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ABSTRACT 26 

Genomic selection has revolutionized genetic improvement in animals and plants, but little is 27 

known of its long term effects. Here we investigate the long-term effects of genomic selection 28 

on the change in the genetic architecture of traits over generations. We defined the genetic 29 

architecture as the subset, allele frequencies and statistical additive effects of causal loci. We 30 

simulated a livestock population under 50 generations of phenotypic, pedigree, or genomic 31 

selection for a single trait, controlled by either only additive, additive and dominance, or 32 

additive, dominance and epistatic effects. The simulated epistasis was based on yeast data. 33 

The observed change in genetic architecture over generations was similar for genomic and 34 

pedigree selection, and slightly smaller for phenotypic selection. Short-term response was 35 

highest with genomic selection, while long-term response was highest with phenotypic 36 

selection, especially when non-additive effects were present. This was mainly because the 37 

loss in genetic variance and in segregating loci was much greater with genomic selection. 38 

Compared to pedigree selection, genomic selection lost a similar amount of the genetic 39 

variance but maintained more segregating loci, which on average had lower minor allele 40 

frequencies. For all selection methods, the presence of epistasis limited the changes in allele 41 

frequency and the fixation of causal loci, and substantially changed the statistical additive 42 

effects over generations. Our results show that non-additive effects can have a substantial 43 

impact on the change in genetic architecture. Therefore, non-additive effects can substantially 44 

impact the accuracy and future genetic gain of genomic selection.    45 

 46 

 47 

48 
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INTRODUCTION 49 

Animal breeding has substantially increased the performance of livestock populations over 50 

the last century (Hill and Kirkpatrick 2010; Hill 2016). This has been achieved by selecting 51 

the genetically best performing individuals to produce the next generation based on own 52 

performance and/or performances of relatives. Despite the strong selection, these pedigree-53 

based selection methods have proven to be sustainable; genetic variation and rates of genetic 54 

gain have been stable for many generations in several animal and plant species, both in 55 

commercial breeding programs and experimental selection lines (Beniwal et al. 1992; Dudley 56 

and Lambert 2003; Havenstein et al. 2003a, b).  57 

Recently, genomic selection has revolutionized animal breeding (Meuwissen et al. 2001; 58 

Meuwissen et al. 2016). Within genomic selection, several thousands of DNA markers 59 

covering the whole genome are used to identify the genetically best animals. In some breeding 60 

programs, genomic selection has doubled the annual rate of genetic gain compared to classical 61 

pedigree selection (Schaeffer 2006; García-Ruiz et al. 2016). Arguably, genomic selection 62 

enables selection for low-heritability traits (Calus et al. 2008; Wolc et al. 2011) and traits that 63 

are difficult or expensive to measure (Goddard and Hayes 2009; Daetwyler et al. 2012; Calus 64 

et al. 2013), for which classical selection is generally difficult. These properties have resulted 65 

in a rapid uptake of genomic selection in animal breeding programs worldwide (Hayes et al. 66 

2009; Knol et al. 2016; Meuwissen et al. 2016; Wolc et al. 2016). 67 

The accuracy and, thereby, genetic gain of genomic selection are affected by the genetic 68 

architecture of the traits (Daetwyler et al. 2010; Hayes et al. 2010; Wientjes et al. 2015), that 69 

is the set of causal loci underlying the trait, their frequencies, and their statistical additive 70 

effects. The genetic architecture is largely unknown for most traits, including those under 71 

selection in breeding programmes, but is known to evolve over time as a result of new 72 

mutations and changing allele frequencies due to selection and drift (Wright 1931; Robertson 73 
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1960; Falconer and Mackay 1996; Hansen et al. 2006; Le Rouzic and Carlborg 2008; Hill and 74 

Kirkpatrick 2010; Hill 2016). When interactions are present within (dominance) or between 75 

(epistasis) loci, the statistical additive effects (also known as allele substitution effects) 76 

depend on the allele frequency at the locus itself as well as of those at interacting loci. This 77 

means that part of the functional dominance and epistatic effects contribute to additive genetic 78 

variation, with their total contribution depending on the allele frequencies (Barton and Turelli 79 

2004; Hill et al. 2008; Mäki-Tanila and Hill 2014). Although interactions between loci are 80 

known and common (Carlborg and Haley 2004; Carlborg et al. 2006; Flint and Mackay 2009; 81 

Huang et al. 2012), not much is known about their interaction network or how those 82 

interactions convert into genetic variance components or change over generations as a result 83 

of drift or selection. The genetic interaction network is so far most intensively studied in 84 

yeast, where 90% of the loci associated with a trait were found to be involved in at least one 85 

interaction, with only few interactions for most of the loci, and a lot of interactions for only a 86 

few loci (Tong et al. 2004; Boone et al. 2007; Costanzo et al. 2016). Boone et al. (2007) and 87 

Mackay (2014) argue that it is likely that this genetic interaction network is similar in other 88 

species such as livestock and human as well.  89 

We hypothesize that genomic selection accelerates the change in genetic architecture of 90 

traits across generations, which can affect long-term genetic gain. The reason is not only that 91 

genomic selection is more effective, but also related to the distribution of the selection 92 

pressure across the genome. Classical selection methods based on pedigree relationships 93 

implicitly weigh effects of alleles independently of allele frequency or effect size and 94 

distribute selection pressure evenly across the genome (Goddard 2009). This is in contrast to 95 

genomic selection methods that put less weight on rare alleles (Goddard 2009; Bijma 2012). 96 

Genomic selection methods, therefore, more strongly select on genomic regions surrounding 97 

loci with a large contribution to the additive genetic variance and may significantly increase 98 
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the change in allele frequency at those loci (Heidaritabar et al. 2014). Therefore, genomic 99 

selection may substantially accelerate the rate of genetic gain in the short-term, but by 100 

ignoring regions with a smaller contribution to additive genetic variance, genomic selection 101 

increases the risk of losing rare favourable alleles or may fail to increase frequency of such 102 

alleles (Jannink 2010; Liu et al. 2015; De Beukelaer et al. 2017). The loss of rare favourable 103 

alleles reduces genetic variation and genetic gain in the long term (Goddard 2009), and limits 104 

the potential to accommodate changes in desirable phenotypes in the future. However, 105 

currently, these expectations have not been investigated in detail or tested in breeding 106 

populations. 107 

Therefore, the aim of this study is to investigate the long-term effects of genomic selection 108 

on the genetic architecture of traits. Using simulations, genomic selection will be compared to 109 

phenotypic and pedigree selection. We will investigate the impact of those selection methods 110 

on the rate of genetic gain, the loss in genetic variance and the change in genetic architecture 111 

for 50 generations of selection. Those results will give us more insight on the long-term 112 

evolution of the genetic architecture and genetic variation of traits under different selection 113 

methods.  114 

115 
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MATERIALS AND METHODS 116 

Simulated population: We simulated a livestock population under 50 generations of 117 

selection. As a first step, we constructed a historical population in which selection was absent 118 

and mating was at random, using the QMSim software (Sargolzaei and Schenkel 2009). The 119 

first 2000 generations (generation -3050 to -1050) consisted of 1500 individuals, after which 120 

the size of the population gradually decreased to 100 over 500 generations (generation -1050 121 

to -550) to resemble a bottleneck in the population and to generate linkage disequilibrium. 122 

This was followed by a gradual increase in population size to 1500 over 500 generations 123 

(generation -550 to -50). From the last historical generation (generation -50), 100 females and 124 

100 males were randomly sampled, and their genotypes were the input for our own developed 125 

Fortran program. Those individuals were randomly mated (mating ratio 1:1) with a litter size 126 

of 10 (5 females and 5 males). In each of the next 50 discrete generations, 100 females and 127 

100 males were randomly sampled and mated to build up mutation-drift equilibrium 128 

(generation -50 to 0), using a selected proportion of 0.2. Generation 0 formed the base 129 

population for the 50 generations of selection. In the following generations, we used 130 

truncation selection to select the best 100 females and 100 males that were randomly mated 131 

using a mating ratio of 1:1 and a litter size of 10 (5 females and 5 males), resulting in a 132 

selected proportion of 0.2 for both females and males. Five selection methods were used 133 

which will be explained later. 134 

Genome: The simulated genome contained 10 chromosomes of 100 cM each. The number 135 

of recombination events per chromosome was sampled from a Poisson distribution with on 136 

average one recombination per chromosome and a random allocation of the recombination 137 

location on the chromosome. 138 

In the historical population, 200,000 randomly spaced bi-allelic loci per chromosome were 139 

simulated with a recurrent mutation rate of 5 ∗ 10−5. The population structure and mutation 140 
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rate resulted in a U-shaped allele frequency distribution of the loci in the historical population. 141 

In the last historical generation, 2000 segregating loci were randomly selected to become 142 

causal loci. Another set of 20,000 segregating loci were selected as marker, by selecting 200 143 

loci from each of 100 equally sized bins based on allele frequency. This resulted in a uniform 144 

allele frequency distribution of the markers, reflecting the ascertainment bias on commercial 145 

marker chips (Matukumalli et al. 2009; Ramos et al. 2009; Groenen et al. 2011). 146 

After the historical population, the number of mutations per individual was sampled from a 147 

Poisson distribution with an average of 0.6. This procedure resulted in a mutational variance 148 

of ~0.001𝜎𝑒
2 under our simulated additive model (as explained later), as is often observed in 149 

real populations (Hill 1982; Houle et al. 1996; Lynch and Walsh 1998). As loci for the 150 

mutations, we used 4000 loci that did not segregate in the last generation of the historical 151 

population and were randomly sampled from all possible loci. The loci and effects of the 152 

mutations were recycled to limit the computational requirement. In each generation, a locus 153 

was drawn from the potential loci that did not segregate at that moment, while maximizing the 154 

time between two mutations at the same locus. As such, each of the 4000 loci was used on 155 

average once in every 6-7 generations. We believe that recycling the same mutations does not 156 

impact the results of our study, because the vast majority of the mutations are lost in the first 157 

generation due to drift, which is unrelated to their effect. 158 

Genotypic and phenotypic values: Three genetic models were used to simulate 159 

phenotypic values; a model with only additive effects (A), a model with additive and 160 

dominance effects (AD), and a model with additive, dominance and epistatic effects (ADE). 161 

Functional (or biological) additive and dominance effects were assigned to all 2000 causal 162 

loci and the 4000 loci for mutations in the last historical generation. At the same time, 163 

epistatic effects were assigned to 90% of those loci, as was observed to be the case in yeast 164 

data (Costanzo et al. 2016). 165 
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Functional additive effects (𝑎) were sampled from a normal distribution with mean 0 and 166 

standard deviation 1. Functional dominance effects (d) were simulated proportional to the 167 

additive effect; we first sampled for each locus a dominance degree (dd) from a normal 168 

distribution with mean 0.2 and standard deviation 0.3, and subsequently computed the 169 

dominance effect of locus i as 𝑑𝑖 = 𝑑𝑑𝑖|𝑎𝑖|. This resulted in mostly positive dominance 170 

effects, with a bit of overdominance, as was empirically observed in pigs (Bennewitz and 171 

Meuwissen 2010). 172 

Only pairwise epistatic effects were simulated, because higher-order interactions have little 173 

effect on the phenotypic values when the allele frequency distribution is U-shaped. The 174 

number of interactions per locus was sampled using the interaction network found between 175 

the ~6000 genes in yeast (Stark 2006; Costanzo et al. 2016), with many loci with few 176 

interactions and few loci with many interactions (Figure 1). This was done by creating an 177 

interaction matrix from the network in yeast, with elements of 1 when loci interacted and 0 178 

otherwise. From this matrix, columns and corresponding rows were selected for all loci with 179 

an interaction. For the interaction between locus i and j, nine epistatic degrees (ε) were 180 

independently sampled from a normal distribution with mean 0 and standard deviation 0.45, 181 

one for each of the nine possible two-locus genotype combinations. Those ε were used to 182 

create nine epistatic effects (e) for each interaction as 𝑒 = 휀√|𝑎𝑖𝑎𝑗| (Table 1), resulting in 183 

larger epistatic effects for loci with a larger additive effect. This way of simulating epistatic 184 

effects resulted in all types of epistasis, i.e., additive by additive, additive by dominance, and 185 

dominance by dominance. However, as a result of simulating the epistatic effects in this 186 

random way, part of the simulated epistatic effect represent a functional additive or 187 

dominance effect (Table 1). For computing functional additive, dominance and epistatic 188 

variance components, we first redistributed the simulated epistatic effects in the correct 189 

underlying functional effects.  190 
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The functional genetic effects were combined with the genotypes of the individuals to 191 

calculate total genetic values. For each individual, a residual term was sampled from a normal 192 

distribution with mean zero and standard deviation equal to the square root of 1.5 times the 193 

variance in total genetic values in the generation in which functional effects were assigned, 194 

resulting in a broad sense heritability of 0.4.  195 

Statistical effects: The natural and orthogonal interaction approach (NOIA) (Álvarez-196 

Castro and Carlborg 2007; Vitezica et al. 2017) was applied in each generation to compute 197 

statistical additive and dominance effects based on the functional additive, dominance, and 198 

epistatic effects of all causal loci (the 2000 segregating causal loci and the 4000 loci for 199 

mutations) and their allele frequencies (Duenk et al. 2020). For each locus i, the part of the 200 

dominance effect that is statistically additive was calculated as (1 − 2𝑝𝑖)𝑑𝑖, where pi is the 201 

frequency of the focal allele (i.e., allele A for locus A in Table 1). For each interaction 202 

between loci i (with alleles a and A) and j (with alleles b and B) the functional epistasis is 203 

converted into statistical additive and statistical dominance effects. These statistical effects 204 

were computed from three components: 1) a vector y with functional epistatic effects, 205 

𝐲′ = [𝑒00 𝑒10 𝑒20 𝑒01 𝑒11 𝑒21 𝑒02 𝑒12 𝑒22], 2) a 9x9 diagonal matrix D with the 206 

expected frequencies of the two-locus haplotypes, assuming that loci segregate independently, 207 

and 3) a 9x9 matrix W with the mean and orthogonal contrasts for the two loci, constructed as 208 

𝐖 = 𝐖𝑖⨂𝐖𝑗 with 209 

 𝐖𝑖 = [1 𝐰𝑎𝑖 𝒘𝑑𝑖] =

[
 
 
 
 1 𝑝𝐴𝑎 + 2𝑝𝑎𝑎

2𝑝𝐴𝑎𝑝𝑎𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)
2

1 𝑝𝐴𝑎 + 2𝑝𝑎𝑎 − 1
4𝑝𝐴𝐴𝑝𝑎𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)
2

1 𝑝𝐴𝑎 + 2𝑝𝑎𝑎 − 2
2𝑝𝐴𝐴𝑝𝐴𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)
2]
 
 
 
 

.  210 

The statistical effects followed from 211 

𝒃𝑖𝑗 = [𝜇 𝛼𝑖𝑗
𝑖 𝛿𝑖𝑗

𝑖 𝛼𝑖𝑗
𝑗 (𝛼𝛼)𝑖𝑗 (𝛿𝛼)𝑖𝑗 𝛿𝑖𝑗

𝑗 (𝛼𝛿)𝑖𝑗 (𝛿𝛿)𝑖𝑗]
′
= (𝐖′𝐃𝐖)−1𝐖′𝐃𝐲 
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Note that the NOIA model was run separately for each set of interacting loci thereby only 212 

considering the functional interaction effects and not the functional additive and dominance 213 

effects. Therefore 𝛼𝑖𝑗
𝑖 = (𝑝𝑗 − 𝑞𝑗)𝑘 + 2𝑝𝑗𝑞𝑗𝑚+ (1 − 2𝑝𝑖)(𝑝𝑗 − 𝑞𝑗)𝑙 + 2𝑝𝑗𝑞𝑗(1 − 2𝑝𝑖)𝑛, 214 

and 𝛿𝑖𝑗
𝑖 = − (1 − 2𝑝𝑗)𝑙 + 2𝑝𝑗(1 − 𝑝𝑗)𝑛; where 𝑘, 𝑙, 𝑚 and 𝑛 are the additive by additive, 215 

dominancy by additive, additive by dominance and dominance by dominance functional 216 

epistatic effects (Table 1). 217 

The total statistical additive effect of locus i was calculated as  218 

𝛼𝑖 = 𝑎𝑖 + (1 − 2𝑝𝑖)𝑑𝑖 + ∑𝛼𝑖𝑗
𝑖 , 219 

and the total statistical dominance effect as 220 

𝛿𝑖 = 𝑑𝑖 + ∑𝛿𝑖𝑗
𝑖 , 221 

where the summation was taken across all interactions that involved locus i. 222 

The statistical additive effect was used to compute the total additive genetic value (i.e., true 223 

breeding value) across all loci i of each individual as 𝐴 = ∑𝑤𝑎𝑖𝛼𝑖, with 224 

𝑤𝑎𝑖 = {

𝑝𝐴𝑎 + 2𝑝𝑎𝑎
𝑝𝐴𝑎 + 2𝑝𝑎𝑎 − 1
𝑝𝐴𝑎 + 2𝑝𝑎𝑎 − 2

 for genotypes {
𝐴𝐴
𝐴𝑎
𝑎𝑎

. 225 

In the same way, the statistical dominance effect was used to compute the total dominance 226 

deviation across all loci i of each individual as 𝐷 = ∑𝑤𝑑𝑖𝛿𝑖, with 227 

𝑤𝑑𝑖 =

{
 
 

 
 

2𝑝𝐴𝑎𝑝𝑎𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)
2

4𝑝𝐴𝐴𝑝𝑎𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)
2

2𝑝𝐴𝐴𝑝𝐴𝑎

𝑝𝐴𝐴+𝑝𝑎𝑎−(𝑝𝐴𝐴−𝑝𝑎𝑎)
2

 for genotypes {
𝐴𝐴
𝐴𝑎
𝑎𝑎

. 228 

By definition, the variance in A across all individuals is the additive genetic variance, and the 229 

variance in D across all individuals is the dominance genetic variance. The total genetic 230 

variance minus the additive and dominance variance is the epistatic variance. 231 

Selection methods: Five methods were used to select the sires and dams of the next 232 

generation. As a base line for comparison, the first method randomly selected the parents 233 
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(RANDOM) and was meant to capture the impact of drift alone. The second method selected 234 

the individuals with the highest phenotypic values to become the parents of the next 235 

generation (MASS). The third method selected individuals with the highest estimated 236 

breeding values using a pedigree Best Linear Unbiased Prediction (BLUP) model that 237 

included own performance information of the selection candidates (PBLUP_OP). The fourth 238 

and fifth method selected individuals with the highest genomic estimated breeding values 239 

from a genomic BLUP model that either included own performance information of the 240 

selection candidates (GBLUP_OP) or not (GBLUP_NoOP).  241 

Breeding value estimation for the last three methods was performed using the MTG2 242 

software (Lee and van der Werf 2016). Breeding values were estimated simultaneously with 243 

estimating the variance components, using the phenotypic information of the previous three 244 

generations and for PBLUP_OP and GBLUP_OP also phenotypic information of the 245 

generation itself. The PBLUP method used a relationship matrix based on a pedigree that 246 

included all individuals from the generation itself and the previous eight generations. The 247 

GBLUP methods used a relationship matrix based on marker genotypes of the generation 248 

itself and the previous three generations, computed using method 1 of VanRaden (VanRaden 249 

2008) with allele frequencies estimated from the genotype data of those generations. The 250 

model for breeding value estimation included a fixed mean, a random additive genetic effect, 251 

a random litter effect, and a residual. The random litter effect was included to capture the 252 

resemblance between full sibs due to non-additive genetic effects, which could otherwise 253 

create bias in the estimated breeding values. Even though dominance and epistatic effects 254 

were simulated, these were not included in the breeding value estimation model, because 255 

additive models are generally used in breeding programs and only the breeding value is 256 

transmitted to the offspring.  257 
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Comparing genetic models and selection methods: The three genetic models (A, AD 258 

and ADE) and five selection methods were compared based on their accuracy of selection, 259 

phenotypic trend, additive genetic variance, additive genic variance (calculated as the sum of 260 

2pi(1-pi)𝛼𝑖
2 across all causal loci i), heterozygosity, average minor allele frequency (MAF), 261 

and number of segregating causal loci over the 50 generations of selection. The accuracy of 262 

selection was calculated as the correlation between the true breeding values and estimated 263 

breeding values. For each of the 15 scenarios, 20 replicates were simulated. 264 

One of our main aims was to evaluate how fast the genetic architecture of the trait changed 265 

due to selection. The genetic architecture can change because 1) The subset of loci affecting 266 

the trait changes due to new mutations and loci becoming fixed, 2) The allele frequencies of 267 

those loci change, which can result in changes in the proportion of the additive genetic 268 

variance explained by each locus, or 3) The statistical additive effects of the loci change as a 269 

result of allele frequency changes and non-additive effects, which can also change the 270 

proportion of additive genetic variance explained by a locus.  271 

We defined three criteria that each reflected one of those mechanisms, namely: 1) The 272 

Jaccard index for the segregating causal loci, 2) The correlation in allele frequencies at those 273 

loci between generations, and 3) The correlation in statistical additive effects at those loci 274 

between generations. For the first criterium, we calculated the Jaccard index (Jaccard 1908) 275 

between generation 0 (before selection) and each of the generations after selection as the 276 

number of overlapping segregating loci divided by the total number of segregating loci in the 277 

two generations. For the second criterium, we calculated the correlation between allele 278 

frequencies of generation 0 and each of the generations after selection, using only the loci that 279 

segregated in generation 0 and remained segregating. For the third criterium, we calculated 280 

the correlation between statistical additive effects of generation 0 with a generation after 281 

selection, again including only loci that remained segregating from generation 0 onwards.  282 
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Data availability: Supplemental file 1, contains the QMSim input file, Fortran programs 283 

and seeds used to select the markers and causal loci, to simulate functional effects and 284 

genotypes and phenotypic values of new generations, and the interaction matrix used to 285 

simulate epistatic effects.  286 

 287 

288 
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RESULTS 289 

Properties of simulated population: The allele frequency distribution of the segregating 290 

causal loci was strongly U-shaped (Supplemental file 2, Figure S2.1) and comparable to the 291 

allele frequency distribution in sequence data of livestock populations (Daetwyler et al. 2014; 292 

Eynard et al. 2015; Heidaritabar et al. 2016; Bolormaa et al. 2019). In the RANDOM 293 

scenario, where no selection was performed, the allele frequency pattern remained similar 294 

over generations, indicating that the population was approximately in mutation-drift 295 

equilibrium. Moreover, the linkage disequilibrium pattern in the population (Supplemental 296 

file 2, Figure S2.2) was similar to that found in livestock populations (Andreescu et al. 2007; 297 

Badke et al. 2012; Veroneze et al. 2013). This indicates that the effective population size of 298 

the simulated population was comparable to that in real livestock populations that are in the 299 

range of 40-130 (Welsh et al. 2010; Uimari and Tapio 2011; Wientjes et al. 2013; 300 

Heidaritabar et al. 2014).  301 

At the functional level with model ADE, epistasis was abundant and 49% of the variation 302 

in the total genetic value was generated by functional epistatic effects and only 19% by 303 

functional additive effects. However, most of the genetic variance at the statistical level was 304 

additive (62%) or due to dominance (33%), and only 5% was epistatic variance in generation 305 

0, which is reasonably close to results for litter size in pigs (Vitezica et al. 2018). The broad-306 

sense heritability was set to 0.4 for all genetic models, resulting in a narrow-sense heritability 307 

of ~0.25 for model ADE. This heritability was considerably lower than the narrow-sense 308 

heritability of ~0.40 for model A and ~0.38 for model AD. Altogether, those parameters 309 

indicate that the simulated genetic architecture using model ADE could represent the genetic 310 

architecture of a trait in a livestock population. 311 

Accuracy of selection: In the first generation of selection, the accuracy of selection was 312 

always highest with genomic selection including own performance (GBLUP_OP) (Figure 2). 313 
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This accuracy was ~0.83 for model A and model AD, and ~0.72 for model ADE. This lower 314 

accuracy is a result of the lower narrow-sense heritability for this genetic model. For all 315 

genetic models, the accuracy of the pedigree selection scenario with own performance 316 

(PBLUP_OP) in generation 1 was ~0.09 lower than with GBLUP_OP, the accuracy of 317 

genomic selection without own performance (GBLUP_NoOP) was ~0.13 lower than with 318 

GBLUP_OP, and the accuracy of MASS was ~0.21 lower than with GBLUP_OP. As 319 

expected, the accuracy of MASS was equal to the square root of the narrow-sense heritability. 320 

Over the generations, the accuracy of selection decreased for all scenarios. The decrease 321 

was largest in the first generations as a result of the Bulmer effect (Bulmer 1971). Thereafter, 322 

the decrease was slightly larger for the genomic selection scenarios (GBLUP_OP and 323 

GBLUP_NoOP) compared to PBLUP_OP and MASS. As a result, differences in accuracy 324 

between the scenarios after 50 generations of selection were smaller than in the first 325 

generation. The accuracy decreased fastest under genetic model ADE, especially for the 326 

genomic selection scenarios. Under this genetic model, the accuracies of PBLUP_OP, MASS 327 

and GBLUP_OP were similar after 50 generations of selection. 328 

Genetic gain: Over generations, the average phenotypic value in the population was 329 

constant for the RANDOM scenario and increased with selection (Figure 3). The rates of 330 

genetic gain in the first generations resembled results for the accuracy, with highest values for 331 

GBLUP_OP, followed by PBLUP_OP, GBLUP_NoOP and finally MASS, and smaller values 332 

when non-additive effects were present. The rate of genetic gain decreased over generations, 333 

but considerably less for MASS than for the other selection methods. Therefore, after 50 334 

generations of selection, MASS outperformed PBLUP_OP and GBLUP_NoOP in terms of 335 

accumulated genetic gain under all genetic models, and also outperformed GBLUP_OP under 336 

model ADE.  337 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435664doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435664
http://creativecommons.org/licenses/by/4.0/


17 

 

Additive genetic and genic variance: The additive genetic and genic variance were 338 

approximately constant for the RANDOM scenario and decreased with selection (Figure 4). 339 

As expected, the largest drop in additive genetic variance was observed in the first generations 340 

of selection as a result of the Bulmer effect, as also observed for the accuracy of selection. In 341 

the first three generations of selection, genetic variance reduced by more than 20%. The total 342 

drop in genetic variance over 50 generations of selection was more or less similar for 343 

GBLUP_OP and GBLUP_NoOP where less than 20% of the initial genetic variance was 344 

maintained under genetic models A and AD. Under model ADE, more genetic variance was 345 

maintained (~24%) after 50 generations of selection. Only slightly more genetic variance 346 

(~25%) was maintained with PBLUP_OP, for which the loss in genetic variance was 347 

reasonably similar across the three genetic models. With MASS, the loss in genetic variance 348 

was considerably less, and ~40% of the variance was maintained after 50 generations of 349 

selection.  350 

The additive genic variance is not affected by transient effects such as the Bulmer effect 351 

(Bulmer 1971). Therefore, the loss in genic variance was smaller than the loss in genetic 352 

variance, especially in the first generations. Except for this difference in the first generations, 353 

the trends in additive genic and genetic variance were very similar.  354 

Number of segregating causal loci: The number of segregating causal loci decreased as a 355 

result of selection (Figure 5). For PBLUP_OP, the number of loci decreased fastest with a 356 

reduction of almost 50% over 50 generations of selection. For GBLUP_OP and 357 

GBLUP_NoOP the decrease was slightly smaller; 42% for GBLUP_OP and 40% for 358 

GBLUP_NoOP. For MASS, the decrease was substantially smaller and the number of loci 359 

decreased by only 20%. The loss in segregating loci was slightly smaller when non-additive 360 

effects were present. Interestingly, the number of segregating loci in generation 50 was lower 361 
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for PBLUP_OP than for GBLUP_OP and GBLUP_NoOP, while the additive genic variance 362 

was slightly larger for PBLUP_OP. 363 

Average minor allele frequency at segregating causal loci: The additive genic variance 364 

depends on the number of segregating causal loci as well as their MAF. In the first 365 

generations of selection, the average MAF of segregating loci increased, especially for 366 

PBLUP_OP (Figure 6). Thereafter, the average MAF decreased and after 50 generations of 367 

selection, it was below its initial value, with the smallest values for the GBLUP scenarios. 368 

Only under genetic model ADE, the average MAF of PBLUP_OP and MASS after 50 369 

generations of selection were slightly above the average MAF before selection. The impact of 370 

MASS on the average MAF of segregating loci was very limited. The higher average MAF of 371 

PBLUP_OP can explain the higher additive genic variance for PBLUP_OP than for 372 

GBLUP_OP and GBLUP_NoOP, even though the number of segregating loci was smaller 373 

(Figure 4 vs 5). 374 

Accumulated heterozygosity: In a random mating population, the accumulated 375 

heterozygosity depends on the number of segregating causal loci (Figure 5), their average 376 

MAF (Figure 6) and the variation in MAF among loci (Supplemental file 2, Figure S2.3 and 377 

Supplemental file 3). As expected, selection resulted in a decrease in the accumulated 378 

heterozygosity (Figure 7). The reduction in accumulated heterozygosity was similar for 379 

GBLUP_OP and GBLUP_NoOP, slightly less for PBLUP_OP and considerably less for 380 

MASS. Moreover, the accumulated heterozygosity decreased slower when non-additive 381 

effects were present. Thus, the decrease in heterozygosity was lower for pedigree than for 382 

genomic selection, and depended on the genetic model.  383 

Change in genetic architecture: Over generations, the subset of causal loci underlying 384 

the trait (Figure 8), the allele frequencies of the causal loci (Figure 9), and the statistical 385 

additive effects of the causal loci (Figure 10) changed. The change in the subset of loci was 386 
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measured by the Jaccard index. Especially in the first generation, the subset of loci changed 387 

considerably, because every generation had approximately 600 new mutations, most of which 388 

were lost immediately. As a result, two consecutive generations already differ in almost 1200 389 

loci. The subset of loci affecting the trait changed considerably with drift (RANDOM), but 390 

the change was amplified by selection. After 50 generations, the average Jaccard index was 391 

~0.27 for RANDOM, ~0.21 for MASS and between 0.10 and 0.15 for PBLUP_OP, 392 

GBLUP_NoOP, and GBLUP_OP. The Jaccard index was slightly higher with non-additive 393 

effects. Those results indicate that the subset of loci affecting the trait constantly changes over 394 

generations due to new mutations and drift, and that the change is amplified by selection.  395 

Selection strongly amplified the change in allele frequencies of loci compared to drift 396 

(Figure 9; Supplemental file 4). Due to drift alone, the correlation between the allele 397 

frequencies of loci segregating in both generation 0 and generation 50 was ~0.93 398 

(RANDOM). The change in allele frequencies as a result of selection was largest under model 399 

A, with a correlation between the allele frequencies of generation 0 and 50 of only ~0.10 for 400 

GBLUP_OP, GBLUP_NoOP and PBLUP_OP, and of 0.44 for MASS. Those correlations 401 

were slightly higher under model AD. When also epistatic effects were present, the change in 402 

allele frequencies was much smaller, and the correlation was ~0.28 after 50 generations of 403 

GBLUP_OP, GBLUP_NoOP and PBLUP_OP, and 0.66 for MASS. 404 

As a result of the change in allele frequency, statistical additive effects of the loci changed 405 

when non-additive effects were present (Figure 10; Supplemental file 5). The changes were 406 

quite limited when only additive and dominance effects were present, with a correlation of 407 

~0.94 between the statistical additive effects of generation 0 and 50 for all selection methods. 408 

When epistatic effects were also present, this correlation was much lower. After 50 409 

generations, the average correlation was 0.95 for RANDOM, 0.65 for MASS, 0.51 for 410 
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PBLUP_OP, 0.47 for GBLUP_NoOP, and 0.45 for GBLUP_OP. Within 10 generations of 411 

GBLUP_OP, GBLUP_NoOP or PBLUP_OP, the correlation had already dropped to ~0.90.  412 

 413 

  414 
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DISCUSSION 415 

We investigated the long-term effects of genomic selection on the rate of genetic gain, 416 

additive genetic variance and genetic architecture of traits. Over 50 generations of genomic 417 

selection (GBLUP), the accuracy of selection, the rate of genetic gain, the amount of additive 418 

genetic and genic variation, and the number of segregating causal loci decreased. The same 419 

trends were also observed for phenotypic (MASS) and pedigree (PBLUP) selection, but the 420 

decrease was considerably smaller for MASS and slightly smaller for PBLUP. The main 421 

results of our study are assembled in Table 2, which also mentions the most likely mechanism 422 

underlying the results that will be further explained in this discussion.  423 

Genetic gain: MASS yielded the lowest initial rate of genetic gain, but the highest rate of 424 

genetic gain after 50 generations (Figure 3). Therefore, MASS outperformed most of the other 425 

selection methods in terms of cumulative genetic gain over 50 generations of selection. Those 426 

results are in agreement with previous research based on the infinitesimal model, which 427 

showed that MASS can outperform PBLUP for long-term gain, even though short-term gain 428 

was highest for PBLUP (Verrier et al. 1993; Wei et al. 1996). This was mainly because 429 

PBLUP lost more genetic variation (Figure 4) and segregating loci (Figure 5) than MASS.  430 

The relative benefit of MASS for cumulative genetic gain over 50 generations was larger 431 

with dominance. The other selection methods that each had a higher initial accuracy than 432 

MASS resulted in selecting more related individuals; the pedigree inbreeding coefficients 433 

after 50 generations was ~2.6 times larger with PBLUP and ~1.8 times larger with GBLUP 434 

than with MASS (Supplemental file 6, Table S6.1). These larger inbreeding coefficients with 435 

PBLUP and GBLUP suggests that those selection methods suffered more from inbreeding 436 

depression than MASS in the presence of dominance. It has been shown previously that with 437 

high rates of inbreeding depression, the long-term genetic gain is higher with MASS than with 438 

PBLUP (Quinton et al. 1992). 439 
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The benefit of MASS in cumulative genetic gain was even larger when also epistasis was 440 

present. This is a result of the increasingly smaller difference in accuracy between selection 441 

methods over generations when epistasis was present than when epistasis was absent, because 442 

the accuracy of GBLUP and PBLUP dropped faster over generations when epistasis was 443 

present (as will be further explained later). The smaller difference in accuracy between 444 

selection methods together with the much higher additive genetic variance in the last 445 

generations for MASS (Figure 4) resulted in a much higher rate of genetic gain for MASS in 446 

those generations compared to the other selection methods.  447 

The cumulative genetic gain was always lowest for GBLUP without own performance 448 

records (GBLUP_NoOP). This selection method, however, allows for a considerable 449 

reduction in the generation interval in some species, because selection can take place at a 450 

younger age before own phenotypic information or progeny information is available. This is 451 

most pronounced in dairy cattle, where the generation interval can be halved (Schaeffer 2006; 452 

García-Ruiz et al. 2016). In this study, a potential difference in generation interval was not 453 

taken into account because our focus is on the genetic mechanisms, not on applied breeding 454 

programs.  455 

Genetic variance: All selection methods resulted in a significant loss in genetic variance 456 

(Figure 4). Part of this loss was transient and a result of the Bulmer effect (Bulmer 1971). The 457 

difference between the genetic and genic variance was, however, reasonably small 458 

(Supplemental file 2, Figure S2.4). This small difference indicates that the largest part of the 459 

loss in genetic variance was a result of allele frequency changes, and thus permanent.  460 

Genic variance was lost across all 50 generations of selection and here we investigate the 461 

trends in the different components of the genic variance; number of segregating causal loci 462 

(n), average heterozygosity (𝐻𝐸̅̅ ̅̅ ), average square of the statistical additive effects (𝛼2̅̅̅̅ ) and 463 

covariance between heterozygosity and 𝛼2 (𝐶𝑜𝑣(𝐻𝐸 , 𝛼
2); Supplemental file 3). In the first 10 464 
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generations, genic variance was lost due to a considerable drop in the number of segregating 465 

loci, which was slightly counteracted by an increase in 𝐻𝐸̅̅ ̅̅  at those loci (Supplemental file 6, 466 

Table S6.2). Especially with PBLUP, 𝐻𝐸̅̅ ̅̅  increased in the first generations of selection. After 467 

generation 10, 𝐻𝐸̅̅ ̅̅  decreased and was lower after 50 generations than before selection for most 468 

scenarios. In generation 50, 𝐻𝐸̅̅ ̅̅  was higher for both MASS and PBLUP than for GBLUP. 469 

Moreover, loci with a larger statistical additive effect were more likely to become fixed, 470 

which slightly reduced 𝛼2̅̅̅̅ , especially when epistasis was present. The covariance between 𝐻𝐸 471 

and 𝛼2 was in general close to zero and contributed only little to the genic variance. 472 

Altogether, those results show that after 50 generations of selection, the drop in genic 473 

variance could for the largest part be explained by a reduction in the number of segregating 474 

loci and in 𝐻𝐸̅̅ ̅̅  at those loci, and for a smaller part by a reduction in 𝛼2̅̅̅̅ . 475 

The total loss in genic variance was lowest for MASS, which maintained a much higher 476 

number of segregating loci than PBLUP or GBLUP (Figure 5, Supplemental file 6, Table 477 

S6.2). This is probably because MASS better exploits rare favorable alleles. In GBLUP and 478 

maybe implicitly and for a smaller extent also in PBLUP, the effects of rare alleles are heavily 479 

regressed towards zero because they contribute little to the genetic variance (Goddard 2009; 480 

Gianola 2013). This enlarges the risk of keeping those alleles at low frequency or of losing 481 

them (Jannink 2010; Liu et al. 2015; De Beukelaer et al. 2017), even though they have the 482 

potential to greatly contribute to the genetic variance and future genetic gain. The number of 483 

rare alleles (MAF < 0.01) that was lost or remained rare during 50 generations of selection 484 

was indeed lower with MASS than with GBLUP and PBLUP (Supplemental file 6, Table 485 

S6.3). Therefore, the shrinkage of effects of rare alleles in PBLUP and GBLUP is the most 486 

likely explanation for losing more rare favorable alleles than with MASS.  487 

The total loss in genic variance was comparable for GBLUP and PBLUP. The number of 488 

segregating loci, however, decreased faster with PBLUP, while the average MAF of 489 
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segregating loci and thereby the heterozygosity level was higher with PBLUP (Figure 6; 490 

Supplemental file 6, Table S6.2). This might be a result of a stronger family selection with 491 

PBLUP, which agrees with the higher pedigree inbreeding level observed with PBLUP 492 

(Supplemental file 6, Table S6.1).  493 

We also investigated the impact of this difference beyond the 50 generations we simulated 494 

by estimating for each scenario the theoretical maximum genetic gain that can still be 495 

achieved from generation 50 onwards. This maximum genetic gain would be achieved when 496 

all loci would become fixed for the favourable allele, using the statistical additive effects of 497 

generation 50 (Supplemental file 6, Table S6.4). The maximum genetic gain was on average 498 

7.6% and 6.1% higher for GBLUP with or without own performance compared to PBLUP 499 

with own performance. This suggests that GBLUP is more sustainable for maintaining future 500 

genetic gain than PBLUP.  501 

The loss in genic variance was slightly smaller with non-additive effects. With non-502 

additive effects, the statistical additive effects depend on the allele frequencies (Fisher 1930; 503 

Mackay 2014). Some positive statistical additive effects even changed into negative effects 504 

over generations when epistasis was present (Supplemental file 5), which also changed the 505 

direction of selection. Those changes limited the number of loci that became fixed in the 506 

population, because selection was not constantly focussing on the same alleles or loci across 507 

generations. This resulted in a higher number of segregating loci (Figure 5) and a higher level 508 

of accumulated heterozygosity (Figure 7) after 50 generations of selection when non-additive 509 

effects were present (Supplemental file 6, Table S6.2).  510 

Genetic architecture: Our initial plan was to quantify the change in genetic architecture 511 

of traits by the genetic correlation between generations. However, this turned out to be very 512 

complex. The genetic correlation is defined as the correlation between the additive genetic 513 

values (i.e., true breeding values) for two traits of the same individual (Bohren et al. 1966; 514 
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Falconer and Mackay 1996). For a genetic correlation between generation 1 and 10, for 515 

example, trait 1 reflects the true breeding value in generation 1 and trait 2 the true breeding 516 

value in generation 10. Due to the change in allele frequencies over generations, the 517 

correlation between generation 1 and 10 would be different when breeding values were 518 

estimated for a set of individuals from generation 1, generation 10, or both generation 1 and 519 

10 (Duenk et al. 2020). This means that the genetic correlation between generations depends 520 

on the subset of individuals used for estimating the genetic correlation, and is not influenced 521 

by the change in allele frequencies and subset of loci underlying the trait across generations. 522 

Therefore, we decided to quantify the change in genetic architecture across generations using 523 

three measures based on the underlying mechanisms; the change in subset of loci, allele 524 

frequencies and statistical additive effects.  525 

The change in genetic architecture was strongly enhanced by selection, because selection 526 

resulted in a faster changes in the subset of causal loci, in allele frequencies and in statistical 527 

additive effects (Figures 8, 9 and 10). Contrary to our expectation and earlier results 528 

(Heidaritabar et al. 2014; Liu et al. 2014), the change in genetic architecture was about 529 

similar for GBLUP and PBLUP. This indicates that even though GBLUP focusses more on a 530 

subset of the genome that changes rapidly in allele frequencies while PBLUP spreads the 531 

selection pressure more evenly across the genome, the average change in allele frequencies 532 

was about equal. This was confirmed by the larger variance in the change in allele frequency 533 

at loci for GBLUP than PBLUP (Supplemental file 6, Table S6.5).  534 

After five generations of GBLUP and PBLUP, the Jaccard index had already dropped to 535 

0.42, the correlation between allele frequencies was 0.97, and the correlation between 536 

statistical additive effects 0.96 under model ADE. These results were very similar when they 537 

were calculated with generation 5 as reference instead of generation 0 (Supplemental file 2, 538 

Figures S2.5 – S2.7), indicating that the rate of change in genetic architecture was not higher 539 
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at the start of selection than in later generations. We hypothesized that those changes could 540 

result in changes in true breeding values across generations. Therefore, we estimated the 541 

correlation in true breeding values of individuals from generation 50 for performance in 542 

generation 50 and generations 47 to 49 that were included in the reference population. The 543 

correlation between true breeding values was always >0.99 when only additive or additive 544 

and dominance effects were present, but substantially smaller than 1 (~0.95 with generation 545 

49, ~0.91 with generation 48, and ~0.87 with generation 47) for the PBLUP and GBLUP 546 

scenarios with epistasis (Table 3). This indicates that even though the correlation in statistical 547 

additive effects was very high between neighboring generations (>0.99, Figure 10), the 548 

correlation of true breeding values between generations decreased rapidly because statistical 549 

additive effects changed more rapidly for loci with high MAF or large effect (Supplemental 550 

file 5). This phenomenon drastically decreased the informativeness of previous generations 551 

for breeding value prediction. So, recent generations of reference populations for genomic 552 

prediction are more useful, not only because they are closer related to the selection candidates 553 

(Clark et al. 2012; Pszczola et al. 2012; Wientjes et al. 2013), but also because their genetic 554 

architecture is more similar to that in the selection candidates. 555 

Non-additive effects: The contribution of epistasis to the variation in quantitative traits is 556 

a highly debated topic. The results of our study show that even though almost 50% of the 557 

variation in the total genetic value was generated by functional epistatic effects, the epistatic 558 

genetic variance explained only 5% of the genetic variance. This means that most of the 559 

epistatic effects were captured in the statistical additive effects, which was also expected 560 

based on the U-shaped allele frequency distribution of the loci (Hill et al. 2008; Mäki-Tanila 561 

and Hill 2014). So the fact that populations only show a limited amount of statistical epistatic 562 

variance does not prove that the amount of functional epistasis in the population is limited 563 

(Cheverud and Routman 1995; Huang and Mackay 2016).  564 
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Depending on allele frequencies, a large part of the functional dominance and epistatic 565 

effects can be converted into additive variance (Barton and Turelli 2004; Carlborg et al. 2006; 566 

Le Rouzic and Carlborg 2008; Hill 2017). For the model with additive and dominance effects, 567 

96% of the additive genetic variance was a result of functional additive effects before 568 

selection, and roughly all genetic variance after 50 generations of selection (Supplemental file 569 

2, Figure S2.8). When epistatic effects were also present, only 34% of the additive genetic 570 

variance was a result of functional additive effects before selection and roughly 50% after 571 

selection. This shows that the part of the functional dominance and epistatic effects captured 572 

by the statistical additive variance changes across generations due to allele frequency changes. 573 

The conversion of non-additive effects into statistical additive effects depends on the allele 574 

frequencies. When allele frequencies are closer to 0 or 1, a larger proportion of the non-575 

additive effects is converted into statistical additive effects. As a result, a negative correlation 576 

between MAF and the absolute statistical additive effect of a locus existed in our simulations 577 

already before selection, even though functional effects were simulated independently of 578 

allele frequencies (Figure 11). A negative correlation between MAF and the effect size of loci 579 

is often observed in empirical studies (Manolio et al. 2009; Marouli et al. 2017; Zeng et al. 580 

2018), and our results show that the existence of non-additive effects can contribute to 581 

explaining this finding. 582 

Little is known about the structure and network of epistatic interactions. We only simulated 583 

pairwise interactions and mimicked the genetic interaction network described in yeast, with 584 

many loci with few interactions and few loci with many interactions. Similar interaction 585 

networks although studied in less detail are found in C. Elegans (Lehner et al. 2006), 586 

Drosophila (Huang et al. 2012) and mice (Tyler et al. 2017), and are also found between 587 

proteins (Tong et al. 2004). Therefore, Boone et al. (2007) and Mackay (2014) argue that it is 588 
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likely that the interaction network between genetic loci is similar in other species such as 589 

livestock and human as well.  590 

Conclusion: An overview of the main results of this study is shown in Table 2. Our results 591 

show that GBLUP with own performance records resulted in the highest short-term genetic 592 

gain, while long-term gain was highest with MASS. This was mainly a result of a much 593 

higher loss in genetic variance and number of segregating loci with GBLUP. GBLUP without 594 

own performance records showed a slightly higher short-term gain than MASS, but 595 

considerably lower long-term gain. The genetic gain of PBLUP with own performance 596 

records was in between GBLUP with and without own performance records. PBLUP and 597 

GBLUP showed a similar loss in genetic variance, but the underlying mechanism was 598 

different; GBLUP maintained more loci, but with a lower MAF. The maximum genetic gain 599 

that could still be obtained after 50 generations of GBLUP selection was higher, which 600 

suggests that GBLUP better maintains long-term genetic gain than PBLUP. We have also 601 

shown that the change in genetic architecture of traits was strongly amplified by selection, 602 

with larger changes in the subset, allele frequencies and statistical additive effects of loci. 603 

However, in contrast to our hypothesis, the rate of change in genetic architecture was 604 

comparable for genomic and pedigree selection. Moreover, our results show that non-additive 605 

effects were relatively unimportant in the short-term, but they can substantially impact the 606 

accuracy and genetic gain of genomic selection when multiple generations are included in the 607 

reference population.    608 

609 
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FIGURES 820 

 821 

 822 

FIGURE 1 823 

Histogram of the number of interactions per causal locus. 824 
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 826 

FIGURE 2 827 

Trend in accuracy of selection for four selection methods and three genetic models. The four 828 

selection methods were: MASS selection, PBLUP selection with own performance 829 

(PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) or with own 830 

performance (GBLUP_OP). The three genetic models were a model with only additive effects 831 

(A), with additive and dominance effects (AD), or with additive, dominance and epistatic 832 

effects (ADE). Results are shown as averages of 20 replicates. 833 
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 836 

FIGURE 3 837 

Phenotypic trend for the five selection methods and three genetic models. The phenotypic 838 

trend is scaled by the additive genetic standard deviation in the generation before selection in 839 

order to make the results comparable across the genetic models. The five selection methods 840 

were: RANDOM selection, MASS selection, PBLUP selection with own performance 841 

(PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) or with own 842 

performance (GBLUP_OP). The three genetic models were a model with only additive effects 843 

(A), with additive and dominance effects (AD), or with additive, dominance and epistatic 844 

effects (ADE). Results are shown as averages of 20 replicates. 845 
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848 
FIGURE 4 849 

Trend in additive genetic (A, B, C) and additive genic (D, E, F) variance for the five selection 850 

methods and three genetic models. The trend is scaled by the additive genetic or additive 851 

genic variance in the generation before selection in order to make the results comparable 852 

across the genetic models. The five selection methods were: RANDOM selection, MASS 853 

selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection without 854 

own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three 855 
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genetic models were a model with only additive effects (A), with additive and dominance 856 

effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as 857 

averages of 20 replicates. 858 
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862 
FIGURE 5 863 

Trend in number of segregating causal loci for the five selection methods and three genetic 864 

models. The five selection methods were: RANDOM selection, MASS selection, PBLUP 865 

selection with own performance (PBLUP_OP), GBLUP selection without own performance 866 

(GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic models were a 867 

model with only additive effects (A), with additive and dominance effects (AD), or with 868 

additive, dominance and epistatic effects (ADE). Results are shown as averages of 20 869 

replicates. 870 
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874 
FIGURE 6 875 

Trend in average minor allele frequency (MAF) of segregating causal loci for the five 876 

selection methods and three genetic models. The five selection methods were: RANDOM 877 

selection, MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP 878 

selection without own performance (GBLUP_NoOP) or with own performance 879 

(GBLUP_OP). The three genetic models were a model with only additive effects (A), with 880 

additive and dominance effects (AD), or with additive, dominance and epistatic effects 881 

(ADE). Results are shown as averages of 20 replicates. 882 
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887 
FIGURE 7 888 

Trend in accumulated heterozygosity across segregating causal loci for the five selection 889 

methods and three genetic models. The five selection methods were: RANDOM selection, 890 

MASS selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection 891 

without own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The 892 

three genetic models were a model with only additive effects (A), with additive and 893 

dominance effects (AD), or with additive, dominance and epistatic effects (ADE). Results are 894 

shown as averages of 20 replicates. 895 
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900 
FIGURE 8 901 

Change in the subset of segregating causal loci for the five selection methods and three 902 

genetic models. The change in the subset is described by the Jaccard index. The five selection 903 

methods were: RANDOM selection, MASS selection, PBLUP selection with own 904 

performance (PBLUP_OP), GBLUP selection without own performance (GBLUP_NoOP) or 905 

with own performance (GBLUP_OP). The three genetic models were a model with only 906 

additive effects (A), with additive and dominance effects (AD), or with additive, dominance 907 

and epistatic effects (ADE). Results are shown as averages of 20 replicates. 908 
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913 
FIGURE 9 914 

Change in the allele frequencies of segregating causal loci for the five selection methods and 915 

three genetic models. The change in allele frequencies is represented by the correlation in 916 

allele frequencies between the generation of interest and the generation before selection 917 

(generation 0). The five selection methods were: RANDOM selection, MASS selection, 918 

PBLUP selection with own performance (PBLUP_OP), GBLUP selection without own 919 

performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three genetic 920 

models were a model with only additive effects (A), with additive and dominance effects 921 

(AD), or with additive, dominance and epistatic effects (ADE). Results are shown as averages 922 

of 20 replicates. 923 
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 927 

FIGURE 10 928 

Change in the statistical additive effects of segregating causal loci for the five selection 929 

methods and three genetic models. The change in statistical additive effects is represented by 930 

the correlation in the effects between the generation of interest and the generation before 931 

selection (generation 0). The five selection methods were: RANDOM selection, MASS 932 

selection, PBLUP selection with own performance (PBLUP_OP), GBLUP selection without 933 

own performance (GBLUP_NoOP) or with own performance (GBLUP_OP). The three 934 

genetic models were a model with only additive effects (A), with additive and dominance 935 

effects (AD), or with additive, dominance and epistatic effects (ADE). Results are shown as 936 

averages of 20 replicates. 937 
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 943 

FIGURE 11 944 

Correlation between the absolute statistical additive effect and minor allele frequency at 945 

causal loci for the three genetic models. The three genetic models were a model with only 946 

additive effects (A), with additive and dominance effects (AD), or with additive, dominance 947 

and epistatic effects (ADE). 948 
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TABLES 953 

 954 

TABLE 1 – Simulated epistatic model for two-locus interactions
1 

955 

  Genotype Locus B 

BB Bb bb 

G
en

o
ty

p
e 

L
o
cu

s 
A

 AA e00 = μ+aA+aB+k e01 = μ+aA+dB+m e02 = μ+aA-aB-k 

Aa e10 = μ+dA+aB+l e11 = μ+dA+dB+n e12 = μ+dA-aB-l 

aa e20 = μ-aA+aB-k e21 = μ-aA+dB-m e22 = μ-aA-aB+k 

1
 First, nine epistatic effects (e00 – e22) were simulated randomly, by sampling for each effect 956 

an epistatic degree (ε) from a normal distribution and scaling them by the additive effects of 957 

the two loci (i.e., 𝑒00 = 휀00√|𝑎𝑖𝑎𝑗|). Then, those nine epistatic effects were used to estimate 958 

the separate functional additive (aA and aB), dominance (dA and dB), additive by additive (k), 959 

additive by dominance (l and m) and dominance by dominance (n) epistatic effects that were 960 

underlying those epistatic effects. 961 
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Table 2 – Summary table of long-term effects of genomic selection 963 

Long-term effects of 

genomic selection on: 

Simulation results Likely or proven mechanisms 

Rate of genetic gain 

(Figure 3) 
 Large drop in rate of genetic gain over generations 

 Epistasis increased the drop in rate of genetic gain 

over generations 

 

 Higher rate of genetic gain with genomic selection 

than with pedigree selection 

 Loss in additive genetic variance and reduction in accuracy 

 Epistasis reduced the informativeness of previous generations for 

breeding value estimation, and increased the level of inbreeding 

depression 

 Accuracy of breeding value estimation is higher with genomic 

selection than pedigree selection 

Loss in additive 

genetic variance 

(Figure 4) 

 First generations: Large drop in additive genetic 

variance, smaller drop in additive genic variance 

 Later generations: Large drop in additive genetic 

and genic variance 

 

 

 Epistasis reduced the loss in additive genetic 

variance 

 

 Similar loss in additive genetic variance with 

genomic selection than with pedigree selection 

 Bulmer effect, resulting in transient loss in additive genetic 

variance due to negative covariances between loci 

 Reduction in the number of segregating loci, because of fixation of 

alleles due to selection and losing rare favorable alleles as a result 

of shrinking estimated effects of rare loci towards zero. Moreover, 

the average heterozygosity level reduced due to selection.  

 Epistasis resulted in fixing a lower number of loci, because the 

pressure and direction of selection at a locus can change over 

generations due to changing statistical additive effects 

 Genomic selection maintained more segregating loci, but each of 

them with a lower MAF than pedigree selection, probably because 

pedigree selection results in a stronger family selection 

Change in genetic 

architecture of traits 

(Figure 8-10) 

 Large change in genetic architecture 

 

 

 Epistasis reduced the change in subset of loci and 

allele frequencies, but increased the change in 

statistical additive effects 

 

 Subtle differences in change in genetic 

architecture between pedigree and genomic 

selection 

 Selection changes the allele frequencies of causal loci, thereby 

changing the subset of segregating causal loci and their statistical 

additive effects  

 When epistasis was present, statistical additive effects of causal 

loci changed across generations, which lowered the change in 

allele frequency because the pressure and direction of selection at 

a locus changed across generations 

 Genomic selection focused more on a subset of genes that change 

rapidly, but the average change in allele frequency was similar for 

genomic and pedigree selection 
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TABLE 3 – Correlation of true breeding values (TBV) of individuals from generation 50 964 

between performance in generation 50 and each of the three previous generations. 965 

  Correlation in TBV of generation 50 with 

 Generation 49 Generation 48 Generation 47 

Model A    

RANDOM 1.00 1.00 1.00 

MASS 1.00 1.00 1.00 

PBLUP 1.00 1.00 1.00 

GBLUP_NoOP 1.00 1.00 1.00 

GBLUP_OP 1.00 1.00 1.00 

    Model AD    

RANDOM 1.00 1.00 1.00 

MASS 1.00 1.00 1.00 

PBLUP 1.00 0.99 0.99 

GBLUP_NoOP 1.00 0.99 0.99 

GBLUP_OP 1.00 0.99 0.99 

    Model ADE    

RANDOM 0.99 0.99 0.99 

MASS 0.98 0.98 0.97 

PBLUP 0.95 0.92 0.90 

GBLUP_NoOP 0.96 0.91 0.86 

GBLUP_OP 0.95 0.91 0.87 

 966 
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