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Abstract
The cell cycle is a fundamental process of life, however, a quantitative understanding of
gene regulation dynamics in the context of the cell cycle is still far from complete. Single-cell
RNA-sequencing (scRNA-seq) technology gives access to its dynamics without externally
perturbing the cell. Here, we build a high-resolution map of the cell cycle transcriptome
based on scRNA-seq and deep-learning. By generating scRNA-seq libraries with high depth,
in mouse embryonic stem cells and human fibroblasts, we are able to observe cycling
patterns in the unspliced-spliced RNA space for single genes. Since existing methods in
scRNA-seq are not efficient to measure cycling gene dynamics, we propose a deep learning
approach to fit these cycling patterns sorting single cells across the cell cycle. We
characterize the cell cycle in asynchronous pluripotent and differentiated cells identifying
major waves of transcription during the G1 phase and systematically study the G1-G0
transition where the cells exit the cycle. Our work presents to the scientific community a
broader understanding of RNA velocity and cell cycle maps, that we applied to pluripotency
and differentiation. Our approach will facilitate the study of the cell cycle in multiple cellular
models and different biological contexts, such as cancer and development.

Introduction
Cells divide by progressing through highly organized phases in which they grow, synthesize
a copy of their genetic material, and, finally, undergo mitosis1. Alternatively, cells can stop
cycling and reversibly transition into quiescence or irreversibly differentiate or become
senescent2. These processes require tight dynamic regulation of gene expression and
despite immense research during the past decades, a quantitative picture of the gene
regulation dynamics across the cell cycle is still incomplete. With the advent of single-cell
RNA sequencing (scRNA-seq), scientists can now analyze intrinsically asynchronous
cell-populations enabling the simultaneous identification of cells at different cell cycle stages.
scRNA-seq provides a high-resolution approach to study the cell cycle without external
perturbations, such as synchronization by drugs or engineered fluorescent reporters3,4. Many
attempts to computationally assign cell cycle phases have been performed5–8, but they

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.17.435887doi: bioRxiv preprint 

https://paperpile.com/c/oDePjs/h1tg
https://paperpile.com/c/oDePjs/ShlAT
https://paperpile.com/c/oDePjs/QDcj+k8KD
https://paperpile.com/c/oDePjs/QoFF+dsfS+LN0N+DaThl
https://doi.org/10.1101/2021.03.17.435887
http://creativecommons.org/licenses/by-nc-nd/4.0/


typically lack generalizability and fail in capturing the correct cell cycle dynamics. Thanks to
the depth of the scRNA-seq datasets generated in this paper, cycling patterns in the
unspliced-spliced RNA space for single genes (RNA velocity) can be observed clearly and
exploited to naturally sort cells across the cell cycle9. Combining RNA velocity with deep
learning, we designed DeepCycle (https://github.com/andreariba/DeepCycle), a tool that
assigns a continuous high-resolution cell cycle trajectory to single cells. The approach
applies to different systems and has self-consistency checks to establish whether the
analysis worked properly. DeepCycle allows us to estimate the dynamics of gene activation
and deactivation with minimal assumptions, resulting in fits of gene expression kinetics. The
fits naturally generate gene expression series that can be analyzed to obtain detailed kinetic
parameters.

The link between cell cycle regulation and cell identity is not fully understood10,11​​.
Nonetheless, the cell cycle phases are deeply affected by the degree of stemness, for
example, pluripotent and neural stem cells have short G1 phases​​, while committed cells
extend their G1 phases and present overall longer cell cycles11–13. Thanks to DeepCycle, we
not only recapitulate these findings in mESCs and human fibroblasts, but also extend the
analysis to a public dataset of ductal cell progenitors, and uncover the underlying regulatory
mechanisms, showing the different genes and transcription factors active in the different
cellular models across the cell cycle.

Finally, as most of the cells within multicellular organisms are not actively cycling, tight
control over cell cycle entry and exit is critical, as seen for example in organism
development, hematopoiesis, activation of adaptive immune responses, and wound healing.
However, in diseases like cancers, cells do not consistently respond to such regulatory cues
and signals. It is thus important to understand the processes that determine cell cycle entry,
cell cycle progression, and exit to quiescence14. Here, we characterize the branching point
where human fibroblasts exit from the cell cycle. New marker genes and transcription factors
underlying the process have been highlighted, paving the way to the systematic
characterization of the G1-G0 transition in other cellular models.

Results

Generation of deep-sequenced single-cell RNA-seq datasets
To robustly study the cell cycle, we reasoned that the dataset should be enriched for
growing-cycling cells. The majority of public scRNA-seq datasets have been generated to
study the overall population of cells in a given condition, and, typically, they contain
heterogeneous cell types. Therefore, we cultured mouse embryonic stem cells (mESCs) in
2i+LIF medium to maintain the ground state of pluripotency by blocking differentiation15–17,
and generated an scRNA-seq library containing more than five thousand mESCs (Figure
1A). We included in our scRNA-seq analysis ductal cell progenitors from endocrine
development (henceforth referred to as ductal cells) (Figure 1B)18. These cells have been
linked to a proliferative cell state by specific marker genes19. Finally, to compare the results
to a different cell type from another organism we also sequenced 5367 human fibroblasts
(Figure 1C). These fibroblasts separate into two subpopulations, only one of which
expressing cell cycle genes (Supplementary Figure S1, 16 out of the top 25 genes belong to
the DAVID Keywords Cell cycle, Benjamini=2e-15), therefore we first focused on the
proliferative subpopulation (n=3086).
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Figure 1. Single-cell RNA-sequencing data show the RNA velocity patterns. UMAP
projections for mouse embryonic stem cells (A), ductal cell progenitors (B), and human
fibroblasts (C). D. Distribution of RNA content (UMI), number of genes per cell, and the total
number of reads for each sample. E. Fractions of spliced and unspliced reads in the three
datasets. F. Examples of the unspliced-spliced patterns for Nusap1, Ccnd3, and MELK in
mouse embryonic stem cells, ductal cells, and human fibroblasts, respectively.

The three datasets (mESCs, ductal cells, and fibroblasts) present different sequencing
depths: mESCs and fibroblasts have ~30 thousand unique molecular identifiers (UMI) per
cell, median values of 31977 and 27319 UMIs, respectively, a depth that is uncommon for
the recent standards; while the ductal cells are as low as 8 thousand UMIs per cell, median
value of 8043 (Figure 1D). Similarly, the median number of genes identified per cell varies
from 2840 in the ductal cells to 5161 and 5630 in fibroblasts and mESCs (Figure 1D). These
differences across samples might be explained by their respective sequencing depths: total
spliced and unspliced reads of 8M, 115M, and 220M in ductal cells, fibroblasts, and mESCs,
respectively (Figure 1D). Overall, they have similar fractions of unspliced reads (Figure 1E).
All the datasets contain genes with circular patterns in the spliced-unspliced read space in
accordance with the RNA velocity theory (Figure 1F). Cycling genes are expected to be
characterized by fully circular patterns as they complete both their activation and
deactivation phases (Figure 2A). Overall, these datasets constitute a unique opportunity to
study gene regulation throughout the cell cycle in different mouse and human cell types.
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Figure 2. Transcriptional phase inference with DeepCycle. A. Single-cell RNA-seq
combined with RNA velocity analysis allows the detection of transcriptional changes within a
single cell. B. Fully circular RNA velocity patterns can be mapped to an angle describing the
transcriptional state of a gene. By generalizing this to all genes, the angle will describe the
actual transcriptional state of a cell. The angle is called the transcriptional phase. C.
DeepCycle infers the transcriptional phase of each cell. It takes as input the
spliced-unspliced reads for a set of genes. By fitting the transcriptional phase 𝜽, it can
denoise and predict the unspliced-spliced expressions for each transcriptional phase. D.
Examples of cycling genes and fits of the RNA velocity patterns (red lines) in mESCs and
human fibroblasts.

Inference of a cell-cycle transcriptional phase from single-cell RNA-seq data
The dynamical state of a gene can be inferred by comparing its unspliced and spliced
reads9. Unspliced reads indirectly measure the nascent transcripts, and the spliced ones the
mature messenger RNAs (see Figure 1F and 2A). The comparison of the two quantities at
the single-cell level allows the inference of the transcriptional activation, or deactivation, of a
gene. The original framework proposed by La Manno et al.9 assumed either constant velocity
or constant unspliced molecules; to overcome this limitation, Bergen et al.19 developed an
extension of the original model to include intermediate states and more flexible dynamical
parameters (scVelo). However, the extended model was unable to fit the actual dynamics for
the genes in our datasets, while the inferred latent time did not capture the correct dynamics
of the cells (see Supplementary Figure S2). Therefore, we reasoned that the complexity of
gene regulation in the context of the cell cycle cannot be approximated by the current
models9,19 and that a more flexible approach is required. In order to achieve this, we
developed a new method based on neural networks, taking advantage of their ability to
represent a universal function approximator20.
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We expect that genes whose expression is regulated during the cell cycle show a closed
path in the unspliced-spliced RNA space consisting of both an active and inactive phase
(see Figure 2A and 2B). Overall, the cell-cycle progression of a cell can be viewed then as a
periodic trajectory within the 2N dimensional unspliced-spliced space where N is the number
of considered genes. This embedded 1-dimensional manifold representing the cell cycle can
be characterized by a circular latent variable, the transcriptional phase (𝜽), that maps cells
into the particular location of the periodic trajectory. Notice that 𝜽 is a continuous variable
representing the continuous cell-cycle progression of cells that has not to be confused with
the discrete phases of the cell cycle (G1, S, G2, and M). Then, the estimation of 𝜽 for each
cell given the unspliced and spliced reads is an embedded manifold learning problem. To
solve this problem, we developed DeepCycle, a deep learning method based on an
AutoEncoder (AE) neural network. AEs are designed to perform non-linear dimensionality
reduction by compressing the information contained in the inputs to a lower-dimensional
space (latent space) in the encoding phase. The compressed information is then used to
reconstruct the original input in the decoding phase. AEs have been used to analyze
scRNA-seq data and accomplish different tasks, from clustering to denoising21–28. DeepCycle
is constructed as an AE with a single latent variable representing the cell-cycle
transcriptional phase 𝜽 that is then transformed with cosine and sine functions in the first
layer of the decoder (Figure 2C and Supplementary Figure S3).

To train DeepCycle, we used the expression of unspliced and spliced RNAs of the genes
in the GOterm:cell_cycle (n=532, see Methods) determining circular paths for cycling genes
in the unspliced-spliced space and removing technical noise or biological fluctuations
associated with stochastic gene expression (see examples in Figure 2C-D and
Supplementary Figure S4). Finally, a transcriptional phase is assigned to each cell in the
dataset (see Methods) and the dynamics of unspliced and spliced RNA with respect to the
transcriptional phase can be further analyzed. It is important to note that the transcriptional
phase is a non-linear monotonic function of time that can be arbitrarily complex, so we
cannot directly infer temporal dynamics with it. Importantly, DeepCycle robustly returns very
similar transcriptional phases by selecting as input the genes showing multiple maxima in
the unspliced-spliced space (Supplementary Figure S5 and Methods). The genes presenting
multiple maxima (n=158) are listed in Supplementary Table S1 that includes cycling genes
not yet considered in the GO term:cell_cycle that could be added as markers of the cell
cycle.

Finally, we compared DeepCycle with Cyclum7, a recent method developed for the
analysis of the cell cycle in scRNA-seq data also based on an AE. Strikingly, Cyclum was not
able to place cells consistently in a circular 1D manifold and therefore could not correctly
identify the cell-cycle progression of single cells when applied to our datasets
(Supplementary Figure S6). As opposed to Cyclum, DeepCycle is based on RNA velocity
and trained on both spliced and unspliced RNA levels which may explain the better
performance. Moreover, DeepCycle produces dynamic trajectories in the unspliced-spliced
space for each gene (see Figure 2D) and the quality of the fit of each trajectory to the data
can be used to evaluate whether the learning process worked properly.
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Figure 3. Cell cycle analysis in mouse and human cellular models. A. The
transcriptional phases and the cell cycle phases were connected based on marker genes.
Z-scores are only intended for comparison purposes, the changes in the expression across
the cycle are, in general, highly significant. B. The UMAP embeddings for mESCs, ductal
cells, and human fibroblasts with the cell cycle directionality identified by DeepCycle (black
arrows). The cells are associated with different colors depending on the cell cycle phase
they belong to, light blue for cells in G1, red in S, and dark green in G2/M. C. The
transcriptome variabilities (𝜒2) are constant across the transcriptional phases. D. RNA counts
per cell as a function of the transcriptional phase show doubling trends followed by a sudden
drop that identifies mitosis. The fibroblasts show contamination of cells from the
nonproliferative subpopulation, arrested in mid-G1, as discussed in the last section.

Detection of cell cycle phases in multiple cellular models
Single cells can be associated with the S and G2/M phases by analyzing the expression of
representative marker genes19,29. For example, the cell cycle scores calculated by scVelo
match well with the transcriptional phases inferred by DeepCycle (Supplementary Figure
S7). To better define the transitions between cell cycle phases we looked at the expression
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of specific marker genes (Figure 3A). The G1/S transition corresponds to the peak in
cyclin-E2, the S/G2 transition to the increase of the mitotic cyclin-F, and mitosis to the sharp
decrease of Wee1/WEE1. The loss of Wee1/WEE1, a protein kinase inhibiting mitosis, allows
the cyclin B1-Cdk1 complex to activate the cascade of reactions necessary to proceed into
mitosis30,31 and, consistently, the mRNA levels of the Aurora kinases A (Aurka/AURKA) that
localize at the centrosomes32,33, and of the Nucleolar and spindle associated protein 1
(Nusap1/NUSAP1), that plays a role in spindle microtubule organization34,35, increase in G2 and
M phases (Figure 3B). Other possible marker genes show cycling patterns as expected, e.g.
Orc1/ORC1, Mcm6/MCM6, Ccne1/CCNE1, Ccna2/CCNA2, and Ccnb2/CCNB2 (Figure 3A).

To simplify the comparison of the cell cycles across datasets, the transcriptional phases
were normalized between 0 and 1 and were aligned such that mitosis occurs approximately
at 𝜽=1. The paths of the cells around the cell cycle can easily be identified in the
2-dimensional projections (Figure 3B) and the variability of the transcriptomes across the
transcriptional phase is stable (Figure 3C). Though the extended RNA velocity model19 did
not capture the correct dynamics at the level of the single gene (Supplementary Figure S2),
it could infer the correct dynamics of transcriptional changes at the cell level (see the velocity
plots in Supplementary Figure S8).

Fast cell cycles are typically associated with pluripotency and stemness11–13. Consistently,
the mESCs present the lowest number of cells in G1, while fibroblasts and ductal cells have
much more extended G1 phases (see Figure 3D). The fractions of mESCs assigned to the
different phases are 21% to G1, 40% to S, and 39% to G2/M (Figure 3D). Similar fractions
are identified by flow cytometry analysis, respectively, 22-26% in G1, 42-51% in S, and
27-32% in G2/M (Supplementary Figure S9).

At mitosis, the mother cell needs to have approximately double its original volume in order
to generate two daughters of the same initial size. Droplet-based single-cell technologies,
such as 10x, can indirectly detect the different cell sizes, where a bigger cell means a higher
concentration of mRNA within the droplet, which should reflect a higher count of unique RNA
molecules (UMIs) within the cell. In this case, the increase in the unique RNA molecules
across the cell cycle should be roughly proportional to 2. Indeed, as predicted, the RNA
counts per cell as a function of the transcriptional phase show a positive fold change of 2.1,
2.2, and 1.9 for mESCs, ductal cells, and fibroblasts, respectively (Figure 3D). Further, the
flow cytometry analysis performed for the mESCs showed roughly a doubling size passing
from G1 to G2/M phases (Supplementary Figure S9). After validating that the transcriptional
phases identified by DeepCycle are consistent with the global features of the cell cycle, such
as cell cycle markers, cell sizes, and fractions of cells in each phase, we can discuss the
regulation of individual cell cycle genes at the mRNA level.

Members of the Cdc25 family are well conserved key regulators of the cell cycle36,37,38.
The mRNA expression of the Cdc25 family of proteins shares the same behaviour across
the datasets, i.e. Cdc25a/CDC25A increases at the G1/S transition while
Cdc25b-c/CDC25B-C at the G2/M (Supplementary Figure S10), consistently with the
function of their protein products39.

The minichromosome maintenance protein complex (Mcm) is a heterohexamer, formed
by Mcm2-7/MCM2-7 proteins, which works as a helicase that unwinds the double-stranded
DNA and powers the replication fork progression during the S phase40. As expected, the
mRNA levels of all subunits of the Mcm peak at the beginning of the S phase for all the
datasets (Supplementary Figure S10). Interestingly, other DNA replication genes, such as
components of the Origin recognition complex proteins (Orc1-6/ORC1-6), show different
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expression patterns across the datasets, suggesting more heterogeneous regulation
(Supplementary Figure S10).

Cdk1/CDK1 mRNA level increases in G2 and M phases as required by its protein
function41 (Figure 3A). The other main Cdk mRNAs (Cdk2-4-6/CDK2-4-6) show lower
expression levels across phases and are less consistent across the datasets, they might
rather be regulated at the protein level, translationally or posttranslationally (Supplementary
Figure S10). It has been previously shown that protein levels of the cyclin-E and A do not
change across the mESC cell cycle42, but instead, mRNA levels are upregulated at the G1/S
transition and in the G2/M phase, respectively (Figure 3A).

Finally, DeepCycle allows a genome-wide investigation of gene expression dynamics
across the cell cycle. Indeed, we observed different waves of gene expression during the
different phases of the cell cycle (Supplementary Figure S11). Interestingly, a similar fraction
of genes reaches their maximum RNA level in each phase in mES cells. On the contrary, in
ductal cells and human fibroblasts, most genes reach the maximum level in G1. Overall,
DeepCycle consistently identifies cycling genes and shows their mRNA synthesis rate
(unspliced) and expression level (spliced) across the cell cycle.

Identification of cell-cycle core transcription factors
Having characterized the cell cycle at the mRNA level, another feature of our approach is
that it allows us to identify the potential transcription factors (TFs) responsible for the gene
expression dynamics. Transcription factors bind to DNA-specific sequences (binding motifs)
and activate the transcription of their target genes. They encode the cellular programs for
many of the functions a cell needs to perform. To infer the TFs active during the cell cycle,
we implemented an ISMARA-like approach43. Briefly, Balwier et al. introduced a linear model
to infer TF activities from bulk RNA-seq samples. To apply it to our data, we used the same
linear model to try to explain the expression level of the unspliced reads in single cells. Even
if the amount of unspliced reads is much lower compared to the spliced reads (~5-6 times
less, Figure 1E), they remove the effect of mRNA stability, reflecting more closely the
nascent transcription events and, therefore, the effect of transcription factors at the gene
promoters.

The motif analysis shows that most of the TF activity takes place in the G1 phase when
cells need to decide whether to go into another round of replication or to arrest the cycle in
order to accomplish a new function (Figure 4A). Among the most significant TFs, Yy1/YY1
has been identified in all the datasets as active in G1 phase, suggesting a general role
during the cell cycle (Figure 4A-B). Indeed, Yy1 is known to induce proliferation and maintain
pluripotency of mESCs through the BAF complex44. Interestingly, Yy1 binds to chromosomes
during mitosis45 and, accordingly, its transcription starts already in the G2/M phase
suggesting a pioneering activity at the beginning of a new cycle (Figure 4B).
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Figure 4. Transcription factor dynamics driving expression during the cell cycle. A.
Motif activities for families of transcription factors across the cell cycle in mESCs, ductal
cells, and human fibroblasts. The red boxes identify two waves of transcription in the G1
phases for more differentiated cell lines. B. The comparison of motif activities with the
respective mRNA levels around the cell cycle for Yy1 and E2f1 in mESCs, Ybx1 for ductal
cells, and FOXM1 for human fibroblasts. These comparisons allow clarifying whether the
regulation is happening more at the transcriptional level or the protein level. C. The two sets
of TFs in the green and orange boxes are at the core of the pluripotency maintenance
network in mESCs57. The heatmap shows the activities of the pluripotency factors around the
cell cycle of mESCs.

For both mouse datasets (mESCs and ductal cells), the E2f family appears as a critical
group of regulators. Members of the family are known to act at the beginning of the cell cycle
specifically for the G1/S transition and to become active after the phosphorylation of the
retinoblastoma proteins (pRb)1,46,47. Two E2f-related motif activities (E2f1, E2f2_E2f5) peak in
between the G1 and the S phase, presumably to activate the genes necessary for the
transition48 (Figure 4A). More specifically in mESCs, E2f1 seems to be mostly regulated at
the protein level since the change in the mRNA level (~50%) is very little compared to the
change in activity (Figure 4B). Other factors seem to act similarly between mESCs and
ductal cells, like the TATA-binding protein-associated factor (Taf1), the Specificity factor 1
(Sp1), and the Nuclear respiratory factor 1 (Nrf1), all active in early G1 (Figure 4A).
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Regarding the ductal cells, we found a very high correlation (r=0.91, p=4e-19) between Ybx1
mRNA level and the activity of its motif where both are constantly increasing from G1 to M
(Figure 4B). Interestingly, Ybx1 positively regulates the G1 and G2/M phases of the cell
cycle49,50 and its expression is linked to poor prognosis in pancreatic ductal
adenocarcinoma51. Regarding the factors appearing in the human fibroblasts, MYB plays a
role in the G2/M transition, with a constant increase of expression from G1 to G2/M52,53. Also,
its targets follow the same trend, and MAZ induces MYB expression shortly after the exit
from quiescence, bypassing the inhibition of E2F-pRB54 (Figure 4A). Similar to Ybx1 in ductal
cells, the mRNA level of FOXM1 grows constantly from G1 to M as expected by its function
during mitosis55,56, but the activity of its targets is slightly anticorrelated, hinting at a complex
post-transcriptional regulation56.

For mESCs the maintenance of the pluripotent state is crucial and the main factors
involved in the pluripotency transcriptional program are known57 (Figure 4C). Among them,
the strongest activation happens for the targets of Stat358/Stat4/Stat5b, Tcf3, and Pou5f1
(Oct4), which are increased in G2/M, followed by Klf459/Sp3, Gbx2, Nanog, Tfcp2l1, and
Essrb60,61/Essra in G1 (Figure 4C).

From a general perspective, a clear pattern emerges by comparing the undifferentiated
mESCs with the more differentiated human fibroblasts and ductal cells. The undifferentiated
cells show a strong and unique wave of activation of TFs in G1. Instead, in the more
differentiated cell types, the activities of the TFs across the G1 phase cluster into two
groups. The first group displays an early activation directly after mitosis, while the second
group exhibits a late G1 activation (red boxes in Figure 4A). We believe these waves are
linked to cell-fate decisions, as discussed in the next section.

Characterization of cycling cells shifting to the cycle-arrested state
The human fibroblasts include a subpopulation with a low cycling activity, that we excluded
from the previous analysis (Supplementary Figure S1). By mapping the ‘nonproliferative’
cells across the cycle with the model trained with DeepCycle, this sub-population was
associated with the mid-G1 phase (Figures 5A-B). Therefore, the full population of
fibroblasts comprises 76% in G1/G0, 15% in S, and 9% in G2/M phases (Figure 5B). Similar
numbers have been obtained through flow cytometry analysis, where the DNA content
assigns 79% to G1/G0, 13% to S, and 8% to G2/M phases (Figure 5C). Further, the flow
cytometry analysis shows that some cells in G1 are bigger than the cells in S and G2/M
suggesting that the cells waiting in G0/G1 are increasing in size, it remains unclear whether
they will re-enter the cycle later. The cell velocities are consistent with our interpretation and
do not clarify if the cells in G0 will start cycling again (Supplementary Figure S12).

The two subpopulations split their trajectories around mid-G1 (Figure 5A) and specific
markers of quiescence62 suggest the nonproliferative cluster might be entering into the G0
phase (Figure 5D). To detect the underlying changes in the gene expressions and their
regulations, we implemented a method based on a modified version of the Nudged Elastic
Band63, to infer the paths connecting the cell states in the bidimensional space (Figure 5E).
The detected paths follow the trajectories with the highest density of cells, as shown in
Figures 5E.
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Figure 5. G1-to-S and G1-to-G0 transitions in human fibroblasts. A. The two
subpopulations of human fibroblasts, separated by the black dashed line: on the left side the
proliferative cells, and on the right the nonproliferative. Each cell is colored according to its
inferred transcriptional phase. B. The distribution of transcriptional phases for the human
fibroblasts shows the nonproliferative fibroblasts arrested around 𝜽=0.4. C. Flow cytometry
analysis recapitulates fractions of cells in the main phases of the cell cycle similar to the
phases identified with DeepCycle. The cells in G0/G1 can be bigger than the cells in G2/M.
The colors are consistent with panel A, G1 in blue, S in red, and G2M in green. D. Examples
of G0 marker expressions for the two subpopulations62. BIRC5 is also known as survivin. E.
The paths, going from mid-G1 towards the S phase (in red), from the mid-G1 phase towards
the nonproliferative state (in blue), and the nonproliferative state towards the S phase (in
green), are identified by the higher density of cells. F. FOXM1 is downregulated in the
nonproliferative cells and shows the opposite trend along the G1/S and exit paths (red and
blue in panel E). The activity of its motif is completely uncorrelated with its expression. G.
The top up- and down-regulated genes with the strongest fold changes comparing the paths
in E. The third row shows the most significant motif activities identified by comparing the
paths in E.

To strengthen our hypothesis of the nonproliferative cells being quiescent, we checked
the expression along the two paths of G0 markers62. The markers supposed to be
G0-downregulated are consistently inactivated (Supplementary Figure S13) while the signal
for the G0-upregulated genes is unclear (Supplementary Figure S14). Therefore,
nonproliferative fibroblasts might represent a differentiated state of the fibroblasts and not
simply reflect cells entering in G064. FOXM1 is strongly downregulated in nonproliferative
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cells, making it a good candidate as a marker of quiescence and one of its potential
regulators. With regards to the cell cycle analysis (Figure 4B), FOXM1 targets do not follow
its mRNA expression, but are upregulated while exiting the cell cycle (Figure 5F). Among the
top genes upregulated along the path towards the quiescent state (the blue and green paths
vs the red path in Figure 5E), we find MXD4, CDC42EP5, CLIP3, and MIR22HG. MXD4 is a
MYC antagonist known to increase the fraction of cells in the G0/G1 phase in hematopoietic
differentiation65, and could be a master regulator of entry into the G0 phase. CDC42EP5 is a
small Rho-GTPase belonging to the Borg family and is involved in cell shape regulation and
lamellipodia formation66. Similarly, CLIP3 (or CLIPR-59) is a CAP-Gly domain containing
linker protein with a poorly-specified function, perhaps modulating the compartmentalization
of the AKT kinase family67. Lastly, MIR22HG is a long non-coding RNA involved in
proliferation that acts as a tumor suppressor in primary lung tumors 68 and leads to poor
prognosis in glioblastoma69. On the other side among the most downregulated genes in the
quiescent state are ESCO2, MCM10, MYBL2, and NUF2. ESCO2 is needed during the S
phase to modify cohesin70 and MCM10 accumulates during the S phase, while being lowly
expressed during the rest of the cycle71. MYBL2 (B-Myb) belongs to the family of the MYB
transcription factors and has been typically associated with poor prognosis in cancer72, while
NUF2 localizes at centrosomes and is necessary for mitotic progression in vertebrates73,74.
For the extended lists of up and down-regulated genes see Supplementary Figures
S15-S18.

Importantly, the top motif, that distinguishes the two subpopulations (E2F7_E2F1),
belongs to the E2F family, which is one of the master regulators of the cell cycle1, and is
strongly inactivated in the non-proliferating quiescent cells. The other TFs shown in Figure
5G (NKX2-6, TBX1, and NR3C1) do not have a clear function associated with the cell cycle,
so further studies are needed to elucidate their role. More TF motifs associated with the
paths are shown in the Supplementary Figures S19-S20.

In summary, DeepCycle allowed us to characterize the G1-G0 transition in wild type
fibroblasts without having to perturb the cells, finding novel candidate genes and
transcription factors regulating quiescence.

Discussion
We generated scRNA-seq datasets in mouse embryonic stem cells and human fibroblasts
with high sequencing depth. The circular RNA velocity patterns emerged clearly in cell-cycle
regulated genes revealing the activation/inactivation phases that these genes undergo
during the cell cycle. We developed DeepCycle, a novel deep learning approach, to exploit
the RNA velocity patterns and study gene regulation dynamics during the cell cycle.
DeepCycle assigns a cell-cycle transcriptional phase for each cell by fitting the RNA velocity
patterns. Furthermore, the inferred transcriptional phase can be associated with cell-cycle
phases thanks to known gene markers. Thus, DeepCycle allows us to determine the
cell-cycle progression state of each cell from scRNA-seq data and identify novel genes
involved in the cell cycle. Importantly, the efficacy of the method was extensively proven in
cellular models from different organisms at different developmental stages.

The decision to implement a novel approach came after noticing the failure of the current
methods within the RNA velocity framework7,19, to correctly infer the dynamics of the cycling
genes. DeepCycle’s ability to infer cycling patterns in the spliced-unspliced RNA space at
the gene level shows that the framework of the RNA velocity can be further improved by the
study of more flexible models of transcription. Likely the assumptions in the previous model
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(constant rates) should be relaxed to fit the transcriptional model to the data. It is reasonable
to imagine that the transcription, splicing, and degradation rates are complex functions
changing during the cell cycle progression. Our method will allow the analysis of trajectories
without making assumptions about the model parameters, enabling more focus on the
dynamics of the single gene.

The analysis highlighted known and novel cell cycle regulators in established cell lines,
identifying two major waves of transcription in the G1 phase of differentiated cells while
pluripotent cells seem to undergo a single wave of transcription during G1. The two waves
are likely to be associated with the restriction point where the cells finally commit to
undergoing another cell cycle. Further, for the first time, we could observe single cells exiting
from the cell cycle in an scRNA-seq sample and disentangle the underlying regulations,
thereby providing lists of novel targets for the regulation of the cell cycle and the quiescent
states in mammalian cells. We envision that our approach will facilitate the characterization
of the branching point between the S and G0 phases in multiple cellular models by applying
it to other scRNA-seq datasets. In particular, an extensive study of the transcriptional
changes happening at the cell cycle while cells reach confluence is still missing and of
general interest.

Finally, we anticipate that DeepCycle will become an essential tool for the scientific
community to further investigate the cell cycle in a broad range of systems without the need
for cell synchronization or genetic-tagging. This makes our approach especially suitable to
study the interplay of the cell cycle with pluripotency and cell reprogramming75. Moreover,
the comparison between normal and cancer tissues may lead to the discovery of cell-cycle
dysregulated mechanisms in tumors and, perhaps, potential targets for drug development.

Methods

Cell culture
E14Tg2a.4 mouse embryonic stem cells were cultured on 0.1% gelatin-coated culture plates
in DMEM (4,5g/l glucose) supplemented with GLUTAMAX-I, 15% heat-inactivated fetal calf
serum (42F5874K, ESC culture tested, GIBCO), 0.1 mM beta-mercaptoethanol, 0.1 mM
non-essential amino acids 1,500 U/ml leukemia inhibitory factor (produced in house), 3 µM
CHIR99021 (72054, Stem Cell Technologies) and 1 µM PD0325901 (72184, Stem Cell
Technologies) in 5% CO2 at 37°C.

IMR90 primary human fetal lung fibroblast cells were cultured in DMEM 41966 (4,5g/l
glucose) supplemented with 10% fetal calf serum, Penicillin 100 UI/ml, and Streptomycin
100 µg/ml in 5% CO2 at 37°C. The cells were at passage 21 when performing the
experiments. For both scRNAseq and FACS experiments, 20 000 cells per well were seeded
into 6 well plates and cultured for 72 hours.

Single-cell RNA sequencing
To obtain single cell suspension of mESCs for single cell RNA sequencing, cells on a 60 mm
culture dish were washed once with PBS and treated with 1 ml 0,25% trypsin-1mM EDTA
(25200-072, Invitrogen) at 37°C for 3 minutes, then harvested into 3ml medium containing
serum, and washed 2-times with PBS containing 0.04% BSA. To prepare single cell
suspension of IMR90 cells, the cells from one well of a 6 well culture plate were washed
twice with PBS and treated with 500ul 0.05% trypsin-0.53mM EDTA (25300-062, Invitrogen)
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at 37°C for 2 minutes, then harvested into 4.5ml medium containing serum, passed through
50µm cell strainer and washed 2-times with PBS containing 0.04% BSA. In both cases, cell
concentration and viability (98 %) was determined using Countess II (Invitrogen) according
to the manufacturer’s instructions. Cells were then processed using the 10x Genomics
Chromium System according to the manufacturer’s instructions.

Cell number and viability were determined by a Trypan Blue exclusion assay on a
Neubauer Chamber. Samples consisting of > 90 percent viable cells were processed on the
Chromium Controller from 10x Genomics (Leiden, The Netherlands). Ten thousand cells
were loaded per well to yield approximately 6500 captured cells into nanoliter-scale Gel
Beads-in-Emulsion (GEMs).

In the case of mESCs, the single-cell 3 prime mRNA seq library was generated according
to 10X Genomics User Guide Chromium Single Cell 3ʹ Reagent Kits v3 (P/N CG000183 Rev
A). For the human fibroblasts, the single-cell 3 prime mRNA seq library was generated
according to 10x Genomics User Guide Chromium NEXT GEM Single Cell 3' Reagent Kits
v3.1 (P/N CG000204 Rev D). The raw and processed data for both libraries were stored on
the GEO (Accession number: GSE167609).

CellRanger outputs have been processed with velocyto9 (version 0.17.17) and analyzed
using scanpy76 (version 1.4.4.post1) and scvelo19 (version 0.2.2).

Cell cycle assay and flow cytometry
Cells were harvested by trypsin as before and washed once with PBS. About 2x106 cells
were resuspended in 100 µl PBS and added drop-by-drop to 900 µl 95 % ethanol while
mixing, then stored at +4°C overnight. Cells were then collected by centrifugation, washed
once with PBS, re-suspended in 1 ml staining buffer (50 µg/ml propidium iodide, 2 mM
MgCl2, 50 ng/ml RNaseA [EN0531, ThermoScientific] in PBS) and incubated for 20 minutes
at 37°C. Stained cells were washed once with PBS and analyzed on BD LSRII flow
cytometer.

The fcs files were processed with fcsparser (https://github.com/eyurtsev/fcsparser). For
the mESCs, the debris in the data was removed by filtering SSC-H and SSC-W values
higher than 140000 and 100000, respectively, and by selecting cells with a Hotelling T2 value
lower than 6 in the FSC-A SSC-A space, see Supplementary Figure S8. The filtering
retained more than 80% of the original cells (~ 26k out of 31k). For the human fibroblasts,
SSC-H values lower than 25000 and, SSC-H and SSC-W values greater than 150000 and
110000, respectively, were excluded. As for the mESCs, only cells with Hotelling T2 lower
than 6 in the FSC-A SSC-A space were retained.

Implementation of DeepCycle
The autoencoder was implemented in TensorFlow 2. The training happens in two steps, first,
we train the encoder to predict the cell angles in respect to the average spliced-unspliced of
a selected gene (Nusap1 for mESCs, Ccnd3 for ductal cells, and MELK for human
fibroblasts). Second step training of the whole autoencoder on unspliced-spliced data of the
genes in the GOterm:cell_cycle (GO:0007049). The structures of the encoder and decoder
are depicted in Supplementary Figure S3. The Dense layers are activated with a Leaky
ReLu function and the transcriptional phase θ in the hidden dimension is mapped to (Cos(θ),
Sin(θ)). During the training Gaussian Noise was added before outputting the θ from the
encoder at (Cos(θ), Sin(θ)) in the decoder.
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Finally, to infer a phase for each cell, we binned the angles in 50 and assign a cell to the
closest bin in the unspliced-spliced space predicted by the autoencoder (red lines in Figure
2C-D and Supplementary Figure S4) for all the genes used for the training (GO term:
cell_cycle, GO:0007049).

DeepCycle implementation was stored in the GitHub repository
https://github.com/andreariba/DeepCycle.

Transcription factor activity
The linear model used to infer the motif activities was implemented as in ISMARA43. To find
the regulatory interactions between transcription factors and genes, we used Motevo
predictions of binding sites in promoters downloaded from the Swiss Regulon Portal
(https://swissregulon.unibas.ch/sr/downloads) for mm10 mouse genome assembly
(https://swissregulon.unibas.ch/data/mm10_f5/mm10_sites_v2.gff.gz) and hg19 human
genome assembly (https://swissregulon.unibas.ch/data/hg19_f5/hg19_sites_v2.gff.gz).
Briefly, the Motevo algorithm uses a Bayesian framework to estimate the posterior probability
that a binding site for a given weight matrix (associated with a motif) occurs in an interval77.
After, we summarized the transcription factor binding sites in a matrix of site-counts Npm by
summing the posterior probabilities for each motif m in a promoter p. We defined a promoter
as the TSS +/- 1kb.

The cross-validation was repeated 10 times and the average optimal strength of the ridge
regularization was used for the final calculation of the TF activities.

Identification of cycling genes and high-density paths
A mixture of two bivariate Gaussians was used to fit the distribution of unspliced-spliced
expressions, to identify genes showing at least two maxima in the distribution of cells. After
identifying the two Gaussians a Hotelling’s T2 test was applied to select the genes with two
significantly different attractors. After supervised filtering of the remaining genes, we
implemented a method to select genes with at least two paths connecting the two maxima.
The path detection was implemented into two steps. First, coarse-grained paths were drawn
by slicing the spliced-unspliced landscape and connecting the minima found across the
successive slices. To refine the identified paths we implemented the Nudged Elastic Band63

with the addition of a viscosity term to stabilize the dynamics, we called the method Viscous
Nudged Elastic Band (VNEB).

The VNEB was also applied to the fibroblasts dataset to identify the paths connecting the
G1 phase to the S and G0 phases in Figure 5E.
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Supplementary Figures

Supplementary Figure S1. The human fibroblasts dataset contains two subpopulations,
one expressing cell cycle genes (blue) and the other not expressing them (orange). The two
populations are distinguishable in the PCA and UMAP projections. Leiden clustering was
performed to assign cells to the two subpopulations. The top genes identifying the
proliferative cluster against the nonproliferative ones are mostly associated with mitosis
(DAVID UP_Keywords Benjamini=1e-13) and cell cycle (DAVID UP_Keywords
Benjamini=2e-15).
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Supplementary Figure S2. Generalized RNA velocity (scVelo19) cannot fit the correct
model and latent time. A. Examples of models learned by scVelo that do not fit correctly
the data. The main issue seems to be related to the inability to capture the lower
steady-state. B. The expression of the genes as a function of the latent time shows
inconsistent patterns.
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Supplementary Figure S3. Autoencoder structure and training. Encode and Decoder:
key layers are the Circularize, which transforms the angle with cosine and sine, and the
GaussianNoise, which adds white noise to the transformed values.
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Supplementary Figure S4. Examples of fits for cycling genes from DeepCycle. Normalized
expressions (z-scores) are fed into DeepCycle to extract the circular path.
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Supplementary Figure S5. Transcriptional phases are estimated from the selected cell
cycle genes (x-axis) and the set of highly variable genes (y-axis). The two phases are highly
correlated, showing the robustness of the results even with a lower number of genes.

Supplementary Figure S6. Cyclum7 is unable to find the correct cell cycle phase in our
data. The angle is not filled by the cells that instead tend to be localized at the opposite sides
of the circle.
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Supplementary Figure S7. S and G2/M scores for mESCs, ductal cells, and human
fibroblasts were calculated from lists of phase-specific genes defined in19,29.
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Supplementary Figure S8. RNA velocity analysis for the mESCs, ductal cells, and the
proliferative human fibroblasts.
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Supplementary Figure S9. Flow cytometry analysis. The true label shows the cells with the
Hotelling T2 lower than 6. Orange dashed lines delimit the G1/S and S/G2 transitions.
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Supplementary Figure S10. Comparison of core cell cycle genes across datasets.

32

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2021. ; https://doi.org/10.1101/2021.03.17.435887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S11. Top genes selected based on their variability in expression
across the cell cycle. 4216 genes are shown for mESCs, 1014 for ductal cells, and 3973 for
human fibroblasts.
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Supplementary Figure S12. RNA velocity analysis on the whole population of human
fibroblasts.
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Supplementary Figure S13. G0 downregulated markers in62. The x-axis represents the
steps in the paths with the corresponding colors in Figure 5E.
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Supplementary Figure S14. G0 upregulated markers in62. The x-axis represents the steps
in the paths with the corresponding colors in Figure 5E.
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Supplementary Figure S15. Top genes showing the greatest cumulative fold-up change
towards the nonproliferative state. The x-axis represents the steps in the paths with the
corresponding colors in Figure 5E.
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Supplementary Figure S16. Top genes showing the greatest cumulative fold-down change
towards the nonproliferative state. The x-axis represents the steps in the paths with the
corresponding colors in Figure 5E.
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Supplementary Figure S17. Top genes showing the greatest cumulative fold-up change
towards the S phase. The x-axis represents the steps in the paths with the corresponding
colors in Figure 5E.
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Supplementary Figure S18. Top genes showing the greatest cumulative fold-down change
towards the S phase. The x-axis represents the steps in the paths with the corresponding
colors in Figure 5E.
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Supplementary Figure S19. Most significant motifs distinguishing the paths from G1. The
x-axis represents the steps in the paths with the corresponding colors in Figure 5E.
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Supplementary Figure S20. Most significant motifs distinguishing the paths towards S. The
x-axis represents the steps in the paths with the corresponding colors in Figure 5E.
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