from more sophisticated within-family GWAS 

designs.  

In this study, we will investigate the effects of geographic confounding on polygenic signals for a 

wide range of traits. We will conduct GWASs on 56 complex traits in a dataset of up to 271,457  adult 

individuals of European descent from Great Britain (UK Biobank)18. In these GWASs, we will reduce 

confounding effects by introducing fixed effects for neighborhoods which are socially and economically 

more homogenous than a country or study population as a whole. By introducing region fixed effects 

for relatively homogenous regions into a GWAS, we perform within region GWASs for a wide range 

of complex traits. We will attempt to distinguish between passive and active processes by basing the 

regional information on birth place and current address, respectively. We will investigate the impact of 

passive and active gene-environment correlation on the genome-wide signal of complex traits, as well 

as on their genetic relationships with socio-economic outcomes (educational attainment and household 

income). 
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Results 

Data and Analysis 

We ran linear-mixed model (LMM) GWASs on 1,246,531 single nucleotide polymorphisms (SNPs) for 

56 traits with sample sizes ranging from 69,772 to 271,457 UK Biobank participants of European 

descent. The LMM GWAS controls for cryptic relatedness and population stratification by including a 

genetic relatedness matrix (GRM) in the model.19 As an additional control for population stratification, 

we included the first 100 PCs derived from the GRM. We also control for sex and age. The GWASs 

were run on 56 complex traits related to physical and mental health, body composition, and emotional, 

cognitive, behavioral, and socio-economic outcomes (see Supplementary Table 1 for full list of traits 

and sample sizes). In order to control for geographic confounding, we included the region of birth and/or 

current residence of the participants as fixed effects dummy variables. The regions were obtained by 

mapping the latitude and longitude coordinates of the birth place or current address (1 km resolution) to 

Middle Layer Super Output Area (MSOA) regions (Figure 1). MSOA regions are defined as a set of 

adjacent output areas designed to have comparable population sizes and to be: “as socially homogeneous 

as possible based on tenure of household and dwelling type”.20 We ran separate analyses with dummy 

variables based on birthplace, and dummy variables based on current address. We only included regions 

with ≥ 100 UK Biobank participants, which resulted in 859 regions for the birth place analyses and 

1,959 regions for the current address analyses, and a total of 271,635 participants with both birth place 

and current address available (Figure 1). As we address more fully in the methods, the current address 

measure is likely to be more precise than the birthplace measure. In order to quantify the impact of 

controlling for geographic confounding, we compared the GWAS results controlling for region with the 

results of conventional GWASs not corrected for region, obtained from the same selection of 

individuals. The impact of controlling for geographic confounding was investigated by computing the 

magnitude and significance of the change in SNP-based heritability and of the change in genetic 

correlation with two indicators of SES, namely educational attainment and household income.   

 

Figure 1: MSOA regions and the number of included UK Biobank participants for birth place and current address. The 

histograms show the distributions of the 271,635 UK Biobank participants the MSOA regions for birth place (859 regions, left) 

and for current address (1,959 regions, right).  
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SNP-based heritability 

Before controlling for geographic confounding, the SNP-based heritabilities of the 56 traits ranged from 

.02 to .41 (as estimated using LD score regression10, based on ~1.2 million SNPs), with physical traits 

showing higher heritability estimates than behavioral outcomes (Figure 2). The average SNP-based 

heritability per category was: anthropomorphic = .22, cardiovascular = .17, cognition & SES = .10, 

depression = .07, physical health = .07, reproduction = .11, sleep = .07, social = .04, substance use = 

.05, and other behavioral traits = .05. Figure 2 shows the change in individual SNP-heritabilities before 

and after controlling for geographic fixed effects. All corrected and uncorrected heritability estimates 

and the significance of their change can be found in Supplementary_File_h2.xlsx. 

In GWASs that controlled for geographic fixed effects based on birth place (i.e., passive gene-

environment correlations), the SNP-based heritability showed a significant decrease for two traits, 

namely educational attainment (from 14% to 12%) and household income (from 7% to 6%). When 

correcting for current address (i.e., a mix of passive and active gene-environment correlations) the SNP-

based heritability significantly decreased for five traits, namely household income (from 7% to 4%), 

educational attainment (from 14% to 10%), age at first birth (from 14% to 10%), time spent watching 

television (from 12% to 10%), and overall health (from 8% to 7%). When correcting for both birth place 

and current address simultaneously, the SNP-based heritability significantly decreased for seven traits, 

namely household income (from 7% to 4%), educational attainment (from 14% to 9%), age at first birth 

(from 14% to 9%), time spent watching television (from 12% to 9%), overall health (from 8% to 7%), 

age at first sexual intercourse (from 12% to 10%), and fluid intelligence (from 23% to 19%).  

 

 

Figure 2: SNP-based heritabilities of 56 complex traits, corrected and uncorrected for MSOA region. Panels A-C show 

the estimated SNP-based heritabilities after controlling for MSOA regions based on birth place and/or current address. Panel 

D shows the ratio of the decrease, computed by dividing the corrected by the uncorrected SNP-based heritability estimate. The 

black stars indicate FDR-corrected p-values < 0.05, indicating significant changes in SNP-based heritability. 
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Genetic Correlations 

Genes associated with socio-economic success can have an influence on the neighborhood that people 

can afford to live in, and thus on the quality of people’s living environment. The environmental 

exposures that differ between neighborhoods and regions can have effects on a wide range of physical 

and mental health outcomes, which can cause genes that are associated with socio-economic success to 

also become associated with these physical and mental health outcomes. We investigated whether 

controlling for regional differences decreases genetic correlations with SES by comparing genetic 

correlations before and after correcting for geographic region. The genetic correlations were computed 

between the complex traits and educational attainment and household income using LD score 

regression21 on 1.2 million SNPs, and the significance of the change in genetic correlations was tested 

in Genomic SEM22 accounting for the dependence between the various GWASs, which all rely on the 

same sample. Figure 3 shows the changes in genetic correlations and their significance. All uncorrected 

and corrected genetic correlations with educational attainment and household income can be found in 

Supplementary Figures 1 & 2 and in Supplementary_File.xlsx. 

Genetic correlations with educational attainment: For 35 out of 55 complex traits we estimated a 

modest but significant change (FDR corrected) in genetic correlation with educational attainment when 

including fixed effects for MSOA region of birth place, 48 out of 55 when including fixed effects current 

address, and 50 out of 55 when including fixed effects for both birth place and current address. Most of 

the traits tested showed a significantly weaker genetic correlation with educational attainment (32 for 

birth place, 39 for current address, and 41 for both birth place and current address). When controlling 

for birth place and current address simultaneously, the five most significant decreases were observed 

for body fat percentage (from -.33 to -.20, pchange=1×10-82), BMI (from -.30 to -.17, pchange=1×10-80), time 

spent watching TV (from =-.69 to =-.55, pchange=5×10-76), alcohol frequency (from -.42 to -.24, 

pchange=9×10-76), and overall health (from -.49 to -.33, pchange=2×10-68).  

There was a relatively small portion of traits that showed significantly stronger genetic correlations 

with educational attainment after controlling for geographic region. When controlling for birth place, 

the genetic correlation with education increased for lifetime number of sexual partners, risk taking, and, 

mean corpuscular volume. When controlling for either current address or for both current address and 

birth place, the same three traits showed significantly stronger genetic correlations with educational 

attainment, as well as an additional six traits, namely drinks per week, smoking initiation, age at 

menarche, mean corpuscular haemoglobin, work/job satisfaction, and days per week of vigorous 

physical activity 10+ minutes. This could mean that regional differences in SES masked the genetic 

correlations between these traits and educational attainment, but could potentially also be a result of 

collider bias (see Discussion & Methods). 

Genetic correlations with household income: For 19 out of 55 traits, we observed a significant 

change in their genetic correlation with household income when including fixed effects for MSOA 

region of birth place, 40 out of 55 when including fixed effects for current address, and 42 out of 55 

when including fixed effects for both birth place and current address. Most of the traits tested showed a 

significantly weaker genetic correlation with household income (17 for birth place, 33 for current 

address, and 35 for both birth place and current address). For birth place + current address, the five most 

significant decreases were observed for body fat percentage percentage (from -.32 to -.14, pchange=2×10-

46), time spent watching TV percentage (from -.62 to -.41, pchange=2×10-43), whole-body fat mass 
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percentage (from -.25 to -.09, pchange=2×10-42), BMI (from -.33 to -.16, pchange=4×10-41), and waist 

circumference percentage (from -.29 to -.14, pchange=6×10-38).   

There was a relatively small portion of traits that showed significantly stronger genetic correlations 

with income after controlling for geographic region. When controlling for birth place, the genetic 

correlation with income increased for lifetime number of sexual partners, and, family relationship 

satisfaction. When controlling for either current address or for both current address and birth place, the 

same two traits showed significantly stronger genetic correlations with educational attainment, as well 

as an additional five traits, namely ever thought that life is not worth living, ever sought or received 

professional help for mental distress, mean corpuscular volume, mean corpuscular haemoglobin, and 

happiness. This could mean that regional differences in SES masked the genetic correlations between 

these traits and income, but could potentially also be a result of collider bias (see Discussion & Methods). 

 

 

Figure 3: The change in absolute genetic correlations with educational attainment (EA, top) and household income (HI, 

bottom). The genetic correlations were computed with LDSC regression. We display the change in absolute genetic correlation 

in order to visualize the change in the strength of the genetic relationships with EA/HI (the directions of the genetic correlations 

vary between traits and are displayed in Supplementary Figures 1 & 2). The black stars indicate FDR-corrected p-values < 

0.05, indicating significant changes in genetic correlation. 
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Discussion 

We found traces of geographic confounding in 

the GWAS signals of a wide range of physical 

and mental health, body composition, and 

emotional, cognitive, behavioral, and socio-

economic outcomes. The environmental effects 

that differ between rich versus economically 

deprived regions become entangled in the 

GWAS signals of most complex traits, as 

reflected their heritability estimates and their 

genetic correlations with SES-related traits. 

One efficient way to control for SES-related 

gene-environment correlations is by conducting 

within family GWAS analyses.23-25 Within 

family analyses, however, do not allow us to 

identify and study the specific source of gene-

environment correlations, where our analyses 

do. In addition, while family-datasets are growing, large sample sizes of genotyped families are harder 

to attain, which results in less powerful within-family GWASs with noisier estimates of genetic effects 

(Figure 4). We show here that confounding due to gene-environment correlations can extend beyond the 

family environment and that this confounding can be reduced in existing large-scale datasets of both 

related and unrelated individuals by controlling for the region that participants were born in or moved 

to.  

After controlling for place of birth, the SNP-based heritability significantly decreased only for traits 

that directly reflect SES, namely educational attainment and income. Controlling for current address 

significantly decreased the heritability estimates for education and income more strongly, and 

significantly decreased the heritability for four additional traits, including overall health. Controlling for 

both birth place and current address simultaneously, resulted in two more traits with significantly 

reduced heritability estimates, including fluid intelligence. In contrast to the SNP-based heritability, the 

genetic correlation with SES-related outcomes (education and income) decreased significantly for many 

more traits investigated. The reduction in SES-related polygenic signal is more widespread and more 

substantial and significant when controlling for current address than for birth place, which suggests 

stronger confounding due to active gene-environment correlations (e.g., migration) than due to passive 

gene-environment correlations (e.g., rearing environment). An additional mechanism that could 

contribute to differences in heritability and genetic correlations when controlling for current address 

rather than birthplace is the passive wealth transfer from parent to child throughout life (e.g., financial 

support or inheritance). 

The most significant reductions in genetic correlations with education and income were observed 

for traits related to BMI and body fat, suggesting that gene-environment correlations may especially 

come from exposures that are related to obesogenic environments and/or the ability or means to stay 

healthy and exercise. This may help partly explain why the polygenic score for BMI shows the strongest 

geographic clustering in Great Britain, after educational attainment and cognition.15 While the 

relationship between BMI and SES is positive in poorer countries, where food insecurity relates to a 

Figure 4: SNP-based heritability estimates of educational 

attainment (EA) under different GWAS designs. 
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shortage of food in general, it is reversed in more developed countries, where food insecurity relates to 

a lack of access to healthy foods.26 Both the amount of fast-food restaurants and the diabetes rates in 

British neighborhoods are significantly correlated with regional differences in educational attainment, 

with more fast-food restaurants and higher diabetes rates in regions with lower average educational 

levels, but also with lower educational attainment polygenic scores.15 Behavioral traits that are related 

to body weight, namely time spent watching television, time spent using the computer, and alcohol 

intake, are also among the top five traits that showed the most significant decrease in their genetic 

correlation with educational attainment and income after controlling for geographic region. This 

suggests that, besides dietary options, there are behaviors that are correlated with regional socio-

economic factors that affect regional differences in body weight and their associated genome-wide 

polygenic signals.  

There are several limitations that have to be kept in mind when interpreting our results. Firstly, the 

UK Biobank is not a random sample of the general population, both in terms of participants’ phenotypes 

and with respect to their geographic locations. UK Biobank participants are, on average, higher educated 

and more healthy than the general population, and are more often from regions that are less economically 

deprived.27,28 They have been sampled to live within a radius of 35 km of one of the 22 UK Biobank 

assessment centers, so while for birth place there is wider geographic coverage, there is narrower 

geographic coverage for current address. It is unclear to what extent this ascertainment bias contributes 

to the geographic confounding in the GWAS and to our ability to control for it. Secondly, the geographic 

locations we use are not precise: for the purposes of anonymity of the participants, their birth and current 

home location have been rounded to 1 km, which we then mapped to nearest MSOA region. While both 

birth place and current address are rounded, the locations for current address are likely to be more precise 

than those of the birth place (see Methods). More accurate locations may improve our ability to control 

for geographic confounding. Thirdly, while boundaries of MSOA regions have been chosen to delineate 

socially homogeneous regions,20 the geographic location of the participants is only a relatively crude 

and temporally variable proxy for the social environment that underlies the gene-environment 

correlations we try to control for. Environmental circumstances start with the family environment, and 

expand to close and extended social circles, which include schools, peers, work environment, and thus 

may extend across multiple communities throughout life. It will be challenging to fully understand and 

account for the correlation between genes and environments, but there is room for improvement by 

genotyping family members, social circles, and collecting longitudinal information on the participants’ 

living environments. Finally, when correcting for geographic location, there is a risk of collider bias: if 

a genetic variant affects current address (for example through its effect on cognitive ability and therefore 

educational attainment), and the outcome of interest (for example substance use) also affects current 

address, then controlling for current address in the GWAS on substance use may induce collider bias, 

which biases the association between genetic variant and substance use, and biases the downstream 

estimates of  heritability and genetic correlations. 

To summarize, we detected and controlled for part of the confounding due to gene-environment 

correlations on a regional level. Our findings suggest that effects estimated in GWASs of many 

phenotypes are confounded, and that this confounding is not entirely attributable to processes that take 

place within a family as is implied by terms like “genetic nurture”, but also more broadly attributable to 

social and political processes that correlate to individuals’ genotypes. If GWASs are to remain central 

to the study of (non-communicable) disease epidemiology and biology, their designs, and conclusions, 

need to carefully reflect the reality of the social and geographic structure of society. 
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Methods 

 

Participants 

The participants of this study come from UK Biobank.29,30 UK Biobank has received ethical approval 

from the National Health Service North West Centre for Research Ethics Committee (reference: 

11/NW/0382). A total 273,402 females and 229,134 males (Ntotal = 502,536) aged between 37 and 73 

years old were recruited between 2006 and 2010 across 22 assessment centers throughout Great Britain. 

The sampling strategy was aimed to cover a variety of different settings providing socioeconomic and 

ethnic heterogeneity and urban–rural mix. The participants underwent a cognitive, health, and lifestyle 

assessments, provided blood, urine, and saliva samples, and have their health followed longitudinally.  

 

Genotypes and Quality Control (QC)  

A total of 488,377 participants had their genome-wide SNPs genotyped on the UK BiLEVE array (N = 

49,950) or the UK Biobank Axiom Array (N = 438,423). Genotypes were imputed using the Haplotype 

Reference Consortium (HRC) panel as a reference set (pre-imputation QC and imputation are described 

in more detail in Bycroft et al, 2018).30 We extracted SNPs from HapMap3 (1,345,801 SNPs) from the 

imputed dataset. In the pre-PCA QC on unrelated individuals, we filtered out SNPs with MAF < .01 and 

missingness > .05, leaving 1,252,123 SNPs. After filtering out individuals with non-European ancestry 

(see paragraph on Ancestry & Principal Component Analysis below), we repeated the SNP QC on 

unrelated Europeans (N = 312,927), filtering out SNPs with MAF < .01, missingness >.05 and HWE p 

< 10-10, leaving 1,246,531 SNPs. We then created a dataset of 1,246,531 QC-ed SNPs for 456,064 UK 

Biobank subjects of European ancestry. 

 

Ancestry & Principal Component Analysis 

Ancestry was estimated using Principal Component Analysis (PCA). We first determined which 

participants had non-European Ancestry by projecting the UK Biobank participants onto the first two 

principal components (PCs) from the 2,504 participants of the 1000 Genomes Project, using HM3 SNPs 

with minor allele frequency (MAF) > 0.01 in both datasets. Participants from UKB were assigned to 

one of five super-populations from the 1000 Genomes project: European, African, East-Asian, South-

Asian, or Admixed. Assignments for European, African, East-Asian, and South-Asian ancestries were 

based on > 0.9 posterior-probability of belonging to the 1000 Genomes reference cluster, with the 

remaining participants classified as Admixed. Posterior-probabilities were calculated under a bivariate 

Gaussian distribution, where this approach generalizes the k-means method to take account of the shape 

of the reference cluster. We used a uniform prior and calculated the vectors of means and 2x2 variance-

covariance matrices for each super-population. A total of 456,064 subjects were identified to have a 

European ancestry. In order to capture ancestry differences within the British population, a PCA was 

then conducted on these 456,064 individuals of European ancestry. When trying to capture ancestry 

differences in homogenous populations, genotypes should be pruned for LD and long-range LD regions 

removed.31 The LD pruned (r2 < .2) UKB dataset without long-range LD regions consisted of 131,426 

genotyped SNPs. The PCA to construct British ancestry-informative PCs was conducted on this SNP 

set for unrelated individuals using flashPCA v2.32 PC SNP loadings were used to project the complete 

set of European individuals onto the PCs. PCs that reflect ancestry differences are expected to cluster 
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geographically, which we investigated by computing their Moran’s I: out of the top 100 PCs, 78 PCs 

showed significant geographic clustering after Bonferroni correction, and 94 PCs showed a p-value < 

.05 (see Abdellaoui et al, 2019, on details on evaluating the geographic clustering of the PCs using 

Moran’s I)15. 

 

Genetic Relatedness Matrix 

We created genetic relatedness matrices (GRMs) to include in our LMM GWAS in order to better 

control for population stratification and to control for cryptic relatedness. The GRMs contain genetic 

relationships between all individuals based on a slightly LD pruned HapMap 3 SNP set (LD-pruning 

parameters used in PLINK: window size = 1000 variant count, step size = 100, r2-cutoff = 0.9 and MAF 

> 0.01, resulting in 575,293 SNPs). The GRMs were computed using GCTA33 on individuals of 

European descent. We created a sparse GRM, containing only the relationships of related individuals 

(cut-off = .05, resulting in 179,609 relationships), as one of the major goals of including the GRM in 

our LMM GWASs was to control for the presence of closely related subjects (cousins, siblings, parent-

offspring).    

 

Phenotypic & Geographic Measures  

Phenotypes: The selection of phenotypic outcomes was based on the relevance of the metric to broad 

mental and physical health outcomes, resulting in the selection of 56 complex traits encompassing 

domains of anthropomorphic traits, cardiovascular outcomes, cognition, SES, depressive symptoms, 

sedentary behavior, reproductive behavior, risk taking behavior, physical activity, self-reported overall 

health, sleep, social connection, and substance use (see Supplementary Table 1). All traits were analyzed 

as provided by UK Biobank, except for  the substance use phenotypes, which were defined according 

to the GSCAN GWASs in Liu et al (2019)34, and educational attainment, which was transformed to 

years of education as defined according to the ISCED coding as analyzed in Lee et al (2018)35.  

Geographic measures: Birth place location was based on the coordinates in the UK Biobank fields 129 

(latitude) and 130 (longitude). The UK Biobank verbal interview includes a procedure to ascertain 

participant birthplace described as follows: “The interviewer is provided with a tree structure that lists 

place names and counties in England, Wales and Scotland. They were instructed to enter at least the 

first 3 letters of the town/village/place that the participant provides. If there are too many matches to 

the first 3 letters, no place names appear, and more letters need to be entered. If there is more than one 

listing of the relevant place name, then they were asked to choose the one with correct district or county. 

In order to narrow down the search, the interviewer may also need to type in the district or county to 

find a match. If they cannot find the place name, they were instructed to use the Enter Other facility to 

enter free text to state the town, county (or district) and country. If the participant does not know, there 

is the option to enter Unknown. Place of birth in the UK is then converted into North and East co-

ordinates.” It is not clear whether birth place refers to the residence at birth or the place of the hospital 

of birth. Current address location was based on the coordinates in the UK Biobank fields 22702 

(longitude) and 22703 (latitude). Deriving these coordinates is described by UK Biobank as follows: 

“Where the full address is present and is verified to be valid, software package DataPlus (provided in 

the QuickAddress Batch packet), is used to transform the address data into the grid coordinates. Where 

only the postcode is present, the grid coordinates were generated with the aid of on-line mapping tools: 

doogal [https://www.doogal.co.uk/] and uk-postcodes [https://www.uk- postcodes.com]. Further details 
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of this process are available from relevant websites.“ The participants’ coordinates, which were rounded 

to 1km, were mapped to the nearest MSOA region using a shape file obtained from the InFuse website, 

which is part of the UK Data Service Census Support.36 The R-packages sp (v1.4-4) and rgdal (v1.5-18) 

were used to merge the spatial data from the MSOA shapefile.37-39 

 

Genetic Association Analyses 

We performed four GWASs per trait. First, we performed GWASs using two regression models. Model 

1 is as follows: 

 

�� �	�� �	�� ∗ 
�� �	�
 ∗ ��� �		�� ∗ ��� �	�� ∗ �1 �⋯�	���� ∗ �100	 � �� � �� 

  

Where P1 to P100 represent ancestry-informative PCs derived as described above, u is a vector of 

random effects, and Z is a random effects design matrix and a random effects model as described in 

Jiang et al (2019)40, which is used to account for the presence of closely related subjects and an extra 

guard against population stratification. Model 2 is as follows: 

 

�� �	�� �	�� ∗ 
�� �⋯�	�� ∗ �1 �⋯�	���� ∗ �100 �		���� ∗ �1 �⋯�	�� ∗ ��	 � �� � ��  

 

The second equation omits sex and age for brevity and includes dummy variables D1 thru DK for all 

but 1 MSOA region of birth. The following DAG describes the suspected causal structure of the data 

we model: 

 

Where P represents the previous generation (parents), BP is birth place, SNP represents the genes carried 

by the individual, and Y the phenotypic outcome. Along similar lines, a GWAS was performed using 

dummy variables based on current address instead of birth place, and an analysis where dummy variables 

for both birthplace and current address were included. The plausible causal models in the GWASs that 

correct for current address are more complicated. We offer 3 DAGs which we feel are abstractions of 

potential causal processes that relate confounding parental influences (P), genotype (SNP), current 

address (CA), and outcome (Y). We include these DAGs and their descriptions, because they are useful 

to have in mind when evaluating our results. In practice we expect that a mix of these processes, or more 

complex processes altogether, underpin the relation between genotype and outcome.   

 

 

P 

BP 

SNP 

Y 
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(A) 

 

(B) 

 

(C) 

 

The first causal process (A) we suspect plays out is a process where a confounder, like intergenerational 

transfer of wealth through inheritance or financial support during college (or lack thereof), is correlated 

to the parental genome and therefore the offspring’s genome (SNP) as well as the address of the adult 

participant (CA), and controlling for address ensures the regression of Y on SNP is no longer confounded 

by P (similar to the process that underlies controlling for birth place).  

The second causal process (B) is one where the genotype (SNP) mediated by traits like cognitive 

ability and mental health affects people’s ability to attain a higher education and/or be upwardly socially 

mobile, and so influences which environment people can afford to live in, which in turn influences the 

outcome (Y) of interest. Here, if we control for current address, we test for a more “direct” effect, not 

mediated by environmental exposures, of genotype (SNP) on outcome (Y). The (probable) presence of 

mediation would mean that controlling for current address is likely to lead to qualitatively changes in 

the genetic effect estimates to a different extent than when controlling for birthplace. However, even in 

the absence of mediation, we could expect differences herein, as current address appears to be measured 

more precisely. 

Finally, as depicted in causal model C, there is the risk that the genotype (SNP), through its effect 

on other traits (e.g., cognitive ability), influences current address (CA), while the outcome (Y) (e.g., 

substance use) also influences current address. In this case, conditioning on current address when doing 

a GWAS on, e.g., substance use would potentially induce collider bias, which is undesirable. In practice 

we do not know which of the causal processes, or which mix of causal processes, underlies the data. The 

effects of correcting for current address are therefore more complex to interpret. 

P 

CA 

SNP 

Y 

CA 

SNP 

Y 

CA 

SNP 

Y 
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SNP-Based Heritability and Genetic Correlation 

Heritability and genetic correlation were estimated using LD Score regression10,41 and Genomic SEM22 

version 0.0.3. The genetic correlations are based on the estimated slope from the regression of the 

product of z-scores from two GWASs on the LD score and represents the genetic covariation between 

two traits based on all polygenic effects captured by the included SNPs. The genome-wide LD 

information used were based on European populations from the HapMap 3 reference panel.42,43 All LD 

score regression analyses included the ~1,3 million genome-wide HapMap SNPs used in the original 

LD score regression studies.42,43 The standard error of the difference between the heritability and genetic 

correlations based on the different specifications cannot easily be estimated directly, because the 

GWASs for which we want to obtain the differences are based on the exact same sample, and their 

standard errors are therefore highly dependent. Therefore, we estimated the standard error of the 

differences in heritability and genetic correlations with  Genomic SEM, which allows us to account for 

the dependence between the estimates of the SNP-based heritability and genetic correlations. 
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Supplementary Figures & Tables 

 

 

Supplementary Figure 1: Genetic correlations (rg) with educational attainment (EA) as computed with LDSC regression, 

before and after controlling for MSOA region of birth place (top), current address (middle), or birth place + current address 

(bottom). 
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Supplementary Figure 2: Genetic correlations (rg) with household income (HI) as computed with LDSC regression, before 

and after controlling for MSOA region of birth place (top), current address (middle), or birth place + current address (bottom).. 
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Supplementary Table 1: The 56 complex traits and the (effective) sample sizes of their GWAS analyses.  

Category Trait 

UK 

Biobank 

Field Code 

N  

Anthropomorphic: Birth weight 20022 156,570 

 Body fat percentage  23099 267,136 

 Body mass index (BMI) 21001 270,885 

 Hip circumference 49 271,207 

 Standing height 50 271,120 

 Waist circumference 48 271,237 

 Whole body fat mass 23100 266,889 

Cardiovascular Diastolic blood pressure, automated reading 4079 259,058 

 Forced expiratory volume in 1-second (FEV1) 3063 249,644 

 Forced vital capacity (FVC) 3062 249,644 

 Mean corpuscular haemoglobin 30050 264,104 

 Mean corpuscular volume 30040 264,106 

 Platelet count 30080 264,104 

 Systolic blood pressure, automated reading 4080 259,055 

Cognition & SES: Average total household income before tax 738 233,563 

 Educational Attainment ISCED 269,432 

 Financial situation satisfaction 4581 104,952 

 Fluid intelligence score 20016 102,684 

 Work/job satisfaction 4537 69,772 

Depression: Ever contemplated self-harm 20485 87,556 

 Ever sought or received professional help for mental distress 20499 *83,183 

 Ever thought that life not worth living 20479 87,287 

 Happiness 4526 105,006 

 Neuroticism score 20127 220,956 

Other Behavior: Drive faster than motorway speed limit 1100 264,786 

 Number of days/week of moderate physical activity 10+ minutes 884 259,086 

 Number of days/week of vigorous physical activity 10+ minutes 904 259,359 

 Risk taking 2040 *199,095 

 Time spent using computer 1080 269,907 

 Time spent watching television (TV) 1070 269,742 

Physical Health: Diabetes diagnosed by doctor 2443 *48,413 

 Hand grip strength (right) 47 270,623 

 Health satisfaction 4548 105,085 

 Overall health rating 2178 270,706 

Reproduction: Age at first live birth 2754 101,004 

 Age at menopause (last menstrual period) 3581 87,663 

 Age first had sexual intercourse 2139 239,689 

 Age when periods started (menarche) 2714 142,272 

 Lifetime number of sexual partners 2149 223,528 

 Number of children fathered 2405 124,424 

 Number of live births 2734 146,260 

Sleep: Morning/evening person (chronotype) 1180 242,535 

 Sleep duration 1160 270,240 

 Sleeplessness / insomnia 1200 271,457 

 Trouble falling or staying asleep, or sleeping too much 20517 87,713 

Social: Been in a confiding relationship as an adult 20522 85,643 

 Family relationship satisfaction 4559 104,510 

 Friendships satisfaction 4570 104,253 

 Loneliness, isolation 2020 *153,755 

Substance Use: Age at Smoking Initiation GSCAN 86,730 

 Alcohol Frequency GSCAN 271,445 

 Cannabis (ever vs never) GSCAN 87,769 

 Cigarettes per Day GSCAN 83,657 

 Drinks per Week GSCAN 75,579 

 Smoking Cessation GSCAN 122,576 

 Smoking Initiation GSCAN 182,768 

*These are case/control phenotypes for which the effective sample size is reported, which is calculated with: 

4/((1/Ncases)+(1/Ncontrols)) 
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