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2	

ABSTRACT 41	
 42	
Background 43	
Ocean microbes constitute ~70% of the marine biomass, are responsible for ~50% of 44	
the Earth’s primary production, and are crucial for global biogeochemical cycles. 45	
Marine microbiotas include core taxa that are usually key for ecosystem function. 46	
Despite their importance, core marine microbes are relatively unknown, which reflects 47	
the lack of consensus on how to identify them. So far, most core microbiotas have been 48	
defined based on species occurrence and abundance. Yet, species interactions are also 49	
important to identify core microbes, as communities include interacting species. Here, 50	
we investigate interconnected bacteria and small protists of the core pelagic microbiota 51	
populating a long-term marine-coastal observatory in the Mediterranean Sea over a 52	
decade. 53	
 54	
Results 55	
Core microbes were defined as those present in >30% of the monthly samples over 10 56	
years, with the strongest associations. The core microbiota included 259 Operational 57	
Taxonomic Units (OTUs) including 182 bacteria, 77 protists, and 1,411 strong and 58	
mostly positive (~95%) associations. Core bacteria tended to be associated with other 59	
bacteria, while core protists tended to be associated with bacteria. The richness and 60	
abundance of core OTUs varied annually, decreasing in stratified warmers waters and 61	
increasing in colder mixed waters. Most core OTUs had a preference for one season, 62	
mostly winter, which featured subnetworks with the highest connectivity. Groups of 63	
highly associated taxa tended to include protists and bacteria with predominance in the 64	
same season, particularly winter. A group of 13 highly-connected hub-OTUs, with 65	
potentially important ecological roles dominated in winter and spring. Similarly, 18 66	
connector OTUs with a low degree but high centrality were mostly associated with 67	
summer or autumn and may represent transitions between seasonal communities. 68	
 69	
Conclusions 70	
We found a relatively small and dynamic interconnected core microbiota in a model 71	
temperate marine-coastal site, with potential interactions being more deterministic in 72	
winter than in other seasons. These core microbes would be essential for the functioning 73	
of this ecosystem over the year. Other non-core taxa may also carry out important 74	
functions but would be redundant and non-essential. Our work contributes toth e 75	
understanding of the dynamics and potential interactions of core microbes possibly 76	
sustaining ocean ecosystem function. 77	
 78	
 79	
Keywords: bacteria, protists, ocean, time-series, seasonality, networks, associations 80	
  81	
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3	

BACKGROUND 82	

Ecosystems are composed of interacting units embedded in and influenced by their 83	

physicochemical environment. Ecosystem function can be broadly defined as the 84	

biological, geochemical, and physical processes that occur within it. These processes 85	

will likely change or halt if specific organisms or gene-functions are removed, driving 86	

the ecosystem towards a new state or its collapse. It is hypothesized that ecological 87	

redundancy guarantees continuous ecosystem function, as multiple species could carry 88	

out the same or similar function [1]. And while the amount of functional redundancy in 89	

microbial ecosystems is a matter of debate [2, 3] it has also been observed that 90	

microbiotas in comparable habitats tend to share “core” species that are hypothesized 91	

to be fundamental for ecosystem function [4]. These core organisms and the functions 92	

they carry out might not be easily replaced.   93	

Identifying the core microbiota is not straightforward as there are different ways 94	

of defining a core depending on the habitats and the questions being addressed [4]. One 95	

often-used approach is to identify species that tend to be recurrently present across 96	

spatiotemporal scales. This definition might not be sufficient, however, since 97	

communities are made up of interacting species [5]. A more appropriate definition of a 98	

core, therefore, needs to incorporate ecological interactions fundamental for the 99	

community in the location under study [4, 5]. This is particularly important in studies 100	

using DNA to investigate microbial communities, as a fraction of the detected taxa 101	

could be dormant, dead, or transient [6-8]. In the interaction-based definition taxa that 102	

do not appear to be interacting are excluded from the core [4].  103	

Core microbiotas based on common presence have been widely studied in 104	

terrestrial animals, in particular humans [9] or cattle [10], as well in marine animals, in 105	

particular corals [11, 12] and sponges [13, 14]. Core microbiotas in non-host-associated 106	
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systems, such as soils or the ocean, have been investigated to a lesser extent.  In soils, 107	

for example, a global analysis identified a core group of 241 ubiquitous and dominant 108	

bacterial taxa with more or less invariant abundances and unclear habitat preferences 109	

[15]. In the tropical and subtropical global-ocean, a total of 68 bacteria and 57 110	

picoeukaryotic operational taxonomic units (OTUs) have been identified that could be 111	

part of the core surface microbiota, as they were present in >80% of the globally-112	

distributed samples [16].  113	

Analyses of ocean time-series have also pointed to the existence of core 114	

microbiotas. For example, Gilbert et al. [17] investigated the microbiota of the English 115	

Channel for 6 years and found 12 abundant OTUs that were detected throughout the 116	

entire dataset (72 time-points), totaling ~35% of the sequence abundance. Potentially 117	

core bacterial OTUs were detected in the SPOT time-series (southern California), in a 118	

study covering 10 years of monthly samples in the euphotic zone [18]. These 119	

potentially-core bacterial OTUs were present in >75% of the months, represented ~7% 120	

(25-28 OTUs depending on depth) of the total richness, and had a high (>10%) relative 121	

abundance [18].  122	

These studies have provided substantial insights on core marine microbiotas, 123	

although they typically define them in terms of species occurrence or abundance over 124	

spatiotemporal scales, rather than on potential interactions. As in other ecosystems, 125	

microbial interactions are essential for the functioning of the ocean ecosystem, where 126	

they guarantee the transfer of carbon and energy to upper trophic levels, as well as the 127	

recycling of carbon and nutrients [19]. Despite their importance, most microbial 128	

interactions in the ocean remain unknown [20]. A recent literature survey spanning the 129	

last 150 years indicated that we have documented a minor fraction of protist interactions 130	

in the ocean [21] and most likely, the same is true if not worse for bacteria.  131	
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During the last decade, association networks have been used to bridge this 132	

knowledge gap. Association networks are based on correlations between species’ 133	

abundances and they may reflect microbial interactions [22]. Contemporaneous 134	

positive correlations may point to interactions such as symbiosis,  or similar niche 135	

preferences, while negative correlations may suggest predation, competition, or 136	

opposite niche preferences [23]. So far, network analyses have produced hypotheses on 137	

microbial interactions at the level of individual species across diverse ecosystems [22, 138	

24, 25], a few of which have been experimentally validated [26]. In addition, networks 139	

can help detect species that have relatively more associations to other species (“hubs”), 140	

or species that connect different subgroups within a network, and which therefore may 141	

have important roles in the ecosystem. Groups of highly associated species in the 142	

network (“modules”) may represent niches [27, 28], and the amount of these modules 143	

may increase with increasing environmental selection [22]. Networks can also produce 144	

ecological insight at the community level, since their architecture can reflect 145	

community processes, such as selection [27]. 146	

Network analyses have been particularly useful for the investigation of 147	

microbial interactions in the ocean [25, 29]. A surface global-ocean network analysis 148	

of prokaryotes and single-celled eukaryotes indicated that ~72% of the associations 149	

between microbes were positive and that most associations were between single-celled 150	

eukaryotes belonging to different organismal size-fractions [26].  Other studies using 151	

networks have indicated a limited number of associations between marine microbes and 152	

abiotic environmental variables [17, 18, 23, 26, 30-32], suggesting that microbial 153	

interactions have an important role in driving community turnover [32]. Despite the 154	

important insights these studies have provided, most of them share the limitation that 155	
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they do not disentangle whether microbial associations may represent ecological 156	

interactions or environmental preferences [22].   157	

Even though association networks based on long-term species dynamics may 158	

allow a more accurate delineation of core marine microbiotas, few studies have 159	

identified them in this manner. Consequently, we have a limited understanding of the 160	

interconnected set of organisms that may be key for ocean ecosystem function. Here 161	

we identify and investigate the core microbiota occurring in the marine-coastal Blanes 162	

Bay Microbial Observatory (Northwestern Mediterranean Sea) over 10 years. We 163	

delineated the core microbiota stringently, using potential interactions based on species 164	

abundances. We also made an effort to disentangle environmental effects in association 165	

networks by identifying and removing species associations that are a consequence of 166	

shared environmental preference and not interactions between the species [33]. We 167	

analyzed bacteria and protists from the pico- (0.2-3 µm) and nanoplankton (3-20 µm) 168	

organismal size fractions, which show a strong seasonality in this location [34-36]. 169	

Taxa relative abundances were estimated by sequencing the 16S and 18S rRNA-gene 170	

and delineating OTUs as Amplicon Sequence Variants (ASVs). Specifically, we ask: 171	

What taxa constitute the interconnected core microbiota and what are the main patterns 172	

of this assemblage over 10 years? Does the core microbiota feature seasonal sub-groups 173	

of highly associated species? What degree of association do bacteria and microbial 174	

eukaryotes have and do they show comparable connectivity? Can we identify core 175	

OTUs with central positions in the network that could have important ecological roles? 176	

 177	

RESULTS 178	

Composition and dynamics of the resident microbiota 179	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435965doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435965
http://creativecommons.org/licenses/by-nc-nd/4.0/


7	

Based on the data set containing 2,926 OTUs, (1,561 bacteria and 1,365 microbial 180	

eukaryotes) we first defined the resident OTUs as the bacteria and microbial eukaryotes 181	

present in >30% of the samples, which equals 36 out of 120 months (not necessarily 182	

consecutive). This threshold was selected as it includes seasonal OTUs that would be 183	

present recurrently in at least one season. The residents consisted of 709 OTUs: 354 184	

Bacteria (~54% relative read abundance) and 355 Eukaryotic OTUs (~46% relative 185	

read abundance) [Table 1, see methods for calculation of relative read abundance]. The 186	

most abundant resident bacteria OTUs belonged to Oxyphotobacteria (mostly 187	

Synechococcus; ~15% of total relative read abundance), Alphaproteobacteria (mostly 188	

SAR11 Clade Ia [~9%, and clade II [~4%]), and Gammaproteobacteria (mainly SAR86; 189	

~2%). The most abundant resident protist OTUs belonged to Dinophyceae 190	

(predominantly an unclassified dinoflagellate lineage [~7%], Syndiniales Group I 191	

Clade 1 [~7%] and Gyrodinium [~4%]), Chlorophyta (mostly Micromonas [~3%] and 192	

Bathycoccus [~2%]), Ochrophyta (predominantly Mediophyceae [~2%] and 193	

Chaetoceros [~1%]) and Cryptophyceae (mainly a Cryptomonadales lineage [~2%]) 194	

[Figure 3, Table S1]. 195	

 196	

 197	

Table 1. Description of the datasets 198	
 OTUs OTUs (%) Sequence abundance (%) * 

All OTUs1 2,926 100 100 
     Bacteria      1,561 53.3 50.7 
     Protists      1,365 46.7 49.3 
    
Resident microbiota2 709 100 100 (85) 
     Bacteria      354      49.9 53.6 
     Protists      355      50.1 46.4 
    
Core microbiota3 259 100 64.5 (54) 
     Bacteria 182 70.3 46.3 
     Protists 77 29.7 18.2 
     Picoplankton 109 42.1 32.4 
     Nanoplankton 150 57.9 32.1 
   Protists    
     Heterotroph  5 1.9 0.3 
     Photoautotroph  37 14.3 11.8 
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     Parasite  21 8.1 3.5 
     Mixotroph  3 1.2 0.7 
     Symbiont  1 0.4 0.1 
     Unknown 11 4.3 2.0 
   Bacteria    
     Photoautotroph (cyanobacteria) 19 7.3 19.3 
     Non-photoautotroph4 163 62.5 26.8 
  Seasonal preference core OTUs    
     Winter 156 60.2 21.8 
     Spring 24 9.3 16.4 
     Summer 44 17.0 8.2 
     Autumn 30 11.6 13.7 
     No seasonality 5 1.9 4.5 
  Seasonal subnetworks    
     Winter 156 60.2 21.8 
     Spring  19 7.3 13.7 
     Summer  41 15.8 6.6 
     Autumn  26 10.0 12.9 

1 Number of OTUs in the full dataset that were left after quality control and rarefaction, which were present in at least 10% of the 199	
samples (i.e. 12 months, not necessarily consecutive). 200	

2 OTUs present in at least 30% of the samples (i.e. 36 months, not necessarily consecutive) [=Resident microbiota]. 201	
3 OTUs included in the core network (core microbiota) with significant correlations (p&q <0.001), local similarity scores >|0.7| and 202	

Spearman correlations >|0.7|, being present in at least 30% of the samples. 203	
4 Includes non-photoautotrophic lifestyles (i.e., chemoautotrophs, photoheterotrophs, chemoheterotrophs, etc.). 204	
* In Italics the abundances relative to all OTUs are indicated.  All other values in normal text indicate abundances relative to OTUs in the resident   205	
  microbiota. 206	
 207	

 The resident microbiota, including both protists and bacteria, showed seasonal 208	

variation over 10 years, with communities from the same season but different years 209	

tending to group (Figure 1C and D). The structure of the resident microbiota correlated 210	

to specific environmental variables during winter (nutrients, Total photosynthetic 211	

nanoflagellates [PNF; 2-5µm size], and small PNF [2µm]), spring (Total Chlorophyll 212	

a [Chla]), summer (daylength, temperature, Secchi disk depth and, the cell abundances 213	

of Synechococcus, Heterotrophic prokaryotes [HP] and Heterotrophic nanoflagellates 214	

[HNF, 2-5µm]) and autumn (salinity) [Figure 1C]. The environmental variables most 215	

relevant for explaining the variance of the resident microbiota were determined by 216	

stepwise model selection and distance-based redundancy analyses (dbRDA) [Figure 217	

1D], leading to a dbRDA constrained and unconstrained variation of 41% and 59% 218	

respectively (Figure 1D). The selected variables were predominantly aligned with the 219	

axis summer (daylength, temperature, and the cell abundance of Synechococcus and 220	

HP) - winter (SiO2, small PNF [Figure 1D]. This dbRDA axis had the highest 221	

eigenvalue, explaining ~55% of the constrained variation (Figure 1D). Even though 222	
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9	

the measured environmental variables did not explain the majority of the variation of 223	

the resident microbiota, they could account for a substantial fraction. This was further 224	

supported by Adonis analyses, which indicated that the measured environmental 225	

variables could explain ~45% of the resident microbiota variance, with temperature and 226	

daylength having a predominant role by accounting for 30% of this variance (15% 227	

each).  228	

 We then investigated whether temperature and daylength could determine the 229	

main niches. We found that ~70% and ~68% of the OTUs in the resident microbiota 230	

had niche preferences associated with temperature or daylength respectively (Figure 231	

1E-F; Note that several OTUs preferring Spring or Autumn are not expected to be 232	

detected with this approach, as their preferred temperature or daylength may not differ 233	

significantly from the randomized mean). In total, 371 OTUs from the resident 234	

microbiota had both a temperature and a daylength niche preference that departed 235	

significantly from the randomization mean (Figure 1E-F). These 371 OTUs 236	

represented ~52% of all OTUs in the resident microbiota, corresponding to ~90% of 237	

the sequence abundance. In particular, 248 OTUs had a weighted mean for both 238	

temperature and daylength below the randomization mean (corresponding to 239	

winter/autumn), while 116 OTUs had a weighted mean above the randomization mean 240	

for both variables (corresponding to summer/spring). Interestingly, 7 OTUs displayed 241	

a weighted mean above and below the randomized mean for temperature and daylength 242	

respectively (corresponding to autumn or spring).  243	
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 244	

Figure 1. The Blanes Bay Microbial Observatory and the variation of its resident 245	

microbiota and measured environmental variables over ten years. A) Location of the Blanes 246	

Bay Microbial Observatory. B) All possible correlations between the measured environmental 247	

variables including the richness and abundance of resident OTUs (NB: only 709 resident OTUs 248	

are considered, see Table1). Only significant Pearson correlation coefficients are shown 249	

(p<0.01). The p-values were corrected for multiple inference (Holm's method). C) Unconstrained 250	
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ordination (NMDS based on Bray Curtis dissimilarities) of communities including resident OTUs 251	

only, to which environmental variables were fitted. Only variables with a significant fit are shown 252	

(P<0.05).  Arrows indicate the direction of the gradient and their length represents the strength 253	

of the correlation between resident OTUs and a particular environmental variable. The color of 254	

the samples (circles) indicates the season to which they belong. The bottom-left arrow indicates 255	

the direction of the seasonal change. PNF = photosynthetic nanoflagellates. D) Constrained 256	

ordination (Distance-based redundancy analyses, dbRDA, using Bray Curtis dissimilarities) 257	

including only the most relevant variables after stepwise model selection using permutation tests. 258	

Each axis (i.e., dbRDA1 and dbRDA2) indicates the amount of variance it explains according to 259	

the associated eigenvalues. The color of the samples (circles) indicates the season to which they 260	

belong. Arrows indicate the direction of the gradient and their length represents the strength of 261	

the correlation between resident OTUs and a particular environmental variable. The bottom-left 262	

arrow indicates the direction of the seasonal change. E-F) Resident OTUs displaying different 263	

niche preferences (blueish areas) in terms of the two most important abiotic variables: 264	

Temperature E) and Daylength F). The red dots indicate the randomization mean, and the orange 265	

curves represent the confidence limits. Black dots indicate individual OTUs for which temperature 266	

or daylength preferences are significantly (p<0.05) higher or lower than a random distribution 267	

over 10 years. At least two assemblages with different niches become evident: one preferring 268	

higher temperature and longer days (summer/spring), and another one preferring lower 269	

temperature and shorter days (winter/autumn). Note that several OTUs associated to Spring or 270	

Autumn are not expected to be detected with this approach, as their preferred temperature or 271	

daylength may not differ significantly from the randomized mean. 272	

 273	

Core network 274	
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To determine the core microbiota that incorporates possible interactions, we 275	

constructed an association network based on the resident OTUs and removed all OTUs 276	

that were not involved in strong and significant associations with any other OTUs. 277	

Specifically, we kept only the associations (edges in the network) with Local similarity 278	

score |LS| > 0.7, a false discovery rate adjusted p-value < 0.001 and Spearman |r| > 0.7. 279	

In addition, we removed all associations that seemed to be caused by environmental 280	

preferences of OTUs (see Methods). The core network consisted of 1,411 significant 281	

and strong correlations (Figure 2A) and was substantially smaller than the network 282	

based on the resident OTUs without stringent cut-offs (Supp. Figure 1A, removed 283	

edges in Supp. Figure 1B). The core network includes only the strongest microbial 284	

associations that are inferred during a decade and, according to our definition, 285	

determines the core microbiota. The associations in the core microbiota may represent 286	

proxies for species interactions since steps have been taken to remove associations that 287	

are driven by environmental factors.  288	

In the core network, most associations were positive (~95%), pointing to the 289	

dominance of co-existence or symbiotic associations (Table 2, Figure 2A). The core 290	

network had “small world” properties [37], with a small average path length (i.e. 291	

number of nodes between any pair of nodes through the shortest path) and a relatively 292	

high clustering coefficient, showing that nodes tend to be connected to other nodes, 293	

forming tightly knit groups, more than what it would be expected by chance (Table 3). 294	

Since node degree was not correlated with OTU abundance (Supp. Figure 2), the 295	

associations between OTUs are not caused by a high sequence abundance alone, as the 296	

most abundant OTUs did not tend to be the most connected. 297	
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 298	

 299	

Figure 2. Core microbiota resulting from 10 years of monthly pico- and nanoplankton 300	

relative abundances. A) Core network including bacteria and microbial eukaryotic OTUs that 301	

occur ≥ 30% of the time during the studied decade (i.e. resident microbiota), with highly 302	

significant and strong associations (P<0.001 and Q<0.001, absolute local similarity score |LS| > 303	
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0.7, Spearman correlation |ρ|>0.7), where detected environmentally-driven edges were 304	

removed. The color of the edges (links) indicates whether the association is positive (grey) or 305	

negative (red). The shape of nodes indicates bacteria (rhomboid) or microbial eukaryotes (circle), 306	

and the color of nodes represents species seasonal preferences, determined using the indicator 307	

value (indval, p<0.05). Node size indicates OTU relative abundance. B) Core network as a Circos 308	

plot, indicating the high-rank taxonomy of the core OTUs. Since 95% of the associations are 309	

positive (see Table 2), we do not indicate whether an edge is positive or negative. 310	

 311	

 The core network displayed a winter cluster, while no clear clusters could be 312	

defined for the other seasons (Figure 2A). Of the 15 environmental variables analyzed, 313	

only 3 were found to be significantly correlated with core OTUs: daylength, showing 314	

strong correlations with 33 OTUs, temperature, correlated with 14 OTUs, and 315	

Chlorophyll a, correlated with 1 OTU (Figure 2A). Therefore, the analysis of the core 316	

network also points to the importance of temperature and daylength in the decade-long 317	

seasonal dynamics of the studied microbial ecosystem. It is also coherent with the 318	

Adonis and ordination analyses (Figure 1C-B). However, the associations between 319	

these environmental parameters with taxa represented only 4% of all the associations 320	

(Figure 2B). 321	

Table 2. Core associations. See Figure 2.   322	

 323	
 Association #  

(edges) 
Co-occurrences 

(positive) 
 Co-exclusions 

(negative) 
All 1,411 1,341 (95.0%) 70 (5.0%) 
Within Picoplankton 378    353 (93.3%) 25 (6.6%) 
Within Nanoplankton 791    748 (94.6%) 43 (5.4%) 
Picoplankton-Nanoplankton 242    240 (99.2%)        2 (0.8%) 

 324	

Of the 709 OTUs from the resident microbiota (Figure 3), only 259 OTUs 325	

(35%) were left in the core network (182 bacteria (~70%) and 77 microbial eukaryotic 326	

OTUs (~30%); Table 1, Figure 2). The monthly taxonomic composition of the resident 327	

microbiota differed from that of the core (Figure 3). The core OTUs accounted for 328	

~64% of the relative read abundance of the resident microbiota (Table 1). The core 329	
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OTUs had annual variation in terms of richness and abundance over the 10 years for 330	

both the pico- and nanoplankton, with microbial eukaryotes decreasing markedly in 331	

OTU richness and relative read abundance in the warmer seasons, and increasing during 332	

colder periods (Figure 3).  333	

 334	

 335	

Figure 3. The monthly variation in the resident and core microbiotas over 10 years. Upper 336	

panels: The resident microbiota is defined as those eukaryotes and bacteria that occur in at least 337	
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30% of the samples over 10 years. The relative OTU abundance (left panel) and number of OTUs 338	

(right panel) for different domains and taxonomic levels in the resident microbiota are shown. 339	

Note that the relative abundance of Bacteria vs. Eukaryotes does not necessarily reflect 340	

organismal abundances on the sampling site, but the amplicon relative abundance after PCR. 341	

Relative abundances were calculated for each year and aggregated over the corresponding 342	

months along the 10 years for the resident microbiota, then split into size fractions (NB: relative 343	

abundance for both domains and size fraction sums up to 1 for each month across ten years). 344	

Lower panels: Core microbiota over 10 years. The relative abundances of core OTUs reflect the 345	

remaining proportions after removing all the OTUs that were not strongly associated when 346	

building networks. Relative OTU abundance (left panel) and number of OTUs (right panel) for 347	

different domains and taxonomic levels among the core OTUs.  348	

 349	

The most abundant bacteria (Figure 3; Supplementary Table S2) among the 350	

core OTUs were Oxyphotobacteria (mostly Synechococcus), total abundance ~14% of 351	

the resident microbiota, followed by Alphaproteobacteria, with SAR11 clades Ia and II 352	

representing ~9% and ~2% respectively. The most abundant microbial eukaryotic 353	

groups were Micromonas, Bathycoccus, Dinophyceae, and Cryptomonadales (each 354	

~2%) [Figure 3; Supplementary Table S3]. In terms of diversity and abundance, 355	

bacterial non-phototrophs (including chemoautotrophs, photoheterotrophs, 356	

chemoheterotrophs) were the most prevalent in the core microbiota, representing ~62% 357	

of the OTUs and a quarter of the total relative read abundance (Table 1). In turn, 358	

protistan heterotrophs represented a minor fraction of the diversity and relative 359	

abundance (Table 1). Bacteria photoautotrophs were relatively more abundant than 360	

their protistan counterparts but less diverse (Table 1). Protistan parasites represented 361	
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~8% of the OTUs and ~3% of the abundance, while the remaining protistan lifestyles 362	

had a minor relevance in the core microbiota (Table 1). 363	

 364	

Intra- and cross-domain core associations  365	

Bacteria tended to be associated with other bacteria (Table 3 & 4; Figure 2B), with 366	

Bacteria-Bacteria associations making up ~54% of all associations, while Protist-Protist 367	

associations accounted for 11% (Table 4). The connectivity of the bacterial 368	

subnetworks was higher (mean degree ~10) than the protist counterparts (mean degree 369	

~6), regardless of whether these networks included exclusively bacteria, protists, or 370	

both (Table 3). 371	

In particular, there was a substantial number of associations between Alpha- 372	

and Gammaproteobacteria, between Alphaproteobacteria and Acidiimicrobia as well as 373	

among Alphaproteobacteria OTUs (Figure 2B). Eukaryotic OTUs did not show a 374	

similar trend with associations between OTUs of the same taxonomic ranks (Figure 375	

2B). In terms of cross-domain associations, Alphaproteobacteria OTUs had several 376	

associations with most major protistan groups (i.e. dinoflagellates, diatoms, 377	

cryptophytes, Mamiellophyceae, and Syndiniales) [Figure 2B]. 378	

 379	

Core associations within the pico- and within the nanoplankton 380	

While the pico- and nano-size fractions indicate different lifestyles in bacteria (free-381	

living or particle-attached), they indicate different cell sizes in protists, and this could 382	

be reflected in association networks. Nanoplankton sub-networks were larger and more 383	

connected than picoplankton counterparts (Figure 4, Table 3). This pattern was 384	

observed in both sub-networks considering associations from the same or both size 385	

fractions (Table 3). Nanoplankton sub-networks had a higher average degree (~10) 386	
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than picoplankton sub-networks (~7; Wilcoxon p<0.05), while not differing much in 387	

other network statistics (Table 3). Most associations in the pico- and nanoplankton 388	

were positive (>93%), while the associations between OTUs from different size 389	

fractions represented only ~17% of the total, being ~99% positive (Table 2).  390	

In the pico- or nanoplankton sub-networks that include OTUs from the same 391	

size fraction, the number of bacterial core OTUs was higher than the protistan 392	

counterparts (103 bacterial vs. 47 protistan OTUs in the nanoplankton, and 79 bacterial 393	

vs. 30 protistan OTUs in the picoplankton) (Figure 4, Table 3). Still, core OTUs in 394	

both the pico- and nanoplankton had comparable sequence abundances: ~27% of the 395	

resident microbiota in each size fraction. Within the picoplankton, 64% of the 396	

associations were between bacteria, 8% between eukaryotes, and 25% between 397	

eukaryotes and bacteria (Table 4). In turn, in the nanoplankton, 50% of the edges were 398	

between bacteria, 14% between eukaryotes, and 31% between eukaryotes and bacteria 399	

(Table 4). Overall, the BBMO pico- and nanoplankton sub-networks differed in size, 400	

connectivity, and taxonomic composition, while they were similar in terms of positive 401	

connections and relative sequence abundance. 402	

 403	

Table 3. Core network and sub-networks statistics. 404	
Network Nodes 

(#OTUs) 
Edges Di. De. Average 

degree 
Average 

path 
length 

Average 
clustering 
coefficient 

Largest 
clique 

(#) 

Mod. 

Core network 262 (259) 1,411 11 0.04 10.7 3.45 0.52 13 (4) 0.19 
Random core network 262 1,411 5 0.04 10.7 2.60 0.03 3(199) 0.13 
Picoplankton all 1   161 (160)*     620* 10 0.05 7.7 3.13 0.55 10(1) 0.22 
Picoplankton only 2 110 (109)    378 9 0.06 6.9 3.15 0.51 9(4) 0.29 
Nanoplankton all 3   197 (194)*    1,033* 10 0.05 10.5 3.18 0.57 13(4) 0.15 
Nanoplankton only4 153 (150)     791 10 0.07 10.3 3.21 0.56 13(4) 0.17 
Bacteria all 5    233 (230)**     1,236** 10 0.04 10.6 3.34 0.52 11(3) 0.19 
Bacteria only 6 185 (182)        803 10 0.05 8.7 3.50 0.51 10(1) 0.31 
Protists all 7    147 (145)**      608** 5 0.06 8.3 2.40 0.48 8(2) 0.10 
Protist only 8    80 (77)      175 5 0.05 4.4 2.54 0.54 7(1) 0.32 
 405	
NB: Networks and sub-networks include OTUs and environmental factors. Di=Network diameter. De=Network density. Largest clique = size of 406	
the largest clique(s) in the network, and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness. 1All 407	
associations where picoplankton OTUs are involved (including nanoplankton); 2Associations between picoplankton OTU only; 3All associations 408	
where nanoplankton OTUs are involved (including picoplankton); 4Associations between nanoplankton OTU only; 5All associations where 409	
bacterial OTUs are involved (including protists); 6Associations between bacterial OTU only; 7All associations where protist OTUs are involved 410	
(including bacteria); 8Associations between protist OTU only. * Includes nodes and edges shared between pico- and nanoplankton. ** Includes 411	
nodes and edges shared between bacteria and protists. 412	
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 413	

 414	

 415	

Figure 4. Pico- and nanoplankton core sub-networks. The shape of the nodes indicates 416	

bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents species 417	

seasonal preferences, determined using the indicator value (p<0.05). The color of the edges 418	
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indicates if the association is positive (grey) or negative (red). Node size indicates OTU relative 419	

abundance from the core microbiota. 420	

 421	

Table 4. Core associations within and between taxonomic domains and size fractions.   422	
Network Association type1 # Associations  

Core network Total 1,411 
Bacteria - Bacteria 767 (54%) 
Bacteria - Protist 433 (31%) 
Protist - Protist 161 (11%) 

 Environmental factor - Bacteria 36 (3%) 
 Environmental factor - Protist 14 (1%) 
Picoplankton subnetwork Total 378 

Bacteria - Bacteria 241 (64%) 
Bacteria - Protist 94 (25%) 
Protist - Protist 31 (8%) 

 Environmental factor - Bacteria 12 (3% 
 Environmental factor - Protist 0 (0%) 
Nanoplankton subnetwork Total 791 

Bacteria - Bacteria 394 (50%) 
Bacteria - Protist 246 (31%) 
Protist - Protist 113 (14%) 

 Environmental factor - Bacteria 24 (3%) 
 Environmental factor - Protist 14 (2%) 

1 “Bacteria – Bacteria” indicates associations between two bacterial OTUs.  “Protist – Protist” are associations between two unicellular eukaryotes 423	
and “Bacteria – Protist” are associations between one eukaryote and one bacterial OTU. “Environmental factor – Protist” and “Environmental 424	
factor – Bacteria” are associations between an environmental factor and a eukaryotic or bacterial OTU.  425	
 426	

Network seasonality  427	

The indicator value (IndVal) was used to infer the seasonal preference of core OTUs. 428	

Most of the core OTUs (98%; 254 out of 259 OTUs) showed a clear preference for one 429	

of the four seasons, pointing to a marked seasonality in the core microbiota (Figure 4; 430	

Table 5; Tables S4 & S5). Winter had the highest quantity of core OTUs and the 431	

highest network connectivity (average degree ~13), compared to the other seasons 432	

(average degrees ~2 – ~6) [Figure 4; Table 5]. The average path length was larger in 433	

the core network compared to a random network of the same size (Table 3). Yet, all 434	

sub-networks associated with size fractions and seasons (Table 5) had shorter path 435	

lengths than the random network,  436	
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 that nodes tended to be connected within seasons and size fractions. This was also 437	

supported by an increase in network density when comparing the core network (Table 438	

3) and the core network subdivided into seasons (Table 5), against the core network 439	

subdivided into both seasons and size fractions (Table 5). The five OTUs that did not 440	

show any seasonal preference, among them SAR11 Clades Ia & II, showed high to 441	

moderate abundances but had a low number of associations to other OTUs (Tables S4, 442	

S5, S6). Thus, network connectivity in the BBMO appears to be heterogeneous over 443	

time, peaking in winter and remaining low in the other seasons. 444	

 445	

Table 5: Subnetworks including core OTUs displaying seasonal preference. 446	
 447	

 Sub-
network 

Number of 
OTUs 

Edges Di. De. Average 
degree 

Average 
path 

length 

Average 
clustering 
coefficient 

Largest 
clique 

(#) 

Mod. 

Al
l 

Winter 156 1,175 7 0.10 15.1 2.62 0.54 13(4) 0.19 
Spring 19 16 4 0.09 1.7 1.56 0.44 4(1) 0.75 
Summer 41 56 7 0.07 2.7 2.90 0.49 6(1) 0.53 
Autumn 26 25 3 0.08 1.9 1.59 0.46 4(2) 0.73 

Pi
co

 Winter 63 286 6 0.15 9.1 2.35 0.53 9(4) 0.10 
Spring 8 5 3 0.18 1.2 1.50 0.00 2(5) 0.56 
Summer 25 36 5 0.12 2.9 2.20 0.41 6(1) 0.23 
Autumn 5 3 2 0.30 1.2 1.25 0.00 2(3) 0.44 

Na
no

 Winter 92 658 6 0.16 14.3 2.40 0.61 13(4) 0.04 
Spring 11 11 4 0.20 2.0 1.59 0.57 4(1) 0.56 
Summer 13 17 3 0.22 2.6 1.70 0.65 4(1) 0.50 
Autumn 17 18 3 0.13 2.1 1.35 0.56 4(2) 0.60 

NB: Subnetworks include OTUs only. Di=Network diameter. De=Network density. Largest clique = size of the largest clique(s) in the network, 448	
and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness.  449	
	450	

Groups of highly associated OTUs  451	

Within the core network, we identified groups that were more connected to each other 452	

than to the rest of the network (called modules). These groups of OTUs may indicate 453	

recurring associations that are likely important for the stability of ecosystem function. 454	

We identified 12 modules in both the pico- and nanoplankton subnetworks (Table S7). 455	

Modules tended to include OTUs from the same season (Table S8), with main modules 456	

(i.e. MCODE score >4) including OTUs predominantly associated with winter, 457	

summer, and autumn (Figure 5). Overall, winter modules prevailed (5 out of 7) among 458	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435965doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435965
http://creativecommons.org/licenses/by-nc-nd/4.0/


22	

the main modules (Figure 5), while modules with scores ≤ 4 did not tend to be 459	

associated with a specific season (Table S8). Two main winter modules had members 460	

that were negatively correlated to temperature and daylength (Figure 5; Modules 1 and 461	

4, nanoplankton). 462	

The total relative sequence abundance of core OTUs included in modules was 463	

~24% (proportional to the resident microbiota), while the total abundance of individual 464	

modules ranged between ~6% and ~0.3% (Table S7). In turn, the relative abundance 465	

of core OTUs included in modules ranged between 0.01% and ~2% (Table S8). In most 466	

modules, a few OTUs tended to dominate the abundance, although there were 467	

exceptions, such as module 4 of the picoplankton, where all SAR11 members featured 468	

abundances >1% (Table S8). In addition, several OTUs within modules had relatively 469	

low abundances (Table S8), supporting modules as a real feature of the network and 470	

not just the agglomeration of abundant taxa. 471	

 472	

Central OTUs 473	

Biological networks typically contain nodes (i.e. OTUs) that hold more “central” 474	

positions in the network than others [22]. Even though the ecological role of these hub 475	

and connector OTUs is unclear, it is acknowledged that they could reflect taxa with 476	

important ecological functions [22]. There is no universal definition for hub or 477	

connector OTUs, yet, in this work, we have used stringent thresholds to determine them 478	

ad hoc (see Methods). We have identified 13 hub-OTUs that were associated with 479	

winter or spring (Table 6). Hubs did not include highly abundant OTUs, such as 480	

Synechococcus or SAR11 (Table 6), but instead, they included several OTUs with 481	

moderate-low abundance (<1%) and high degree (ranging between 26-60) [Table 6]. 482	

For example, the Gammaproteobacteria OTU bn_000226 had a relative abundance of 483	
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0.04% and a degree of 60 (Table 6). Hubs included other moderately abundant OTUs, 484	

such as the eukaryotic picoalgae Bathycoccus, which was abundant in winter, as well 485	

as an unidentified dinoflagellate (Table 6).  486	

We identified a total of 18 connector OTUs (featuring relatively low degree and 487	

high centrality), which were predominantly associated with summer (5 out of 18) or 488	

autumn (6 out of 18), contrasting with hub OTUs, which were associated mostly with 489	

winter and spring (Table 6). Connectors may be linked to the seasonal transition 490	

between main community states (Figure 1 C & D) and included several abundant 491	

OTUs belonging to Synechococcus and SAR11 (Table 6). In particular, the SAR11 492	

OTU bp_000007 displayed a relatively high abundance (1.4%), but a degree of 3 493	

(relatively low) and a betweenness centrality of 0.6 (relatively high). In contrast, two 494	

protist OTUs displayed low-moderate abundances (ep_00269, Chrysophyceae, 495	

abundance 0.04% and en_00161, Syndiniales, abundance 0.4%), low degree <4, but a 496	

high betweenness centrality (>0.8; Table 6).  497	

 498	

Table 6. Central OTUs 499	
OTU Class Lowest rank taxonomy Relative 

Abundance (%)1 
Degree Betweenness 

Centrality 
Closeness 
Centrality 

Season 

Hubs        
en_00092 Mamiellophyceae Bathycoccus 0.51 42 0.04 0.42 Winter 
en_00119 Dinophyceae - 0.41 50 0.03 0.42 Winter 
bp_000037 Alphaproteobacteria Parvibaculales_OCS116 0.31 45 0.08 0.43 Winter 
bp_000039 Gammaproteobacteria SUP05_cluster 0.28 29 0.12 0.41 Spring 
bn_000039 Gammaproteobacteria SUP05_cluster 0.21 42 0.17 0.44 Spring 
bn_000037 Alphaproteobacteria Parvibaculales_OCS116 0.20 40 0.05 0.42 Spring 
bp_000059 Gammaproteobacteria SAR86 0.20 24 0.09 0.40 Spring 
ep_00070 Cryptophyceae Cryptomonadales_X 0.13 40 0.04 0.42 Winter 
bn_000059 Gammaproteobacteria SAR86 0.12 24 0.03 0.40 Spring 
bn_000102 Alphaproteobacteria Nisaeaceae_OM75 0.09 26 0.03 0.38 Winter 
bp_000193 Alphaproteobacteria - 0.06 37 0.03 0.40 Winter 
bn_000170 Acidimicrobiia Sva0996_marine_group 0.06 59 0.06 0.44 Winter 
bn_000226 Gammaproteobacteria HOC36 0.04 60 0.06 0.43 Winter 
  Connectors        
bp_ 000001 Oxyphotobacteria Synechococcus (CC9902) 3.79 5 0.05 0.30 Autumn 
bp_ 000002 Alphaproteobacteria SAR11 Clade_Ia 2.26 2 0.40 0.56 Spring 
bp_ 000004 Alphaproteobacteria SAR11 Clade_Ia 2.02 3 0.15 0.63 NA 
bp_ 000007 Alphaproteobacteria SAR11 Clade_Ia 1.38 3 0.60 0.71 NA 
bp_ 000008 Alphaproteobacteria SAR11 Clade_Ia 1.15 3 0.15 0.63 NA 
bn_ 000008 Alphaproteobacteria SAR11 Clade_Ia 0.68 5 0.03 0.27 Winter 
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en_ 00059 Chlorodendrophyceae Tetraselmis 0.66 4 0.05 0.26 Summer 
bn_ 000020 Oxyphotobacteria - 0.56 3 0.60 0.67 Autumn 
en_ 00161 Syndiniales Syndiniales-Group-I-Clade-4_X 0.42 4 0.80 0.75 Autumn 
bn_ 000018 Oxyphotobacteria Prochlorococcus MIT9313 0.41 5 0.04 0.24 Winter 
bn_ 000054 Alphaproteobacteria Puniceispirillales_SAR116 0.11 4 0.14 0.40 Autumn 
bn_ 000062 Alphaproteobacteria Puniceispirillales_SAR116 0.08 3 0.55 0.50 Autumn 
bn_ 000077 Rhodothermia Balneola 0.07 3 0.17 0.32 Summer 
bn_ 000112 Gammaproteobacteria KI89A 0.06 4 0.53 0.48 Summer 
bn_ 000156 Alphaproteobacteria Parvibaculales_PS1 0.05 4 0.14 0.40 Summer 
bn_ 000281 Bacteroidia Sphingobacteriales_NS11-12 0.05 5 0.16 0.44 Autumn 
bn_ 000221 Alphaproteobacteria Puniceispirillales_SAR116 0.04 5 0.05 0.30 Winter 
ep_ 00269 Chrysophyceae Clade-I_X 0.04 2 1.00 1.00 Summer 

1 Proportional to the resident microbiota 500	
 501	
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	502	
Figure 5. Main modules in the core network. Modules with MCODE score >4 are shown for 503	

picoplankton (upper panel) and nanoplankton (lower panel). For each module, the MCODE score 504	

and relative amplicon abundance of the taxa included in it (as % of the resident microbiota) are 505	

indicated. In addition, the numbers of edges and OTUs within the modules are shown as 506	

edges/OTUs; this quotient estimates the average number of edges per OTU within the different 507	

modules. The edges represent correlations with |LS| > 0.7, |ρ|>0.7, P<0.001 and Q<0.001. The 508	

color of the edges indicates positive (grey) or negative (red) associations. The shape of nodes 509	
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indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents 510	

species seasonal preferences, determined using the indicator value (p<0.05). pb = 511	

Proteobacteria 512	

 513	

 514	

DISCUSSION 515	

Identifying the most important microbes for the functioning of the ocean ecosystem is 516	

a challenge, which can be addressed by delineating core microbiotas [4]. Recognizing 517	

the most abundant and widespread microbes in the ocean is a step towards knowing the 518	

core microbiota. However, this does not take into account the importance that both 519	

microbial interactions and microbes with moderate or low abundance may have for the 520	

functioning of ecosystems  [4, 29, 38]. Considering potential interactions when 521	

delineating core microbiotas may not only allow identifying moderate/low abundance 522	

taxa that may have important roles in the community but could also allow excluding 523	

taxa that are present in several locations but that may not have an important role for 524	

community function (e.g., dormant cells or cells being dispersed [8]). Here, we have 525	

delineated and analyzed the core microbiota of a coastal ecosystem-based on 10 years 526	

of occurrence data considering possible interactions.  527	

 To detect the core microbiota, we first identified the resident OTUs, that is, 528	

those that occur >30% of the time (i.e. >36 out of 120 months) over a decade. This 529	

threshold was selected as it allows for seasonal OTUs that would be present recurrently 530	

in at least one season. Analysis of the resident OTU dynamics indicated a clear 531	

seasonality (Figure 1 C-D), and that the measured environmental factors could explain 532	

~45% of the resident microbiota variance. The main environmental drivers were 533	

temperature and daylength, which is consistent with previous works from the same 534	

time-series (BBMO) [34, 39, 40]. These values are lower than what has been reported 535	
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for bacteria in the English Channel, where daylength explains ~65% of community 536	

variance [17], and higher than what has been reported for entire communities in the 537	

time-series SPOT (California, 31%) [41] or SOLA (the Mediterranean Sea, ~130 km 538	

from BBMO; 7-12%) [42]. Daylength may be more important in the English Channel 539	

as it has a more pronounced annual variation than at BBMO, whereas the measured 540	

differences could reflect a higher coupling of the resident OTUs with environmental 541	

variation in BBMO than in SOLA or SPOT. SOLA is characterized by the occasional 542	

winter storms that bring nutrients from the sediments to the water column as well as by 543	

the freshwater inputs from nearby rivers during flash floods [43], and this could 544	

partially explain the differences with BBMO. The importance of daylength and 545	

temperature for community dynamics was reflected by niche analyses, which identified 546	

two main niches associated with summer and winter at the BBMO, to which ~50% of 547	

the resident OTUs were associated (Figure 1 E-F). Other resident OTUs likely have 548	

spring and fall niches as indicated by Figure 1 C-D, yet these niches cannot be detected 549	

with the used null model analysis, as their preferred temperatures or daylengths will not 550	

depart significantly from the randomized mean.  551	

 Based on the resident OTUs, we built networks to define the core microbiota. 552	

We identified a total of 259 core OTUs (182 bacteria and 77 protists) that represented 553	

64% of the abundance of the resident microbiota and that showed seasonal variation. 554	

We could only find supporting evidence from the literature (PIDA database) [21] for 555	

85 associations of the core (6 %), indicating that most of them still need to be validated 556	

with direct observation or experimentally. This is not surprising, as the most studied 557	

hosts in PIDA are protists from the micro-plankton (>20 µm cell size), which are mostly 558	

absent from our pico- and nanoplankton networks. Also, PIDA does not cover Bacteria-559	

Bacteria associations. Nevertheless, the detected core OTUs from BBMO represent a 560	
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fraction of the core microbiota at this site, since larger microbial size fractions were not 561	

sampled. Including these larger size fractions would expand the composition of the core 562	

and could unveil additional patterns. For example, in a global ocean network including 563	

size fractions >20 µm cell size, protists or small multicellular eukaryotes dominated the 564	

interactome [26].  565	

 Alpha-/Gammaproteobacteria, Bateroidia, Acidimicrobiia were the main 566	

bacterial groups in the core, including also common marine taxa, such as 567	

Synechococcus or SAR11. The main protists in the core included Syndiniales 568	

(parasites), Dinoflagellates, Mammiellales (Micromonas and Bathycoccus), and 569	

diatoms. These taxa are likely the most important in sustaining ecosystem function at 570	

BBMO, and probably have similar importance in other coastal areas. Other studies have 571	

reported important roles in marine association networks for SAR11 and Synechococcus 572	

[31, 44]. Syndiniales, Haptophytes, and Dinoflagellates dominated networks in terms 573	

of the number of nodes and edges at SPOT, while Mamiellales (Micromonas & 574	

Bathycoccus) and diatoms also had relevant roles [41].  Syndiniales, Dinoflagellates, 575	

and Diatoms were also predominant in global ocean networks, which is coherent with 576	

our results [26].  577	

 Bacteria-Bacteria associations were the most abundant (54%) in the core 578	

BBMO microbiota, followed by Bacteria-Protists (31%) and Protist-Protist (11%) 579	

associations. Associations tended to occur among bacteria or protists, rather than 580	

between them, in the English Channel time-series [17]. However, the study used 581	

microscopy to determine protist community composition, while it used 16S-rRNA gene 582	

data for analyzing bacteria communities and this might explain the limited number of 583	

connections between protists and bacteria. Most associations occurred among protists 584	

in a global-ocean network that included a broad range of microbial size-fractions [26]. 585	
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This suggests that time-series analyses including larger size-fractions may determine a 586	

higher proportion of associations among protists, which may turn out to be prevalent.  587	

The core network had “small world” properties (that is, high clustering 588	

coefficient and relatively short path lengths) [37] when compared to randomized 589	

networks (Table 3) or particular subnetworks from size fractions or specific seasons 590	

(Table 5). The small-world topology is characteristic of many different types of 591	

networks [45], including marine microbial temporal or spatial networks [23, 26, 30, 592	

31]. Some of our network statistics were similar to those obtained at SPOT [23, 30], in 593	

particular the averages of degree, clustering coefficient, and path length (Table 3). 594	

Furthermore, the BBMO network had an average path length similar to a global ocean 595	

network [26] and also, similarly to this network, the node degree of the BBMO core 596	

members was independent of their relative abundances, showing that the associations 597	

between core OTUs were not merely a consequence of high prevalence and abundance.  598	

The BBMO core network had a clustering coefficient that was ten times larger 599	

than that of an Erdős–Rényi random network of the same size (Table 3), which agrees 600	

with what was observed at SPOT [23, 30]. The large proportion of positive associations 601	

in BBMO networks (~95%) was in agreement with results from other temporal [23, 41] 602	

or large-scale spatial [26] microbiota analyses, where positive associations were also 603	

predominant (~70-98%), although these values include taxa that are not necessarily part 604	

of the core. This suggests that interactions such as syntrophy or symbiotic associations 605	

are more important than competition in marine microbial systems and that these types 606	

of associations may underpin marine ecosystem function. These findings are also 607	

coherent with a recent large-scale literature survey that found that ~47% of the validated 608	

associations between protists and bacteria are symbiotic [21]. Nevertheless, it is also 609	

possible that common sampling strategies and methodological approaches do not detect 610	
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a substantial fraction of negative associations. For example, while positive correlations 611	

in taxa abundance pointing to positive interactions may be easier to detect, negative 612	

associations may be missed due to plummeting species abundances that would prevent 613	

establishing significant correlations, or to a delay between the increase and decrease in 614	

abundance of interacting taxa that are not synchronized with sampling time. Future 615	

studies adapting the sampling scheme to the timing of interactions (e.g., daily or weekly 616	

sampling) and the use of other approaches apart from taxa abundances, such as analyses 617	

of single-cell genomic data to determine protistan predation, or controlled experiments, 618	

will likely generate new insights on negative microbial interactions. 619	

The relatively high clustering coefficient of the core network (compared to a 620	

random network) and its short path length indicate that most OTUs are connected 621	

through < 3 intermediary OTUs. It has been shown that a large proportion of strong 622	

positive associations, as in the BBMO core network, may destabilize communities due 623	

to positive feedbacks between species [46]. When a species decreases in abundance as 624	

a response to environmental variation, it may pull others with it, generating a cascade 625	

effect propagated by the many positive associations in the network. Accordingly, the 626	

change of abundance in specific OTUs in one section of the network could affect OTUs 627	

in other network sections not necessarily affected directly by the environmental 628	

variation. This cascade effect may help to explain a paradox: environmental variables 629	

affect the structure of marine microbial communities and consequently association 630	

networks. Yet, our and others' results [17, 18, 23, 26, 30-32] have reported a limited 631	

number of associations between environmental variables and network nodes (OTUs). 632	

Environmental heterogeneity might affect network structure by acting on a small subset 633	

of nodes (OTUs), which would then influence other nodes through cascading 634	
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interactions facilitated by the highly interconnected nature of the networks as well as 635	

positive feedbacks promoted by the high proportion of positive associations [46].  636	

If OTUs susceptible to environmental variation are also highly connected, then 637	

their effect on the entire network structure may be larger. In line with this, we found 638	

that the connectivity of OTUs associated with environmental variables at BBMO (49 639	

OTUs out of 259) had a mean degree of ~25 (SD ~14), while for all the 259 OTUs of 640	

the core network, the mean degree was ~11 (SD ~13). The seasonal dynamics of the 641	

BBMO microbiota may partially be driven by a subset of OTUs that vary with 642	

environmental factors (e.g. temperature, daylength). These may exert a destabilizing 643	

influence over the entire community over time, promoting the annual turnover of 644	

communities and networks.  645	

Most core OTUs (98%) showed a clear preference for one season. Interestingly, 646	

the distribution of core OTUs among the seasons was uneven, with 61% of these OTUs 647	

showing a winter preference. Network connectivity at BBMO was correspondingly 648	

heterogeneous between seasons, peaking in winter and remaining low in the other 649	

seasons. Specifically, the winter subnetwork included ~92% of the seasonal edges. This 650	

indicates that winter associations are not only specific (i.e. they do not tend to change 651	

partners), but they also have a relatively high recurrence (otherwise, winter networks 652	

would be smaller). A higher similarity between winter communities when compared to 653	

other seasons was also indicated by our ordination analyses of the resident OTUs 654	

(Figure 1), as well as by studies of the entire protist community at BBMO [34] or whole 655	

community analyses at SPOT [23].  656	

The structure of communities is determined by the interplay of selection, 657	

dispersal, speciation, and ecological drift [47]. Our results indicate that selection, a 658	

deterministic process, is stronger in winter, leading to winter sub-communities that tend 659	
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to be more similar between each other than to communities from other seasons. Given 660	

that we have removed edges associated with the measured environmental variables, we 661	

do not expect that the identified edges between winter OTUs represent selection 662	

associated to these variables (e.g. low temperature). Consequently, winter edges may 663	

represent associations linked to unmeasured variables or ecological interactions that 664	

may be more likely to develop during winter due to stronger environmental selection. 665	

Due to weaker selection in other seasons species occurrence would display less 666	

recurrent (or more random) patterns, preventing specific associations to be formed. This 667	

also suggests that ecological redundancy changes over time, and is lower in winter 668	

compared to the other seasons (even though the number of OTUs is larger in winter). 669	

A reduction in redundancy may also promote strong ecological interactions in winter. 670	

 The existence of subsets of species that interact more often between themselves 671	

than with other species (modules), is characteristic of biological networks, and can 672	

contribute to overall network stability [48, 49]. Modules can represent divergent 673	

selection, niches, the clustering of evolutionary closely related species or co-674	

evolutionary units [50, 51]. Modules in the core BBMO network (total 12) included 675	

positive associations between diverse taxa, and could represent divergent selection, 676	

driven by unmeasured environmental variables, or examples of syntrophic or symbiotic 677	

interactions between microbes from different taxonomic groups.  678	

Most BBMO modules included diverse lifestyles (heterotrophs, mixotrophs, 679	

phototrophs, parasites), similar to what has been observed at SPOT [41]. Yet, a number 680	

of modules appeared to be predominantly heterotrophic or autotrophic (Table S8). 681	

Some modules included OTUs from the same species, such as Module 4 in the 682	

picoplankton, which included several SAR11 Clade I OTUs, and Module 7 of the 683	

nanoplankton, which included several Synechococcus OTUs. These modules could 684	
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reflect similar niches, associated with unmeasured variables, or the dependence on 685	

metabolites produced by other organisms (auxotrophy). There is evidence of 686	

auxotrophy for both SAR11 (e.g. thiamin, glycine)[52-54] and Synechococcus (e.g. 687	

cobalamin) [55]. Recently it has been observed in co-culture experiments that 688	

Prochlorococcus may fulfill some metabolic requirements of SAR11, promoting the 689	

growth of the latter in a commensal relationship [56]. In our analyses of the BBMO 690	

core microbiota, we did not find strong associations between SAR11 and 691	

Prochlorococcus or the more abundant relative, Synechococcus. Yet, SAR11 formed 692	

strong associations with a plethora of taxa with which could potentially have 693	

commensal relationships. 694	

The overall importance of the observed modules was indicated by the total 695	

abundance of their constituent OTUs (24% of the reads compared to the resident 696	

microbiota). Most of the modules at BBMO were associated with a single season, 697	

suggesting that they reflect seasonal niches. Since these modules were inferred over 10 698	

years, they represent recurrent network features. Chafee et al. [57] also identified 699	

season-specific modules in a 2-year time series in the North Sea (Helgoland), including 700	

samples taken weekly or bi-weekly. These modules were much larger than ours, and 701	

they may also include environmentally-driven edges. Nevertheless, the Helgoland 702	

modules seem to be driven by eutrophic (spring & summer) vs. oligotrophic (autumn 703	

& winter) conditions in this location. In contrast, the BBMO modules, displayed weaker 704	

correlations with nutrients and seem to be influenced by temperature and daylength 705	

(Figure 5). Differences in the sampling scheme between Helgoland and BBMO 706	

((bi)weekly vs. monthly) as well as between both locations (different seas and latitudes, 707	

affecting temperature and daylength) may explain these differences. 708	
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 Keystone species have a high influence in ecosystems relative to their 709	

abundance [58]. Network analyses may help to identify them [24, 59], yet, there is no 710	

clear consensus of what network features are the best unequivocal indicator of keystone 711	

species [60-62]. Therefore, we focused on identifying central OTUs (hubs or 712	

connectors) that may be important for ecosystem function [22, 24] and could represent 713	

keystone species. We identified 13 hubs in the BBMO core network with moderate-low 714	

abundances (<1%) and high degree (26-60) that were associated with winter or spring. 715	

These moderate-low abundance OTUs may affect nutrient cycling directly [63] or 716	

indirectly, by affecting other OTUs with higher abundance. The putative stronger 717	

selection exerted by low temperatures and short daylengths during winter and early 718	

spring, as compared to summer and autumn, may lead to a higher species recurrence 719	

[34], larger networks, and possibly, more hubs. An OTU of the abundant picoalgae 720	

Bathycoccus (en_00092) was identified as a winter hub, which is consistent with 721	

reported Bathycoccus abundance peaks in late winter (February-March) in both BBMO 722	

[64] and the nearby station SOLA [42]. This Bathycoccus hub may be associated with 723	

diverse taxa, such as prokaryotes that may benefit from algal exudates [65] or even via 724	

mixotrophy [66]. In agreement with this, out of the 42 associations of this hub OTU, 725	

25 were with bacteria and the rest with protists. 726	

In contrast to hubs, connector OTUs were predominantly associated with 727	

warmer waters, that is, summer and autumn, and may represent transitions in 728	

community states. This was consistent with the associations observed in an abundant 729	

Synechococcus connector OTU (bp_000001, Table 6). This OTU was predominant in 730	

summer-autumn, in agreement with previous BBMO reports [36, 67], but it was 731	

associated with other OTUs from spring (negative association with bp_000017), winter 732	

(negative association with bp_000039), summer (positive association with bp_000087, 733	
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bp_000012) and autumn (positive association with bp_000022), thus likely holding a 734	

central position in the network. Another abundant spring connector OTU (SAR11 Clade 735	

Ia, bp_000002), featured only two connections to spring (positive association with 736	

bp_000007) and summer (positive association with bp_000046) OTUs. 737	

 738	

CONCLUSION 739	

Our decade-long analysis of the dynamics of a microbiota populating a time-series in 740	

the Mediterranean Sea allowed us to determine the interconnected core microbiota, 741	

which likely includes several microbes that are important for the functioning of this 742	

coastal ecosystem. We found a relatively small core microbiota that displayed seasonal 743	

variation, with a heterogeneous distribution of associations over different seasons, 744	

indicating different degrees of recurrence and selection strength over the year. Future 745	

analyses of other core marine microbiotas will determine how universal are the patterns 746	

found in BBMO. These studies will be crucial to determine potential long-term effects 747	

of climate change on the architecture of the interaction networks that underpin the 748	

functioning of the ocean ecosystem.  749	

METHODS 750	

Study site and sampling  751	

Surface water (~1 m depth) was sampled monthly from January 2004 to December 752	

2013 at the Blanes Bay Microbial Observatory (BBMO) in the Northwestern 753	

Mediterranean Sea (41º40’N, 2º48’E) [Figure 1A]. The BBMO is an oligotrophic 754	

coastal site ~1 km offshore with ~20 m depth and with limited riverine or human 755	

influence [36]. Seawater was pre-filtered with a 200 µm nylon mesh and then 756	

transported to the laboratory in 20 L plastic carboys and processed within 2 hours. 757	

Microbial plankton from about 6 L of the pre-filtered seawater was separated into two 758	
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size fractions: picoplankton (0.2-3 µm) and nanoplankton fraction (3-20 µm).  To 759	

achieve this, the seawater was first filtered through a 20 µm nylon mesh using a 760	

peristaltic pump. Then the nanoplankton (3-20 µm) was captured on a 3 µm pore-size 761	

polycarbonate filter. Subsequently, a 0.2 µm pore-size Sterivex unit (Millipore, 762	

Durapore) was used to capture the picoplankton (0.2-3 µm). Sterivex units and 3 µm 763	

filters were stored at -80 ºC until further processed. The sequential filtering process 764	

aimed to capture free-living bacteria and picoeukaryotes in the 0.2-3 µm size fraction 765	

(picoplankton), and particle/protist-attached bacteria or nanoeukaryotes in the 3-20 µm 766	

fraction (nanoplankton). The 3µm filter was replaced if clogging was detected; DNA 767	

from all 3µm filters from the same sample were extracted together. 768	

A total of 15 contextual abiotic and biotic variables were considered for each 769	

sampling point: Daylength (hours of light), Temperature (°C), Turbidity (estimated as 770	

Secchi disk depth [m]), Salinity, Total Chlorophyll a [Chla] (µg/l), PO43- (µM), NH4+ 771	

(µM), NO2- (µM), NO3- (µM), SiO2 (µM), abundances of Heterotrophic prokaryotes 772	

[HP] (cells/ml), Synechococcus (cells/ml), Total photosynthetic nanoflagellates [PNF; 773	

2-5µm size] (cells/ml), small PNF (2µm ; cells/ml) and, Heterotrophic nanoflagellates 774	

[HNF] (cells/ml) [Figure 1B]. Water temperature and salinity were sampled in situ with 775	

a SAIV A/S SD204 CTD. Inorganic nutrients  (NO3-, NO2-, NH4+, PO43-, SiO2) were 776	

measured using an Alliance Evolution II autoanalyzer [68]. Cell counts were done by 777	

flow cytometry (heterotrophic prokaryotes, Synechococcus) or epifluorescence 778	

microscopy (PNF, small PNF and HNF). See Gasol et al. [36] for specific details on 779	

how other variables were measured. Environmental variables were z-score standardized 780	

before running statistical analysis. 781	

 782	

DNA extraction, sequencing, and metabarcoding 783	
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DNA was extracted from the filters using a standard phenol-chloroform protocol [69], 784	

purified in Amicon Units (Millipore), and quantified and qualitatively checked with a 785	

NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific). Eukaryotic PCR 786	

amplicons were generated for the V4 region of the 18S rDNA (~380 bp), using the 787	

primer pair TAReukFWD1 and TAReukREV3 [70]. The primers Bakt_341F [71] and 788	

Bakt_806RB [72] were used to amplify the V4 region of the 16S rDNA. PCR 789	

amplification and amplicon sequencing were carried out at the Research and Testing 790	

Laboratory (http://rtlgenomics.com/) on the Illumina MiSeq platform (2x250 bp paired-791	

end sequencing). DNA sequences and metadata are publicly available at the European 792	

Nucleotide Archive (http://www.ebi.ac.uk/ena; accession numbers PRJEB23788 for 793	

18S rRNA genes & PRJEB38773 for 16S rRNA genes). 794	

A total of 29,952,108 and 16,940,406 paired-end Illumina reads were produced 795	

for microbial eukaryotes and prokaryotes respectively. Adapters and primers were 796	

removed with Cutadapt v1.16 [73]. DADA2 v1.10.1 [74] was used for quality control, 797	

trimming, and inference of Operational Taxonomic Units (OTUs) as Amplicon 798	

Sequence Variants (ASVs). For both microbial eukaryotes and prokaryotes, the 799	

Maximum number of expected errors (MaxEE) was set to 2 and 4 for the forward and 800	

reverse reads respectively. No ambiguous bases (Ns) were allowed. Microbial 801	

eukaryotic sequences were trimmed to 220 bp (forward) and 190 bp (reverse), while 802	

prokaryotic sequences were trimmed to 225 bp (both forward and reverse reads). A 803	

total of 28,876 and 19,604 OTUs were inferred for microbial eukaryotes and 804	

prokaryotes respectively. 805	

OTUs were assigned taxonomy using the naïve Bayesian classifier method [75] 806	

together with the SILVA version 132 [76] database as implemented in DADA2. 807	

Eukaryotic OTUs were also BLASTed [77] against the Protist Ribosomal Reference 808	
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database (PR2, version 4.10.0; [78]). When the taxonomic assignments for the 809	

eukaryotes disagreed between SILVA and PR2, the conflict was resolved manually by 810	

inspecting a pairwise alignment of the OTU and the closest hits from the two databases. 811	

OTUs assigned to Metazoa, Streptophyta, nucleomorph, chloroplast, and mitochondria 812	

were removed before further analysis. Archaea were removed from downstream 813	

analyses as the used primers are not optimal for recovering this domain [79]. 814	

Each sample (corresponding to a specific gene, size fraction, and timepoint) was 815	

subsampled with the rrarefy function from the R package Vegan [80] to 4,907 reads, 816	

corresponding to the number of reads in the sample with the lowest sequencing depth, 817	

to normalize for different sequencing depth between samples. OTUs present in <10% 818	

of the samples were removed. After quality control and rarefaction, the number of 819	

OTUs was 2,926 (1,561 bacteria, and 1,365 microeukaryotes; Table 1).   820	

Due to a suboptimal sequencing of the amplicons, we did not use nanoplankton 821	

samples of bacteria and protists from the period May 2010 to July 2012 (27 samples) 822	

as well as March 2004 and February 2005. OTU read abundance for samples with 823	

missing values were estimated using seasonally aware missing value imputation by 824	

weighted moving average for time series as implemented in the R package imputeTS 825	

[81].  826	

Cell/particle dislodging or filter clogging during the sequential filtration process 827	

may affect the taxonomic diversity observed in the different size fractions, with 828	

nanoplankton DNA leaking into the picoplankton fraction, or picoplankton DNA 829	

getting stuck in the nanoplankton fraction. To minimize the effects of cell/particle 830	

dislodging or filter clogging on the diversity recovered from the different size fractions, 831	

we calculated the sequence-abundance ratio for OTUs appearing in both pico- and 832	

nano-plankton fractions. When the ratio exceeded 2:1, we removed the OTU from the 833	
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size fraction with the lowest number of reads. After subsampling and filtering the OTU 834	

tables were joined for each time point, and since the samples had been normalized to 835	

the same sequencing depth, we calculated the relative read abundance for the OTUs for 836	

each year and aggregated over the corresponding months along the 10 years for the 837	

resident microbiota. This means that the relative abundance for both domains and size 838	

fractions sums up to 1 for each month across ten years.  839	

 840	

Resident microbiota 841	

We defined ad hoc the resident microbiota as the set of OTUs present in >30% of the 842	

samples over 10 years (that is, present in >36 months, not necessarily consecutive). 843	

This value was chosen as it allows for seasonal OTUs, which may only be present 3-4 844	

months each year, and still be considered as part of the resident microbiota. The 845	

residents included 355 eukaryotic and 354 bacteria OTUs (Table 1), and excluded a 846	

substantial amount of rare OTUs, which can cause spurious correlations during network 847	

construction due to sparsity [i.e. too many zeros] [22]. The relative abundance of the 848	

taxonomic groups included in the resident microbiota was fairly stable from year to 849	

year (Figure 3).  850	

 851	

Environmental variation and resident OTUs 852	

All possible correlations among the measured environmental variables and resident 853	

OTU richness and abundance were computed in R and plotted with the package 854	

corrplot. Only significant Pearson correlation coefficients were considered (p<0.01), 855	

and the p-values were corrected for multiple inference (Holm's method) using the 856	

function rcorr.adjust from the R package RcmdrMisc. Unconstrained ordination 857	

analyses were carried out using NMDS based on Bray Curtis dissimilarities between 858	
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samples including resident OTUs only. Environmental variables were fitted to the 859	

NMDS using the function envfit from the R package Vegan	 [80]. Only variables 860	

displaying a significant correlation (p<0.05) were considered. Constrained ordination 861	

was performed using distance-based redundancy analyses (dbRDA) in Vegan, 862	

considering Bray Curtis dissimilarities between samples including resident OTUs only. 863	

The most relevant variables for constrained ordination were selected by stepwise model 864	

selection using 200 permutations, as implemented in ordistep (Vegan). Ordinations 865	

were plotted using the R package ggplot2 and ggord. The amount of community 866	

variance explained by the different environmental variables was calculated with Adonis 867	

(Vegan) using 999 permutations. Resident OTUs displaying niche preference in terms 868	

of Temperature and Daylength, the most important environmental variables, were 869	

determined using the function niche.val from the R package EcolUtils with 1,000 870	

permutations. 871	

 872	

Delineation of seasons 873	

Seasons were defined following Gasol et al. [36] with a small modification: months 874	

with water temperature (at the sampling time) >17 °C and daylength >14 h d-1 were 875	

considered to be summer. Months with water temperature <17 °C and < 11 h d-1 of 876	

daylength were considered to be winter. Months with water temperature >17°C and 877	

daylength <14 h d-1 were considered as autumn, while months with water temperature 878	

<17°C and > 11 h d-1 of daylength were considered to be spring. The indicator value 879	

[82] was calculated using the R package labdsv [83] to infer OTU seasonal preference.  880	

 881	

Core microbiota delineated using networks 882	
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OTUs from the resident microbiota together with the 15 environmental variables were 883	

used to construct association networks using extended Local Similarity Analysis 884	

(eLSA) [84-86]. eLSA was run on the OTU table with subsampled reads with default 885	

normalization: a z-score transformation using the median and median absolute 886	

deviation. P-value estimations were run under a mixed model that performs a random 887	

permutation test of a co-occurrence only if the theoretical p-values for the comparison 888	

are <0.05. Bonferroni false discovery rate (q) was calculated for all edges based on the 889	

p-values using the p.adjust package in R. 890	

To detect environmentally-driven associations between OTUs induced by the 891	

measured environmental variables we used the program EnDED [87]. 892	

Environmentally-driven associations indicate similar or different environmental 893	

preferences between OTUs and not ecological interactions. In short, EnDED evaluates 894	

associations between two OTUs that are both connected to the same environmental 895	

variable based on a combination of four methods: Sign Pattern, Overlap, Interaction 896	

Information, and Data Processing Inequality. These methods use the sign (positive or 897	

negative) and the duration of the association, the relative abundance of OTUs as well 898	

as environmental parameters to determine if an association is environmentally-driven. 899	

If the four methods agreed that an association was environmentally-driven, then it was 900	

removed from the network. The initial number of edges was 199,937, of which 180,345 901	

were OTU-OTU edges that were at least in one triplet with an environmental parameter. 902	

In total 65,280 (~33%) edges in the network were identified as indirect by EnDED and 903	

removed. Afterward, only edges representing the strongest associations (i.e., absolute 904	

local similarity score |LS| > 0.7, Spearman correlation |ρ| > 0.7, P<0.001 and Q<0.001) 905	

were retained for downstream analysis and are hereafter referred to as “core 906	

associations”. Those OTUs participating in core associations were defined as core 907	
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OTUs, although their involvement in ecological interactions need further experimental 908	

validation. Both core associations and core OTUs constitute the “core network”, which 909	

also represents the core microbiota (both “core network” and “core microbiota” are 910	

used indistinctively). The core network was randomized using the Erdős–Rényi model 911	

[88], using 262 nodes and 1,411 edges. 912	

For the core network, we calculated: 1) Density: quantifies the proportion of 913	

actual network connections out of the total number of possible connections, 2) 914	

Transitivity or Clustering coefficient: measures the probability that nodes connected to 915	

a node are also connected, forming tight clusters, 3) Average path length: mean number 916	

of steps (edges) along the shortest paths for all possible pairs of nodes in the network 917	

(a low average path length indicates that most species in the network are connected 918	

through a few intermediate species), 4) Degree: number of associations per node, 5) 919	

Betweenness centrality: measures how often an OTU (node) appears on the shortest 920	

paths between other OTUs in the network, 6) Closeness centrality: indicates how close 921	

a node is to all other nodes in a network, 7) Cliques: refers to sets of interconnected 922	

nodes where all possible connections are realized, 8) Modularity: measures the division 923	

of a given network into modules (that is, groups of OTUs that are highly interconnected 924	

between themselves). 925	

The Degree, Betweenness centrality and Closeness centrality were used to 926	

identify central OTUs using ad hoc definitions. “Hub” OTUs were those with a score 927	

above the average for the three statistics and were normally among the top 25% in each 928	

score [22, 62, 89]. Specifically, hub OTUs featured a degree >24, Betweenness 929	

centrality >0.03 and Closeness centrality >0.3. Similarly, “connector” OTUs were 930	

defined as those featuring a relatively low degree and high centrality and could be seen 931	

as elements that connect different regions of a network or modules  [50]. Connector 932	
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OTUs featured a degree <5, Betweenness centrality > 0.03 and Closeness centrality 933	

>0.2. Network statistics were calculated with igraph in R [90] , Gephi [91]  and 934	

Cytoscape v3.6.1 [92]. Visualizations were made in Cytoscape v3.6.1. Modules in the 935	

core network were identified with MCODE [93].  936	
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Supplementary Figures 1242	
 1243	

 1244	
 1245	
Supplementary Figure 1. Panel A shows the full network constructed with the 1246	
resident microbiota (that is, OTUs present in >30% of the samples over 10 years; Table 1247	
1). Panel B displays network elements that were removed as they did not fulfill the cut-1248	
offs (that is, highly significant correlations (P & Q <0.001), local similarity scores >|0.7| 1249	
and Spearman correlations >|0.7|). 1250	
 1251	
  1252	
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 1255	
 1256	
Supplementary Figure 2. OTU relative abundance vs. degree shows no relationship 1257	
in the core network. 1258	
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