
Cis-regulatory variants affect gene expression dynamics in yeast

Ching-Hua Shih1 and Justin C. Fay1*

1Department of Biology, University of Rochester, Rochester NY 14627
*Corresponding Author, justin.fay@rochester.edu

Abstract

Evolution of cis-regulatory sequences depends on how they effect gene expression and 
motivates both the identification and prediction of cis-regulatory variants responsible for 
expression differences within and between species. While much progress has been made in 
relating cis-regulatory variants to expression levels, the timing of gene activation and repression
may also be important to the evolution of cis-regulatory sequences. We investigated allele-
specific expression (ASE) dynamics within and between Saccharomyces species during the 
diauxic shift and found appreciable cis-acting variation in gene expression dynamics. Within 
species ASE is associated with intergenic variants, but ASE dynamics are more strongly 
associated with insertions and deletions than ASE levels. To refine these associations we used 
a high-throughput reporter assay to test promoter regions and individual variants. Within the 
subset of regions that recapitulated endogenous expression we identified and characterized cis-
regulatory variants that affect expression dynamics. Between species, chimeric promoter 
regions generate novel patterns and indicate constraints on the evolution of gene expression 
dynamics. We conclude that changes in cis-regulatory sequences can tune gene expression 
dynamics and that the interplay between expression dynamics and other aspects expression 
are relevant to the evolution of cis-regulatory sequences. 

Introduction

Cis-regulatory sequences control the activation and repression of genes and are thought to play
a central role in evolution (Carroll, 2005). However, genetic analysis of phenotypic variation 
frequently uncovers changes in protein coding sequences (Stern and Orgogozo, 2008; Fay, 
2013). One limitation of genetic mapping and transgenic studies is identifying small effect 
mutations. If evolution predominantly occurs through numerous changes of small effect 
(Rockman, 2012), the role of cis-regulatory sequences is harder to discern. Even so, cis-
regulatory changes have been shown to be important in polygenic adaptation (Bullard et al., 
2010; Fraser et al., 2010, 2011, 2012; Naranjo et al., 2015), the accumulation of multiple 
changes at evolutionary hotspots (Frankel et al., 2011; Engle and Fay, 2012, 1; Martin and 
Orgogozo, 2013; Li and Fay, 2019), and variation in fitness and disease (Boyle et al., 2017; 
Sharon et al., 2018). Regardless of the overall role of cis-regulatory sequences, understanding 
how variation in cis-regulatory sequences generates variation in gene expression is important to
understanding the evolution of gene regulation.

Across organisms there is an abundance of cis-acting sequence variation that affects gene 
expression levels (Hill et al., 2020). The causes of cis-regulatory variation are not as easily 
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characterized. Transcription factor binding sites are often found to play important roles (Zheng 
et al., 2011). However, the number, identity and position of binding sites can also vary without 
affecting expression. The flexibility of cis-regulatory sequences is shown by genes with similar 
expression patterns but different cis-regulatory sequences (Berman et al., 2002). In the case of 
orthologous genes from different species, binding site turnover and transcription factor re-wiring 
explain substantial divergence in cis-regulatory sequences without expression divergence 
(Ludwig et al., 2000; Dermitzakis and Clark, 2002; Hare et al., 2008; Tuch et al., 2008; 
Venkataram and Fay, 2010; Swanson et al., 2011; Bergen et al., 2016). Consequently, 
predicting changes in gene expression based on variation in individual transcription factor 
binding sites has proven difficult (Doniger and Fay, 2007; Doniger et al., 2008).

Despite the flexibility of binding sites within cis-regulatory sequences, sequences flanking 
binding sites evolve under constraints and can affect expression. For example, over a third of 
yeast intergenic sequences are estimated to be under selective constraint (Chin et al., 2005; 
Doniger et al., 2005). This fraction is greater than that expected from either conserved or 
experimentally identified binding sites (Doniger et al., 2005; Venkataram and Fay, 2010). 
Sequences flanking binding sites have also been shown to affect expression, potentially related 
to DNA shape, nucleosome positioning or weak binding sites (Tanay et al., 2005; White et al., 
2013; Abe et al., 2015; Levo et al., 2015; Inukai et al., 2017). Consequently, conservation 
scores have proven important for predicting cis-regulatory variants (Huang et al., 2017; Kircher 
et al., 2019; Renganaath et al., 2020).

Cis-regulatory sequences can affect other aspects of gene regulation besides expression levels.
Stochastic noise in gene expression provides a mechanism for bet-hedging strategies (Raj and 
van Oudenaarden, 2008) and is encoded by and evolves through changes in cis-regulatory 
sequences (Richard and Yvert, 2014). Cis-regulatory variants that alter noise in expression 
levels have been shown to be under selection and can occur both within and outside of known 
binding sites (Carey et al., 2013; Sharon et al., 2014; Metzger et al., 2015; Schor et al., 2017; 
Duveau et al., 2018).

Gene expression dynamics, which include the timing and rate of gene activation and repression,
are also important aspects of gene regulation (López-Maury et al., 2008; Yosef and Regev, 
2011). Gene expression dynamics can be altered by transcription factors and their interactions 
with promoters, but also depend on nucleosomes and their positions relative to binding sites 
(Lam et al., 2008; Hager et al., 2009; Dadiani et al., 2013; Hansen and O’Shea, 2015). Notably, 
chromatin mutants slow gene activation without compromising final levels of gene expression 
(Barbaric et al., 2001; Floer et al., 2010). Variation in cis-regulatory sequences can also affect 
gene expression dynamics but these dynamics are only sometimes captured (Ackermann et al., 
2013; Francesconi and Lehner, 2014; Strober et al., 2019). Thus, the causes of cis-regulatory 
variation in gene expression dynamics have not been characterized nor their relationship to 
variation in gene expression levels.

In this study we investigate cis-acting variation in gene expression dynamics. We survey and 
find allele-specific differences in expression dynamics both within and between Saccharomyces 
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species during the diauxic shift, when there is major transition from the expression of genes 
involved in fermentation to respiration (DeRisi et al., 1997). Using these data, we associated 
allele-specific expression (ASE) with promoter variation and individual variants using a high-
throughput reporter assay. Our results inform our understanding of variation in gene expression 
dynamics and point towards an integrated view of gene expression and how it evolves.

Results

Cis-regulatory variation in gene expression levels and dynamics: To identify cis-regulatory 
variation in gene expression dynamics we measured allele-specific expression (ASE) in three 
intra-specific and two inter-specific diploid hybrids. Hybrids were generated by crossing a North 
American S. cerevisiae strain (Oak) to an S. cerevisiae wine strain (Wine) and two strains from 
China (China I and China II), as well as to a strain of S. paradoxus and S. uvarum (Table S1), 
enabling us to examine a range of divergence in gene regulation. To capture temporal 
differences in ASE that occur during the diauxic shift we generated RNA-sequencing data from 
19 time-points for each hybrid, spanning the shift from fermentation to respiration as measured 
by glucose depletion (Figure S1).

Allele-specific expression requires RNA-sequencing reads that can be distinguished as coming 
from one of the two parental strains. To measure ASE while avoiding mapping bias (Degner et 
al., 2009; Stevenson et al., 2013), we mapped reads to the combined parental genomes and 
enumerate allele-specific reads. The proportion of reads mapping to each parental genome was
equivalent across all 5 hybrids, except for one arm of chromosome XIII in the China I hybrid 
consistent with aneuploidy (Figure S2), which we removed from subsequent analysis.

Two statistical tests were used to separately identify genes exhibiting differences in ASE levels 
and changes in ASE dynamics over time. Genes with ASE dynamics were identified by testing 
for an autocorrelation in the ratio of allele-specific reads over time. Under the null model the 
ratio of the two alleles is constant over time but not necessarily equal to one. Genes with ASE 
levels were identified by testing for differences between the expression of the two alleles across 
all time-points. Using these tests we found more genes showed ASE levels compared to ASE 
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dynamics and the number of genes with either ASE levels or dynamics increased with 
divergence (FDR < 0.01, Table 1). As expected, genes with ASE levels showed larger average 
allele differences across time-points, and genes with ASE dynamics showed larger standard 
deviations in allele differences across time-points (Figure S3). Genes with ASE levels and 
genes with ASE dynamics were relatively evenly distributed across genes whose expression 
increased/decreased or showed a peak/trough during the diauxic shift (Figure S4, Table S2).

Changes in ASE over time can result from a variety of differences in the dynamics of the two 
alleles. To illustrate this variety we consider a gene that is activated during the diauxic shift 
(Figure 1A and 1B). ASE can be condition-specific due to an allele difference in the present but 
not absence of glucose, or vice-versa. ASE can also differ specifically during the diauxic shift 
due to a difference in the timing or rate of gene activation that does not require ASE differences 
before or after the shift. To characterize ASE we applied k-means clustering to ASE allele 
frequencies and found two types of patterns (Figure 1C, Table S3). The majority of genes (72%)
showed environment-dependent ASE and the remaining genes showed an ASE maximum or 
minimum during the transition (Clusters 6, 9, 10, 12, Figure 1C).

ASE is associated with SNPs and InDels: ASE is caused by cis-acting single nucleotide 
polymorphisms (SNPs) or insertion deletion polymorphisms (InDels) that affects gene 
expression. In yeast, cis-acting variants most likely occur within the small (~500 bp) intergenic 
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region upstream of a gene, but could also occur within the coding or 3’ region of a gene. For 
each hybrid we tested whether the number of variants in these regions predicts significant ASE 
levels or ASE dynamics using logistic regression.

Both ASE levels and dynamics were associated with the number of SNP and InDel variants, but 
these associations varied by hybrid, the type of variant, and where the variants occurred. Within 
intra-specific hybrids, upstream SNPs and InDels were associated with both ASE levels and 
dynamics, but InDels showed stronger associations as measured by the odds ratio and the 
significance (Figure 2). SNPs and InDels within coding and downstream regions were also 
associated with ASE, but the associations were weaker and/or less significant than with 
upstream variants (Table S4).

Inter-specific hybrids only showed significant associations between ASE dynamics and 
upstream SNPs and InDels. Association between ASE and divergence may be weak or absent 
if most substitutions between species do not affect gene expression. The inter-specific hybrids 
have much higher rates of divergence compared to the intra-specific hybrids: an average of 15 
and 107 upstream SNPs and InDels, respectively, compared to 1.2 and 6.0 SNPs and InDels 
within the intra-specific hybrids (Table S5). Consistent with the weaker inter-specific 
associations, the most closely related intra-specific hybrid (Oak x Wine) showed the strongest 
associations. 

Intra-specific cis-regulatory variants: The associations between ASE and the number of 
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upstream intergenic variants indicate that promoter polymorphism is a significant contributor to 
ASE. To specifically measure the effects of promoter polymorphism and identify causal variants 
we used a high-throughput cis-regulatory element (CRE-seq) reporter assay (Mogno et al., 
2013). In this assay, promoter sequences are synthesized and the resulting pooled library is 
cloned and integrated into a single site in the yeast genome (Figure S5). The synthesized 
sequences include a 10 bp barcode that can be used as a tag to measure gene expression 
through RNA-sequencing and relative abundance through DNA-sequencing.

We designed a CRE-seq library to test promoter variants upstream of 69 genes that exhibited 
ASE levels and/or dynamics in the Oak x ChII hybrid. Because the synthesized promoters were 
limited to 130 bp, we designed five overlapping CRE sequences per gene to test all variants 
within the 250 bp region upstream of the transcription start site. There were a total of 337 
variants, an average of 4.2 SNPs and 0.72 InDels per gene. For any CRE sequences with more 
than a single difference between the Oak and ChII alleles, we also generated CREs for each 
ChII variant in the Oak allele and vice-versa (Figure S5). The total library contained 1,818 CREs
with four barcode replicates per CRE.

We first tested whether the synthetic promoter regions could recapitulate expression of the 
endogenous genes. We measured CRE expression over 19 time-points during the diauxic shift 
in the same hybrid background as RNA-seq. Out of 334 regions, 137 were correlated with RNA-
seq expression (FDR < 0.05) and 17 genes had no region correlated. CRE-seq regions 
correlated with RNA-seq tended to lie further away from the transcription start site, and in some 
cases showed a gradual increase in correspondence (Figure 3). We also barcoded and 
measured expression from full length promoters of three genes (Figure S6). All three genes 
showed good correspondence between the full length promoter and a shorter CRE-seq region. 
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However, one of the genes, ALD5, showed both short and full length reporter expression 
notably different from the endogenous RNA-seq expression. One explanation for this difference 
is that we used an annotated transcription start site 515 bp upstream of the ATG whereas some 
studies indicate a site much closer (78-84 bp) to the ATG (Zhang and Dietrich, 2005; Pelechano
et al., 2013).

To determine whether any of the CRE regions contained variants that affect expression we 
examined the 281/334 regions upstream of the 69 genes with one or more differences between 
the Oak and ChII alleles. One of the regions showed significant differences in expression levels 
between the Oak and ChII alleles, and 31 showed differences in expression dynamics (FDR < 
0.05, Table 2). Eleven of these regions had only a single variant that differentiated the two 
parental alleles and the rest had between 2 and 9 variants. For regions with multiple variants we
tested each using CREs containing the Oak variant in the ChII background and vice-versa. For 
expression levels we found significant effects for one of the two variants tested, and for 
expression dynamics we found 35 out of 70 variants (FDR < 0.05, Table 2), four of which were 
detected by multiple regions.

Promoter regions that showed allele-specific differences in expression dynamics had high rates 
of polymorphism and often multiple variants that affected expression. The rate of variants in the 
31 CRE regions with differences in expression dynamics (2.1%) was higher than that of 
intergenic regions across the genome (1.4%)(Fisher’s exact test, P=0.0038). Out of the 22 
genes with one or more CRE regions showing differences in expression dynamics between the 
Oak and ChII alleles, 8 had two or more significant variants, 12 had only a single variant, and 
two had no significant variants. While the number of InDels with significant effects on expression
dynamics was small, the ratio of significant SNPs to InDels (6.0) was not different from that of 
intergenic regions across the genome (4.8)(Fisher’s exact test, P > 0.05).

Variants with significant effects on CRE-seq expression were not always consistent with 
patterns of RNA-seq ASE (Figure 4). Only 16 of the 31 regions showing CRE-seq expression 
dynamics correlated with RNA-seq expression. For example, region 4 of the YPS6 promoter 
showed increased expression over time in the RNA-seq data but not in the CRE-seq data. Even
so, the Oak allele exhibited higher expression levels than the ChII allele in both the RNA-seq 
and CRE-seq assays, a difference that can be attributed to one of the two variants in the region.
The ICL2 promoter showed increased expression over time in both the RNA-seq and CRE-seq 
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assays, but not all CRE-seq allele differences were consistent with the RNA-seq allele 
differences. Region 1 of the ICL2 promoter showed allele-specific expression differences 
consistent with RNA-seq and multiple variants with effects on expression dynamics. However, 
region 3, which had only a single variant, showed allele differences in expression dynamics 
inconsistent with RNA-seq, whereby the Oak allele responded more strongly than the ChII allele
to the diauxic shift.

Cis-regulatory variants that affect expression levels have been associated with conserved 
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promoter regions and disruption of transcription factor binding sites (Renganaath et al., 2020). 
We found no difference in PhastCons conservation scores or change in binding site scores 
between the 35 variants associated with expression dynamics and those that were not 
associated (Figure S7). Because the number of variants is small we also examined whether 
PhastCons scores or binding site scores improved the genome-wide logistic regression. Neither 
PhastCons or binding site scores improved the association between upstream SNPs and InDels
and ASE dynamics. However, PhastCons scores did improve the significance of the association
between upstream SNPs and ASE levels (Table S6).

Inter-specific cis-regulatory variation: We also designed a CRE-seq library to test promoter 
divergence of 98 genes that exhibited ASE levels and/or dynamics in the S. cerevisiae x S. 
uvarum hybrid. We used the same design of five overlapping 130 bp CRE sequences covering 
250 bp upstream of the transcription start site. There was an average of 32 substitutions and 4.0
gaps per region. Because there were too many differences to test individually, we generated 
chimeric CRE sequences containing either the first or second half of the sequence from the S. 
cerevisiae allele and the remaining half from the S. uvarum allele (Figure S5). The total library 
contained 1,808 CREs with four barcode replicates per CRE.

We again tested whether the synthetic promoter regions could recapitulate expression of the 
endogenous genes and whether there were differences in expression levels or dynamics 
between the S. cerevisiae and S. uvarum alleles. We measure CRE expression during the 
diauxic shift in the same hybrid background used to measure RNA-seq. Out of 452 regions, 220 
were correlated with RNA-seq expression (FDR < 0.05) and 28 genes had no region correlated. 
Similar to intra-specific comparisons, more regions showed differences in expression dynamics 
(113) than expression levels (2) between the two species’ alleles (Table 2). 

Under an additive model, expression driven by chimeric sequences should lie within the range 
of the two parental species and can be used to map parental differences to the proximal or 
distal portion of the cis-regulatory region (Figure S8). However, chimera expression may also lie
outside of the parental range as a consequence of binding site turnover or other interactions 
between divergence in the proximal and distal promoter regions. Such cis-regulatory 
interactions are thought to be common (Zheng et al., 2011), and do not require expression 
divergence between the parental species.

To map expression divergence and identify chimeras outside of the parental range, we tested 
each of the two chimeras for differences with each parent. Out of the 113 regions with parental 
species differences in expression dynamics, 57 were consistent with the proximal and 14 were 
consistent with the distal region explaining the difference. For example, the proximal region of 
SDH4 can explain the entire difference between the parental species' alleles (Figure 5A and 
5D). Examining all the regions (n=348), 88 chimeras showed expression dynamics that differed 
from both parents (FDR < 0.05). The majority of these chimeras are not intermediate between 
the two parents; in 63 cases the expression distance between the two parents was less than the
average distance of the chimera to either parent, and in 56 cases there was no difference 
between the two parents. As examples, MDM36 shows chimera expression between the two 
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parents (Figure 5B and 5E), and IDP2 shows chimera expression outside the parental range 
(Figure 5C and 5F). For the 63 chimeras with high expression distance from both parents, the 
expression of the chimera was outside the two parental values for most (21.6/27) of the time-
points.

Discussion

Cis-regulatory sequence control the activation and repression of genes in response to cellular 
and environmental signals, and the consequences of variation within these sequences are 
relevant to our understanding of evolution and human disease. Much progress has been made 
in identifying cis-regulatory variants responsible for changes in gene expression levels. In this 
study, we identified and characterized cis-acting variation in gene expression dynamics. We find
that while gene expression dynamics are interrelated to expression levels, they differ in the 
types and identities of variants perturbing them. Below we discuss the relationship between 
gene expression dynamics and other aspects of gene regulation and how this fits into our 
understanding of regulatory evolution.

Gene expression dynamics are an integrated component of cis-regulatory variation: 
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Despite the potential importance of changes in gene expression dynamics, they are not easily 
disentangled from other aspects of gene expression such as levels and noise. In our data 
roughly one third of genes that exhibit ASE dynamics also exihibit ASE levels (Table 1). This 
overlap is not unexpected as the tests for ASE dynamics and levels are not mutually exclusive. 
For example, genes that exhibit differences in expression levels after but not before the diauxic 
shift by definition also exhibit differences in expression dynamics during the diauxic shift. While 
less common, we do find genes where ASE differences are greatest during the diauxic shift, 
consistent with a change in the rate or timing of gene activation/repression (Figure 1). How can 
the rate or timing of expression be altered without affecting levels? Prior work has shown that 
chromatin mutants can slow gene activation without impacting levels (Barbaric et al., 2001; 
Floer et al., 2010). While this does not exclude the possibility of changes in binding sites, it 
points to interaction between transcription factor binding and chromatin in mediating expression 
dynamics.

Gene expression dynamics may also be interrelated to stochastic noise in expression. During 
the diauxic shift there is cell to cell heterogeneity in gene expression and this leaky regulation 
can give the appearance of a slower rate of activation at the population level (New et al., 2014; 
Venturelli et al., 2015). Put differently, an increase is noise is expected to blur a sharp transition 
between activated and repressed states. However, noise, levels and dynamics are also not 
entirely dependent on one another. For example, gene expression often occurs in bursts with 
expression levels more dependent on burst size, noise more dependent on burst frequency (Cai
et al., 2006; Carey et al., 2013), and timing dependent on both changes in burst size and 
frequency. Thus, the covariation between expression levels, dynamics and noise likely shapes 
how gene expression evolves within and between species.

Cis-regulatory variants underyling expression dynamics: Previous studies have 
characterized cis-regulatory variants underlying gene expression levels (Doniger et al., 2008; 
Patwardhan et al., 2009; Gymrek et al., 2016; Tewhey et al., 2016; van Arensbergen et al., 
2019; Hill et al., 2020; Renganaath et al., 2020). We find that cis-regulatory variants underlying 
expression dynamics are similar but not identical to those that affect expression levels.

Based on the genome-wide logistic regression we found InDels have larger effects than SNPs 
and stronger associations with variation in promoter regions compared to coding or 3' regions. 
The larger effect of InDels is consistent with an eQTL mapping study in Drosophila (Massouras 
et al., 2012), and the stronger association with promoter regions is consistent with an eQTL 
mapping study in yeast (Kita et al., 2017). However, a limitation of the genome-wide 
associations is that the number of SNPs and InDels is correlated among 5', coding and 3' 
regions. Thus, the strongest associations are most likely to be causal but weaker associations 
could result from correlations with other regions. For the association with 3' variants it is worth 
noting that ASE may be driven by variants that affect mRNA decay rather than transcription 
(Cheng et al., 2017).

We also found 5' InDels have stronger associations with ASE dynamics compare to ASE levels. 
However, we did not find an over-representation of InDels among causal variants identified in 
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the CRE-seq assay. This difference may be a consequence of a small sample size (n=35). But it
could also reflect our selection of genes with the largest differences in ASE dynamics to test and
promoters with multiple SNPs being more likely to cause large ASE differences than those with 
multiple InDels, which are more rare.

A previous study of cis-regulatory variants that affect expression levels in yeast found multiple 
cis-regulatory variants per gene, and that cis-regulatory variants are more likely to disrupt 
conserved sequences and alter trancription factor binding sites (Renganaath et al., 2020). We 
found that nearly half of the genes (8/20) had more than one variant (2-5) associated with ASE 
dynamics, but cis-regulatory variants associated with ASE dynamics were not associated with 
conserved sequences or changes in predicted transcription factor binding sites. Beyond 
technical differences, these differences could be related to differences in cis-regulatory variants 
underlying ASE levels versus dynamics or to the strains used in each study. Strain differences 
may be relevant since we used variants between two wild strains Oak and ChII, whereas 
Renganaath et al. (2020) used a wine and laboratory strain, the later of which has evolved 
under relaxed selection and has more deleterious variants (Gu et al., 2005; Doniger et al., 
2008). Consistent with the possibility of differences between cis-regulatory variants that affect 
ASE levels versus dynamics, we found that SNP conservation scores improved the significance 
of genome-wide logistic regression for ASE levels but not dynamics (Table S6).

Although powerfull in throughput, the CRE-seq reporter assay has a number of limitations 
relevant to our results. First, 130 bp CRE sequences do not capture the entire promoter and 
different regions of a promoter often generate different patterns of expression. For example, a 
variant that modulates expression may have little or no effect unless upstream activation 
sequences are also included in the CRE. However, it is also possible that a variant affects 
expression regardless of the presence or absence of other elements. The extent to which the 
effects of individual binding sites are dependent on other sites forms the basis for the difference 
between the enhanceosome and billboard models of cis-regulatory sequences (Arnosti and 
Kulkarni, 2005). A second limitation of our study is that high-throughput reporter assays perform
better with high levels of replication. Prior high-throughput reporter assays have used tens or 
hundreds of barcode replicates per allele (Tewhey et al., 2016; Renganaath et al., 2020). Our 
use of only four barcode replicates per allele likely limited our ability to detect variants that affect
ASE levels. This limitation applies less to ASE dynamics which are unaffected by the mean 
expression of any single barcoded CRE. Given these limitations, not all cis-regulatory variants 
assayed by CRE-seq may have been detected.

Evolution of cis-regulatory sequences: Chimeric cis-regulatory sequence from different 
species often show loss of function and support the binding site turnover model, whereby the 
chance gain of a redundant binding site enables loss of another site without adverse effects on 
expression (Ludwig et al., 2000, 2005; Arnold et al., 2014). We find chimeric promoter regions 
from S. cerevisiae and S. uvarum often generate expression dynamics outside of the parental 
species' range. The chimeras thus provide evidence for constraints on gene expression 
dynamics and indicate that there are frequently non-additive (epistatic) interactions between 
substitutions that occur in different lineages and promoter regions. However, we also find that 
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cis-regulatory variants within S. cerevisiae are not greatly enriched at conserved sites. These 
two observations are consistent with a neutral model of expression divergence (Fay and 
Wittkopp, 2008), whereby small changes in dynamics within species are neutral, but when 
neutral changes in different lineages are brought together they yield expression patterns that lie 
outside of the parent range and are unlikely to be tolerated within a species. It is also possible 
that constraints on expression dynamics depend on expression levels or noise. Indeed, the 
fitness effects of noise depend on expression levels (Duveau et al., 2018). This emphasizes the 
importance of characterizing how fitness altering cis-regulatory variants affect all aspects of 
gene expression to understand the evolution of cis-regulatory sequences.

Methods and Materials

Strains: Three strains of S. cerevisiae, one of S. paradoxus and one of S. uvarum were crossed
to a common reference YJF153, a derivative of an S. cerevisiae oak isolate from North America 
(Table S1). The three intra-specific hybrids were generated through crosses to a wine strain 
from North America (UCD2120 x YJF153 = YJF1460) and two wild strains from China (HN6 x 
YJF153 = YJF1454 and SX6 x YJF153 = YJF1455). Strains were chosen to reflect a range of 
divergence. The two strains from China are from two of the most divergent S. cerevisiae 
lineages: China I (HN6) and China II (SX6)(Wang et al., 2012). The inter-specific hybrids were 
generated using S. paradoxus (N17 x YJF153 = YJF1453) and S. uvarum (CBS7001 x YJF153 
= YJF1484). Diploid hybrids were generated by mixing strains of opposite mating type and 
selecting for dominant drug resistance markers present at the HO locus.

RNA-sequencing time-course: Each hybrid strain was cultured in 125 mL YPD at 250 rpm at 
30°C with an initial density of ~3x106 cells/mL. Approximately ~3x108 cells were taken at each 
time-point, centrifuged, supernatant removed and flash frozen in liquid nitrogen. A total of 19 
samples were collected during the switch from fermentation to respiration with the most intense 
sampling occurring every 15 minutes after glucose depletion (Figure S1). Glucose depletion was
measured using a Glucose (GO) Assay Kit (Sigma-Aldrich). RNA was extracted with phenol-
chloroform and mRNA purified by oligo-dT (Dynabeads mRNA Direct kit, Invitrogen). cDNA 
libraries were made by reverse transcription, fragmentation and adaptor ligation by Washington 
University’s Genome Technology Access Center (GTAC). Adaptors contained 7 bp indexes for 
multiplexing samples. The pooled equimolar libraries of 95 samples (19 sampling time x 5 
strains) were paired-end sequenced (2 x 40 bp) using three runs of an Illumina NextSeq. A total 
of 1,255.9 million paired-end reads were generated.

Reference genomes and variants: The genomes of the three S. cerevisiae strains were 
sequenced to generate reference genomes for mapping RNA-sequencing reads and to identify 
variants associated with allele-specific expression (ASE). DNA was extracted (YeaStar DNA kit, 
Zymo Research), libraries were generated by GTAC and paired end (2 x 101 bp) reads were 
generated using an Illumina HiSeq 2500 resulting in 5.2 to 5.9 million paired reads per strain. 
Reads were mapped to the S288c reference genome (R64-1-1) using BWA v0.7.5, (Li, 2013) 
and duplicates were marked using PicardTools v1.114 (http://broadinstitute.github.io/picard/). 
Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were called using 
GATK’s HaplotypeCaller v3.3-0 (Van der Auwera et al., 2013) following InDel realignment, base 
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recalibration and variant recalibration using known SNPs and InDels. Known SNPs (21,327) and
InDels (4,748) were identified using GATK after BWA mapping of 27 assembled genomes 
(Table S7) to the S288c reference genome. Variants were filtered to remove variable sites with 
calls in fewer than 20 strains and minor allele frequencies of less than 15%. We considered 
these “known” variants since they were identified from an independent set of strains assembled 
with both Sanger and 454 sequencing reads, and were found present in multiple strains. Using 
a tranche filter of 99.9 derived from the known variant call set we identified 222,589 SNPs and 
20,485 InDels within the three S. cerevisiae strains and S288c. The Oak strain is most closely 
related to the Wine strain (76,659 variants), followed by China II (111,591 variants), China I 
(128,346 variants).

Variants were used to generate reference genomes for mapping RNA sequencing reads. 
Reference genomes were generated using the S288c genome as a template and GATK’s 
FastaAlternateReferenceMaker command to incorporate variants present in each strain. 
Genome annotations were generated using liftOver (Hinrichs et al., 2006) to transfer S288c 
annotations to each of the three other genomes. For mapping inter-specific hybrid reads we 
used reference genomes and annotations (Scannell et al. 2011) for S. cerevisiae (S288c), S. 
paradoxus (N17) and S. uvarum (CBS7001).

Gene expression measurements: RNA sequencing reads were mapped to combined 
reference genomes containing the genomes of both parental strains used to generate the hybrid
in order to avoid mapping bias. Reads were demultiplexed using the Fastx-toolkit 
(http://hannonlab.cshl.edu/fastx_toolkit/) and then mapped to combined reference genomes 
using Bowtie2 v2.1.0 (Langmead and Salzberg, 2012) using the local alignment setting (--local) 
and a maximum of one mismatch in the seed alignment (-N 1). Duplicate reads were marked 
using PicardTools. Htseq-count (Anders et al., 2015) was used to quantify allele-specific 
expression (ASE) by counting reads that mapped to each allele in the combined reference 
genomes. Reads mapping to overlapping features (-mode union) and reads with a mapping 
quality less than 10 (default) were not counted. Thus, reads that mapped equivalently to both 
alleles of a gene and assigned mapping quality of 0 or 1 by Bowtie2 were removed. For inter-
specific hybrids we used previous definitions of orthologous genes (Scannell et al., 2011). The 
fraction of mappable reads used for ASE was 81.58%, 82.62%, 83.11%, for the intra-specific 
hybrids YJF1454, YJF1455 and YJF1460 and 86.16%, 86.57% for the inter-specific hybrids 
YJF1450 and YJF1484, respectively. None of the intra-specific hybrids showed any mapping 
bias, except in YJF1454 genes on chromosome XIII R showed uniformly higher expression of 
the Oak compared to the ChI allele consistent with aneuploidy (Figure S2). The fraction of reads
mapping to the common reference YJF153 was 52.58% (50.59%, after removing chrXIII R), 
50.11%, 49.78%, 49.11%, 46.90% for YJF1454, YJF1455, YJF1460, YJF1453 and YJF1484. 
The median number of allele-specific reads per time-point was 2.9 million reads (range: 1.5-4.8)
for intra-specific hybrids and 2.0 million reads (range: 1.4-3.3) for inter-specific hybrids.

Statistical analysis of differentially expressed alleles: Allele-specific expression counts were
normalized using DESeq’s blind method (Love et al., 2014). Differences in expression levels 
were tested using a weighted linear model: f i=0.5+β0+e, where fi is the normalized frequency 
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of the YJF153 reference allele over time-point i, β0 is the deviation from 0.5, and e is the error 
with weights based on the total number of reads at each time-point. Differences in expression 
dynamics were tested using a weighted Durbin-Watson test for an autocorrelation across time-
points of the allele differences. The weighted Durbin-Watson test is based on the lmtest 
package of R where the residuals (e) from the same linear model used above are used to 
calculate the test statistic:

weighted dw=

∑
i=1

T−1

(w i+1ei+1−w i ei)
2

∑
i=1

T

(w ie i)
2

where, wi and ei are the weights (read counts) and residuals for sample i out of T time-points. 
For both tests we used false discovery rate (FDR) cutoffs of 0.01.

Genes with low read counts were removed from the analysis: either those with less than an 
average of 20 reads per time-point or more than seven time-points with no reads. This filter 
eliminated an average of 692 genes per hybrid, and left a total of 4,703 genes with data in all 
five hybrids. 

Gene expression clusters: Kmeans clustering was used to group genes by their combined 
allele expression profile and by their allele imbalance profile. For the combined gene expression
profiles, 19,633 genes from all five hybrids with a significant (FDR < 0.01) autocorrelation in the 
combined (both alleles) profile over time were normalized (centered and scaled) and clustered 
into 12 groups. For the allele imbalance profiles, allele frequencies were centered but not scaled
for genes with significant ASE dynamics (n=6,135) and clustered into 12 groups. For both, 336 
genes without any reads at one or more time-points were removed since Kmeans clustering 
does not handle missing data.

Association with variants: The numbers of SNPs and InDels for intra-specific hybrids were 
obtained from variant calling, and the corresponding counts for inter-specific hybrids were 
obtained from multiple sequence alignments without correction for multiple hits (Scannell et al., 
2011). Upstream intergenic regions were defined by sequences between adjacent coding 
regions, except for cases of short (< 5 bp) or overlapping coding sequences where we extended
the region to the next upstream gene. Downstream intergenic regions were defined as 80 bp 
downstream of the stop codon. Variant counts were obtained for all of the 4,703 genes with 
expression data except for 11 genes which only had counts for the intra-specific hybrids.

For logistic regression we predicted genes with differences in ASE levels and dynamics using:

logit ( p)=b0+b1 x+e, where p indicates whether a gene shows significant ASE or not, b1 is the 

regression coefficient, x is the predictive variable and e is the error. We used a Bonferroni cutoff
for significance to correct for the 60 different regressions based on: 6 predictive variables: 
number of SNPs and InDels within upstream, downstream and coding regions, and 10 response
variables: ASE dynamics and ASE levels in each of the 5 hybrids.
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CRE-seq: A high-throughput reporter assay (CRE-seq) was used to measure the activity of cis-
regulatory elements by sequencing (Mogno et al., 2013). In this assay, a pool of synthetic cis-
regulatory sequences are cloned en masse, YFP is inserted between the cis-regulatory element
and the barcode, and the reporter library is then integrated into the genome. The activity of each
CRE is measured by the ratio of barcode sequencing reads from an RNA relative to a DNA 
library of the pooled transformants. As described below, we used this reporter assay to measure
expression of 7,268 and 7,232 synthetic CRE sequences, representing intra-specific and inter-
specific allele differences upstream of 69 and 98 genes, respectively.

Synthesis: CREs were synthesized as part of a library of 200 bp oligos (Agilent). The synthetic 
oligos include a forward primer, RS1, CRE, RS2, RS3, RS4, BC, RS5, reverse primer, where 
CRE is the cis-regulatory element, RS1-5 are restriction sites and BC is a barcode (Figure S5). 
The barcodes were random 10bp sequences with a minimum of 2 differences and no restriction 
sites. The selected barcodes were checked to ensure no base composition bias. Target CRE 
sequences were defined by the 250 bp region upstream of the transcription start site (TSS)
(Venters et al., 2011). For each target CRE, five 130 bp sliding windows of the sequence were 
generated using a 30 bp step size. Any 130 bp regions containing coding sequence of the next 
upstream gene were removed. Four replicates with different barcodes were generated for each 
CRE. CREs were generated separately for each strain allele unless the CRE window was 
identical between the strains. Transcription start sites (Xu et al., 2009) were found by liftOver 
from the reference (S288c) genome to the coordinates in the strain of interest. In cases where 
the CREs contained InDels, extra sequence was added to the gapped allele between RS2 and 
RS4 to keep the oligo length constant. CREs were also synthesized for intra-specific variants 
between the Oak (YJF153) and China II strain (SX6). These CREs were designed by replacing 
a single Oak variant by the China II variant and vice versa (Figure S5). Inter-specific chimeric 
CREs were generated by recombining the S. cerevisiae allele with S. uvarum allele at the center
of each CRE (Figure S5). The intra-specific and inter-specific libraries included 7,268 and 7,232 
synthetic CRE sequences representing 69 and 98 genes, respectively. Genes were chosen 
based on: the absence of restriction sites within the target CRE, an annotated TSS, significant 
ASE levels and/or ASE dynamics and inspection of the allele-specific expression differences. 
For the 69 genes used for the intra-specific libraries, 19 showed ASE levels, 10 showed ASE 
dynamics and 40 showed both. For the 98 genes used in the inter-specific library, 23 showed 
ASE level, 10 showed ASE dynamics and 65 showed both.

Cloning: CRE-seq libraries were amplified (8 separate reactions of 10-cycle amplification), 
digested, gel purified and ligated into pIM202 (Mogno et al., 2013). This differs from the original 
protocol that used higher resolution acrylamide gel extraction since sequencing the amplified 
library showed only a small portion (<1%) of sequences were outside of the 200+/-5 bp 
resolution of the acrylamide gel. Ligated products were transformed into bacteria using 
electroporation and 80-100k colonies were pooled and the plasmid library was extracted. YFP 
along with 69 bp of the TSA1 core promoter (Mogno et al., 2013) was inserted between the 
CRE and the barcode and then transformed back into bacteria by electroporation. At each step, 
PCR was used to ensure a low frequency of empty vector.
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Transformation into yeast: The reporter gene (YFP) with synthetic CREs and corresponding 
barcodes were integrated at the URA3 locus (Figure S5 D). BstBI digested plasmids were 
transformed into the Oak strain (YJF186) using the LiAc method (Gietz et al., 1995). We 
collected ~100k colonies on complete minimal plates without uracil and integration was 
confirmed by PCR for 20/20 randomly selected colonies. The yeast strains transformed with 
intra-specific library were co-cultured with SX6 (YJF1375) in YPD at 30C overnight to allow 
mating and HygB and dsdA was used to select diploid cells. The pool of yeast strains 
transformed with inter-specific library were co-cultured with the S. uvarum strain (YJF1450) in 
YPD overnight at 30C to allow mating. Double selection with nourseothricin and dsdA was used 
to select diploid cells. 

Full length promoters: Three genes, ALD5, GND2 and PHO3, were chosen to compare short 
and full length promoter constructs. Full length promoters from the Oak (YJF186) and ChII 
(SX6) strains were amplified from the TSS to the next upstream coding sequence. Four 
barcodes per construct and restriction sites were incorporated into the primers used for PCR. 
Each full length promoter with barcodes was cloned into the pIM202 plasmid and YFP was 
inserted between the full length promoter and the barcode. BstBI digested plasmids were 
transformed into the Oak strain at the URA3 locus. Each of the transformed strains were mated 
with SX6 to form diploids.

CRE-seq expression measurements: Pooled libraries were shaken at 250 rpm in 125 mL 
YPD at 30C with an initial density of 3x106 cells/mL. Samples of 3x108 cells were taken for DNA 
and RNA extraction between 6 hrs and 15 hrs, which spans the switch from fermentation to 
respiration. A total of 19 samples were taken for RNA measurements for the intra-specific library
and a total of 27 samples were taken for the inter-specific library. For both libraries, sampling 
corresponded to the RNA-sequencing time-points but with more dense sampling for the inter-
specific library. For each library, samples were taken for DNA measurements at the first and last
time-points. Cells were centrifuged for 30 seconds at 1000g and the pellets were immediately 
frozen with liquid nitrogen.

The abundance of each CRE in the library was measured by sequencing the barcodes from 
DNA and the expression of each CRE was measured by sequencing the barcodes from RNA 
extracts. DNA was extracted from the first and the last time-points using YeaStar Genomic DNA
Kit (Zymo Research). RNA was extracted by YeaStar RNA Kit (Zymo Research) and residual 
DNA digested with DNase (Promega). mRNA was purified by oligo-dT (Invitrogen) and cDNA 
was made using SuperScript II Reverse Transcriptase (Invitrogen). mRNA was removed after 
first strand DNA synthesized with RNase H (New England BioLabs). Combinations of indexed 
Ion Torrent primers were used to amplify barcodes in the library for each time-point (Figure S5 
D) using Phusion High-Fidelity PCR (New England BioLabs). To avoid sampling bias during 
PCR amplification, each sample was amplified with 4 PCR reactions and 20 cycles and then 
pooled. PCR pools were gel-extracted and cleaned individually, then pooled together at 
equivalent concentrations. 

After demultiplexing the samples using the indexed Ion Torrent primer pairs, perfect matches to 
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the CRE barcodes were found for 401 and 97 million reads from the intra- and inter-specific 
libraries. For one sample, three technical replicate libraries was generated (PCR and 
sequencing). The technical replicates showed an average correlation of 0.96 for barcode counts
and were subsequently combined. We removed CREs that had either zero reads in more than a
third of the RNA time-point samples or those with less than 100 reads on average in either the 
RNA or DNA samples. This filter left 6,820 intra-specific and 5,013 intra-specific CREs with an 
average of 16.4 and 3.2 million reads per time-point and a median of 1,278 and 357 reads per 
barcode across all time-points for the intra- and inter-specific libraries, respectively. The read 
count distribution of intra- and inter-specific libraries were normalized using DESeq2’s blind 
method (Love et al., 2014). Expression of each CRE allele was measured by the ratio of RNA to
DNA counts. Barcodes with zero counts were treated as missing data in statistical models.

Identification of significant expression differences: CRE-seq regions were tested for 
correlations (Pearson) with RNA-seq using the average expression of all barcodes for a given 
CRE region. For inter-specific CRE-seq, correlations were measured between the 19 time-
points closest to the RNA-seq time-points. CREs with significant differences in expression levels
and dynamics were tested using the weighted linear model and weighted Durbin-Watson test, 
respectively. When testing for differences in expression levels using the linear model we used 
the average expression across all time-points for each barcode rather than treating each time-
point as an independent measure of expression levels. We chose this more conservative test to 
avoid cases where one barcoded CRE had substantially higher or lower expression across all 
time-points compared to the other replicate barcodes. Consequently, the power to detect 
differences in average CRE expression levels based on four barcode replicates was reduced. 
The test for expression dynamics was not affected by this problem since expression dynamics 
was measured by changes in the ratio of expression levels over time.

Identification of variant and chimera differences: For the intra-specific library, we tested 
individual variants for those CREs with more than one difference between the Oak and ChII 
alleles. We used the same weighted tests for differences in expression levels and dynamics, but
tested each variant genotype separately (Figure S8). For the inter-specific library we used the 
chimeric CREs to map differences to the proximal or distal part of each region showing 
significant differences between the parental S. cerevisiae and S. uvarum alleles. The left (distal)
and right (proximal) promoter regions were separately tested using the genotype of the left and 
right portions of the CRE, respectively (Figure S8). Parental differences were classified as 
mapping to the proximal region if the proximal but not the distal genotype was significant. Distal 
mapping was similarly classified. Chimeric CREs that showed significant differences from both 
parents were also identified, and subsequently classified as outside or inside the parental range 
if their average expression distance (Euclidean) to each parent was greater or less than the 
distance between the two parents, respectively. A flow diagram of the number of CREs tested 
along with genotypes tests for significant variants and chimeras is presented in Figure S8.

Associations with variant annotations: Variants were annotated with PhastCons and 
transcription factor binding site scores. Phastcons scores (Siepel et al., 2005) were obtain for 
yeast from the USCS genome browser. Scores were extracted for each SNP and the average 
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score was obtained for InDels based on the two sites flanking the InDel and any scores within 
the InDel. Transcription factor binding motifs were obtained for 196 factors (Spivak and Stormo, 
2012). For each variant we extracted 30 bp of sequence from the Oak and ChII genome on 
either side of the variant. We used Patser (Hertz and Stormo, 1999) to scan each sequence with
each motif model and the best hit was recorded. A background nulceotide frequency of 36% GC
was used and scores less than zero (equivalent likelihood between the motif and background 
model) were set to zero. The difference in score between the two alleles was calculated for 
each motif model and the maximum difference across all motif models was used as the binding 
site annotation score for each variant. PhastCons scores and binding site scores were each 
tested for association with CRE variants that were positive (n=35), negative (n=35), and all other
intergenic variants (n=44,514) by ANOVA.

Acknowledgements

We thank Feng-Yan Bai for sharing yeast strains and members of the Fay lab for their 
suggestions and comments.

Data availability

Genome sequencing and assembly data were deposited into NCBI, see Table S1 and Table S7 
for accessions. RNA sequencing data were deposited into NCBI’s GEO database under 
GSE165594. Analysis scripts, data and files underlying figures are available at 
https://doi.org/10.17605/OSF.IO/Y5748

Supporting Information

Table S1. Strains used in this study.
Table S2. Kmeans clusters of gene expression dynamics.
Table S3. Kmeans clusters of allelic differences in expression.
Table S4. Logistic regression of ASE dynamics and levels.
Table S5. Average number of SNP and InDel differences within hybrids.
Table S6. Logistic regression with binding site and conservation scores.
Table S7. Genome assemblies used to identify known variants.
Figure S1. Sampling scheme for gene expression dynamics during the diauxic shift. 
Figure S2. Chromosome 13R aneuploidy in YJM1454 (Oak x ChI). 
Figure S3. Characteristics of differentially expression genes.
Figure S4. Gene expression dynamics. 
Figure S5. Design of synthetic sequences for CRE-Seq. 
Figure S6. Short CREs recapitulate longer CRE expression. 
Figure S7. Binding site and conservation scores of variants. 
Figure S8. Identification of significant differences for the intra-specific and inter-specific CRE-
seq libraries. 

19

580

585

590

595

600

605

610

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


References

Abe, N., Dror, I., Yang, L., Slattery, M., Zhou, T., Bussemaker, H. J., et al. (2015). Deconvolving
the Recognition of DNA Shape from Sequence. Cell 161, 307–318. 
doi:10.1016/j.cell.2015.02.008.

Ackermann, M., Sikora-Wohlfeld, W., and Beyer, A. (2013). Impact of natural genetic variation 
on gene expression dynamics. PLoS Genet. 9, e1003514. 
doi:10.1371/journal.pgen.1003514.

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 31, 166–169. 
doi:10.1093/bioinformatics/btu638.

Arnold, C. D., Gerlach, D., Spies, D., Matts, J. A., Sytnikova, Y. A., Pagani, M., et al. (2014). 
Quantitative genome-wide enhancer activity maps for five Drosophila species show 
functional enhancer conservation and turnover during cis-regulatory evolution. Nat. 
Genet. 46, 685–692. doi:10.1038/ng.3009.

Arnosti, D. N., and Kulkarni, M. M. (2005). Transcriptional enhancers: Intelligent 
enhanceosomes or flexible billboards? Journal of Cellular Biochemistry 94, 890–898. 
doi:https://doi.org/10.1002/jcb.20352.

Barbaric, S., Walker, J., Schmid, A., Svejstrup, J. Q., and Hörz, W. (2001). Increasing the rate of
chromatin remodeling and gene activation–a novel role for the histone acetyltransferase 
Gcn5. EMBO J 20, 4944–51.

Bergen, A. C., Olsen, G. M., and Fay, J. C. (2016). Divergent MLS1 Promoters Lie on a Fitness 
Plateau for Gene Expression. Mol. Biol. Evol. 33, 1270–1279. 
doi:10.1093/molbev/msw010.

Berman, B., Nibu, Y., Pfeiffer, B., Tomancak, P., Celniker, S., Levine, M., et al. (2002). 
Exploiting transcription factor binding site clustering to identify cis-regulatory modules 
involved in pattern formation in the Drosophila genome. Proc Natl Acad Sci U S A 99(2), 
757–762.

Boyle, E. A., Li, Y. I., and Pritchard, J. K. (2017). An Expanded View of Complex Traits: From 
Polygenic to Omnigenic. Cell 169, 1177–1186. doi:10.1016/j.cell.2017.05.038.

Bullard, J. H., Mostovoy, Y., Dudoit, S., and Brem, R. B. (2010). Polygenic and directional 
regulatory evolution across pathways in Saccharomyces. Proc Natl Acad Sci U S A 107, 
5058–63.

Cai, L., Friedman, N., and Xie, X. S. (2006). Stochastic protein expression in individual cells at 
the single molecule level. Nature 440, 358–362. doi:10.1038/nature04599.

Carey, L. B., van Dijk, D., Sloot, P. M. A., Kaandorp, J. A., and Segal, E. (2013). Promoter 
sequence determines the relationship between expression level and noise. PLoS Biol. 
11, e1001528. doi:10.1371/journal.pbio.1001528.

Carroll, S. B. (2005). Evolution at two levels: on genes and form. PLoS Biol 3, e245.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


Cheng, J., Maier, K. C., Avsec, Ž., Rus, P., and Gagneur, J. (2017). Cis-regulatory elements 
explain most of the mRNA stability variation across genes in yeast. RNA 23, 1648–1659.
doi:10.1261/rna.062224.117.

Chin, C., Chuang, J., and Li, H. (2005). Genome-wide regulatory complexity in yeast promoters:
Separation of functionally conserved and neutral sequence. Genome Res 15, 205–213.

Dadiani, M., van Dijk, D., Segal, B., Field, Y., Ben-Artzi, G., Raveh-Sadka, T., et al. (2013). Two 
DNA-encoded strategies for increasing expression with opposing effects on promoter 
dynamics and transcriptional noise. Genome Res. 23, 966–976. 
doi:10.1101/gr.149096.112.

Degner, J. F., Marioni, J. C., Pai, A. A., Pickrell, J. K., Nkadori, E., Gilad, Y., et al. (2009). Effect 
of read-mapping biases on detecting allele-specific expression from RNA-sequencing 
data. Bioinformatics 25, 3207–3212. doi:10.1093/bioinformatics/btp579.

DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997). Exploring the metabolic and genetic control of
gene expression on a genomic scale. Science 278, 680–6.

Dermitzakis, E., and Clark, A. (2002). Evolution of transcription factor binding sites in 
Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19, 1114–
1121.

Doniger, S., Huh, J., and Fay, J. C. (2005). Identification of functional transcription factor binding
sites using closely related Saccharomyces species. Genome Research 15, 701–709.

Doniger, S. W., and Fay, J. C. (2007). Frequent gain and loss of functional transcription factor 
binding sites. PLoS Comput Biol 3, e99.

Doniger, S. W., Kim, H. S., Swain, D., Corcuera, D., Williams, M., Yang, S.-P., et al. (2008). A 
catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 4, e1000183.

Duveau, F., Hodgins-Davis, A., Metzger, B. P., Yang, B., Tryban, S., Walker, E. A., et al. (2018).
Fitness effects of altering gene expression noise in Saccharomyces cerevisiae. eLife 7, 
e37272. doi:10.7554/eLife.37272.

Engle, E. K., and Fay, J. C. (2012). Divergence of the yeast transcription factor FZF1 affects 
sulfite resistance. PLoS Genet 8, e1002763.

Fay, J. C. (2013). The molecular basis of phenotypic variation in yeast. Curr. Opin. Genet. Dev. 
23, 672–677. doi:10.1016/j.gde.2013.10.005.

Fay, J. C., and Wittkopp, P. J. (2008). Evaluating the role of natural selection in the evolution of 
gene regulation. Heredity 100, 191–9.

Floer, M., Wang, X., Prabhu, V., Berrozpe, G., Narayan, S., Spagna, D., et al. (2010). A 
RSC/nucleosome complex determines chromatin architecture and facilitates activator 
binding. Cell 141, 407–18.

Francesconi, M., and Lehner, B. (2014). The effects of genetic variation on gene expression 
dynamics during development. Nature 505, 208–211. doi:10.1038/nature12772.

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


Frankel, N., Erezyilmaz, D. F., McGregor, A. P., Wang, S., Payre, F., and Stern, D. L. (2011). 
Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. 
Nature 474, 598–603.

Fraser, H. B., Babak, T., Tsang, J., Zhou, Y., Zhang, B., Mehrabian, M., et al. (2011). 
Systematic detection of polygenic cis-regulatory evolution. PLoS Genet 7, e1002023.

Fraser, H. B., Levy, S., Chavan, A., Shah, H. B., Perez, J. C., Zhou, Y., et al. (2012). Polygenic 
cis-regulatory adaptation in the evolution of yeast pathogenicity. Genome Res. 22, 
1930–1939. doi:10.1101/gr.134080.111.

Fraser, H. B., Moses, A. M., and Schadt, E. E. (2010). Evidence for widespread adaptive 
evolution of gene expression in budding yeast. Proc Natl Acad Sci U S A 107, 2977–82.

Gietz, R., Schiestl, R., Willems, A., and Woods, R. (1995). Studies on the transformation of 
intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4), 355–360.

Gu, Z., David, L., Petrov, D., Jones, T., Davis, R., and Steinmetz, L. (2005). Elevated 
evolutionary rates in the laboratory strain of Saccharomyces cerevisiae. Proc Natl Acad 
Sci U S A 102(4), 1092–1097.

Gymrek, M., Willems, T., Guilmatre, A., Zeng, H., Markus, B., Georgiev, S., et al. (2016). 
Abundant contribution of short tandem repeats to gene expression variation in humans. 
Nature Genetics 48, 22–29. doi:10.1038/ng.3461.

Hager, G. L., McNally, J. G., and Misteli, T. (2009). Transcription dynamics. Mol Cell 35, 741–
53.

Hansen, A. S., and O’Shea, E. K. (2015). cis Determinants of Promoter Threshold and 
Activation Timescale. Cell Reports 12, 1226–1233. doi:10.1016/j.celrep.2015.07.035.

Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R., and Eisen, M. B. (2008). Sepsid even-
skipped enhancers are functionally conserved in Drosophila despite lack of sequence 
conservation. PLoS Genet 4, e1000106.

Hertz, G. Z., and Stormo, G. D. (1999). Identifying DNA and protein patterns with statistically 
significant alignments of multiple sequences. Bioinformatics 15, 563–77.

Hill, M. S., Vande Zande, P., and Wittkopp, P. J. (2020). Molecular and evolutionary processes 
generating variation in gene expression. Nature Reviews Genetics, 1–13. 
doi:10.1038/s41576-020-00304-w.

Hinrichs, A. S., Karolchik, D., Baertsch, R., Barber, G. P., Bejerano, G., Clawson, H., et al. 
(2006). The UCSC Genome Browser Database: update 2006. Nucleic Acids Research 
34, D590–D598. doi:10.1093/nar/gkj144.

Huang, Y.-F., Gulko, B., and Siepel, A. (2017). Fast, scalable prediction of deleterious 
noncoding variants from functional and population genomic data. Nature Genetics 49, 
618–624. doi:10.1038/ng.3810.

Inukai, S., Kock, K. H., and Bulyk, M. L. (2017). Transcription factor–DNA binding: beyond 

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


binding site motifs. Current Opinion in Genetics & Development 43, 110–119. 
doi:10.1016/j.gde.2017.02.007.

Kircher, M., Xiong, C., Martin, B., Schubach, M., Inoue, F., Bell, R. J. A., et al. (2019). 
Saturation mutagenesis of twenty disease-associated regulatory elements at single 
base-pair resolution. Nature Communications 10, 3583. doi:10.1038/s41467-019-11526-
w.

Kita, R., Venkataram, S., Zhou, Y., and Fraser, H. B. (2017). High-resolution mapping of cis-
regulatory variation in budding yeast. PNAS 114, E10736–E10744. 
doi:10.1073/pnas.1717421114.

Lam, F. H., Steger, D. J., and O’Shea, E. K. (2008). Chromatin decouples promoter threshold 
from dynamic range. Nature 453, 246–50.

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat 
Methods 9, 357–359. doi:10.1038/nmeth.1923.

Levo, M., Zalckvar, E., Sharon, E., Dantas Machado, A. C., Kalma, Y., Lotam-Pompan, M., et al.
(2015). Unraveling determinants of transcription factor binding outside the core binding 
site. Genome Res. 25, 1018–1029. doi:10.1101/gr.185033.114.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv:1303.3997 [q-bio]. Available at: http://arxiv.org/abs/1303.3997 [Accessed July 28, 
2018].

Li, X. C., and Fay, J. C. (2019). Multiple Changes Underlie Allelic Divergence of CUP2 Between 
Saccharomyces Species. G3 Genes|Genomes|Genetics 9, 3595–3600. 
doi:10.1534/g3.119.400616.

López-Maury, L., Marguerat, S., and Bähler, J. (2008). Tuning gene expression to changing 
environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9, 583–
593. doi:10.1038/nrg2398.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550. 
doi:10.1186/s13059-014-0550-8.

Ludwig, M., Bergman, C., Patel, N., and Kreitman, M. (2000). Evidence for stabilizing selection 
in a eukaryotic enhancer element. Nature 403, 564–567.

Ludwig, M. Z., Palsson, A., Alekseeva, E., Bergman, C. M., Nathan, J., and Kreitman, M. 
(2005). Functional evolution of a cis-regulatory module. PLoS Biol 3, e93.

Martin, A., and Orgogozo, V. (2013). The Loci of Repeated Evolution: A Catalog of Genetic 
Hotspots of Phenotypic Variation. Evolution 67, 1235–1250. 
doi:https://doi.org/10.1111/evo.12081.

Massouras, A., Waszak, S. M., Albarca-Aguilera, M., Hens, K., Holcombe, W., Ayroles, J. F., et 
al. (2012). Genomic variation and its impact on gene expression in Drosophila 
melanogaster. PLoS Genet. 8, e1003055. doi:10.1371/journal.pgen.1003055.

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


Metzger, B. P. H., Yuan, D. C., Gruber, J. D., Duveau, F., and Wittkopp, P. J. (2015). Selection 
on noise constrains variation in a eukaryotic promoter. Nature 521, 344–347. 
doi:10.1038/nature14244.

Mogno, I., Kwasnieski, J. C., and Cohen, B. A. (2013). Massively parallel synthetic promoter 
assays reveal the in vivo effects of binding site variants. Genome Res. 23, 1908–1915. 
doi:10.1101/gr.157891.113.

Naranjo, S., Smith, J. D., Artieri, C. G., Zhang, M., Zhou, Y., Palmer, M. E., et al. (2015). 
Dissecting the Genetic Basis of a Complex cis-Regulatory Adaptation. PLoS Genet. 11, 
e1005751. doi:10.1371/journal.pgen.1005751.

New, A. M., Cerulus, B., Govers, S. K., Perez-Samper, G., Zhu, B., Boogmans, S., et al. (2014).
Different levels of catabolite repression optimize growth in stable and variable 
environments. PLoS Biol 12, e1001764. doi:10.1371/journal.pbio.1001764.

Patwardhan, R. P., Lee, C., Litvin, O., Young, D. L., Pe’er, D., and Shendure, J. (2009). High-
resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat
Biotechnol 27, 1173–1175. doi:10.1038/nbt.1589.

Pelechano, V., Wei, W., and Steinmetz, L. M. (2013). Extensive transcriptional heterogeneity 
revealed by isoform profiling. Nature 497, 127–131. doi:10.1038/nature12121.

Raj, A., and van Oudenaarden, A. (2008). Nature, Nurture, or Chance: Stochastic Gene 
Expression and Its Consequences. Cell 135, 216–226. doi:10.1016/j.cell.2008.09.050.

Renganaath, K., Cheung, R., Day, L., Kosuri, S., Kruglyak, L., and Albert, F. W. (2020). 
Systematic identification of cis-regulatory variants that cause gene expression 
differences in a yeast cross. eLife 9, e62669. doi:10.7554/eLife.62669.

Richard, M., and Yvert, G. (2014). How does evolution tune biological noise? Front. Genet. 5. 
doi:10.3389/fgene.2014.00374.

Rockman, M. V. (2012). The QTN program and the alleles that matter for evolution: all that’s 
gold does not glitter. Evolution 66, 1–17.

Scannell, D. R., Zill, O. A., Rokas, A., Payen, C., Dunham, M. J., Eisen, M. B., et al. (2011). The
Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain 
Resources for the Saccharomyces sensu stricto Genus. G3 (Bethesda) 1, 11–25. 
doi:10.1534/g3.111.000273.

Schor, I. E., Degner, J. F., Harnett, D., Cannavò, E., Casale, F. P., Shim, H., et al. (2017). 
Promoter shape varies across populations and affects promoter evolution and 
expression noise. Nature Genetics 49, 550–558. doi:10.1038/ng.3791.

Sharon, E., Chen, S.-A. A., Khosla, N. M., Smith, J. D., Pritchard, J. K., and Fraser, H. B. 
(2018). Functional Genetic Variants Revealed by Massively Parallel Precise Genome 
Editing. Cell 175, 544-557.e16. doi:10.1016/j.cell.2018.08.057.

Sharon, E., van Dijk, D., Kalma, Y., Keren, L., Manor, O., Yakhini, Z., et al. (2014). Probing the 
effect of promoters on noise in gene expression using thousands of designed 

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


sequences. Genome Res. 24, 1698–1706. doi:10.1101/gr.168773.113.

Siepel, A., Bejerano, G., Pedersen, J., Hinrichs, A., Hou, M., Rosenbloom, K., et al. (2005). 
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. 
Genome Res 15, 1034–1050.

Spivak, A. T., and Stormo, G. D. (2012). ScerTF: a comprehensive database of benchmarked 
position weight matrices for Saccharomyces species. Nucleic Acids Research 40, D162–
D168. doi:10.1093/nar/gkr1180.

Stern, D. L., and Orgogozo, V. (2008). The loci of evolution: how predictable is genetic 
evolution? Evolution 62, 2155–77.

Stevenson, K. R., Coolon, J. D., and Wittkopp, P. J. (2013). Sources of bias in measures of 
allele-specific expression derived from RNA-sequence data aligned to a single reference
genome. BMC Genomics 14, 536. doi:10.1186/1471-2164-14-536.

Strober, B. J., Elorbany, R., Rhodes, K., Krishnan, N., Tayeb, K., Battle, A., et al. (2019). 
Dynamic genetic regulation of gene expression during cellular differentiation. Science 
364, 1287–1290. doi:10.1126/science.aaw0040.

Swanson, C. I., Schwimmer, D. B., and Barolo, S. (2011). Rapid evolutionary rewiring of a 
structurally constrained eye enhancer. Curr Biol 21, 1186–1196. 
doi:10.1016/j.cub.2011.05.056.

Tanay, A., Regev, A., and Shamir, R. (2005). Conservation and evolvability in regulatory 
networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci U S A 102, 
7203–8.

Tewhey, R., Kotliar, D., Park, D. S., Liu, B., Winnicki, S., Reilly, S. K., et al. (2016). Direct 
Identification of Hundreds of Expression-Modulating Variants using a Multiplexed 
Reporter Assay. Cell 165, 1519–1529. doi:10.1016/j.cell.2016.04.027.

Tuch, B. B., Li, H., and Johnson, A. D. (2008). Evolution of eukaryotic transcription circuits. 
Science 319, 1797–9.

van Arensbergen, J., Pagie, L., FitzPatrick, V. D., de Haas, M., Baltissen, M. P., Comoglio, F., et
al. (2019). High-throughput identification of human SNPs affecting regulatory element 
activity. Nature Genetics 51, 1160–1169. doi:10.1038/s41588-019-0455-2.

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, 
A., et al. (2013). From FastQ data to high confidence variant calls: the Genome Analysis 
Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11.10.1-33. 
doi:10.1002/0471250953.bi1110s43.

Venkataram, S., and Fay, J. C. (2010). Is transcription factor binding site turnover a sufficient 
explanation for cis-regulatory sequence divergence? Genome Biol Evol 2, 851–8.

Venters, B. J., Wachi, S., Mavrich, T. N., Andersen, B. E., Jena, P., Sinnamon, A. J., et al. 
(2011). A Comprehensive Genomic Binding Map of Gene and Chromatin Regulatory 
Proteins in Saccharomyces. Molecular Cell 41, 480–492. 

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/


doi:10.1016/j.molcel.2011.01.015.

Venturelli, O. S., Zuleta, I., Murray, R. M., and El-Samad, H. (2015). Population diversification in
a yeast metabolic program promotes anticipation of environmental shifts. PLoS Biol. 13, 
e1002042. doi:10.1371/journal.pbio.1002042.

Wang, Q.-M., Liu, W.-Q., Liti, G., Wang, S.-A., and Bai, F.-Y. (2012). Surprisingly diverged 
populations of Saccharomyces cerevisiae in natural environments remote from human 
activity. Mol. Ecol. 21, 5404–5417. doi:10.1111/j.1365-294X.2012.05732.x.

White, M. A., Myers, C. A., Corbo, J. C., and Cohen, B. A. (2013). Massively parallel in vivo 
enhancer assay reveals that highly local features determine the cis-regulatory function of
ChIP-seq peaks. Proc. Natl. Acad. Sci. U.S.A. 110, 11952–11957. 
doi:10.1073/pnas.1307449110.

Xu, Z., Wei, W., Gagneur, J., Perocchi, F., Clauder-Münster, S., Camblong, J., et al. (2009). 
Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–
1037. doi:10.1038/nature07728.

Yosef, N., and Regev, A. (2011). Impulse control: temporal dynamics in gene transcription. Cell 
144, 886–96.

Zhang, Z., and Dietrich, F. S. (2005). Mapping of transcription start sites in Saccharomyces 
cerevisiae using 5’ SAGE. Nucleic Acids Res. 33, 2838–2851. doi:10.1093/nar/gki583.

Zheng, W., Gianoulis, T. A., Karczewski, K. J., Zhao, H., and Snyder, M. (2011). Regulatory 
Variation Within and Between Species. Annual Review of Genomics and Human 
Genetics 12, 327–346. doi:10.1146/annurev-genom-082908-150139.

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435665doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435665
http://creativecommons.org/licenses/by-nc/4.0/

