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Abstract  

Diffusion MRI (dMRI) is a useful probe of tissue microstructure but suffers from low signal-to-noise 

ratio (SNR) whenever high resolution and/or high diffusion encoding strengths are used. Low SNR 

leads not only to poor precision but also poor accuracy of the diffusion-weighted signal, as the rectified 

noise floor gives rise to a positive signal bias. Recently, super-resolution techniques have been 

proposed for signal acquisition at a low spatial resolution but high SNR, whereafter a higher spatial 

resolution is recovered by image reconstruction. In this work, we describe a super-resolution 

reconstruction framework for dMRI and investigate its performance with respect to signal accuracy 

and precision. Using strictly controlled phantom experiments, we show that the super-resolution 

approach improves accuracy by facilitating a more beneficial trade-off between spatial resolution and 

diffusion encoding strength before the noise floor affects the signal. Moreover, precision is shown to 

have a less straightforward dependency on acquisition, reconstruction, and intrinsic tissue 

parameters. Indeed, we find that a gain in precision from super-resolution reconstruction (SRR) is 

substantial only when some spatial resolution is sacrificed. We also demonstrated the value of SRR in 

the challenging combination of high resolution and spherical b-tensor encoding at ultrahigh b-values—

a configuration that produces a unique contrast that emphasizes tissue in which diffusion is restricted 

in all directions. We conclude that SRR is most valuable in low-SNR conditions, where it can suppress 

rectified noise floor effects and recover signal with high accuracy. The in vivo application showcases a 

vastly superior image contrast when using SRR compared to conventional imaging, facilitating 

investigations of brain tissue that would otherwise have prohibitively low SNR, resolution or required 

non-conventional MRI hardware. 
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Introduction  

Diffusion MRI (dMRI) is a non-invasive method for investigating tissue microstructure in healthy and 

pathological tissue [1]–[3]. Investigations of subtle microstructure features rely on the use of strong 

diffusion weighting (ultra-high b-values) or tensor-valued diffusion encoding [4]–[6], both of which 

lead to stronger signal attenuations and low signal-to-noise ratios (SNR). A low signal precision can be 

improved by averaging over multiple observations which leads to increased scan times. Low SNR also 

causes poor signal accuracy in magnitude imaging due to the so-called rectified noise floor, which 

induces a positive signal bias [7]. Unlike precision, signal accuracy is not improved by averaging over 

magnitude signals [8]. Although averaging over complex signals with a coherent phase would improve 

accuracy, it is challenging because the diffusion encoding causes phase variation in the presence of 

tissue motion [9][10]. Accurate measurements of the diffusion-encoded signal is thus challenging. 

One approach where the problem of low SNR is particularly acute is spherical b-tensor encoding at 

ultrahigh b-values. This combination is desirable because it provides a novel contrast that emphasizes 

tissue in which diffusion is restricted in all directions. For example, it can be used to highlight the 

tightly packed granule cells in the cerebellar cortex, which are affected in diseases such as 

spinocerebellar ataxis and Alzheimer disease [11], [12]. So far, this contrast has been obtained only at 

preclinical MRI systems [13], or systems with ultra-strong gradients and at a poor spatial resolution 

[6]. Making this contrast available at high resolution and at widely available clinical MRI systems would 

add a new tool to the neuroimaging toolbox and enable studies of the cerebellum in a wide range of 

neurological conditions.  

Super-resolution reconstruction (SRR) is a promising solution to the problem of low SNR in dMRI. In 

principle, SRR is based on data acquired at a low spatial resolution—with improved precision and 

accuracy—and a subsequent image reconstruction that recovers a high-resolution image. SRR 

methods can balance the trade-off between SNR, spatial resolution and acquisition time [14], [15], 

[24], [16]–[23][25]. Wu et al. [21] used high-order singular value decomposition to regularize a patch-

based SRR framework, while Yang et al. [22] proposed a non-local strategy where joint information 

from the adjacent scanning directions was used to improve resolution. Poot et al. [24] demonstrated 

increased resolution of diffusion tensor parameters from a set of super-resolved diffusion-weighted 

images, where each image is reconstructed from set of low-resolution images with the same diffusion 

weighting and gradient direction. Van Steenkiste et al. [14] showed increased spatial resolution of 

diffusion tensor parameters when optimizing both k- and q-space sampling, and Jeurissen et al. [15] 

showed improved accuracy and precision in q-space trajectory imaging parameter estimation.  

Looking at this research, we note that the acquisition of the low-resolution data can be designed in 
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several ways. For example, the image acquisition can be performed with three slices having 

orthogonal low-resolution axes [25], slice shifting along the low-resolution direction [18], or multiple 

stacks of slices rotated about a common axis [16]. This flexibility of SRR allows it to be tailored to the 

needs of echo-planar imaging (EPI) which is commonly used in dMRI. For example, it is convenient 

acquire data using a common phase encoding direction to avoid that local field inhomogeneities cause 

variable geometric distortions [26].  

Although SRR has seen a broad uptake, the literature lacks a systematic treatment of SRR noise 

propagation. For example, imaging at a low resolution allows faster imaging (shorter repetition times), 

but leads to a complex interplay between SNR, scan time, repetition time, and T1-relaxation. A careful 

investigation of this interplay is necessary to understand the acquisition trade-offs, and to leverage 

them for optimal experimental design. Furthermore, the application of SRR for spherical b-tensor 

encoding at ultrahigh b-values and high resolution are yet to be explored. In this work, we aim to 

describe a general framework for SRR, formally analyze noise propagation, and experimentally verify 

the impact of SRR on signal accuracy and precision. We demonstrate the value of SRR in the 

challenging combination of spherical b-tensor encoding at a b-value of 4.0 ms/µm2 and 1.6 mm3 

isotropic resolution in the brain.  

Theory 

Super resolution reconstruction aims at recovering a high resolution image from multiple low-

resolution images that sample the object in different ways. A common approach is to acquire multiple 

stacks of thick slices rotated around the phase encoding direction [16]. To reconstruct an image with 

isotropic voxel sizes, the lower limit of low-resolution rotations 𝑁𝑅 is given by [19] 

 𝑁𝑅 ≥
π

2
⋅ α, Eq. 1 

where α is the aspect factor, defined as the ratio between the voxel size in the slice direction and 

frequency/phase encoding direction. Note that this factor also captures the volume ratio between the 

low and high-resolution voxels, as in-plane resolutions are identical. Also note that SNR is proportional 

to voxel volume in multislice acquisitions [27].  

The mapping from a high resolution image (𝐱) to a low resolution image (𝐲) can be described by a 

linear system [28] 

 𝐲𝑘 =  𝐀𝑘𝐱, Eq. 2 

where 𝑘 is an index of the low-resolution image sample. The sampling matrix 𝐀𝑘 describes the 

rotation/translation, down-sampling and blurring of the underlying high-resolution object and can be 
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constructed from the pulse sequence settings. Both 𝐲𝑘 and 𝐱 are expressed as column vectors such 

that a square image with N voxels on each side is represented by a N2×1 vector. The complete sampling 

of all low resolution images can be described in a single linear system 

 
𝐲 = 𝐀𝐱 + 𝛆, Eq. 3 

where 𝛆 is random noise. Assuming the noise is independent and normally distributed with zero mean, 

the solution to recover 𝐱 given 𝐀 and 𝒚 can be expressed as a least squares problem, such that 

 �̂� = argmin
𝐱

‖𝐀𝐱 − 𝐲‖2
2. Eq. 4 

The greater the number of complementary observations in 𝐲, the better the condition of the problem 

becomes. However, the problem in Eq. 4 often remains ill‐posed due to the down-sampling operation 

included in 𝐀. Therefore, the solution requires regularization, which often translates to imposing a 

smoothness to the solution [20]. A common approach is Tikhonov regularization [29], which penalizes 

high spatial-frequencies in the estimated high-resolution image. Including this regularization, the 

regularized least-squares squares problem becomes 

 �̂� = argmin
𝐱

‖𝐀𝐱 − 𝐲‖2
2 +  λ ‖𝐑(𝐱)‖2

2, Eq. 5 

where 𝐑 is the regularization term and λ is a scalar weight. We will here use a general regularization 

term independent of the image content: 𝐑(𝐱) = 𝐈, where 𝐈 is the identity matrix. This enables the use 

of the closed form solution, according to 

 �̂� = (𝐀T𝐀 + λ𝐈)−1𝐀T𝐲. Eq. 6 

Note that 𝐀T𝐲 produces the average low-resolution signal on the high-resolution grid, i.e., a blurred 

image. Without regularization (λ = 0), the remaining term (𝐀T𝐀)−1 is a sharpening operator, ideally 

reproducing the true image when applied to 𝐀T𝐲. As λ increases, the sharpening is reduced. However, 

as λ alters the denominator in Eq. 6, the intensities in �̂� are dependent on λ. To remove this 

dependence and thereby simplify comparisons among sampling schemes as described later, we can 

rewrite Eq. 6 according to 

 
�̂� = ((1 − λ)𝐀T𝐀 +  λ ⋅ 𝑁𝑅 · α · 𝐈)−1𝐀T𝐲 =  𝐂𝐲, Eq. 7 

where 𝐂 contains the entire reconstruction operation. The new regularization factor is constrained to 

0 ≤ λ ≤ 1, such that λ = 1 merely returns the average low-resolution signal on the high-resolution 

grid, but corrected for the intensity gain caused by larger voxel volumes. Figure 1 illustrates the SRR 

process for an in vivo acquisition for weak, moderate, and strong levels of regularization (different 
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values of λ). Weak regularization amplifies noise while strong regularization results in a blurred image. 

Moderate regularization balances the two.  

The effect of regularization on the effective spatial resolution of �̂� can be characterized using impulse 

response analysis, in which an impulse signal is passed through the forward model 𝐀 and 

reconstruction matrix 𝐂 according to 

 ℎ(𝜹𝑖) =  𝐂𝐀𝜹𝑖 , Eq. 8 

where 𝜹𝑖  is an impulse vector at position 𝑖 of 𝐱 and ℎ describes the resulting point spread function. 

Ideally, this would return the same 𝜹𝑖, meaning no loss of resolution due to reconstruction. Note that 

the point spread function is dependent on location, properties of the sampling (𝐀, 𝑁𝑅, α), and the 

level of regularization (λ).  

Signal accuracy and precision 

We evaluate the performance of SRR in terms of signal accuracy and signal precision. Across repeated 

measurements under identical conditions, signal accuracy (or trueness)1 concerns the closeness of the 

average signal to the true value, while signal precision concerns the spread of the signal. Both terms 

are strongly influenced by the data distribution that characterizes the MR signal. The noise in complex 

MR signal is normally distributed, whereas the magnitude signal used in dMRI is approximately Rice 

distributed [7] (for a detailed review of MR data distributions, see [30]). Consequently, in the absence 

of true signal, the mean (η) magnitude signal is given by [31] 

 
η = σ√

π

2
, Eq. 9 

where σ > 0 is the standard deviation of the measured signal. η is commonly referred to as the 

rectified noise floor, which gives rise to a positive signal bias that becomes prominent at low SNR. In 

presence of true signal, an approximation of the mean of the measured signal 𝑆̅ is given by [7] 

 
𝑆̅ = √𝑆true

2 + η2, 

 

Eq. 10 

 

where 𝑆true is the signal in the absence of noise. Hence, as a measure of signal accuracy, we employ 

the signal-to-noise-floor ratio (SNFR) [32]  

 
1 We use the definition where accuracy is only a description of systematic errors. ISO calls this trueness [52]. 
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SNFR =

𝑆̅

η
. Eq. 11 

Note that the SNFR of a non-diffusion weighted measurement characterizes the maximum achievable 

signal attenuation for accurate signal sampling. As a measure of precision, we use the signal-to-noise 

ratio (SNR) defined as  

 
SNR =

𝑆̅

σ
. Eq. 12 

Note that SNR and SNFR are both proportional to the voxel volume whereas noise levels are 

independent of the voxel volume [27].  

To enable comparison of precision between SRR and a conventional high-resolution acquisition 

(referred to as direct sampling), we define the SNR efficiency factor (ρ), according to 

 

ρ =  
SNRSRR

SNRD · √
TASRR
TAD

 

 , Eq. 13 

 

where SNRSRR and  SNRD are the SNR levels and TASRR and TAD the acquisition times of SRR and 

direct sampling at a given spatial resolution. To evaluate Eq. 13, we study how noise propagates from 

𝐲 into 𝐱. For SNR > 3 the noise distribution is approximately Gaussian, independent and identically 

distributed [7][33]. The signal variance in the reconstructed image can thus be easily computed from 

the linear operations in Eq. 6 based on the additive property of variance. We define the noise 

propagation factor (𝜅) as the average ratio of the noise standard deviation in the high-resolution 

reconstructed and low-resolution images, according to 

 

κ =  
1

𝑛
∑

𝜎𝑥(𝑖)

σ𝑦

𝑛

𝑖=1
=

1

𝑛
∑ √∑ 𝐂(𝑖, 𝑗)2

𝑚

𝑗=1

𝑛

𝑖=1
 

Eq. 14 

 

where 𝑛 is the total number of reconstructed voxels with index 𝑖, and 𝑚 is the total number of low-

resolution input voxels with index 𝑗. The noise propagation factor is, like the point spread function, 

dependent on properties of the sampling (𝐀, 𝑁𝑅, α) and the regularization (λ). For a setup where the 

only difference between direct sampling and SRR is related to the SRR configuration (slice thickness, 

number of slices, repetition time and number of slice orientations), Eq. 13 can be extended to include 

the relevant effects of imaging parameters (Appendix A) to 

 

ρ =  
1

κ
 ·  

1 − exp(−TRSRR 𝑇1⁄ ) 

1 − exp(−TRD 𝑇1⁄ )
 ·  √

TRD

𝑁𝑅 · TRSRR
 , 

Eq. 15 

 

where TRD and TRSRR are the repetition times for direct sampling and SRR respectively, and 𝑇1 is the 

longitudinal relaxation time. The TR is approximately proportional to the number of slices, and the 
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number of slices to cover the same area in an SRR acquisition can be reduced with a factor of α. 

Therefore, the minimal TRSRR is given by 

 

TRSRR =
TRD

α
. 

Eq. 16 

 

When TRD ≫ 𝑇1, both 1 − exp(−TRSRR 𝑇1⁄ ) and 1 − exp(−TRD 𝑇1⁄ ) will approach unity, as will 

their ratio. When sampling directly, approximately 1% signal is lost due to incomplete T1 recovery 

when TRD 𝑇1⁄  = 4.6. However, this corresponds to a signal loss of 46% when using α = 6 and a minimal 

TRSRR. For this reason, as the aspect factor increases and the TR is minimized, the expected SRR gain 

will eventually be negated by incomplete T1-recovery. 

Methods 

We evaluate the performance of the outlined SRR framework. First, we investigate signal accuracy in 

a water phantom, both numerically and experimentally. Second, we investigate signal precision in 

terms of SNR efficiency, both numerically, analytically, and experimentally in vivo. Finally, we 

demonstrate the utility of SRR at spherical tensor dMRI at ultrahigh b-values in vivo. All simulations 

and data analysis were performed in Matlab (The MathWorks, Inc., Natick, Massachusetts, USA). 

Data acquisition 

All practical experiments were performed on a 3T-scanner (MAGNETOM Prisma, Siemens Healthcare, 

Erlangen, Germany) using a 20-channel head and neck coil. The study was approved by the local ethics 

committee and informed consent was obtained from all volunteers. A prototype pulse sequence was 

used based on a single-shot spin-echo with echoplanar imaging readout that facilitates user defined 

gradient waveforms for diffusion encoding [34]. Gradient waveforms for spherical b-tensor encoding 

were optimized for the MRI system [35], including compensation for concomitant gradients [36]. The 

waveforms were constrained to a maximal gradient magnitude of 80 mT/m (L2-norm) and a slew rate 

of 100 T/m/s. The gradient waveform is shown in Appendix B. Detailed information on acquisition 

parameters will be described per experiment.  

Low-resolution data was acquired with slices rotating around a fixed phase encoding direction. As 

experiments were performed for various aspect factors, we used the minimum number of low-

resolution rotations per aspect factor according to Eq. 1. In simulations, Eq. 2 was used to obtain low-

resolution data. In all experiments, low-resolution data was reconstructed per slice according to Eq. 

7. 
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The impact of noise floor on signal accuracy 

We characterize the effect of the rectified noise floor on signal accuracy when modulating the aspect 

factor as well as the strength of diffusion encoding. We use a mono-exponential signal model in water 

given by 

 𝑆true(α, 𝑏) = 𝑆0,α=1 · α · exp(−𝑏 · 𝐷), Eq. 17 

 

where 𝑏 is the b-value and 𝐷 is the mean diffusivity. We include Rice noise contribution to obtain a 

simplified analytical signal model to fit measured data, according to Eq. 10. 

Measurements were performed in a phantom filled with deionized water at room temperature. Data 

were acquired in a single slice with an in-plane resolution of 1.6×1.6mm2 and slice thicknesses 

between 1.6 mm and 9.6 mm, giving aspect factors between 1 and 6. A constant TR of 4 s was used, 

to remove influence of T1-relaxation. A single slice acquisition was used to ensure that all aspect 

factors shared the same central plane and to provide a fair comparison of baseline signals. We used 

b-values ranging from 0 to 3 ms/μm2 in steps of 0.3 ms/μm2 and 5 repetitions. The average signal 

𝑆(α, 𝑏) was estimated separately for each b-value in a homogeneous area of the phantom. The 

diffusivity 𝐷 and noise level 𝜎 were estimated by a least-squares fit of the data to Eq. 10 given Eq. 17. 

The same conditions were reproduced in a numerical signal model where 𝑆0,α=1 = 1 and 𝐷 = 2.2 

μm2/ms. Noise with σ = 0.014 was added to the real and imaginary channel for signal generated by 

Eq. 17, after which the magnitude was computed. This corresponded to a maximal SNR of 𝑆0/𝜎 = 71 

and 426 for α = 1 and 6 respectively. The average signal 𝑆(α, 𝑏) was estimated from 104 realizations of 

noise. Note that diffusivity and noise levels were matched to those measured in the water phantom.  

The numerical signal model was extended to include SRR. We simulated low-resolution measurements 

in a Shepp-Logan phantom, where one of the regions was adapted to mimic water at room 

temperature. High-resolution images were reconstructed for 103 realizations of noise, after which the 

average signal 𝑆(α, 𝑏) was estimated. 

From all resulting signal curves, we estimated the SNFR (Eq. 11) and computed the threshold 

attenuation factor (𝑏max · 𝐷) at which the signal bias is less than 5% using the true mono-exponential 

signal model as reference. The threshold attenuation factors were compared across aspect factors. 

Analysis of precision and SNR efficiency  

We investigated SNR efficiency (Eq. 13-Eq. 15) under assumption of Gaussian noise (SNR > 3). To avoid 

unfair gains in precision due to the regularization in SRR, we compared SNR efficiency at matched 

effective spatial resolutions. We used the full-width-half maximum (FWHM) of the average point 
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spread function (Eq. 8) in the anterior-posterior direction as a measure of spatial resolution. To match 

resolutions between SRR protocols, we searched for the λ that induced a FWHM matching the 

reference value. For direct sampling, we matched resolution by convolving the images by a gaussian 

filter with a size dictated by the FWHM. In simulations, we ensured matched resolutions by convolving 

the directly sampled data with the average point spread function per SRR protocol.  

We performed multiple experiments to investigate the relationship between SNR efficiency, aspect 

factor, T1-relaxation and acquisition time. When T1-relaxation is neglected, we expect that SNR 

efficiency increase with aspect factors monotonically. Simulations were performed in a Shepp-Logan 

phantom, where low-resolution data was sampled for aspect factors between 1 and 8 assuming 𝑆 ∝ α 

and 𝑆α=1 = 1. Gaussian noise with σ = 0.1 was added and the SNR efficiency was estimated from the 

reconstructed images in a homogenous area according to Eq. 13, where we set 
TASRR

TAD
=

𝑁𝑅

α
. The 

procedure was repeated for weak, moderate, and strong regularization, associated with an average 

point spread function with a FWHM of approximately 1.17, 1.35 and 1.59 voxels, respectively. The 

estimation of SNR efficiency was also performed analytically using Eq. 15. In the same analytical 

model, we also included T1 relaxation effects, where we expect that smaller TR reduces SNR efficiency. 

We evaluated SNR efficiency at moderate regularization for TRD = [5 10 20] s and TRSRR set to the 

minimum possible value for each aspect factor (Eq. 16). T1 was set to 1.6 s, as observed in brain grey 

matter at 3 T [37]. Since TRSRR does not have to assume the minimal value, we also investigated how 

longer TRSRR promotes T1 relaxation and how it affects the SNR efficiency in both grey and white 

matter (T1WM = 0.8 s [37]) for α = 8.  

To verify our simulations, SNR efficiency was also evaluated in a healthy brain in vivo (male, 28 years) 

for aspect factors up to 6. All experiments used b = [0 0.5] ms/μm2 with 1 and 10 repetitions, FOV = 

220×220×144 mm3, TE = 100 ms, partial-Fourier factor = 6/8, 2x in-plane acceleration (GRAPPA) and 

bandwidth = 1725 Hz/pixel. Remaining imaging parameters dependent on the aspect factor are 

summarized in Table 1. All images were reconstructed at a resolution of 1.6×1.6×1.6 mm3 to yield a 

point spread function with an FWHM of approximately 2.2 mm due to regularization. The SNR 

efficiency was estimated according to Eq. 13 in the central white matter, brainstem, corpus callosum 

and cerebellar white matter at b = 0.5 ms/μm2.  
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 TABLE I 

IN VIVO ACQUISITION AND RECONSTRUCTION PARAMETERS FOR SUPER-RESOLUTION RECONSTRUCTION PROTOCOLS  
 

α=1 α=2 α=3 α=4 α=5 α=6 

𝑁𝑅 [1] 1 3 5 7 8 10 

Res [mm3] 1.6×1.6×1.6 1.6×1.6×3.2 1.6×1.6×4.8 1.6×1.6×6.4 1.6×1.6×8.0 1.6×1.6×9.6 

TR [ms] 13000 6500 4300 3300 2600 2200 

TA [min] 2:23 3:35 4:00 4:14 3:49 4:02 

λ [1] - 0.19 0.10 0.06 0.05 0.04 

 

In vivo dot fraction imaging 

We demonstrate the utility of SRR by visualizing the presence of the so-called dot fraction in the brain 

with a higher contrast than possible when using direct sampling. The dot-fraction is linked to the 

relative signal that remains at very high b-values when using spherical b-tensor encoding. As 

anisotropic tissue is effectively attenuated by spherical b-tensor encoding, the remaining signal can 

be attributed to restricted pools in which the apparent diffusivity is low or zero in all directions [6] 

[50].  

A healthy volunteer (male, 27 years) was scanned at b = [0 1 4] ms/μm2 using 1, 3, and 13 repetitions, 

𝑁𝑅 = 8, resolution = 1.6×1.6×7.2 mm3 (α = 4.5), FOV = 211×211×144 mm3, TE = 120 ms, TR = 4200 ms, 

TA = 9:31 min, 2x in-plane acceleration (GRAPPA), partial-Fourier = 6/8 and bandwidth = 1720 Hz/pixel. 

A directly sampled set was acquired for comparison at b = [0 1 4] ms/μm2 using 1,4, and 15 repetitions, 

resolution = 1.6×1.6×1.6 mm3, FOV = 211×211×188 mm3, TR = 14200 ms and TA = 9:18 min. The TR 

was set to the minimum value possible without the use of through-plane acceleration. To reduce the 

impact of system drift, we used 2x through plane acceleration and interleaved the b-values over 

volumes [38][39], [40]. All raw data were denoised using Marchenko-Pastur principle component 

analysis [41], [42]. The low-resolution images were reconstructed at a resolution of 1.6×1.6×1.6 mm3 

using SRR, where we set λ = 0.05 (FWHM of point spread function is 2.1 mm).  

We assume a dot compartment with signal fraction 𝑓dot and isotropic diffusivity 𝐷dot equal to zero, 

accompanied by a fraction of other tissue (1 − 𝑓dot) with non-zero isotropic diffusivity. Assuming 

Gaussian diffusion and no exchange, the diffusion-weighted signal 𝑆(𝑏) is given by [6], [43] 

 
𝑆(𝑏) = 𝑆0 (𝑓dot exp(−𝑏 · 𝐷dot) + (1 − 𝑓dot) exp(−𝑏 · 𝐷other)), 

Eq. 18 

 

where 𝑆0 is the non-diffusion weighted signal. For very high b-values, the exp(−𝑏high · 𝐷other) ≈ 0, 

and only signal in the dot compartment remains since 𝐷dot ≈ 0, which simplifies Eq. 18 to  
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𝑆(𝑏) ≈ 𝑆0 · 𝑓dot. 

Eq. 19 

 

The resulting map is weighted by both 𝑆0 (T2-weighting) and 𝑓dot (influenced by density of cells 

exhibiting restricted diffusion in all directions). Note that, under these assumptions, 𝑓dot only gives an 

upper limit on the true value as other tissues as well as the rectified noise floor may contribute to the 

remaining signal [6]. 

Both the super-resolved and directly acquired high-resolution images were averaged for 𝑏 = 4 ms/μm2. 

The grey-to-white matter signal ratio was calculated between gray matter voxels in the cerebellar 

cortex and white matter voxels in the cerebellum. 𝑓dot was calculated using Eq. 19. We compared the 

images to a corresponding T1-weighted morphological scan and to a similar contrast found in brain 

histology from the BigBrain atlas [44], Nissl stained to emphasize neurons. 

Results 

The impact of noise floor on signal accuracy 

Figure 2 shows the effect of the rectified noise floor on signal accuracy for different aspect factors. 

The rectified noise floor causes an overestimation of the signal at high b-values where SNR is low (Fig. 

2a). As the SNFR is boosted by a factor α, higher b-values can be employed before reaching the 5% 

signal bias threshold: for the measured signal (SNFR = 60 at 𝑏 = 0 for α = 1, 𝐷 = 2.2 μm2/ms), sampling 

with α = 6 compared to α = 1 allows for a b-value increase from 1.4 to 2.2 ms/μm2 (Fig. 2b). More 

generally, going from α = 1 to α = 6 allows for an increase of the attenuation factor 80%. Simulated 

results agree with measurements. Note that TR was constant across measurements and does not 

reflect the contribution from T1-weighting.  

Analysis of precision and SNR efficiency  

Figure 3 shows the SNR efficiency for SRR with different aspect factors for three levels of 

regularization. SNR efficiency generally increases with aspect factor. For example, for moderate 

regularization (FWHM of the point spread function is 1.35 voxels), ρ ≈ 2 for α = 8, effectively doubling 

the precision. As expected, a stronger regularization leads to higher SNR efficiency but lower effective 

spatial resolution. Note that this increase is not just due to the smoothing induced by strong SRR 

regularization. The comparison was made at matched effective resolutions, which shows that 

regularized SRR is more SNR effective than smoothing a direct acquisition. However, this analysis does 

not include T1-relaxation effects. 

Figure 4 shows the effect of T1 saturation on SNR efficiency, which decrease with TRD (Fig. 4a). This 

effect is more evident for higher aspect factors. For example, for α = 8 in grey matter, ρ = 2 at TRD>>T1 
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decreases to ρ = 0.7 at TRD = 5 s. Rather than increasing SNR efficiency, SRR in this case leads to a 

reduced SNR efficiency. However, when TRD > 10 s and/or lower aspect factors are used, T1 effects 

are less evident and SNR efficiency is still increased for SRR. Note that TRSRR can be increased at the 

expense of scan time. As illustrated for α = 8, we see it is only beneficial to set TRSRR to a minimum 

when TRSRR/T1 > 1.25 (Fig. 4b). 

In vivo results on precision  

Figure 5 shows the results of SRR in vivo for different aspect factors but similar effective resolution 

(FWHM matched). It shows that SRR in vivo is feasible, as resolution is regained for all aspect factors. 

Ringing artefacts are observed near high-contrast transitions, such as around the ventricles [45]. A 

variable T1-weighting can be seen as the aspect factor increases and the TRSRR is reduced.  

Figure 6 shows SNR efficiency for measured and simulated data in white matter at 𝑏 = 0.5 ms/μm2. In 

central white matter and the corpus callosum, experiments and simulations agree up to α = 5. In the 

brainstem and cerebellar white matter, simulations overestimate the SNR efficiency for all aspect 

factors. This could partly be explained by differences in the T1-times of the underlying tissue. For 

example, the T1 in brainstem is reported to be 1.2 s [46] compared to a T1 of 0.8 s in central white 

matter used for simulations, thereby reducing SNR efficiency according to Eq. 15. In all cases, the SNR 

efficiency is still above unity, meaning SRR is beneficial over direct sampling for this specific protocol. 

In vivo dot fraction imaging 

Figure 7 shows the results for dot fraction imaging. Direct sampling leads to poor image contrast 

throughout the brain. By contrast, SRR enables a vastly improved image contrast where the cerebrum 

becomes visible with prominent signal in the cerebellar cortex. The contrast ratios between the cortex 

and white matter of the cerebellum are 1.82 for SRR and 1.06 for direct high-resolution. Figure 8 shows 

that a part of this contrast is due to T2 effects, as the T2-adjusted map of 𝑓dot shows a less pronounced 

contrast. A similar contrast is observed in neuron-stained brain histology. 

Discussion  

In this work, we investigated the value of super-resolution reconstruction and how it impacts signal 

accuracy and precision in diffusion MRI. We found that SRR produced increased accuracy in a 

challenging application that would not be feasible without it (Fig. 7). We also expect that the increase 

in signal accuracy by SRR will lead to an improved accuracy of diffusion parameters [15]. 

SRR improves the accuracy of the diffusion weighted signal by suppressing the rectified noise floor. 

The gain follows the law of diminishing returns—going from an aspect factor of 1 to 2 has a larger 

positive effect than going from 5 to 6 (Fig. 2). The result is noteworthy for two reasons. First, this gain 
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is achieved without changing the pulse sequence, in contrast to methods relying on averaging before 

magnitude reconstruction [10]. Secondly, it is robust. This differs from postprocessing methods that 

have been proposed to remove the bias [47]–[50], which rely on prior knowledge of the data 

distribution. This can be challenging in vivo due to subject motion and eddy current distortions. 

However, unlike these methods, SRR does not completely remove the bias and the accuracy gain 

depends on factors like aspect factor and diffusivity. Nonetheless SRR is robust as signal bias is mostly 

avoided rather than corrected.  

Signal precision can be preserved or improved using SRR, depending on the aspect factor, T1-

weighting, and regularization. SNR efficiency increased for large aspect factors, however, effects of 

T1-relaxation become dominant at sufficiently high aspect factors (Fig. 4). Previous studies suggested 

larger aspect factor would lead to larger improvements in SNR efficiency [14], [19]. However, this was 

under the assumption of complete T1-recovery, which does not hold when relatively short repetition 

times are used. Generally, we see that a precision increase is limited and heavily dependent on 

acquisition, reconstruction, and intrinsic tissue parameters. To the best of our knowledge, no other 

studies have investigated precision in SRR at matched effective resolutions, something that arguably 

is needed for a fair comparison.  

As the gain in precision from SSR was only modest, the major benefit of SRR is seen for low-SNR 

scenarios where accuracy can be substantially improved. For example, SRR can facilitate high 

resolution imaging and/or the use of strong diffusion encoding which is otherwise prohibited by noise 

floor effects. We demonstrated this by enabling high-resolution imaging at ultra-high b-values with 

spherical tensor encoding for the purposes of dot fraction imaging, which was not possible with direct 

sampling (Fig. 9). Dot fraction imaging visualizes densely packed cells located in the cerebellar cortex, 

a novel contrast that a recent study has showed in MRI systems with ultra-strong gradients and 

acquisition at a poor spatial resolution [6]. We believe that our method can help to study 

neurodegenerative diseases affecting these cells in a higher resolution than has been possible before. 

Current acquisition times are just below 10 minutes and can be further optimized to comply with 

clinical routine. 

In high-SNR situations, SRR has few benefits compared with direct sampling. One remaining benefit is 

as a tool for acceleration when used in combination with a diffusion model as previously shown by 

van Steenkiste et al. [14] and Jeurissen et al. [15]. Here, the diffusion directions are subsampled over 

the acquired low resolution images, such that directional information needed to fit the model can be 

acquired in less time.  
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We identified some limitations of the present study, regarding the generality of our findings. First, we 

assume that a single point spread function with a certain FWHM describes the effective resolution of 

a given sample/reconstruction matrix, to enable resolution-matching of images. These profiles are 

location-dependent, and their shape differs among sampling matrices, possibly making comparisons 

between images captured in the SNR efficiency inaccurate. Second, we used the identity matrix as 

regularization matrix. Using image-dependent regularization can have benefits, such as edge-

preservation [51]. In addition, our analysis does not include motion and eddy current correction in the 

SRR model, while perfect registration in SRR is of importance to obtain non-blurry high-resolution 

results. This has only potential consequences for our in vivo results, and could be addressed in future 

work. Third, the current analysis is done using T1-relaxation times at 3T, and will therefore differ 

somewhat for imaging systems with different field strengths [37]. As T1 generally scales with field 

strength, we expect less precision benefits at higher field strengths and vice versa.  

In conclusion, we have presented a comprehensive analysis of SRR that outlined the major features 

influencing the precision and accuracy of the diffusion-weighted signal. We showcased the use of SRR 

in an extraordinarily challenging combination of high resolution and spherical tensor encoding with 

ultrahigh b-values, where SRR can suppress noise floor effects and recover high signal accuracy. We 

expect that the open-source tools developed herein will support future experimental design, such that 

both acquisition and reconstruction parameters can be optimized for specialized purposes. 

Acknowledgements 

We thank Ben Jeurissen and Lipeng Ning for stimulating discussions. We thank Siemens Healthcare 

(Erlangen, Germany) for access to the pulse sequence programming environment. This research was 

financially supported by VR (2016-03443, 2020-04549), eSSENCE, Cancerfonden and The Swedish 

Prostate Cancer Federation.   

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.17.435819doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.17.435819
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

Figures 

Figure 1. Illustration of the super-resolution reconstruction process. Step 1: Multiple images are 

acquired with low through-plane resolution rotated around a static axis. Step 2: The images are up-

sampled to the high-resolution grid by application of the upsampling operator to each individual 

image. Step 3: The joint up-sampling operator results in an average of the individual images, i.e., a 

smooth image on the high-resolution grid. Step 4: The sharpening operator is applied to obtain a high-

resolution image. The regularization parameter λ determines the trade-off between resolution and 

noise propagation; a higher λ leads to a blurrier, but less noisy image. Steps 2 to 4 are shown as a 

magnified view of the region indicated by the red square. 
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Figure 2 Effect of the rectified noise floor on signal accuracy for aspect factors (α) up to 6. Panel (a) 

shows the simulated and measured mean signal in a water phantom as a function of the b-value. Panel 

(b) shows the threshold attenuation factor (𝑏𝑚𝑎𝑥 · 𝐷) that can be used for accurate signal sampling 

for different SNFR at b0 versus aspect factor. Sampling with larger voxels improves accuracy and allows 

for the use of higher b-values before the noise floor affects the signal. Simulations and experimental 

results (circles versus triangles) show high agreement. 

 

  

(a) (b) 
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Figure 3. SNR efficiency for different aspect factors and regularization strengths, evaluated 

numerically (dashed line) and analytically (solid line). SNR efficiency above unity means that precision 

increases compared to a direct acquisition with matched spatial resolution and acquisition time. Both 

the increase in aspect factor and regularization strength lead to a higher SNR efficiency. Analytical and 

numerical experiments agree. Effects of T1-relaxation are disregarded in this analysis. 
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Figure 4. Effect of T1 relaxation on the SNR efficiency. Panel (a) shows the SNR efficiency in grey matter 

using the minimum TRSRR for a given TRD. and aspect factor. SNR efficiency decreases as TRD decreases, 

with a faster decrease for higher α. Panel (b) shows the effect of changing TRSRR above its minimum 

for α = 8 and T1 of both grey- and white matter. SNR efficiency is maximized when TRSRR /T1 is as close 

as possible to 1.25. Simulations are performed at moderate regularization strength (FWHM of PSF is 

1.35 voxels).  

 

  

(a) (b) 
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Figure 5. Super-resolution reconstruction (SRR) in vivo at 𝑏 = 0 ms/μm2. Panel (a) shows images 

acquired without diffusion weighting and reconstructed at 1.6×1.6×1.6 mm3 using different aspect 

factors (α). Contrast reduces as the aspect factor grows, due to T1-relaxation effects. Panel (b) shows 

the average point spread functions induced by the different SRR protocols. The PSFs are aligned 

between protocols, i.e. the images are given at an equal resolution. Note that α=1 refers to a Gaussian 

smoothened direct acquisition. 

 

Figure 6. SNR efficiency of white matter (WM) in vivo. The values were obtained from simulations as 

well as estimated from experimental data, for different aspect factors. Generally, simulations 

overestimate the SNR efficiency, which could be due to T1 differences of the underlying tissue. Note 

that in all cases SNR efficiency is above unity, meaning precision is gained by SRR compared to direct 

sampling. 
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Figure 7. In vivo illustration of the benefits of SRR. The figure shows diffusion weighted images from a 

direct acquisition (left) and an SRR protocol (right) with spherical encoding at 𝑏 = 4 ms/μm2 in coronal 

and sagittal view at 1.6x1.6x1.6 mm3. A vastly higher contrast is observed with SRR compared with 

direct sampling. Quantitatively, this corresponds to an increase in the contrast ratio between the 

cerebellar cortex and white matter to 1.82 from 1.06. Acquisition times are similar.  
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Figure 8. Signal retention using diffusion-weighted imaging with spherical encoding at 𝑏 = 4 ms/μm2 

(upper left) and estimation of 𝑓dot (upper right) show agreement with neuron-stained histology (lower 

right plot shows human brain histology from the BigBrain atlas [44]). As expected, regions of high 

signal correspond to the cerebellar cortex where granule cells are densely packed, whereas the white 

matter is suppressed by the spherical diffusion encoding (lower left for morphological reference).  
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Appendix 

A. Derivation of SNR efficiency 

We derive ρ as given in Eq. 15. We start from Eq. 13, stating  

 
 ρ =  

SNRSRR

SNRD · √
TASRR
TAD

 . Eq. A1 

 

To find our final expression, we express both SNRSRR and SNRD in terms of SNRLR, the SNR of a low-

resolution acquisition. For all cases, 

 

𝑆�̅� ∝  𝑉𝑥 · (1 − e
−TR𝑥

𝑇1 ), Eq. A2 

where 𝑆̅ is the mean signal, 𝑉 is the voxel size and 𝑥 the reflecting component, i.e. LR, SRR or D (direct 

sampling). As 𝑉LR =  α ·  𝑉D, we rewrite Eq. A2 to 

𝑆D̅ =  
𝑆L̅R

 α 
·

1 − e
−TRD

𝑇1

1 − e
−TRLR

𝑇1

. 
Eq. A3 

 

As σ is independent of voxel size, σd = σLR [27], combining both Eq. A3 and Eq. 12 gives 

 

SNRD =  
1

 α 
·

1 − e
−TRD

𝑇1

1 − e
−TRLR

𝑇1

·  SNRLR 

 

Eq. A4 

 

Along the same way we can find an expression for SNRSRR. As TRSRR =  TRLR, T1-effects are the 

same for both measurements, and we use Eq. A2 to see that 

𝑆S̅RR =  
𝑆L̅R

 α 
. 

Eq. A5 

We use the definition of the noise propagation factor κ of Eq. 14 and Eq. 12 to find  

SNRSRR =  
1

 α · κ
·  SNRLR. 

Eq. A6 

As for SRR the repetition time decreases, but the number of slice orientations increases with a factor 

𝑁𝑅 , we find   

 TASRR

TAD
 =

𝑁𝑅 · TRSRR

TRD
. Eq. A7 

Combing Eq. A4, Eq. A6 and Eq. A7 in Eq. A1, gives the SNR efficiency ρ defined in Eq. 15, being  
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ρ =  
1

κ
 ·  

1 − e
−TRSRR

𝑇1

1 − e
−TRD

𝑇1

 ·  √
TRD

𝑁𝑅 · TRSRR
. Eq. A8 

 

B. Gradient waveforms 

Conventional, or linear diffusion encoding yields a pair of trapezoidal pulsed field gradient on each 

side of the refocusing pulse in a spin-echo sequence [1]. In this work, we used more advanced, 

spherical encoding where all three gradients are continuously used [34]. The gradient waveforms we 

used are depicted in Figure A1. 

 

Figure A1. Optimized gradient waveforms were used to yield spherical tensor encoding (STE) in all 

practical experiments, and the one used for in vivo measurements is shown under conditions that 

yield 𝑏 = 4.0 ms/µm2. Radiofrequency pulses (RF) are depicted in between gradients. This waveform 

and other resources related to the free waveforms sequence are available at https://github.com/filip-

szczepankiewicz/fwf_seq_resources. 
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