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Abstract

Motivation: Bioinformatic tools capable of annotating, rapidly and reproducibly, large, targeted lipidomic

datasets are limited. Specifically, few programs enable high-throughput peak assessment of liquid

chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) data acquired in

either selected or multiple reaction monitoring (SRM and MRM) modes.

Results: We present here Bayesian Annotations for Targeted Lipidomics (BATL), a Gaussian naïve Bayes

classifier for targeted lipidomics, that annotates peak identities according to eight features related to

retention time, intensity, and peak shape. Lipid identification is achieved by modelling distributions of

these eight input features across biological conditions and maximizing the joint posterior probabilities of

all peak identities at a given transition. When applied to sphingolipid and glycerophosphocholine SRM

datasets, we demonstrate over 95% of all peaks are rapidly and correctly identified.

Availability: The BATL software is available on GitHub at https://github.com/lipidomic-uottawa/batl

Contact: tperkins@ohri.ca and sbennet@uottawa.ca

Supplementary information: Supplementary data are available below.

1 Introduction

Targeted lipidomics employs liquid chromatography coupled to tandem

mass spectrometry via electrospray ionization (LC-ESI-MS/MS). Using

selected and multiple reaction monitoring (SRM and MRM) modes, pairs

of parent and product ions (transitions), are monitored to quantify lipids of

interest. Targeted transition lists are constructed based on prior knowledge

of lipid fragmentation pathways as reported in literature, (e.g., Murphy

and Axelsen (2011)) obtained through exploration of MS/MS spectra for

untargeted lipidomic analyses, and/or by performing other semi-targeted,

unbiased lipid approaches, such as prior assessment of a given matrix

in precursor ion scan mode (Sartain et al., 2011). Once parent and

product ion pairs are identified, parking on a single product ion effectively

reduces interfering signals generated by isobaric lipids from other classes,

enabling SRM and MRM modes to excel at high-throughput quantitation

of both high and low abundance species (Bowden et al., 2017). These

approaches have been used to successfully map fluid and cell-specific

lipidomes (Quehenberger et al., 2010; Slatter et al., 2016; Sartain et al.,

2011), reveal lipidomic disruptions across biological conditions (Wang

et al., 2018; Alecu and Bennett, 2019), and predict changes in lipid

metabolism associated with disease progression (Granger et al., 2019;

Alshehry et al., 2016; Blasco et al., 2017)

While the concept of targeting individual lipid species in SRM and

MRM modes appears straightforward, identifying lipids from targeted

lipidomic approaches remain a significant challenge, as exemplified in

Figure 1. Multiple isobars, isomers, and isotopologues, sharing the same

product ion, can elute in close proximity to the lipid target. Moreover,
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Fig. 1. Common challenges associated with SRM and MRM peak identification. a) Ambiguity occurs when multiple lipid isomers, isobars, and isotopes are detected within the same matrix

at a given transition, yet technical variations in flow rate, composition of the mobile phase, temperature, pH, etc., cause their retention times to vary across samples. Data represent extracted

ion chromatograms (XICs) of the same matrix (murine plasma) in animals fed different diets. Note six peaks are observed in one sample at a given transition. Seven peaks are observed in

a different sample shifted by one minute. Matching retention time would not align these shifted species. b) Assigning lipid identities based on peak elution order (picking the nth eluting

peak) will also lead to misidentifications when comparing lipid species across matrices. Data represent XICs of plasma and brain (temporal cortex) lipidomes from the same animal. Note

both the retention time shift and the fundamentally different number of species within each matrix. Matching by either retention time or peak elution order would confound identification.

c) Matching lipids based on peak intensity features is complicated by pathological changes detected in lipid metabolism. Data represent XICs of the human plasma lipidome of patients

with different neurodegenerative diseases. Note the marked change in abundances between conditions that impacts on lipid identification. While algorithms exist to address each of these

challenges, few are applicable to datasets wherein all of these differences manifest simultaneously. BATL addresses these challenges.

routine variations in chromatography can cause retention time shifts that

align isobars or isotopologues with the species of interest in different

MS runs (Smith et al., 2015). As a result, it remains labour-intensive

for different laboratories, and even within targeted lipidomic experiments

from the same laboratory, to register, rapidly and reproducibly, large

numbers of MS chromatograms. When multiple peaks are detected at

a given transition, careful judgement is required to discriminate between

lipid targets. These problems are magnified when researchers seek to match

corresponding peaks and identify unique lipid species across lipidomes of

different organisms or within different matrices.

Few programs have been developed to address the difficulties of

SRM and MRM peak identification. Vendor-specific programs such as

MultiQuant (SCIEX) and LipidSearch (Thermo Fisher Scientific) are peak-

picking algorithms where users can specify retention time windows and

compute retention time ratios based on predetermined internal standards.

MultiQuant does not, however, assign peak identities. LipidSearch

(Thermo Fisher Scientific) assigns peak identity to the closest matching

retention time within a user-defined retention time window to a proprietary

internal library. Similarly, Lipidyzer, using the Lipidomics Workflow

Manager program (SCIEX), assigns lipid identities from differential

mobility spectrometry (DMS) data acquired by direct infusion SRM

mode (Ubhi et al., 2015). Additionally, Lipidyzer was designed to

analyze data acquired specifically from SCIEX QTRAP 5500/5600 mass

spectrometers with a SelexION DMS cell. Even when using these software

packages, manual curation remains the most common peak identification

method when extracted ion chromatograms (XICs) do not match exactly

to reference samples (Bowden et al., 2018). Free programs such as

METLIN-MRM (Domingo-Almenara et al., 2018) use a similar approach

to LipidSearch, first aligning XIC peaks by retention time before assigning

lipid identities to the closest peak within the retention time window.

In contrast, MRMPROBS (Tsugawa et al., 2013) applies a multivariate

logistic regression classifier, trained using five peak features, describing

lipid retention, intensity, and shape. However, only retention time is used

when classifying SRM peaks. Two further program restrictions are that

the number of lipid identities in the training set cannot exceed the number

of transitions acquired in the raw MS data and that the compound names

in the training set must match the lipid target names in the SRM or MRM

method. These restrictions become problematic when new lipid species

are discovered in different biological matrices or conditions. Unless these

‘new’ lipids are explicitly added to the classifier dataset (i.e., raw MS

data), compounds cannot be added to the MRMPROBS training set. With

no means of updating the training set, MRMPROBS may misidentify lipid

targets for closely eluting lipid isobars and isomers.

To address these issues, we applied a Bayesian annotation approach

tailored to targeted lipidomics and present the program BATL which

overcomes many of the limitations of the manual or template-based

curation approaches and existing software packages. BATL is an R package

applicable to any targeted lipidomics data collection mode from any LC-

ESI-MS/MS platform. The program models lipid-specific peak features

obtained from a user-curated training set using Gaussian distributions

and computes the joint posterior probability of all peak identities in a

given sample. We have developed BATL using eight specific features

describing peak retention, intensity, and shape; however, BATL is trainable

on any continuous feature supplied by the user. We show here that

our approach accurately identifies over 95% of all sphingolipid and

glycerophosphocholine peaks in SRM datasets analyzed across matrices

and disease conditions. Thus, BATL is a useful tool for accurate, targeted

lipid identification and is easily integrated into any lipidomics pipeline.
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Fig. 2. Schematic of the BATL lipid identification workflow.

2 Methods

2.1 Overview of program

The BATL workflow is presented in Figure 2. First, a training set is

constructed from user-labelled, targeted lipidomic datasets. Second, BATL

uses both the training set and the specified input features to construct a

naïve Bayes statistical model. Third, the model and associated metadata

are exported and used by BATL to annotate peaks in query SRM datasets.

If a peak cannot be assigned to an identity present in the training set,

an annotation of ‘unassigned’ is returned, enabling the user to assess

and validate a potentially novel peak at that transition. An optional

BATL function is further included which annotates isotopes as well

as sphingolipid-specific artifacts (e.g. dehydrations, deglycosylations,

dimers).

2.2 Naïve Bayes model

Our approach to peak identification is based on maximizing the joint

posterior probability of all peak identities within each sample. Let

P1, P2, . . . , Pm be a list of peaks within a sample described by feature

vectors F1, F2, . . . , Fm. Each feature vector contains k features, where

Fi = (fi1, fi2, . . . , fik) describes the ith peak. Each peak is detected at

parent ionmi and product ion pi under the same Q1 and Q3 mass analyzer

tolerance δ. Let I = {B1, B2, . . . , Bn} be the set of all lipid identities,

where the bth identity is detected at parent ion nb and product ion qb

under the Q1 and Q3 mass analyzer tolerance δ. Thus, the possible lipid

identities for each peak are those detected within the machine tolerance of

the lipid identity and peak transition.

f(Pi) = {Bb | b ≤ n, |mi − nb| ≤ 2δ, |pi − qb| ≤ 2δ} (1)

To denote the assigned identity for Pi, let I1, I2, . . . , Im take

lipid identities drawn from f(P1), f(P2), . . . , f(Pm). The posterior

probability of some joint assignment of peak identities is

Pr(I1, I2, . . . , Im|F1, F2, . . . , Fm). (2)

This joint probability is expanded using Bayes’s Theorem as in Equation 3.

Pr(F1, F2, . . . , Fm|I1, I2, . . . , Im) Pr(I1, I2, . . . , Im)

Pr(F1, F2, . . . , Fm)
(3)

To compute this joint probability, we make three assumptions: 1) the prior

probabilities of all lipid identities are independent; 2) the peak feature

vectors are statistically independent, conditional on the identities; and 3)

the individual features within each vector are statistically independent,

conditional on the peak identity. Thus, Equation 3 is simplified to the

following probability.

∏m
i=1

∏k
j=1 Pr(fij |Ii) Pr(Ii)

Pr(F1, F2, . . . , Fm)
(4)

The denominator is a data-dependent constant and can be ignored when

comparing the probabilities of different joint assignments. The log

posterior probability of a joint assignment is thus proportional to

m
∑

i=1

wib, (5)

where weight wib is the unnormalized, log posterior probability of

assigning peak i to lipid identity Bb.

wib = log
k
∏

j=1

Pr(fij |Ii) Pr(Ii). (6)

The joint assignment of lipid identities is determined by the classifier

decision rule. To optimize BATL, we tested three classifier rules. First,

we assessed choosing lipid identities that maximize wib following the

maximum a posteriori (MAP) decision rule typical of naïve Bayes

classifiers. We found that a disadvantage of this decision rule was that

lipid identities were assigned independently. Although peaks detected

in the same sample clearly corresponded to unique lipid identities, the

MAP decision rule could assign an identity more than once per sample

(see Results). To address this problem, we evaluated a constrained MAP

decision rule wherein lipid identities were assigned by the ranked order

of their log posteriors, such that no lipid identity was assigned more

than once per sample. We found that this method was not guaranteed

to maximize Equation 5 and thus did not yield the optimal assignment of

lipid identities (see Results). Third, we resolved the shortcomings of MAP

and constrained MAP with the maximum weighted bipartite matching

(MWBM) decision rule which considers the simultaneous identification

of all peak identities within a sample under the naïve Bayes model.
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For every sample transition, a bipartite graph was constructed where

the vertices represents peaks Pi and their possible lipid identities f(Pi)

with corresponding edges weighted by wib. The optimal set of matching

peaks and lipid identities was then solved by MWBM, thereby maximizing

Equation 5 while ensuring a unique lipid identity was assigned to each peak

detected per sample. Finally, under certain conditions, the true identity of a

peak may be absent from set I , representing a novel lipid species detected

in the sample of interest. To account for this possibility, every peak was

matched to an ‘unassigned’ identity U in addition to f(Pi). The weights

wiu were found to be specific to each transition and estimated by cross

validation (see Results).

2.3 Training the model

Let D = {D1, D2, . . . , Dp} denote the labelled training set containing

the instances Do = (Fo, Bo) for samples n = 1, . . . , N . Fo is the

feature vector of length k, where Fo = (fo1, fo2, . . . , fok), and Bo is

the true lipid identity. Each lipid identity in the training set contains a

unique sample index because the same lipid can only be detected once

per sample. The prior probability of each lipid identity is computed by

maximum likelihood estimation

Pr(Bo) =
NBo

N
, (7)

where NBo
is the number of lipid identities Bo in the training set. The

feature likelihoods are computed using either a normal or lognormal

distribution with parameters µo and σ2
o estimated using the sample mean

and variance from the training set. The choice of distribution is assessed

using a KS-test for normality and lognormality of feature j for lipid identity

Bo

Pr(fij |Ii) =

{

logN (fij |µIi , σIi ), N
log
j > Nj

N (fij |µIi , σIi ), otherwise.
(8)

Nj and N
log
j are the number of lipid identities failing the KS-test for

normality and lognormality, respectively, for feature j at a P -value

threshold of 0.05.

Lastly, the unassigned identity weightswiu are estimated per transition

by k-fold cross validation. Looping over the k − 1 folds of the training

set, the naïve Bayes model is trained and unnormalized log posteriors are

computed from the testing fold. Across all k iterations, the weights wiu

for each transition are set to the minimum unnormalized posterior of a

correct peak assignment.

2.4 Datasets

To train and test BATL, we curated and labelled sphingolipid and

glycerophosphocholine datasets composed of 972 MS spectra generated

at the India Taylor Neurolipidomics Research Platform, University of

Ottawa. To ensure all of the challenges in SRM identification outlined

in Figure 1 were recapitulated in these datasets, we used: (1) a population-

based study of circulating lipids in human plasma of cognitively normal

controls, and patients suffering from Alzheimer’s Disease, Mild Cognitive

Impairment, Dementia with Lewy Bodies, or Parkinson’s Disease (n=319

sphingolipid analyses; n=319 glycerophosphocholine analyses), (2) a

genotype and intervention comparison study of lipid metabolism in

the temporal cortex, hippocampus, and plasma of wildtype and N5

TgCRND8 mice, a sexually dimorphic mouse model of Alzheimer’s

Disease (Granger et al., 2016) (n=121 sphingolipid analyses; n=180

glycerophosphocholine analyses), and (3) a technical replicate study of two

human plasma samples assessed in 33 sequential runs separated by blanks

(n=33 sphingolipid analyses). To identify all lipids unambiguously, all

molecular identities were confirmed by LC-SRM-information dependent

acquisition (IDA)-enhanced product ion (EPI) experiments of samples

Table 1. Specified SRM peak features for naïve Bayes model.

Feature Description

Retention time (RT) Peak retention time.

Relative RT (RRT) Peak divided by internal standard retention time.

Subtracted RT (SRT) Peak subtracted by internal standard retention time.

Relative area (A) Peak divided by internal standard area.

Relative height (H) Peak divided by internal standard height.

Full width at half max Peak width at half maximum height.

(FWHM)

Asymmetry factor (AF) Quotient between centerline to back slope and

centerline to front slope at 10% max peak height.

Tailing factor (TF) Distance between the front and back slope of a

peak divided by twice the distance between the

centerline and front slope at 5% max peak height.

pooled from either datasets 1-3 in which the SRM was used as a survey

scan to identify target analytes and an IDA of an EPI spectra was acquired

in the linear ion trap and examined to confirm molecular identities.

All lipids within the sphingolipid dataset were monitored at the same

production m/z of 264.3 detecting sphingolipids with a d18:1 sphingoid

base backbone (sphingosine). All lipids within the glycerophosphocholine

dataset were monitored at the same product ion m/z of 184.1 detecting

glycerophospholipids with a phosphocholine headgroup. Samples from

both the sphingolipid and glycerophosphocholine datasets were equally

stratified by acquisition date into training sets for cross validation and

holdout sets for model validation. Complete LC-ESI-MS/MS details are

provided in Supplementary Data.

2.5 Performance metrics

Classifier performance was assessed using metrics of accuracy,

identification rate, and unassignment rate. These metrics evaluated how

well BATL assigned lipid identities and the calibration of the unassigned

identity weights. A correct peak assignment (true positive or TP) was

defined as occurring when the classifier assigned the same identity

established by IDA-EPI analysis. An incorrect peak assignment (false

positive or FP) was defined as when the classifier assigned a different

identity than the one determined by IDA-EPI structural validation. An

unassigned peak (U) refers to when the classifier assigned no identity to

the peak (unassigned). Any unassigned peaks were considered incorrectly

unassigned when the true identity of all peaks was present in the annotated

training set.

Accuracy =
TP

TP + FP + U
(9)

Identification rate =
TP

TP + FP
(10)

Unassignment rate =
U

TP + FP + U
(11)

3 Results and discussion

BATL was trained on the sphingolipid and glycerophosphocholine training

sets with unassigned identity weights wiu learned by 10-fold cross

validation and a parent/product ion tolerance of 0.5 m/z units. Models

were constructed from every subset of features described in Table 1.

These features described peak retention times, intensities, and shapes.

Features were chosen because all, except subtracted retention time, are

standard outputs of targeted lipidomic peak-picking software programs

(i.e., MultiQuant, version 3.02, SCIEX). For each model, lipid identities
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Fig. 3. Classifier performance on 10-fold cross validation sphingolipid and glycerophosphocholine datasets. 95% confidence intervals shown in panels a-b, d-e). a-b) Data represent mean

accuracies of BATL models trained on retention time with each decision rule and retention time mean/window matching algorithms (∗∗∗Q < 0.001, t-test adjusted with the Benjamini-

Hochberg method of all models against the MWBM decision rule). c) Lipid assignment differences between MAP, constrained MAP, and MWBM decision rules during cross validation

and trained using retention time. In the top panel, data represent the Gaussian likelihoods of five glycerophosphocholine isomers based on the retention time feature. The rows of grey dots

indicate the retention times of four peaks from the same sample in the validation set. Each row indicates the outcome of the three decision rules. Arrows indicate the lipid assignments;

checkmarks indicate correct assignments; Xs indicate incorrect assignments. The numbers for constrained MAP indicate the order of peak assignments. d-e) Data represent mean accuracies

of the BATL models using MWBM decision rule trained on several features and feature combinations. The feature name codes are described in Table 1.

were assigned to peaks in the cross validation or holdout sets using

either the MAP, constrained MAP, or MWBM decision rules. Two

peak identification algorithms, retention time mean and retention time

window, were also devised as benchmarks recapitulating manual curation

performed on-the-fly by users using MultiQuant to target desired peaks.

The retention time mean approach assigned peaks to the single lipid

identity in the training set with the closest mean retention time. The

retention time window approach computed a retention time range for each

lipid identity based on their minimum and maximum observed retention

times in the training set. Lipid identities were only assigned to peaks

whose retention times unambiguously fell within the window of a single

lipid species.

To identity the best decision rule, cross validation accuracies were

compared between BATL models trained using retention time only

but differing in decision rule. For comparison, the accuracies of the

two retention time window/mean matching algorithms were included to

benchmark the BATL models where Figure 3a) shows over 95% accuracies

on the sphingolipid dataset using any method except the retention time

window approach. As peaks were only assigned if they fell within the

retention time window of a single lipid identity, this method incurred a

10% unassignment rate on the sphingolipid dataset which was two orders

of magnitude greater than any of the BATL models (see Supplementary

Figure S1a-c).

Similar accuracies were observed across the naïve mean approach

and three BATL models, given the relatively low isobaric complexity

of the sphingolipid dataset. Only 56.3% of the peaks in the validation

sets matched between two to four lipid isobars at the same transition in

the training set (Supplementary Table S1-2). Thus, a large proportion of

peaks were guaranteed to match to their corresponding lipid identity. When

single lipid targets were detected at a transition, the MWBM decision rule

assigned the same peak identities as the MAP or constrained MAP decision

rule.

The strengths of different BATL models emerged when classifying

the more complex glycerophosphocholine dataset in Figure 3b), where

95.3% of all peaks in the validation datasets were present in transitions that

contained at least two and up to eight unique lipid isomers (Supplementary

Table S3-4). The BATL model, using the MWBM decision rule, achieved

an 88.7% accuracy and significantly outperformed every other method

(Supplementary Figure S1d-f). Performances were recapitulated when

analyzing the holdout sets (Supplementary Information S1), and similar

increases in accuracy were also observed when comparing decision rules

of models trained using other feature subsets (See Supplementary Figures

S2 and S3).

To understand why the MWBM decision rule outperformed the

other methods, retention time likelihoods were assessed for the

glycerophosphocholine cross validation analyses. Figure 3c) shows the

Gaussian likelihoods of five glycerophosphocholine isomers based on the

retention time feature. When peak retention times were close together,

both the naïve mean approach and MAP decision rule assigned multiple

peaks to the same lipid identities. While the constrained MAP decision

rule conceptually improved on the MAP decision rule, accuracies were

significantly worse on the glycerophosphocholine dataset. Constrained

MAP assigned lipid identities by ranked order of posterior probability.

These rankings are denoted in Figure 3c) by the ordinal numbers above

the assignment arrows. However, interestingly, the most correct peak

assignment was not necessarily the one with the greatest posterior

probability. As discussed in Figure 1, retention time shifts can cause peak

retention times in one sample to misalign to different peaks present in

another sample. A similar problem arises when computing the likelihoods

of peaks in samples experiencing retention time shifts. Variations in

retention time altered the posterior rankings, increasing the likelihood of
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an incorrect-versus-correct peak-lipid assignment. Thus, once one lipid

identity was incorrectly assigned to a given peak, subsequent peaks with

similar retention times were misclassified (or not assigned an identity).

In contrast, the best performing MWBM decision rule resolved these two

types of misidentifications.

While retention time is the most common feature for peak

identification, it is not the only lipid-specific peak feature or necessarily

the most discriminative one. Figure 3d-e) show cross validation accuracies

of selected BATL models using the MWBM decision rule trained using

different retention time, intensity, and shape features. Across both the

less complex sphingolipid and more complex glycerophosphocholine

datasets, additional features describing peak intensity and shape increased

classification accuracies and identification rates, while decreasing

unassignment rates (Supplementary Figure S4). When comparing models

trained on the best subset of N features, the use of all eight features

consistently resulted in the best identification and unassignment rates on

the holdout sets (Supplementary Figure S5). When adding statistically

dependent features to the model, diminishing performance returns were

observed, although identification and unassignment rates remained equal

to or greater than less complex models on the holdout sets. Of the

three retention time features explored, models trained using subtracted

retention time performed equal to or significantly greater than those trained

using regular retention time. Notably, this method of accounting for

variations in LC retention time has not been reported in literature. Software

programs such as MultiQuant can report both regular and relative retention

times if an internal standard is specified. Although relative retention

time is designed to correct against retention time shifts, this method of

normalization was sometimes found to induce retention time shifts when

no systematic retention time differences were observed across samples

(i.e., only transient component level variation was detected). A comparison

of models trained on each feature using the MWBM decision revealed

equal to or significantly worse identification rates between relative-versus-

regular retention time (Supplementary Figure S6). Overall, models trained

using retention time features significantly outperformed peak intensity and

shape features which were the least discriminative, while combinations

of multiple features outperformed models focusing on single feature

characteristics.

To ensure BATL can be used across platforms, researchers are

required to develop their own curated training sets specific to their

LC methodologies. Supplementary Figure S7 shows the performance

of BATL on the holdout sets when trained on 10% increments of the

sphingolipid or glycerophosphocholine training sets. Models were trained

using the best single feature or all eight features and every 10% increment

corresponded to 22 sphingolipid or 25 glycerophosphocholine samples.

Whether trained on the less complex sphingolipid dataset or the more

complex glycerophosphocholine dataset, identification rates decreased by

less than 1% and unassignment rates remained under 5% when training

on 10% of samples. These data demonstrate that only a small training set

(i.e., 22-25 samples) is required to train the naïve Bayes model for accurate

peak identification.

How does BATL compare against state-of-the-art methods for peak

classification? Directly benchmarking BATL against other programs is

challenging because BATL assigns lipid identities to a list of curated

SRM peaks provided by the user, as is the nature of a targeted lipidomic

approach, while vendor-specific (e.g. LipidSearch, MultiQuant) and free

programs (e.g. METLIN-MRM) pick peaks automatedly and output

identities assuming the correct peak was picked in a transition with multiple

isobars. As a result, for all programs except MRMPROBS, it is not possible

to separate peak detection accuracy from peak identification accuracy.

BATL was thus benchmarked against MRMPROBS (Tsugawa et al., 2013).

A notable shortcoming of MRMPROBS, however, is that the number

of lipids in the training set cannot exceed the number of lipid targets

in the SRM method. It was thus impossible to apply MRMPROBS to

the sphingolipid or glycerophosphocholine holdout sets as they contained

different number of peaks at a given transition in the training set. This

problem was overcome by applying MRMPROBS to multiple training

sets containing all combinations of lipid isobars not exceeding the number

of sample peaks. This solution was cumbersome to apply when lipids

were specific to the biological condition or matrix of individual samples.

To address these challenges, BATL and MRMPROBS were benchmarked

using a technical replicate dataset which applied the exact same SRM

method to monitor sphingolipid species present in 33 replicate runs of two

human plasma samples. Thus, both training and testing sets contained the

same number of lipids de facto. For this analysis, 75% of the samples

in the dataset were used to train MRMPROBS and BATL. To construct

the MRMPROBS training set, the mean retention times of each lipid

were computed from the training set, the logistic regression probability

cutoff was set to 70%, and the retention time deviation parameter was

empirically computed following the MRMPROBS guidelines (Tsugawa

et al., 2013). On the remaining 25% of the technical replicate holdout

set, 8.9% of all peaks were not detected by MRMPROBS using a fifteen

second retention time window to account for peak detection differences

between MRMPROBS and MultiQuant which was used to pick peaks in the

longitudinal dataset. Excluding the 8.9% undetected peaks, MRMPROBS

achieved a 94.5% identification rate and 4.7% unassignment rate, while

BATL, trained using all eight features, achieved 100% identification rate

and 0.02% unassignment rate.

4 Conclusions

We present here a targeted lipidomics classifier BATL which uses a naïve

Bayes model and MWBM decision rule to simultaneously assign lipid

annotations to all SRM or MRM peaks in a sample. Using sphingolipid

and glycerophosphocholine SRM datasets, BATL was validated on holdout

sets with accuracies of 95% or greater when trained using all eight features.

As a simple probabilistic classifier, identification and unassignment rates

remained stable when BATL was trained on as few as 22-25 samples.

Lastly, BATL was benchmarked against a retention time window and mean

matching approach, comparable to many peak identification programs as

well as to the MRMPROBS software program. BATL correctly identified

more peaks than either approach with lower unassignment rates and no

limitations regarding the number of lipids in the training set.

In summary, we emphasize that BATL is trainable on any continuous

feature and applicable to targeted lipidomics data from any vendor or

LC-ESI-MS/MS platform. Learning the posterior probability cutoffs

is simple to compute based on the naïve Bayes assumption, taking

less than ten minutes to train each model on the sphingolipid and

glycerophosphocholine training sets analyzed in this study using an Intel

i5-8350U mobile processor. Further reductions in classifier training times

on larger training sets are now possible with support for parallel processing.

While BATL was validated using SRM data, the program is flexible to

operate on other targeted lipidomics data acquisition modes that output

lists of peaks detected at parent and product ion pairs including MRM,

neutral loss, precursor ion scan, and product ion scan acquisition modes.

As BATL does not operate on raw MS data, users can continue using their

preferred software program to select their lipid targets and conveniently

output peak text files into BATL for identification.
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1. Experimental protocols 
Human plasma, collected and prepared in K2EDTA Lavender BD Hemogard tubes (#367863), was extracted 

from cognitively normal persons, and patients suffering from Alzheimer's Disease, Mild Cognitive Impairment, 
Dementia with Lewy Bodies, or Parkinson's Disease (n=319). Consent was obtained in accordance with the Ottawa 
Hospital Research Institute Research Ethics Committee and in agreement with the National Institutes of Health and 
NINDS and the Icahn School of Medicine at Mount Sinai Research Ethics Committee. Murine plasma and brain, 
specifically hippocampus and temporal cortex, extracts were generated as part of an ongoing genotype and 
intervention study of lipid metabolism in n=180 wildtype and N5 TgCRND8 mice, a sexually dimorphic mouse 
model of Alzheimer's Disease (Granger et al., 2016). All procedures were approved by the Animal Care Committee 
of the University of Ottawa and performed in accordance with the ethical guidelines for experimentation of the 
Canada Council for Animal Care. Lipid extraction methodology was as described in detail in Xu et al. (2013). 
Briefly, brain tissue was homogenized in 4 mL acidified methanol (A412P-4; Fisher, Nepean, ON, Canada) 
containing 2% acetic acid (351271-212; Fisher, Nepean, ON, Canada) using a tissue tearer (985370; BioSpec, 
Bartlesville, OK, USA). For plasma samples, 100 μl of human plasma or 50 μl of murine plasma were added directly 
to 4 mL methanol containing 2% acetic acid. Internal standards, 90.7 ng PC(13:0/0:0) [LM1600], 99.54 ng 
PC(12:0/13:0) [LM1000], 249 ng PE(12:0/13:0) [LM1100], 249 ng PS(12:0/13:0) [LM1300], 133.7 ng 
Cer(d18:1/16:0-D31) [868516], 133.7 ng GlcCer(d18:1/8:0) [860540], 133.7 ng GalCer(d18:1/8:0) [860538], and 
75 ng SM(d18:1/18:1-d9) [860740] were added at time of extraction. All standards were from Avanti Polar Lipids, 
Alabaster, AL, USA. Sodium acetate (0.1 M; S-2889; Sigma-Aldrich, Oakville, ON, Canada) and chloroform 
(C298-500; Fisher) were added sequentially to each sample to a final ratio of 2:1.9:1.6 (acidified 
methanol/chloroform/sodium acetate). Samples were vortexed, incubated on ice for 15 minutes, and centrifuged for 
5 minutes at 600 x g at 4°C. The organic phase was collected, and the aqueous phase back-extracted 3 times using 
chloroform. Each organic phase was combined and dried under a steady stream of nitrogen. Lipids were re-
solubilized in 300 μl of anhydrous ethanol (P016EAAN; Commercial Alcohols, Toronto, ON, Canada) and stored 
under nitrogen gas at -80°C in amber vials (C779100AW; BioLynx, Brockville, ON, Canada). 
        HPLC was performed on an Agilent 1290 Infinity LC system, equipped by a binary pump, with an autosampler 
maintained at 4°C. Aqueous mobile phase (Solvent A) contained 0.1% formic acid and 10 mM ammonium acetate. 
Organic mobile phase (Solvent B) contained acetonitrile/isopropanol (5:2 v/v) with 0.1% formic acid and 10 mM 
ammonium acetate. Reversed-phase liquid chromatography for sphingolipid assessment was performed on a 100 
mm x 250 μm (inner diameter) capillary column packed with either ReproSil-Pur 120 C8 (particle size of 3 μm and 
pore size of 120 Å or ReproSil-Pur 200 C18 (particle size of 3 μm and pore size of 200 Å, Dr. A. Maisch, 
Ammerbruch, Germany) for glycerophosphocholine assessment. For the GPC analysis, five μl of sample were 
mixed with 5 μl of an internal standard mixture consisting of PC(O-16:0-d4/0:0) [2.5 ng, 360906; Cayman Ann 
Arbor, MI, USA], PC(O-18:0-d4/0:0) [2.5 ng, 10010228; Cayman], PC(O-16:0-d4/2:0) [1.25 ng, 360900; Cayman], 
and PC(O-18:0-d4/2:0) [1.25 ng, 10010229; Cayman] in EtOH, PC(15:0/18:1-d7) [1.25 ng, 791637; Avanti Polar 
Lipids], PE(15:0/18:1-d7) [1.25 ng, 791638; Avanti Polar Lipids], LPC(18:1-d7/0:0) [1.25 ng,791643; Avanti Polar 
Lipids], LPE(18:1-d7/0:0) [1.25 ng, 791644; Avanti Polar Lipids], and PS(15:0/18:1-d7) [1.25 ng, 791639; Avanti 
Polar Lipids] and 13.5 μl of Solvent A. For sphingolipid analysis, five μl of sample were mixed with 2.5 μl of EtOH 
and 16 μl of Solvent A. The LC method operated at a flow rate of 10 μl/min with 3 μl of sample injection for GPC 
analysis and 5 μl for sphingolipid analysis. The LC gradient used for GPC analysis started at 30% Solvent B, 
reached 100% Solvent B at 8 minutes, and remained at 100% B for 45 min. At 45 min, composition was returned 
to 30% Solvent B and the column was regenerated for 15 min. For sphingolipid analysis, the gradient began at 30% 
Solvent B, was ramped to 100% Solvent B over 5 min, and was maintained for 30 min. The composition was 
returned to 30% Solvent B at 30 min and maintained for 20 min to regenerate the column. A blank run, wherein 3 
μl or 5 μl of Solvent A was injected, followed each sample run. 
        ESI-MS/MS acquisition and instrument control were performed using Analyst software (version 1.6.2, SCIEX) 
on a QTRAP 5500 triple quadrupole mass spectrometer equipped with a Turbo V ion source (SCIEX). The ion 
source operated at 5500 V and 0°C for GPC analysis, 250°C for sphingolipid analysis. Nebulizer/heated gas 
(GS1/GS2), curtain gas (CUR), and collision gas (CAD) were set to 20/0 psi, 20 psi, and medium, respectively, for 
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GPC analysis. For sphingolipid analysis, the values for these source parameters are 20/20 psi, 20 psi, and medium, 
respectively. Nitrogen was used as GS1/GS2, curtain and collision gas. Compound parameters (declustering 
potential, entrance potential, collision energy, and collision cell exit potential) were individually optimized for each 
transition. All data acquisitions were performed in the positive ion mode. The GPC lipidome monitored the 
diagnostic product ion at m/z 184.1, indicative of the glycerophosphocholine headgroup, while the sphingolipidome 
was profiled using the diagnostic product ion 264.3 indicative of the sphingosine backbone. MultiQuant software 
(version 3.0.2 AB SCIEX) was used for peak picking and processing quantitative SRM data. 
        The identification of lipid species was performed by employing Information-Dependent-Acquisition 
Enhanced-Product-Ion-Scan (IDA-EPI) following the quantitative MRM acquisition which served as a survey scan. 
The IDA method triggered EPI scans following analysis of MRM signals with dynamic background subtraction 
from the survey scan. The IDA criteria were set to select one to three most intense peaks, and intensity threshold 
was set to exceed 1000 cps. The EPI experiment operated in the positive mode, scanning mass range from m/z 200-
1000 at a scan rate of 10,000 Da/s with dynamic fill in the trap. Two different collision energies were applied, 35 
and 50 eV with collision energy spread (CES) of 15 eV to ensure a broad coverage of fragmentation. 
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2. Dataset complexity 
 

Table 1: Sphingolipid training set isomeric/isobaric complexity. 
Number of candidate assignments Detected peaks Exact mass assignments1 

1 13222 13222 
2 11403 704 
3 4590 94 
4 1023 0 

1Peak matches the correct lipid target based on Q1 and Q3 m/z alone, regardless of the feature value(s). 
 
Table 2: Sphingolipid holdout set isomeric/isobaric complexity. 
Number of candidate assignments Detected peaks Exact mass assignments1 

1 13069 13069 
2 11307 800 
3 4545 159 
4 1008 0 

1Peak matches the correct lipid target based on Q1 and Q3 m/z alone, regardless of the feature value(s). 
 
Table 3: Glycerophosphocholine training set isomeric/isobaric complexity. 
Number of candidate assignments Detected peaks Exact mass assignments1 

1 9492 9492 
2 16880 1034 
3 39002 0 
4 52940 173 
5 45202 0 
6 25033 0 
7 7490 0 
8 5831 0 

1Peak matches the correct lipid target based on Q1 and Q3 m/z alone, regardless of the feature value(s). 
 
Table 4: Glycerophosphocholine holdout set isomeric/isobaric complexity. 
Number of candidate assignments Detected peaks Exact mass assignments1 

1 9474 9474 
2 16963 1050 
3 38838 0 
4 53361 181 
5 44937 0 
6 25760 0 
7 7483 0 
8 5810 0 

1Peak matches the correct lipid target based on Q1 and Q3 m/z alone, regardless of the feature value(s). 
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Table 5: Feature codes unless otherwise stated in the following supplementary figure captions. 
Feature Abbreviation 
Retention time RT 
Relative retention time RRT 
Subtracted retention time SRT 
Relative area A 
Relative height H 
Full width at half maximum FWHM 
Asymmetry factor AF 
Tailing factor TF 
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3. Classifier holdout performance between decision rules 
a)                                                                    d) 

 
b)                                                                    e)   

 
c)                                                                    f) 

    
Figure S1: Detailed classifier performance on holdout and cross validation sets. For cross-validation 
results, point markers indicate mean accuracies/identification/unassignment rates and whiskers represent 
95% confidence intervals across 10 folds. a-c) Accuracies, identification rates, and unassignment rates for 
the sphingolipid datasets. d-f) Accuracies, identification rates, and unassignment rates for the 
glycerophosphocholine datasets. 
 
  

.CC-BY-NC-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.18.435788doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435788
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Classifier cross validation performance between decision rules for other feature combinations 
 

a)                                                     d)                                                     g) 

 
b)                                                     e)                                                     h) 

 
c)                                                     f)                                                      i) 

 
Figure S2: Classifier performance on 10-fold cross validation sphingolipid datasets. Data represent 
mean accuracies of BATL models trained on select feature combinations. 95% confidence intervals shown 
(*Q < 0.05, **Q < 0.01, ***Q < 0.001, t-test adjusted with the Benjamini-Hochberg method). 
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a)                                                     d)                                                     g) 

 
b)                                                     e)                                                     h) 

 
c)                                                      f)                                                     i) 

 
Figure S3: Classifier performance on 10-fold cross validation glycerophosphocholine datasets 
trained with select feature combinations. Data represent mean accuracies of BATL models trained on 
select feature combinations. 95% confidence intervals shown (*Q < 0.05, **Q < 0.01, ***Q < 0.001, t-
test adjusted with the Benjamini-Hochberg method). 
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5. Classifier holdout performance between selected features 
a)                                                                     d) 

  
b)                                                                     e) 

  
c)                                                                     f) 

  
Figure S4: Classifier performance on holdout and cross validation sets trained with select feature 
combinations. For cross-validation results, point markers indicate mean accuracies/identification 
/unassignment rates and whiskers represent 95% confidence intervals across 10 folds. a-c) Accuracies, 
identification rates, and unassignment rates for the sphingolipid datasets. d-f) Accuracies, identification 
rates, and unassignment rates for the glycerophosphocholine datasets. 
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6. Classifier performance by best N feature combinations 
a)                                                                     c) 

  
b)                                                                     d) 

  
Figure S5: Models using the MWBM decision rule trained from the best combination of N features. 
X-label feature codes described in Figure S6. 95% confidence intervals for the 10-fold cross validation 
datasets shown. a-b) Sphingolipid and glycerophosphocholine dataset identification accuracies. c-d) 
Sphingolipid and glycerophosphocholine dataset unassignment rates. 
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7. Classifier performance by single feature 
a)                                                                              b) 

  

             
 
Figure S6: Comparison of models using the MWBM decision rule trained with retention time (N) 
versus all other single features. Ten-fold cross validation identification rates with 95% confidence 
intervals shown (pairwise t-test against the retention time feature adjusted with the Benjamini-Hochberg 
method *Q < 0.05, **Q < 0.01, ***Q < 0.001). a) Sphingolipid cross validation dataset. b) 
Glycerophosphocholine cross validation dataset. 
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8. Classifier performance by training set size 
a)                                                                          c) 

  
b)                                                                          d) 

  
 
Figure S7: Classifier performance on holdout datasets with the best single feature or all features 
resampled ten times for each proportion of training data. Every 10% increment corresponds to 22 
sphingolipid or 25 glycerophosphocholine samples. a-b) Point markers indicate mean identification rates 
and whiskers represent 95% confidence intervals for the sphingolipid and glycerophoshocholine holdout 
sets, respectively. c-d) Point markers indicate mean unassignment rates and whiskers represent 95% 
confidence intervals for the sphingolipid and glycerophosphocholine holdout sets, respectively. 
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