
 

1 

Genome-wide DNA methylation and transcriptome integration reveal 

distinct sex differences in skeletal muscle.   

Shanie Landen1, Macsue Jacques1, Danielle Hiam1, Javier Alvarez1, Nicholas R Harvey2,3, 

Larisa M. Haupt3, Lyn R, Griffiths3, Kevin J Ashton2, Séverine Lamon4, Sarah Voisin1*, Nir 

Eynon1,5* 

* Sarah Voisin and Nir Eynon are co-senior authors 

1 Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia. 

2 Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4226, Australia 

3 Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of 

Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia 

4 Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia. 

5 Murdoch Children’s Research Institute, Melbourne, Australia  

  

Corresponding author:  

Professor Nir Eynon 

Institute for Health and Sport (iHeS), 

Victoria University  

PO Box 14428 

Melbourne, VIC 8001, Australia.  

Tel: (61-3) 9919 5615, Fax: (61-3) 9919 5532, E-mail: Nir.Eynon@vu.edu.au 
 

Abstract 

Nearly all human complex traits and diseases exhibit some degree of sex differences, 

and epigenetics contributes to these differences as DNA methylation shows sex differences in 

various tissues. However, skeletal muscle epigenetic sex differences remain largely 

unexplored, yet skeletal muscle displays distinct sex differences at the transcriptome level. 

We conducted a large-scale meta-analysis of autosomal DNA methylation sex differences in 

human skeletal muscle in three separate cohorts (Gene SMART, FUSION, and GSE38291), 

totalling n = 369 human muscle samples (n = 222 males, n = 147 females). We found 10,240 

differentially methylated regions (DMRs) at FDR < 0.005, 94% of which were 
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hypomethylated in males, and gene set enrichment analysis revealed that differentially 

methylated genes were involved in muscle contraction and metabolism. We then integrated 

our epigenetic results with transcriptomic data from the GTEx database and the FUSION 

cohort. Altogether, we identified 326 autosomal genes that display sex differences at both the 

DNA methylation, and transcriptome levels. Importantly, sex-biased genes at the 

transcriptional level were overrepresented among the sex-biased genes at the epigenetic level 

(p-value = 4.6e-13), which suggests differential DNA methylation and gene expression 

between males and females in muscle are functionally linked. Finally, we validated 

expression of three genes with large effect sizes (FOXO3A, ALDH1A1, and GGT7) in the 

Gene SMART cohort with qPCR. GGT7, involved in muscle metabolism, displays male-

biased expression in skeletal muscle across the three cohorts, as well as lower methylation in 

males. In conclusion, we uncovered thousands of genes that exhibit DNA methylation 

differences between the males and females in human skeletal muscle that may modulate 

mechanisms controlling muscle metabolism and health.  

 

Introduction 

 Sex differences are evident in nearly all complex traits. Various diseases, including 

but not limited to cancer, muscular dystrophy, and COVID-19 [1, 2], display sex differences 

in prevalence, onset, progression, or severity. To improve treatment for such diseases, it is 

crucial to uncover the molecular basis for the sex differences and their consequences on 

organ function. Sexually differentiated traits and phenotypes stem from a combination of 

factors, including genetics (gene variants-by-sex interactions [3], XY chromosome 

complements [4-7], genomic imprinting [8]), the hormonal milieu [9, 10], and gene 

regulation [11], with the latter likely contributing the most [1]. 
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Recently, a large-scale study from the Genotype-Tissue Expression (GTEx) consortium 

unravelled mRNA expression differences between the sexes that are not driven by sex 

chromosomes, across all tissues. Skeletal muscle was particularly divergent between the 

sexes, as gene expression profiles in this tissue could predict sex with high specificity ≥ 90%, 

and sensitivity ≥ 98% [4]. These transcriptomic differences underpin the numerous 

physiological differences in skeletal muscle between males and females, such as differences 

in substrate metabolism [12-14]. For example, females oxidize more lipids and less 

carbohydrates and amino acids during endurance exercise, and albeit depending on training 

status, tend to have a higher proportion of type I (slow-twitch) muscle fibres [15], all of 

which inherently contribute to enhanced fatigue-resistance in female skeletal muscle [16]. As 

such, females exhibit higher mRNA and protein levels of lipid oxidation-related genes than 

males [13]. Interestingly, the top gene set corresponding to sex-biased genes in the GTEx 

study corresponded to targets of the epigenetic writer polycomb repressive complex 2 (PRC2) 

and its associated epigenetic mark (H3K27me3). This suggests that the sex-specific 

deposition of epigenetic marks may be the source of sex differences in gene expression. 

Epigenetics is a system of gene regulation that influences gene expression and is 

modulated by the genetic sequence and environmental stimuli. DNA methylation is currently 

the best-characterized epigenetic modification, and has been shown to differ between males 

and females in various tissues, such as pancreatic islets [17], blood [18, 19], and more 

recently in cultured myoblasts and myotubes [20]. While there is ample evidence for 

transcriptomic sex differences in skeletal muscle [4, 11, 12, 21-23], it is unclear whether sex 

differences exist in the DNA methylome of skeletal muscle tissue, and to what extent. 

Epigenome-wide association studies (EWAS) are ideal for investigating the impact of sex on 

genome-wide DNA methylation when addressing both the basis and translational aspect of 

sex differences. Therefore, we performed a large-scale EWAS meta-analysis to explore sex 
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differences in the DNA methylome of human skeletal muscle tissue, using three datasets from 

our own laboratory and open-access databases (n = 369 individuals; 217 males, 152 females). 

We established a list of robust DNA methylation (CpG) sites and regions showing DNA 

methylation differences between males and females, and explored their genomic context. We 

then integrated them with sex-biased gene expression from the GTEx, and inferred the 

potential downstream effects on skeletal muscle function. Lastly, we confirmed our findings 

with transcriptomic data from one cohort used in the meta-analysis and targeted qPCR from 

another cohort.  

Results 

Males show profound genome-wide autosomal hypomethylation compared with females in 

human skeletal muscle 

The DNA methylation meta-analysis was conducted on 369 individuals from three 

datasets (217 males, 152 females). We focused exclusively on the 22 autosomes to eliminate 

the confounding effect of sex differences in the sex chromosome complement where X-

chromosome inactivation takes place exclusively in females. All of the Gene SMART cohort 

individuals were apparently healthy, while the FUSION cohort individuals were either 

healthy or diagnosed with type 2 diabetes mellitus, and the GSE38291 cohort individuals 

included monozygotic twins discordant for type 2 diabetes mellitus (Table 1).  

 

Table 1 Characteristics of individuals in each data set included in the DNA methylation meta-analysis. Statistics shown for 

differences between males and females. 

We found 56,813 differentially methylated positions (DMPs, single CpG sites) 

between males and females, spread across the 22 autosomes, at a stringent meta-analysis 
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False Discovery Rate (FDR) < 0.005 (Figure 1, Supplementary Table 2). Ninety-four percent 

of DMPs were hypomethylated in males compared with females (Figure 1A). On average, 

the magnitude of DNA methylation differences between males and females was +2.8% 

(hyper DMPs) and -3.5% (hypo DMPs), with the largest effect sizes reaching +15.2% and -

35.7%. In each of the three cohorts, participants did not cluster according to sex when 

including the whole autosomal methylome, but they did cluster according to sex when only 

focusing on the 56,813 DMPs (Figure 1B), suggesting that sex explained a substantial 
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amount of variance at the DMPs. 

 

Each data set had a unique study design that required adjustment for factors known to 

affect DNA methylation, such as age [24] and type 2 diabetes (T2D) [25]. We adjusted each 

dataset for these factors, but noted that sex was associated with T2D in the FUSION dataset, 

meaning that male participants from the FUSION cohort more commonly had T2D than 

females. Therefore, it is possible that the sex-related signal capture in this dataset was 

 

Figure 1. Differentially methylated positions (DMPs) with sex in skeletal muscle. (A)Volcano plot of DNA 

methylation differences between males and females. Each point represents a tested CpG (633,645 in total) and those that 

appear in color are DMPs at a meta-analysis false discovery rate < 0.005; red DMPs are hypermethylated in males 

compared with females; blue DMPs are hypomethylated in males compared with females. The x-axis represents the 

amount of DNA methylation difference between the sexes and the y-axis represents statistical significance (higher = 

more significant). Two DMPs that were present in all three studies and showed the largest effect size are labeled with the 

respective CpG and boxplots of β-values from each study appear to the right (hyper DMP) and left (hypo DMP). (B) 

Principal component analysis plots of the methylation values at the DMPs; each point on the graph represents an 

individual; males denoted in green, females denoted in orange. 
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partially confounded by T2D. We repeated the meta-analysis excluding T2D participants 

from the FUSION cohort, but results remained unchanged (Supplementary figure 5). This 

confirms that our results are not confounded by T2D. 

Since the effect of DNA methylation on gene expression depends on the genomic 

context, we explored the genomic locations of the DMPs to gain insights into their potential 

function [26]. We compared the distribution of hyper-, hypo-, and non-DMPs among the 

various chromatin states in human skeletal muscle using the Roadmap Epigenomics project 

[27]. DMPs were not randomly distributed in the chromatin states (χ2 p-value < 2.2 x 10-16, 

Figure 2A); specifically, hypo DMPs were enriched in enhancers and depleted in 

transcription start sites (Supplementary figure 1A), while hyper DMPs were not enriched in 

any chromatin states given their scarcity. It should be noted that the Roadmap Epigenomics 

project characterizes both male and female skeletal muscle chromatin states regions, and 

there are 536 regions across 369 unique genes where male and female chromatin states differ 

(across many tissues including skeletal muscle) [28]. Therefore, we performed the chromatin 

state enrichment analysis on both the male and female chromatin state annotation in skeletal 

muscle, which yielded equivalent findings. We next determined whether the DNA 

methylation sex differences are enriched in regions in which the corresponding chromatin 

state displays sex differences. DMPs were indeed enriched in loci whose chromatin states 

differ between males and females: 38.7 % of DMPs vs. 32.4% of non-DMPs are in chromatin 

states that differ between males and females, which means that the odds of a DMP being 

located in a sex-differing chromatin state increased by a factor of 1.3 compared with a non-

DMP. (OR = 0.76, 95% confidence interval = 0.75-0.77, Fisher test p-value < 2.2e-16) 

(Figure 2B). DMPs were also enriched in CpG island shores and depleted in CpG islands (χ2 

p-value < 2.2e-16) (Figure 2C, Supplementary figure 1B). 
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Differentially methylated genes (DMGs) were determined by identifying differentially 

methylated regions (DMRs), as DMRs remove spatial redundancy (CpG sites ~500 bp apart 

are typically highly correlated [29]), and may provide more robust and functionally important 

information than DMPs [30, 31]. We identified 10,240 DMRs (Stouffer, harmonic mean of 

the individual component FDRs (HMFDR), and Fisher p-value < 0.005). These DMRs were 

annotated to 8,420 unique autosomal genes (including non-coding genes) (Supplementary 

table 3).  

 

Figure 2. Genomic context of sex-differentially methylated positions. (A) Distribution of hyper/hypo DMPs and non-

DMPs with respect to chromatin states (male skeletal muscle annotation). Blue is hypomethylated in males and red is 

hypermethylated in males. Red and blue add up to all of the sex-DMPs. Black denotes the rest of the CpG sites from the 

analysis which are not DMPs. Asterisks represent a greater contribution to the significant relationship between DMP status 

and chromatin state (Supplementary figure 1A). (B) Distribution of sex-DMPs and non-DMPs at loci whose chromatin 

states differ between male and female skeletal muscle. Purple denotes all DMPs (hypo and hyper combined) and black 

denotes non-DMPs. (C) Distribution of sex-DMPs and non-DMPs in relation to CpG islands. Asterisks represent a greater 

contribution to the significant relationship between DMP status and CpG island location (Supplementary figure 1B). 
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Genes with sex-biased methylation exhibit sex-biased DNA expression in human skeletal 

muscle 

 To gain insights into the potential downstream effects of sex-biased DNA methylation 

on gene expression, we integrated results from the EWAS meta-analysis of sex with genes 

whose mRNA expression levels are known to differ between males and females. We used 

version 8 of the Genotype-Tissue Expression (GTEx) database which contains 803 RNA-

sequencing profiles in human skeletal muscle (n = 543 males and n = 260 females). There 

were 2,689 sex-differentially expressed genes (DEGs) on the autosomes in skeletal muscle 

(accessed from GTEx portal on 08/26/2020). Of the 2,689 DEGs, 973 (~36%) were in 

common with DMGs from our cohorts (Figure 3, Supplementary table 2), including the gene 

Gamma-Glutamyltransferase 7 (GGT7) (Figure 5). We confirmed an enrichment of DMRs 

across sex-biased genes (hypergeometric test p-value = 4.6e-13), suggesting that the overlap 

between sex-differentially methylated genes and sex-differentially expressed genes is larger 

than what would be expected by chance alone. To gain insight on the relationship between 

DNA methylation and gene expression of sex-biased genes, we assessed the direction of 

correlation between DMRs that are annotated to either promoter (TssA and TssAFlnk) or 

enhancer (Enh and EnhG) regions and their given gene expression (Figure 3C-D). Sixty-two 

and 59 % of DMRs in promoter and enhancer regions, respectively, were inversely correlated 

with gene expression (from GTEx transcriptome data, similar results were yielded with the 

FUSION transcriptome data). The inverse correlation between DNA methylation at both 

promoter and enhancer regions with gene expression was more than would be expected to 

occur by random chance (10,000 random permutations; p-value <0.0001 and p-value = 

0.0009, respectively; Supplementary figure 3). 
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Validation of GTEx sex-biased genes in the cohorts used for methylation analysis 

We sought to validate the sex-biased gene expression obtained from GTEx in a subset 

of the samples used for methylation analysis since the DMGs and DEGs analyses were 

obtained from different muscle groups (the DMGs of the current study are from the vastus 

lateralis while the GTEx DEGs are from the gastrocnemius). Although both are skeletal 

muscle tissue from the leg, there may be differences in muscle phenotypes in differing 

muscle groups [32]. Analysis of RNA sequencing data from the FUSION cohort revealed 

3,751 autosomal genes with sex-biased expression (FDR < 0.005). The FDR threshold we 

chose for the FUSION gene expression data was more stringent than the GTEx local false 

sign rate threshold (lfsr < 0.05), yet, ~34% of the genes which were both DEGs in GTEx and 

DMGs were also DEGs in the FUSION cohort, totalling 326 genes (hereinto referred to as 

`overlapping genes`) (Figure 3A). Given that both the GTEx and FUSION cohorts include 

participants of relatively older ages, we sought to confirm the mRNA levels in the younger 

cohort in the analysis (the Gene SMART) for three genes that displayed sex differences at 

both the mRNA and DNA methylation levels (GGT7, FOXO3, and ALDH1A1) (Table 2, 

Supplementary table 11, Supplementary figure 4). To assess whether fibre type proportions 

may contribute to the observed DNA methylation sex differences, we explored whether there 

were DMRs across myosin heavy chain 6 and 7 (MYH6 and MYH7) between males and 

females, and identified one DMR in MYH7 (2.3% higher methylation in males, Fisher 

statistic= 7.2 x 10-6; Supplementary table 3). 
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 Gene expression effect size between males and females 
Mean effect size 
of DMR showing 
largest effect 
size (% DNA 
methylation 
difference 
between males 
and females)   

GTEx 
(MASH 
posterior 
effect 
size)  

FUSION 
(Fold 
change)  Gene SMART (Fold change) 

GGT7 0.81 1.6 3.0 -20.4 

FOXO3 -0.04 -0.2 3.4 -1.9 

ALDH1A1 0.33 0.4 2.0 -10 

Table 2 Gene expression and DNA methylation differences between males and females for three genes across the cohorts 

used in the analysis. 

Gene set enrichment analysis of differentially methylated regions 

We next performed Gene set enrichment analysis (GSEA) on the DMGs, as GSEA 

using epigenomic features may reveal distinct enriched pathways that may not display gene 

expression differences [11, 28]. We performed GSEA on both the DMRs and DMPs (Figure 

4). GSEA on the DMRs revealed enrichment of several Gene Ontology (GO) terms, one 

 

Figure 3. Integration of differentially methylated genes and differentially expressed genes. (A) Venn diagram of the 

overlap between differentially methylated genes (DMGs; derived from DMRs), differentially expressed genes derived from 

GTEx (DEGs GTEx), and differentially expressed genes derived from FUSION (DEGs FUSION) between males and 

females. (B) Subset of 12 genes with consistently large effect sizes or of biological relevance to skeletal muscle. (C) 

Correlation between the effect sizes of DMRs in enhancer regions and the effect sizes of gene expression of the relative 

annotated gene (for GTEx sex-biased genes). Quadrant percentages indicate the percentage DMRs/DEGs that fall into each 

quadrant. (D) Correlation between the effect sizes of DMRs in promoter regions and the effect sizes of gene expression of the 

relative annotated gene (for GTEx sex-biased genes). Quadrant percentages indicate the percantage DMRs/DEGs that fall 

into each quadrant. 
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Reactome pathway (“muscle contraction”), but no Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways (Supplementary table 10) (FDR < 0.005). However, GSEA on 

the DMPs revealed enrichment across all three databases (Supplementary tables 5, 7, and 9). 

Most of the enriched GO terms are biological process (BP) terms, many of which relate to 

anatomical structure development as well as many muscle-related processes. Nine-hundred 

and twenty-five genes of the 1,407 genes involved in KEGG metabolic pathways were 

differentially methylated, representing many aspects of substrate metabolism (Supplementary 

figure 2), although the pathway was only significant when analysing the DMPs.   

  

 

Figure 4. Gene set enrichment analysis of the differentially methylated genes. (A) Selected 

enriched Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, and Reactome pathways from GSEA of DMRs and DMPs. (B) Sankey diagram of 

muscle contraction-related pathways across the three GSEA databases tested and genes within 

those pathways that were both differentially methylated and expressed (in GTEx and FUSION) 

between males and females. Numbers next to pathways denote the number of enriched genes 

in the pathway; numbers next to genes denote the number of pathways (from the ones 

displayed) that the gene belongs to. 
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DNA methylation and gene expression of GGT7, FOXO3 and ALDH1A1 consistently differ 

between males and females in human skeletal muscle 

Three-hundred twenty-six genes exhibited differential methylation in the meta-

analysis and differential expression among the GTEx and FUSION cohorts, termed 

`overlapping genes`. Of those genes, we tested three for gene expression levels, GGT7, 

Forkhead Box O3 (FOXO3), and Aldehyde Dehydrogenase 1 Family Member A1 

(ALDH1A1), in the younger cohort included in the DNA methylation analysis (Gene 

SMART) given the effect that age has on skeletal muscle gene expression [33]. These three 

genes showed a large effect size in gene expression and DNA methylation, displayed 

moderate gene expression levels in skeletal muscle relative to other tissues, and/or contained 

numerous DMPs and DMRs (Table 2). The direction of sex-biased expression was consistent 

for GGT7 and ALDH1A1 across GTEx, FUSION, and Gene SMART cohorts (GTEx lfsr < 

2.2e-16; FUSION FDR= 2.3e-8, Gene SMART p-value= 0.03), while the direction was 

opposite for FOXO3 (FUSION and GTEx FOXO3 expression lower in males, Gene SMART 

FOXO3 expression higher in males (GTEx lfsr = 0.01; FUSION FDR= 0.001, Gene SMART 

p-value= 0.002)). As a specific example of the extent of sex differences across the different 

layers of analysis, GGT7 displays male-biased expression in skeletal muscle (GTEx lfsr < 

2.2e-16; FUSION FDR= 1.3e-45, Gene SMART p-value= 0.0003) as well as lower methylation 

in males at DMPs and DMRs annotated to GGT7 (max DMR: Fisher p-value <0.00-15, max 

beta value effect size=-28.5%, mean beta value effect size=-20.4%) (Figure 5). 
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Figure 5. Differential DNA methylation and expression of GGT7 between males and females. (A) UCSC gene 

track of GGT7. From top to bottom: base pair scale in black, GENCODE gene tracks transcript variants in blue, 

GeneHancer regulatory element annotations in light blue, hyper DMRs tracks in red, hypo DMRs tracks in blue. 

(B) Heatmap of the Gene SMART study (beta values adjusted for all confounders except sex) across the 3 CpGs 

included in the GGT7 hypo DMR selected in blue lines and labeled with mean DMR effect size (n=65). Each row 

represents an individual; green denotes males and orange denotes females; ordered by similarity to other 

individuals. Each column corresponds to a CpG in the DMR, ordered by genomic location and corresponding to 

5C. Blue denotes hypomethylation; tred denotes hypermethylation. (C) Distribution of DNA methylation (beta 

values) in males and females, for the three CpGs in the DMR, matching 5B (n = 65). (D) GGT7 RNAseq 

expression (TPM- transcripts per million) in males and females of the GTEx (adapted from GTEx portal, n = 803). 

(E) GGT7 RNAseq expression in the FUSION males and females (FPKM- fragments per kilobase of transcript per 

million) (n = 274). (F) GGT7 qPCR expression in a subset of Gene SMART males and females (Arbitrary Units; 

2-∆Ct) (n = 25). 
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Discussion 

 

We conducted a large-scale meta-analysis of DNA methylation differences between 

males and females in skeletal muscle, and integrated them with transcriptomic data. We 

revealed that males display profound genome-wide hypomethylation compared with females. 

We then showed that many sex-biased genes found in GTEx also exhibit sex-biased DNA 

methylation, which was partially confirmed in the FUSION cohort. We then validated the 

gene expression (qPCR) levels of three genes with large DNA methylation and expression 

differences between the sexes across cohorts, and confirmed the higher gene expression in 

males of GGT7 and ALDH1A1. Finally, we showed that the DMGs are overwhelmingly 

involved in muscle contraction, as well as other metabolic and anatomical structure-related 

pathways. 

In the present study, the overwhelming majority (94 %) of the DMPs were 

hypomethylated in males. Interestingly, global autosomal hypomethylation in males has been 

observed in various other tissues [34], including blood [35, 36] and pancreatic islets [17]. 

Uncovering the molecular mechanisms at the root of these epigenetic differences between the 

sexes was beyond the scope of this paper, but there are few possible explanations. 

Differences in cell type proportions between the sexes may partly explain our findings [36-

38], as type I fibres are hypermethylated compared with type II fibers [39], and as females 

tend to have a higher proportion of type I fibres than males [15]. The DNA methylation of 

MYH7 was higher in males across the meta-analysis, potentially indicating lower MYH7 

gene expression, which is a unique characteristic of type I slow twitch fibres and not type II 

fast twitch fibres [40]. This may suggest that males in the meta-analysis may have less type I 

fibres, which may contribute to some of the observed DNA methylation sex differences. 

However, neither MYH6 nor MYH7 displayed sex-biased gene expression in the GTEx or 

FUSION cohorts, although this may be confounded by age as both cohorts were comprised of 
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older individuals, and older individuals tend to accrue more “hybrid” fibres (co-express more 

than one myosin heavy chain isoform) with age [41]. Nonetheless, the contribution of 

differing fibre type proportions on DNA methylation differences between males and females 

remains to be thoroughly elucidated. Although not well-understood, the sex chromosome 

complement may also influence autosomal DNA methylation patterns. In cultured fibroblasts, 

the presence of Sex-determining Region Y (SRY) is associated with lower autosomal 

methylation levels [42-44]. Additionally, a higher number of the X chromosomes, in the 

absence of SRY, leads to increased methylation levels at a specific sex-differentially 

methylated autosomal region [44]. This could be attributed to allele dosage compensation, a 

female-specific process that silences one of the X chromosomes in a cell [45, 46]. 

Approximately one-third of genes ‘escape’ inactivation, remain transcriptionally active in XX 

cells, [46-48], and have been suggested to affect autosomal DNA methylation via their 

histone marks [44, 49]. Moreover, females with Turner syndrome (partially/fully missing one 

X) and monosomy X have lower global methylation than XX females, but higher than XY 

males [50, 51]. Finally, sex hormones may contribute to inherent autosomal sex-specific 

DNA methylation as has been shown in leukocytes [52], but this may only be apparent after 

taking cellular composition into account [53]. The effect of sex hormones on DNA 

methylation in skeletal muscle has yet to be explored.  

The relationship between DNA methylation and gene expression is complex; DNA 

methylation at promoters, enhancers, and 1st exons is generally believed to enhance gene 

silencing, while DNA methylation at gene bodies can sometimes be associated with increased 

gene expression (Rauch et al., 2009, Lister et al., 2009, Ball et al., 2009, Aran et al., 2011, 

Jones, 2012). Using a permutation test, we showed that DNA methylation differences 

between the sexes at promoters and enhancers were more often associated with lower gene 

expression than would be expected by chance alone. DNA methylation differences between 
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the sexes were also particularly prominent in chromatin states that are known differ between 

males and females. This suggests that DNA methylation differences between males and 

females reflect alterations in chromatin activity, and differential epigenetic states and 

expression are likely functionally connected. In line with this, chromatin states that differ 

between the sexes have been shown to be enriched for sex-biased genes across various 

tissues, including skeletal muscle [28]. However, it is not yet possible to assess whether the 

relationship reflects correlation or direct causality. There is still debate around whether 

epigenomic features drive regulatory processes or are merely a consequence of transcription 

factor binding [28]. A recent study analysing sex differences in regulatory networks in the 

GTEx database identified that many transcription factors (TF) have sex-biased targeting 

patterns [11]. Further supporting the effect of TF on sex-biased gene expression, another 

recent study also on the GTEx database found enrichment of TF binding sites in the 

promoters of sex-biased genes [4].  

We identified 326 genes with consistent differential skeletal muscle DNA methylation 

and expression across 1,172 individuals altogether (369 individuals from three cohorts for 

DNA methylation and 1,077 individuals from two cohorts for gene expression). Although we 

found profound global DNA hypomethylation in males, of the overlapping genes there were 

equivalent numbers of genes over- and under-expressed in males compared with females for 

both GTEx and FUSION. Indeed, hypermethylation is not always associated with decreased 

gene expression [54]. The substantial overlap between differentially methylated genes and 

differentially expressed genes highlights many genes that may be of interest for their roles in 

muscle-related processes. We focused on three of these genes that displayed a large DNA 

methylation difference between males and females, are highly expressed in skeletal muscle, 

or play a role in skeletal muscle function: HDAC4 given its role in neurogenic muscle 

atrophy [55, 56] and in the response to exercise [57]; DEPTOR given its role in muscle 
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glucose sensing which in turn augments insulin action [58]; GRB10 given that it is imprinted 

and has been shown to change in methylation with exercise/training [59]; FOXO3 for its role 

in ageing, longevity, and regulating the cell cycle [60]; ALDH1A1 for its role in aldehyde 

oxidation and because sex differences in skeletal muscle mRNA levels have been reported, 

suggesting that males might be able to metabolize aldehydes (i.e. alcohol) more efficiently 

than females [12]; and GGT7 for its role in antioxidant activity [61]. Of the three genes which 

were validated across GTEx, FUSION, and Gene SMART, two of them showed consistently 

higher male expression levels (GGT7, ALDH1A1) while one showed opposite sex-biased 

expression (FOXO3) in the young versus the old cohorts. FOXO3 expression was lower in 

males in the older cohorts (GTEx and FUSION), and higher in males in the younger cohort 

(Gene SMART). Other studies have shown that males have higher FOXO3 expression in 

young skeletal muscle [62] and that elderly females have higher skeletal muscle FOXO3 

expression than younger females [63]. While FOXO3 skeletal muscle gene expression differs 

between males and females, it seems that the direction is opposite in young and old 

individuals, which emphasizes the caution that should be used when interpreting sex 

differences across a large age range of individuals. The promoter, 1st exon, and gene body of 

GGT7 were hypomethylated in males and males had higher GGT7 expression.  GGT7 is 

highly expressed in skeletal muscle and metabolises glutathione, which is a ubiquitous 

“master antioxidant” that contributes to cellular homeostasis. Efficient glutathione synthesis 

and high levels of glutathione-dependent enzymes are characteristic features of healthy 

skeletal muscle and are also involved in muscle contraction regulation [64].   

In conclusion, we showed that the DNA methylation of hundreds of genes differs 

between male and female human skeletal muscle. Integration of the DNA methylome and 

transcriptome, as well as gene expression validation, identify sex-specific genes associated 

with muscle metabolism and function. Uncovering the molecular basis of sex differences 
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across different tissues will aid in the characterization of muscle phenotypes in health and 

disease. The effects of upstream drivers on sex differences in the muscle methylome, such as 

transcription factors, the XY chromosomes, hormones, and cell type differences still need to 

be explored. Molecular mechanisms that display sex differences in skeletal muscle may help 

uncover novel targets for therapeutic interventions.  

Methods 

Datasets 

 We conducted a meta-analysis of three independent epigenome-wide association 

studies (EWAS) of sex including the Gene Skeletal Muscle Adaptive Response to Training 

(SMART) study from our lab [65], the Finland-United States Investigation of NIDDM 

Genetics (FUSION) study from the dbGAP repository (phs000867.v1.p1) [66], and the 

GSE38291 dataset from the Gene Expression Omnibus (GEO) platform [67]. Detailed 

participant characteristics, study design, muscle collection, data preprocessing, and data 

analysis specifications for each study are in Supplementary table 1. Briefly, all studies 

performed biopsies on the vastus lateralis muscle, all participants were of Caucasian descent 

(except 1 individual of mixed Caucasian/aboriginal decent), and included either healthy or 

healthy and T2D individuals aged 18-80 years. The Gene SMART study was approved by the 

Victoria University human ethics committee (HRE13-223) and written informed consent was 

obtained from each participant. NIH has approved our request [#96795-2] for the dataset 

general research use in the FUSION tissue biopsy study.  

DNA Extraction and Methylation Method- Gene SMART study samples 

Genomic DNA was extracted from the samples using the AllPrep DNA/RNA MiniKit 

(Qiagen, 80204) following the user manual guidelines. Global DNA methylation profiling 

was generated with the Infinium MethylationEPIC BeadChip Kit (Queensland University of 

Technology and Diagenode, Austria). The first batch contained only males and were 
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randomized for timepoint and age. The second batch contained males and females and 

samples were scrambled on the chips to ensure randomness when correcting for batch effect 

(i.e. old and young males and females included on each chip). The genome-wide DNA 

methylation pattern was analysed with the Infinium MethylationEPIC BeadChip array.  

Bioinformatics and statistical analysis of DNA Methylation 

PREPROCESSING 

The pre-processing of DNA methylation data was performed according to the 

bioinformatics pipeline developed for the Bioconductor project [68]. Raw methylation data 

were pre-processed, filtered and normalized across samples. Probes that had a detection p-

value of > 0.01, located on X and Y chromosomes or cross-hybridizing, or related to a SNP 

frequent in European populations, were removed. It is important to note that the list of cross-

hybridizing probes was supplied manually [69] as the list supplied to the ChAMP package 

was outdated. Specifically, there are thousands of probes in the Illumina microarrays that 

cross-hybridize with the X-chromosome and may lead to false discovery of autosomal sex-

associated DNA methylation [70]. The BMIQ algorithm was used to correct for the Infinium 

type I and type II probe bias. β-values were corrected for both batch and position in the batch 

using ComBat [71].  

STATISTICAL ANALYSIS 

We adjusted each EWAS for bias and inflation using the empirical null distribution as 

implemented in bacon [72]. Inflation and bias in EWAS are caused by unmeasured technical 

and biological confounding, such as population substructure, batch effects, and cellular 

heterogeneity [73]. The inflation factor is higher when the expected number of true 

associations is high (as it is for age); it is also greater for studies with higher statistical power 

[72]. The results were consistent with the inflation factors and biases reported in an EWAS of 

age in blood [72]. Results from the independent EWAS were combined using an inverse 
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variance weighted meta-analysis with METAL [74]. We used METAL since it does not 

require all DNA methylation datasets to include every CpG site on the HumanMethylation 

arrays. For robustness, we only included CpGs present in at least 2 of the 3 cohorts (633,645 

CpGs). We used a fixed effects (as opposed to random effects) meta-analysis, assuming one 

true effect size of sex on DNA methylation, which is shared by all the included studies. 

Nevertheless, Cochran's Q-test for heterogeneity was performed to test whether effect sizes 

were homogeneous between studies (a heterogeneity index (I2 ) > 50% reflects heterogeneity 

between studies). 

To identify DMPs, we used linear models as implemented in the limma package in R 

[75], using the participants’ ID as a blocking variable to account for the repeated measures 

design (for twin (GSE38291) and duplicate samples (Gene SMART), using 

DuplicateCorrelation). The main sources of variability in methylation varied depending on 

the cohort and were adjusted for in the linear model accordingly. For the Gene SMART 

study, we adjusted the linear models for age, batch (2017 vs 2019), sex, timepoint and the 

interaction of sex and timepoint (before and after four weeks of high-intensity interval 

training). For the FUSION study, we adjusted the linear models for age, sex, BMI, smoking 

status, and OGTT status. For the GSE38291 study, we adjusted the linear models for age, sex, 

and diabetes status. All results were adjusted for multiple testing using the Benjamini and 

Hochberg correction [76] and all CpGs showing an FDR < 0.005 were considered significant 

[77]. DMRs were identified using the DMRcate package [78]. DMRs with Stouffer, Fisher, 

and harmonic mean of the individual component FDRs (HMFDR) statistics < 0.005 were 

deemed significant. Effect sizes are reported as mean differences in DNA methylation (%) 

between the sexes. 
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Next, we integrated a comprehensive annotation of Illumina HumanMethylation 

arrays [79] with chromatin states from the Roadmap Epigenomics Project [27] and the latest 

GeneHancer information [80]. DMPs that were annotated to two differing chromatin states 

were removed for simplicity and because there were very few such DMPs. GSEA on KEGG 

and GO databases was performed on DMRs and DMPs using the goregion and gometh 

(gsameth for Reactome) functions in the missMethyl R package [81] [82].  

Integration of DNA Methylation and Gene Expression 

The Genotype-Tissue Expression (GTEx) Project sex-biased data was downloaded 

from the GTEx Portal on 08/26/2020 and filtered for skeletal muscle samples. The 

enrichment of DMG for GTEx DEGs was done by supplying the list of sex-biased genes to 

the gsameth function in the missMethyl R package [81, 82], which performs a hypergeometric 

test, taking into account biases due to the number of CpG sites per gene and the number of 

genes per probe on the EPIC array. Therefore, caution should be taken when interpreting the 

number of DMPs reported per DMG. The analysis for direction of correlation between DNA 

methylation and gene expression was performed by randomly shuffling DNA methylation 

effect sizes and performing 10,000 permutations to assess how often a negative correlation 

occurs. This analysis was performed for both GTEx and FUSION transcriptome data and 

yielded similar results; data presented reflect results from the integration of differential 

methylation with differential GTEx expression. Significance reported for GTEx sex-biased 

genes is represented as the local false sign rate (lfsr) which is analogous to FDR [83]. GTEx 

effect sizes are represented as mash posterior effect sizes [83], in which positive values 

indicate male-biased genes and negative values indicate female-biased genes. FUSION and 

Gene SMART gene expression significance statistics are represented as FDR and p-value, 

respectively, and effect sizes as fold changes for both cohorts. 
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Validation of top genes with qPCR  

Skeletal muscle previously stored at –80°C was lysed with the RLT buffer Plus buffer 

(Qiagen) and beta-mercaptoethanol using the TissueLyser II (Qiagen, Australia). DNA was 

extracted using the AllPrep DNA/RNA Mini Kit following the manufacturer guidelines 

(Qiagen, Australia). RNA yield and purity were assessed using the spectrophotometer 

(NanoDrop One, Thermofisher). RNA was reverse transcribed to cDNA using a 

commercially available iScript Reverse Transcriptase supermix (cat #1708841) and C1000 

Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA). Complementary DNA samples were 

stored at −20°C until further analysis. Quantitative real-time PCR was performed using 

SYBR Green Supermix (Bio-Rad, Hercules, CA) and gene-specific primers (listed in 

Supplementary table 11). Primers were either adapted from existing literature or designed 

using Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to include all splice 

variants, and were purchased from Integrated DNA Tehcnologies. Ten microliter reactions 

comprised of SYBR, and optimised concentrations of forward and reverse primers 

(Supplementary table 11 for primer conditions), nuclease free water and 8 ng of cDNA were 

run in triplicate using an automated pipetting system (epMotion M5073, Eppendorf, 

Hamburg, Germany), with no-template negative controls on a 384-well plate in a thermo-

cycler (QuantStudio 12K Flex System, ThermoFisher Scientific, Australia). Gene expression 

was normalized to the geometric mean expression of the two most stable housekeeping genes, 

as determined by Ref finder, TATAA-box binding protein (TPB), and 18s rRNA, which did 

not differ between sexes (Supplementary table 11). Data are presented as the fold change in 

males compared to females, using 2-∆∆CT. 
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