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Abstract 11 

Brain signal variability changes across the lifespan in both health and disease, likely 12 

reflecting changes in information processing capacity related to development, aging and 13 

neurological disorders. While signal complexity, and multiscale entropy (MSE) in particular, 14 

has been proposed as a biomarker for neurological disorders, most observations of altered 15 

signal complexity have come from studies comparing patients with few to no comorbidities 16 

against healthy controls. In this study, we examined whether MSE of brain signals was 17 

distinguishable across individuals in a large and heterogeneous set of clinical-EEG data. 18 

Using a multivariate analysis, we found unique timescale-dependent differences in MSE 19 

across various neurological disorders. We also found MSE to differentiate individuals with 20 

non-brain comorbidities, suggesting that MSE is sensitive to brain signal changes brought 21 

about by metabolic and other non-brain disorders. Such changes were not detectable in the 22 

spectral power density of brain signals. Our findings suggest that brain signal complexity 23 

may offer complementary information to spectral power about an individual’s health status 24 

and is a promising avenue for clinical biomarker development. 25 

Keywords: Multi-scale entropy, EEG, neurodegenerative disease, epilepsy  26 
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 Introduction 27 

A growing literature suggests that some degree of brain signal variability is vital to optimal 28 

brain function. Although seemingly paradoxical, noisy (or complex) brain signals are related 29 

to a greater capacity for information processing as compared to more predictable signals 30 

(Garrett et al., 2018; Vakorin and McIntosh, 2012). Sample entropy is one way to capture the 31 

variability of a brain signal (Richman and Moorman, 2000) and multiscale entropy (MSE), 32 

where complexity is examined across multiple timescales (Costa et al., 2005), has been 33 

particularly useful in broadening our understanding of the role of noise in brain health and 34 

disease. MSE, like other measures of entropy, captures the variability in a signal but can 35 

additionally differentiate variability induced by increasing randomness, such that white 36 

noise gives lower MSE values (Costa et al., 2005). An increase in MSE has been observed in 37 

tasks requiring memory retrieval (Heisz et al., 2012) or the integration of stimulus features 38 

(Misić et al., 2010) and seems to support accurate and stable behavior (Misić et al., 2010; 39 

Raja Beharelle et al., 2012). MSE has been shown to have timescale-dependent shifts during 40 

brain development (Hasegawa et al., 2018; Lippé et al., 2009; Miskovic et al., 2016; 41 

Szostakiwskyj et al., 2017) and aging (McIntosh et al., 2014; Sleimen-Malkoun et al., 2015; H. 42 

Wang et al., 2016) that supports cognitive function (Heisz et al., 2015; Yang et al., 2013), 43 

reflecting changes in the brain’s information processing capacity across the lifespan . MSE 44 

also reflects processing capacity changes related to various brain diseases including 45 

dementia (Bertrand et al., 2016; Grieder et al., 2018; Niu et al., 2018), neurodevelopmental 46 

disorders (Mišić et al., 2015; Takahashi et al., 2016; Weng et al., 2017), and psychiatric 47 

disorders (Hager et al., 2017; Takahashi, 2013; Yang et al., 2015). 48 
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In nearly all of these studies, brain signal complexity changes related to various brain 49 

diseases have been detected by comparing individuals with few to no comorbidities against 50 

matched healthy controls using data collected in highly controlled laboratory environments. 51 

While MSE has been proposed for use as a clinical biomarker for various neurological 52 

disorders (Jeste et al., 2015; Lu et al., 2015; Tsai et al., 2015), whether differences in brain 53 

signal complexity can be detected across individuals of a heterogenous clinical population 54 

per se remains unknown. In this study, we leveraged the Temple University Corpus EEG 55 

database (Obeid and Picone, 2016) to test the utility of MSE as an indicator of health status 56 

in a large and heterogeneous clinical population. We found MSE of clinical-EEG signals 57 

differentiated individuals of varying brain disorders. Interestingly, we also found MSE to 58 

differentiate between individuals with non-brain comorbidities and those without 59 

comorbidities.   60 
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Methods 61 

Subjects 62 

Clinical EEG data and corresponding physician reports were downloaded from the Temple 63 

University Hospital EEG Epilepsy Corpus  (v0.0.1) containing 100 subjects deemed to have 64 

epilepsy and 100 subjects without epilepsy 65 

(https://www.isip.piconepress.com/projects/tuh_eeg/) (Obeid and Picone, 2016). Subjects 66 

from the epilepsy group were included in our sample if the report indicated a previous 67 

diagnosis of epilepsy, if the EEG supported a diagnosis of epilepsy, or if the patient had 68 

experienced 2 or more unprovoked seizures occurring more than 24 hours apart and the 69 

EEG did not contraindicate epilepsy. Subjects without epilepsy were included if they did not 70 

meet any of these criteria. Subjects from either group were excluded if a seizure occurred 71 

during the recording, if the subject’s level of consciousness was decreased, or if the subject 72 

was under the effect of a device likely to cause substantial EEG artifact such as a pacemaker 73 

or ventilator. Subjects were also excluded if their recordings were deemed unsuitable in the 74 

preprocessing stage due to the presence of artifacts.  75 

Demographic and clinical characteristics were extracted from the physician reports 76 

(Table 1). For the various brain-acting medications (anti-epileptic drugs, barbiturates, 77 

benzodiazepines, antipsychotics, and antidepressants), subjects were considered to be on 78 

them if their medication list included at least one medication of that category. The total 79 

number of other (i.e., not brain-acting) medications for each subject was computed by 80 

counting the number of total medications listed for the subject and subtracting the number 81 

of medications that fell into the brain-acting medication categories listed above. If the 82 
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medication list stated “others” or a pluralized general category of medications (i.e. 83 

“antihypertensives”), two medications were added to the non-brain medication count. Most 84 

of the non-brain acting medications reported (69.3%; 223/322) are those used to treat 85 

cardiovascular disease, diabetes or chronic respiratory illness. Seizure classifications and 86 

terms were determined as outlined by the International League Against Epilepsy (Berg et al., 87 

2010; Blume et al., 2001). A subject was considered to have experienced generalized or focal 88 

seizures if their physician’s report contained either a diagnosis falling in one of those 89 

categories or a description of seizures matching the expected presentation for that seizure 90 

classification. Thirty-four subjects experienced seizures of unknown classification and were 91 

excluded from analysis. A further 3 subjects did not have age or sex information available 92 

and were also excluded from analysis. This resulted in a total sample size of 163 subjects. 93 

Accepted phrases for stroke included indication of a past or present ischemic stroke, 94 

hemorrhagic stroke, “CVA”, or intracerebral bleed. Accepted diagnoses for degenerative 95 

brain diseases included Alzheimer’s disease, Parkinson’s disease, and dementia. Accepted 96 

diagnoses for psychiatric disorders included anxiety, depression, bipolar disease, and 97 

schizophrenia. Accepted diagnoses for neurodevelopmental disorders included Down’s 98 

syndrome, ADHD, intellectual disabilities, and cerebral palsy. Finally, other brain disorders 99 

and injuries included head trauma, brain surgery, brain cancer or metastases, hypoxic brain 100 

injuries, encephalitis and meningitis.  101 
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Table 1. Demographic and clinical characteristics of study sample. 102 

Variables 
Subjects 
(n=163) 

Age, mean (SD, range) 52.12 (19.88, 7-91) 
Sex, n female (%) 91 (55.83) 
Medication use  
     Anti-epileptic drug use, % 36.2 
     Barbiturate use, % 2.45 

     Benzodiazepine use, % 11.04 
     Antipsychotic use, % 9.82 
     Antidepressant use, % 11.04 
     Other medications, mean (SD, range) 2.26 (2.75, 0-13) 
Past medical history  
     Diagnosis of epilepsy, % 40.49 

     History of stroke, % 19.02 
     Diagnosed degenerative brain disease, % 4.91 
     Diagnosed psychiatric disorder, % 12.27 
     Diagnosed neurodevelopmental disorder, % 3.68 
     Other brain disorder or injury, % 16.56 

EEG preprocessing & analysis 103 

Each subject contributed one EEG recording. For subjects with multiple recordings, the 104 

recording corresponding to the physician report containing the most complete clinical 105 

picture was selected. For recordings that were split into multiple segments, the longest of 106 

the segments was chosen for preprocessing. All preprocessing was performed using the 107 

FieldTrip toolbox in MATLAB (www.fieldtriptoolbox.org) (Oostenveld et al., 2011). For each 108 

selected recording, 19 scalp electrodes of the International 10-20 system that were common 109 

to all subjects were selected. The resulting continuous recordings were segmented into 4-s 110 

trials, producing an average of 317 trials per subject, and bandpass filtered (0.5 to 55 Hz). 111 

The majority of recordings were sampled at 250 Hz, but one subject that was sampled at 512 112 

Hz was downsampled to 250 Hz before proceeding. 113 
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Two trial removal steps were then completed. The majority of subjects received 114 

photic stimulation. For these subjects, trials where photic stimulation began and ended were 115 

detected, and the trials within this range to 5 trials past the end of stimulation were removed. 116 

Trials at the beginning of a recording where the amplitude of the photic channel was not zero 117 

were also removed. Next, trials with excessive signal amplitude were detected for removal. 118 

For each subject, 30% of the trials that were determined by visual inspection to be 119 

reasonably free of artifacts were selected. Global field power was calculated and its mean ± 120 

5 std was used to reject trials with time points outside of this threshold. The average number 121 

of remaining trials per subject following both of these removal steps was 178. 122 

Independent component analysis was next used to remove ocular and muscle 123 

artifacts. Components with topographical distributions typical of these artifacts were 124 

selected and their traces further examined. Where possible, probable ocular artifact 125 

components were confirmed via alignment of the component trace with the 126 

electrooculogram traces from the original recording. Probable muscle artifact components 127 

were confirmed by the presence of a high frequency component trace. Finally, any recordings 128 

not referenced to a common average were re-referenced. 129 

MSE (Costa et al., 2005, 2002) was computed by first coarse-graining the EEG time 130 

series of each trial into 20 scales. To produce the time series coinciding with a given scale t, 131 

data points from the original time series within non-overlapping windows of length t were 132 

averaged. Thus scale 1 represents the original time series, with 1000 data points per channel 133 

per trial resulting from 4 seconds of recording sampled at 250 Hz. Next, sample entropy was 134 

calculated for each time series across all scales. This measured the predictability of the 135 

amplitude between two versus three consecutive data points (m=2), with the condition that 136 
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data points were considered to have indistinguishable amplitude from one another if the 137 

absolute difference in amplitude between them was ≤50% of the standard deviation of the 138 

time series (r = 0.5). The resulting values were averaged across trials to produce a single 139 

MSE curve per channel for each subject. As an entropy-based measure, MSE values are low 140 

for both completely deterministic as well as completely uncorrelated signals. 141 

Changes in MSE occur with changes in spectral power  (Lippé et al., 2009; McIntosh 142 

et al., 2008) so we additionally assessed spectral power (SPD) alongside MSE. SPD was 143 

calculated for each trial using the fast Fourier transform with a Hann window. To account 144 

for age-related global signal power changes, each recording was first normalized (mean = 0, 145 

SD = 1). Relative spectral power was then calculated for each trial, and results averaged 146 

across trials to acquire mean SPD per channel for each subject. 147 

Partial Least Squares Analysis 148 

MSE and SPD measures were each correlated with the available demographic and clinical 149 

data using a Partial Least Squares (PLS) analysis (Krishnan et al., 2011; McIntosh and 150 

Lobaugh, 2004). This multivariate statistical approach identifies a set of latent variables 151 

(LVs) that represent the maximal covariance between two datasets. First, the correlation 152 

between the MSE/SPD and clinical data was computed across subjects. Singular value 153 

decomposition was then performed on the correlation matrix to produce LVs, each 154 

containing three elements: 1) a set of weighted “saliences” that describe a spatiotemporal 155 

brain pattern of MSE/SPD measures; 2) a scalar singular value that expresses the strength of 156 

the covariance; and 3) a design contrast of correlation coefficients that express how the 157 

clinical data relate to the saliences. The mutually orthogonal LVs are extracted in order of 158 

magnitude, whereby the first LV explains the most covariance between MSE/SPD and clinical 159 
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data, the second LV the second most, and so forth. The significance of each LV was assessed 160 

with permutation testing by randomly reordering subjects’ MSE/SPD pairing with clinical 161 

data to produce 1000 permuted sets for singular value decomposition, with the set of 1000 162 

singular values forming the null distribution. The reliability of the MSE/SPD at each 163 

electrode in expressing the covariance pattern of each LV was assessed using bootstrap 164 

resampling. A set of 500 bootstrap samples was created by resampling subjects with 165 

replacement. The ratio between the saliences and the estimated standard error (bootstrap 166 

ratio) was taken as an index of reliability. With the assumption that the bootstrap 167 

distribution is normal, the bootstrap ratio is akin to a Z-score and corresponding saliences 168 

are considered to be reliable if the absolute value of their bootstrap ratio is >= 2. For the 169 

clinical data, confidence intervals were calculate from the upper and lower bounds of the 170 

95th percentile of the bootstrap distribution of the correlation with the scores from the 171 

MSE/SPD data. The scores are the dot-product of the saliences with the data for each subject 172 

and are similar to a factor score from factor analysis. 173 

For the demographic and clinical data entered into the PLS analysis, age and number 174 

of non-brain medications were treated as continuous variables, while all other variables 175 

were categorical. Sex was coded as 0 (F) and 1 (M). The remaining variables were coded as 176 

0 (not on drug or does not have condition) or 1 (on drug or has condition).  177 
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Results 178 

To determine whether different and heterogeneous clinical profiles can result in differences 179 

in brain signal complexity, MSE curves for each subject were correlated with their 180 

demographic and clinical data using a PLS analysis. The singular value decomposition of the 181 

correlation matrix resulted in two significant LVs. The first LV showed a differentiation 182 

between brain disorders, with a global shift towards greater signal complexity in finer time 183 

scales and lower signal complexity in coarser time scales across all electrodes for subjects 184 

who experienced generalized seizures or those taking antidepressants as compared to those 185 

with other brain conditions (i.e., focal seizures, stroke, neurodevelopmental disorders) or 186 

using other medications (i.e., anti-epileptics, barbiturates) (Fig. 1A-B). This shift in MSE was 187 

evident when a median-split was performed to classify subjects according to how much they 188 

expressed the patterns of the LV (i.e., a median split of the LV-scores, Fig. 1C). This LV was 189 

significant (p < 0.001) and accounted for 57.8% of the covariance in the data. 190 

 191 

Figure 1. Brain signal complexity differentiates brain disorders. (A) Correlation coefficients and (B) bootstrap ratios 192 
of the first latent variable relating clinical data to MSE curves. (C) Average (± SEM) MSE curves, with subjects split 193 
into two groups according to their LV-scores. MSE curves were first averaged across electrodes within subjects, then 194 
averaged across subjects within each group. In (A), variables whose coefficients are significantly different from 0 are 195 
indicated in color for ease of interpretation. 196 
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The second LV differentiated older unhealthy (as indexed by the number of non-197 

brain-related medications taken) males who did not have neurodegenerative disease from 198 

other subjects, and was associated with slightly higher entropy at the very finest scales and 199 

lower brain signal complexity across more coarse time scales (Fig. 2). This LV was significant 200 

(p < 0.01) and accounted for 29.0% of the covariance in the data. 201 

 202 
 203 

  204 

Figure 2. Brain signal complexity differs for older unhealthy males. Correlation coefficients (A) and bootstrap ratios 205 
(B) of the second latent variable relating clinical data to MSE curves. (C) Average (± SEM) MSE curves, with subjects 206 
split into two groups according to their LV-scores. MSE curves were first averaged across electrodes within subjects, 207 
then averaged across subjects within each group. In (A), variables whose coefficients are significantly different from 208 
0 are indicated in color for ease of interpretation. 209 

The MSE profiles for each of the latent variables therefore reflected a unique 210 

timescale-dependent shift in brain signal complexity associated with different brain and 211 

non-brain disorders. A similar analysis of SPD indicated that SPD profiles could only 212 

differentiate between subjects with epilepsy from those without epilepsy (Figure 3). 213 
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 214 
Figure 3. Spectral power density differentiates epilepsy from other brain disorders. (A) First latent 215 
variable (p < 0.001; 50.1% covariance explained) (B) second latent variable (p < 0.001; 29.9% covariance 216 
explained), and (C) third latent variable (p = 0.068; 10.1% covariance explained) of a PLS analysis relating 217 
clinical data to SPD. Left panels: correlation coefficients; middle panels: bootstrap ratios; right panels: average 218 
(± SEM) SPD, with subjects split into two groups according to their LV-scores. SPD functions were first averaged 219 
across electrodes within subjects, then averaged across subjects within each group.  220 
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Discussion 221 

In this study, we examined whether brain signal complexity varied across individuals of a 222 

large and heterogeneous clinical population using a data driven approach. We found 223 

timescale-dependent differences in brain signal complexity for individuals who experience 224 

generalized seizures from individuals who have other brain disorders (e.g., focal seizures, 225 

stroke, neurodevelopmental disorders). We also found a timescale-dependent shift in brain 226 

signal complexity for older males on various medications not related to neurological or 227 

neurodegenerative disease that was not evident in the spectral power of the clinical-EEG 228 

recordings. Our findings suggest that brain signal complexity, as indexed by MSE, can provide 229 

additional insights into brain health status and function not captured by spectral power. 230 

In line with the notion that the brain is a dynamical system in which “noise” allows 231 

for flexible functioning and a variety of metastable states (Deco et al., 2017, 2011), MSE can 232 

be considered as an index of functional repertoire (Heisz et al., 2012). Changes to brain 233 

function and dynamics can occur with neurological disease and, indeed, differences in MSE 234 

from matched controls have been reported for both epilepsy (Weng et al., 2015) and 235 

neurodegenerative disease (Tsai et al., 2015). Here we build on these previous reports by 236 

showing how the changes in MSE in these neurological conditions can be differentiated from 237 

each other. A complementary data-driven analysis of SPD showed changes in power across 238 

frequency bands that differentiated epilepsy from all other diagnoses as well as generalized 239 

from focal seizures, consistent with numerous accounts of SPD differences in epilepsy 240 

(Clemens et al., 2000; Díaz et al., 1998; Niso et al., 2015; Quraan et al., 2013; Walker, 2008). 241 

However, the differentiation of individuals with non-neurological comorbidities was unique 242 

to MSE.  243 
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The MSE results also replicate previous observations that the scale-dependent changes are 244 

indicative of neurodegenerative disorders (Figure 2). Higher MSE at coarse-scales was 245 

shown to predict cognitive decline in Parkinson’s patients who would develop dementia 246 

(Bertrand et al., 2016). The relative balance within subjects between fine and coarse scales 247 

also relates to cognitive status in aging (Heisz et al., 2015). These results, considered in the 248 

context of the present data, suggest that the relative shifts of complexity across temporal 249 

scales may be a sensitive index to assist in clinical evaluation, particular as a predictor of 250 

future cognitive decline (McIntosh, 2019). 251 

 Metabolic diseases such as diabetes mellitus are known to affect brain structure and 252 

cognitive function (Soininen et al., 1992; Tan et al., 2011). More recently, changes to resting-253 

state functional networks have been observed in individuals with diabetes mellitus 254 

compared to controls (Y. F. Wang et al., 2016). Autonomic dysfunction, such as hypertension 255 

and heart failure, is also a well-documented risk factor for cognitive impairment 256 

(Alagiakrishnan et al., 2016; Cannon et al., 2017; Meissner, 2016) and has been associated 257 

with changes to brain structure (Kumar et al., 2015; Moon et al., 2018; Suzuki et al., 2017) 258 

and function (Bu et al., 2018; Li et al., 2015; Park et al., 2016). As such, both diabetes mellitus 259 

and hypertension have been linked to neurological disorders such as stroke (Turin et al., 260 

2016) and dementia (Ninomiya, 2014). One previous report has shown how hypoglycemic 261 

conditions in individuals with Type 1 diabetes mellitus results in changes to brain signal MSE 262 

(Fabris et al., 2014). We extend these previous findings by showing that the effects of various 263 

non-neurological diseases on the brain can be detected by MSE. Together with evidence that 264 

MSE changes in response to medical therapies (Farzan et al., 2017; Jaworska et al., 2018; 265 
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Liang et al., 2014; Okazaki et al., 2015), MSE offers a promising avenue for the development 266 

of clinical biomarkers. 267 
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