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Abstract

Drug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs are

commonly transmitted to naive patients. The standard approach to reveal new DRMs is

to test for significant frequency differences of mutations between treated and naive

patients. However, we then consider each mutation individually and cannot hope to

study interactions between several mutations. Here, we aim to leverage the ever-growing

quantity of high-quality sequence data and machine learning methods to study such

interactions (i.e. epistasis), as well as try to find new DRMs.
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We trained classifiers to discriminate between Reverse Transcriptase Inhibitor

(RTI)-experienced and RTI-naive samples on a large HIV-1 reverse transcriptase (RT)

sequence dataset from the UK (n ≈ 55, 000), using all observed mutations as binary

representation features. To assess the robustness of our findings, our classifiers were

evaluated on independent data sets, both from the UK and Africa. Important

representation features for each classifier were then extracted as potential DRMs. To

find novel DRMs, we repeated this process by removing either features or samples

associated to known DRMs.

When keeping all known resistance signal, we detected sufficiently prevalent known

DRMs, thus validating the approach. When removing features corresponding to known

DRMs, our classifiers retained some prediction accuracy, and six new mutations

significantly associated with resistance were identified. These six mutations have a low

genetic barrier, are correlated to known DRMs, and are spatially close to either the RT

active site or the regulatory binding pocket. When removing both known DRM features

and sequences containing at least one known DRM, our classifiers lose all prediction

accuracy. These results likely indicate that all mutations directly conferring resistance

have been found, and that our newly discovered DRMs are accessory or compensatory

mutations. Moreover, we did not find any significant signal of epistasis, beyond the

standard resistance scheme associating major DRMs to auxiliary mutations.

Author summary

Almost all drugs to treat HIV target the Reverse Transcriptase (RT) and Drug

resistance mutations (DRMs) appear in HIV under treatment pressure. Resistant strains

can be transmitted and limit treatment options at the population level. Classically,

multiple statistical testing is used to find DRMs, by comparing virus sequences of

treated and naive populations. However, with this method, each mutation is considered

individually and we cannot hope to reveal any interaction (epistasis) between them.

Here, we used machine learning to discover new DRMs and study potential epistasis

effects. We applied this approach to a very large UK dataset comprising ≈ 55, 000 RT

sequences. Results robustness was checked on different UK and African datasets.

Six new mutations associated to resistance were found. All six have a low genetic
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barrier and show high correlations with known DRMs. Moreover, all these mutations

are close to either the active site or the regulatory binding pocket of RT. Thus, they are

good candidates for further wet experiments to establish their role in drug resistance.

Importantly, our results indicate that epistasis seems to be limited to the classical

scheme where primary DRMs confer resistance and associated mutations modulate the

strength of the resistance and/or compensate for the fitness cost induced by DRMs.

Introduction 1

Drug resistance mutations (DRMs) arise in Human Immunodeficiency Virus-1 (HIV-1) 2

due to antiretroviral treatment pressure, leading to viral rebound and treatment 3

failure [1, 2]. Furthermore, drug-resistant HIV strains can be transmitted to 4

treatment-naive individuals and further spread throughout the population over 5

time [3–5]. These transmitted resistant variants limit baseline treatment options and 6

have clinical and public health implications worldwide. Almost all drugs to treat HIV 7

target the reverse transcriptase (RT), encoded by the pol gene. Lists of DRMs are 8

regularly compiled and updated by experts in the field, based on genotype analyses and 9

phenotypic resistance tests or clinical outome in patients on ART [6–8]. However, with 10

the developement of new antiretroviral drugs that target RT but also other regions of 11

the pol gene like protease or integrase, and the use of anti-retrovirals in high risk 12

populations by pre-exposure prophylaxis (PREP), it is important to further our 13

understanding of HIV polymorphisms and notably the interactions between mutations 14

and epistatic effects. 15

Among known DRMs, some mutations, such as M184V, directly confer resistance to 16

antiretrovirals, more precisely the commonly used NRTI, 3TC (lamivudine) and FTC 17

(emtricitabine) and are called primary or major drug resistance mutations, while some 18

mutations like E40F have an accessory role and increases drug resistance when 19

appearing alongside primary DRMs. Moreover, some mutations like S68G seem to have 20

a compensatory role, but are not known to confer any resistance nor modulate 21

resistance induced by primary DRMs. All of these mutations might have different 22

functions in the virus, but they are all known to be associated with drug resistance 23

phenomena. Therefore, during the rest of this article we will refer to all of these known 24
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mutations as resistance associated mutations (RAMs), rather than DRMs which is too 25

specific, and our goal will be to search for new RAMs and study the interactions 26

between known RAMs and the new ones. 27

Classically, new RAMs have been found using statistical testing and large multiple 28

sequence alignments (MSA) of the RT [9,10]. Tests are performed for mutations of 29

interest on a given MSA to check if they are associated with the treatment status and 30

outcome of the individual the viral sequences were sampled from. The test significance 31

is corrected for multiple testing as all mutations associated to every MSA position is 32

virtually a resistance mutation and tested. After this preliminary statistical search, the 33

selected mutations are scrutinized to remove the effects of phylogenetic correlation (i.e. 34

typically counting two sequences which are identical or closely related due to 35

transmission rather than independent acquisition twice [11]) and check that the same 36

mutation occurred several times in different subtypes and populations being treated 37

with the same drug. Then, these mutations can be further experimentally tested in 38

vitro or in vivo to validate phenotypic resistance. This method has worked well, but by 39

design it is incapable of studying the effect of several mutations at once, since if we have 40

to test all couples or triplets of mutations, we quickly lose all statistical power when 41

correcting for multiple testing [12], due to the sheer number of tests to perform. 42

The goal of this study is two-fold. On the one hand we aim to find new potential 43

RAMs by applying multiple testing and a machine learning based approach to a very 44

large HIV-1 RT sequence datasets from the UK (n ≈ 55, 000) 45

(http://www.hivrdb.org.uk/) and Africa (n ≈ 4, 000) [10]. On the other hand, we aim to 46

detect associations between mutations and their effect on antiretroviral resistance in 47

order to study potential underlying epistasis. The African and UK datasets are very 48

different both on genetic and treatment history standpoints, therefore training classifiers 49

on the UK dataset and testing them on the African one, should guaranty the robustness 50

of our findings and greatly alleviate phylogenetic correlation effects. In the following 51

sections, we first describe the data then the methods used. Our results include the 52

assessment of the performance of our classifiers even when trained on data devoid of any 53

known resistance-associated signal; as well as a description of the main features 54

(prevalence and correlation to known mutations, genetic barrier and structural analysis) 55

of six potentially resistance associated mutations, newly discovered thanks to our 56
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approach. These results and perspectives are discussed in the concluding section. 57

Materials and methods 58

Data 59

In this study, we used all the mutations that appeared in the Stanford HIV Drug 60

resistance database, both for NRTI (Nucleoside Reverse Transcriptase Inhibitors 61

https://hivdb.stanford.edu/dr-summary/comments/NRTI/) and NNRTI (Non 62

Nucleoside RTI https://hivdb.stanford.edu/dr-summary/comments/NNRTI/) as known 63

RAMs. To discover new RAMs, assess their statistical significance and study potential 64

epistatic effects, we used two datasets of HIV-1 RT sequences. A large one (n = 55, 539) 65

from the UK HIV Drug Resistance Database (http://www.hivrdb.org.uk/) and a 66

smaller (n = 3, 990) one from 10 different western, eastern and central African 67

countries [10]. In the UK dataset, sequences from RTI-naive individuals formed the 68

majority class with 41,921 sequences (75%). In the African dataset, both classes were 69

more balanced with 2,316 RTI-naive sequences (58%). In the UK dataset, RTI-naive 70

sequences had at least one known RAM in 25% of cases most likely due to transmissions 71

to naive patients or undisclosed treatment history, against 48% in RTI-experienced 72

sequences, thus making the discrimination between the RTI-experienced and RTI-naive 73

sequences particularly difficult. In the African dataset this distribution was more 74

contrasted, with only 14% of RTI-naive sequences having at least one known RAM, 75

versus 83% of RTI-experienced sequences. The African dataset was also much more 76

genetically diverse with 24 different subtypes and CRFs compared to the 2 subtypes (B 77

and C) that we retained for this study from the UK cohort. The majority of the 78

sequences from the African dataset were samples from Cameroon (27%), Democratic 79

Republic of Congo (17%), Burundi (15%), Burkina Faso (13%) and Togo (11%). 80

It is important to note that RTI-experienced sequences in both of these datasets can 81

be considered as resistant to treatment. Since the viral load was sufficiently high to 82

allow for sequencing of the virus, we can consider that the ART has failed. However, in 83

some cases this resistance is caused by non adherence to ART, rather than by the 84

presence of RAMs, therefore adding some noise to the relationship between treatment 85
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status and resistance. 86

In addition to differences in size, balance between RTI-naive and experienced classes, 87

and the genetic difference between the UK and African datasets, there are also 88

significant differences resulting from differing treatment strategies. In the UK and other 89

higher income countries, the treatment is often tailored to the individual with genotype 90

testing, which result in specific treatment as well as thorough follow-ups and high 91

treatment adherence. In the African countries of the dataset that we used, the treatment 92

is ZDV/ d4T (NRTI) + 3TC (NRTI) + NVP/EFV (NNRTI) in most cases [10], and 93

this treatment is generalized to the affected population, with poorer follow-up and 94

adherence than in the UK. This discrepancy could lead to different mutations arising in 95

both datasets, however since the treatment strategy is a combination of both NRTI and 96

NNRTI drug classes, as in many countries, similar RAMs arise [10]. Furthermore, there 97

is potentially more uncertainty in the African dataset than in the UK. For example 98

some individuals may have unofficially taken antiretroviral drugs but still identify 99

themselves as RTI-naive or report having some form of ART while not having been 100

treated for HIV [13]. All of this explains the high prevalence of multiple resistance in 101

the African data set: the median number of RAMs in sequences containing at least one 102

RAM is 3 in the African sequences, while it is 1 in UK sequences (Table 1). Thus, we 103

can say that African sequences are highly resistant, with possibly different mutations 104

and epistatic effects, compared to their UK counterparts. 105

All these differences between the two datasets helped us to assess the generalizability 106

of our method and the robustness of the results. That is to say, if signal extracted from 107

the UK dataset was still relevant on such a different dataset as the African one, we 108

could be fairly reassured in regard to the biological and epidemiological relevance of the 109

observed signal. 110

Sequences in both African and UK datasets were already aligned. We used the 111

Sierra web service (https://hivdb.stanford.edu/page/webservice/) to get amino acid 112

positions relative to the reference HXB2 HIV genome. This allowed us to determine all 113

the amino acids present at each reference position in both datasets, among which we 114

distinguished the “reference amino acids” for each position, corresponding to the B and 115

C subtype reference sequences obtained from the Los Alamos sequence database 116

(http://www.hiv.lanl.gov/). All the other, non-reference amino acids are named 117
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Table 1. Summary of the UK and African datasets.

UK Africa
size 55539 3990

RTI naive with known RAMs 11429 (21%) 318 (8%)
without known RAMs 30492 (55%) 1998 (50%)

RTI experienced with known RAMs 6633 (12%) 1388 (35%)
without known RAMs 6985 (13%) 286 (7%)

sequences with ≥ 2 known RAMs 8034 (14%) 1308 (33%)
max known RAM number 13 17
Median known RAM number 1 3
number of subtypes / CRFs 2 24

subtypes / CRFs A 0 (0%) 472 (12%)
B 37806 (68%) 64 (2%)
C 17733 (32%) 702 (18%)
CRF02 AG 0 (0%) 1477 (37%)

Percentages are computed with regards to the size of the considered dataset (e.g. 21%
of the sequences of the UK dataset are RTI-naive and have at least one known RAM).
The median number of RAMs was computed only on sequences that had at least one
known RAM.

“mutations” in the following, and the set of mutations was explored to reveal new 118

potential RAMs. 119

To train our supervised classification methods [14–16], the sequence data needed to 120

be encoded to numerical vectors. We represented each sequence by a binary vector 121

denoting the presence/absence of every mutation present in the UK dataset. Therefore, 122

each binary representation feature corresponded to a specific mutation seen in the 123

dataset. Some of these features corresponded to known RAMs and are named RAM 124

features in the following. 125

Classifier training 126

In order to find new potential RAMs, we first followed the conventional multiple testing 127

approach [10]. We first used Fisher exact tests to identify which of these mutations were 128

significantly associated with anti-retroviral treatment. All the resulting p-values were 129

then corrected for multiple testing using the Bonferroni correction [17]. Those for which 130

the corrected p-value was ≤ 0.05 were then considered as significantly associated with 131

treatment and potentially implicated in resistance. 132

This method was complemented by our parallel, machine learning based approach. 133

February 26, 2021 7/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435621
http://creativecommons.org/licenses/by/4.0/


In order to extract potential RAMs, we trained several classifiers to discriminate 134

between RTI-experienced and RTI-naive sequences represented by the binary vectors 135

described above. Once the classifiers were trained, we extracted the most important 136

representation features, which corresponded to potentially resistance-associated 137

mutations (PRAM in short). To this aim we chose three interpretable supervised 138

learning classification methods so as to be able to extract those features: 139

1. Multinomial naive Bayes (NB), which estimates conditional probabilities of being 140

in the RTI-experienced class given a set of representation features [18]; the higher 141

(≈ 1.0) and the lower (≈ 0) conditional probabilities correspond to the most 142

important features. 143

2. Logistic regression (LR) with L1 regularization (LASSO) [14] which assigns 144

weights to each of the features, whose sign denotes the importance to one of the 2 145

classes, and whose absolute value denotes the weight of this importance. 146

3. Random Forest (RF) , which has feature importance measures based on the Gini 147

impurity in the decision trees [19]. 148

Interpretability was the main driver behind our classification method choice, and the 149

reason we chose not to use more over-complicated, “black-box” methods which are hard 150

to interpret [20–22]. Moreover, these three classification methods have the potential to 151

detect epistatic effects. With RF, the discrimination is based on the combination of a 152

few features (i.e. mutations), while with LR the features are weighted positively or 153

negatively, thus making it possible to detect cumulative effects resulting from a large 154

number of mutations, which individually have no discrimination power. Naive Bayes is 155

a very simple approach, generally fairly accurate, and in between the two others in 156

terms of explanatory power [16] 157

In order to be able to compare all these approaches in a common framework, we 158

devised a very simple classifier out of the results of the Fisher exact tests. This “Fisher” 159

classifier (FC) predicts a sequence as RTI-experienced if it has at least one of the 160

mutations significantly associated to treatment. In this way we were able to compute 161

metrics for all classification methods and compare their performance. 162

It is important to note that in all of these approaches we chose to discriminate 163

RTI-naive from RTI-experienced sequences, regardless of the type of RTI received. A 164
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first reason is that we did not have detailed enough treatment history for sequences in 165

the UK and African datasets. Moreover, even without segmenting by treatment type, 166

the size of the training set and the power of our classification methods were both high 167

enough to be able to detect all kinds of resistance associated mutations. We shall see 168

(Result section) that we were able to determine the likely treatment involved by further 169

examining the important extracted features and comparing them to known RAMs. 170

Furthermore, since the treatment strategies are so different between the UK and African 171

sequences, training on sequences having received different treatments should increase 172

the robustness of our classifiers and the relevance of the mutations selected as 173

potentially associated to resistance. 174

To avoid phylogenetic confounding factors (e.g. transmitted mutations within a 175

specific country of region), and avoid finding mutations potentially specific to a given 176

subtype, we split the training and testing sets by HIV-1 M subtype. This resulted in 177

training a set of classifiers on all subtype B sequences of the UK dataset and testing 178

them on subtype C sequences from the UK dataset, training another set of classifiers on 179

the subtype C sequences of the UK dataset and testing on the subtype B sequences 180

from the UK dataset, as well as training a final set of classifiers on the whole UK 181

dataset, but testing it on the smaller African dataset with a completely different 182

phylogenetic makeup and treatment context [10]. Furthermore, in order to identify 183

novel RAMs and study the behavior of the classifiers, we repeated this training scheme 184

on both datasets, each time removing resistance-associated signal incrementally: first by 185

removing all representation features corresponding to known RAMs from the dataset, 186

and second by removing all sequences that had at least one known RAM. This resulted 187

in each type of classifier being trained and tested 9 times, on radically different sets to 188

ensure the interpretability and robustness of the results (see Table 2). 189

Measuring classifier performance 190

To compare the performance of our classifiers we used balanced accuracy [23], which is 191

the average of accuracies (i.e. percentages of well-classified sequences) computed 192

separately on each class of the test set. This score takes into account, and corrects for, 193

the imbalance between RTI-naive and RTI-experienced samples, which would lead to a 194
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Table 2. All training and testing datasets used during this study.

Signal removal level Trained on Tested on
None UK, subtype B (37806) UK, subtype C (17733)

UK, subtype C (17733) UK, subtype B (37806)
UK, subtypes B & C (55539) Africa, all subtypes (3990)

Known RAM fea-
tures removed

UK, subtype B (37806) UK, subtype C (17733)
UK, subtype C (17733) UK, subtype B (37806)
UK, subtypes B & C (55539) Africa, all subtypes (3990)

Known RAM fea-
tures & sequences
with ≥ 1 known
RAM removed

UK, subtype B (24422) UK, subtype C (24422)
UK, subtype C (13055) UK, subtype B (13055)
UK, subtypes B & C (37477) Africa, all subtypes (2284)

The number of sequences in each dataset is shown in parentheses

classifier always predicting a sequence as RTI-naive getting a classical accuracy score of 195

up to 77% (i.e. the frequency of naive sequences in the UK dataset). We also computed 196

the adjusted mutual information (AMI) between predicted and true sequence labels, 197

which is a normalized version of MI allowing comparison of performance on differently 198

sized test sets [24]. Additionally, mutual information (MI) was used to compute p-values 199

and assess the significance of the classifiers’ predictive power. The probabilistic 200

performance of the classifiers was evaluated using an adapted Brier score [15] more 201

suited to binary classification, which is the mean squared difference between the actual 202

class (coded by 1 and 0 for the RTI-experienced and RTI-naive samples respectively) 203

and the predicted probability of being RTI-experienced. This approach refines the 204

standard accuracy measure by rewarding methods that well approximate the true status 205

of the sample (eg. predicting a probability of 0.9 while the true status is 1); conversly, 206

binary methods (predicting 0 or 1, but no probabilities) will be penalized if they are 207

often wrong. The Brier approach thus assigns better scores to methods that recognize 208

their ignorance than to methods producing random predictions. 209

Results 210

Classifier performance & interpretation 211

As can be seen in Fig 1 a and b, when all RAM features and sequences were kept in the 212

training and testing sets, classifiers had good prediction accuracy, with the machine 213
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learning classifiers slightly outperforming the “Fisher” classifier. When removing RAM 214

features from the training and testing sets, the classifiers retained a significant 215

prediction accuracy, especially with the African data set and its multiple RAMs that are 216

observed in a large number of sequences (but removed in this experiment). In this 217

configuration the ML classifiers had a similar performance to the “Fisher” classifier, 218

except for the random forest that is slightly less accurate, likely due to overfitting. Also, 219

when removing sequences that had known RAMs, every classifier lost all prediction 220

accuracy, and none could distinguish RTI-naive from RTI-experienced sequences. 221

Regarding the Brier sore, we see the advantage of the machine learning classifiers over 222

the “Fisher” classifier, which is worse than random predictions when known RAMs are 223

removed. The ability of machine learning classifiers to quantify the resistance status 224

should be an asset for many applications. 225

The fact that classifiers retained prediction accuracy after removing known RAM 226

corresponding features suggests that there was some residual, unknown 227

resistance-associated signal in the data. The fact that this same power was non-existent 228

when removing the known RAM-containing sequences from the training and testing sets 229

indicates that this residual signal was contained in these already mutated sequences. 230

This suggests that the mutations that are found in the RAM removed experiment (see 231

list below) are most likely accessory mutations that accompany known RAMs. This also 232

suggests that all primary DRMs, i.e. that directly confer antiretroviral resistance , have 233

been identified, which is reassuring from a public health perspective. 234

The performance discrepancy between the UK and African test sets can be explained 235

by several factors. Firstly, African sequences that have known RAMs are more likely to 236

have multiple RAMs, and thus more (known and unknown) resistance-associated 237

features than their UK counterparts (c.f. Table 1). This means that resistant African 238

sequences are easier to detect even when removing known RAMs. Secondly, RTI-naive 239

sequences in the UK test sets are more likely to have known RAMs than their African 240

counterparts (c.f. Table 1) and therefore more companion mutations. This means that 241

the RTI-naive sequences in the UK test set are more likely to be misclassified as 242

RTI-experienced than in the African test set. 243
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Fig 1. Classifier Performance on UK and African datasets. NB: naive Bayes,
LR: Logistic Regression with Lasso regularization, RF: Random Forest, FC: Fisher
Classifier, RD: Agnostic random probabilistic classifier (this classifier predicts, as the
probability of a sample belonging to a class, the frequency of that class in the training
data). a) Adjusted mutual information (higher is better) between ground truth and
predictions by classifiers trained on dataset with all features (blue), without features
corresponding to known RAMs (orange) and without RAM features and without
sequences that have at least 1 known RAM (green). Hatching indicates the training set
on which a classifier was trained and the testing set on which the performance was
measured. The expected value for a null classifier is 0, and 1 for a perfect classifier and
a * denotes that the p-value derived from mutual information is ≤ 0.05. For example
when trained with all features all the classifiers have a significative MI. Conversly when
removing RAM features and RAM sequences none of the classifiers have a significative
MI and only LR trained on the entirety of the UK dataset has an AMI > 10−3 b)
Balanced Accuracy score, i.e. average of accuracies per-class (higher is better) for the
same classifiers as in a). The red line at y = 0.5 is the expected balanced accuracy for a
null classifier that only predicts the majority class as well as a random uniform (i.e.
50/50) classifier. c) Brier score, which is the mean squared difference between the
sample’s experience to RTI and the predicted probability of being RTI
experienced.(lower is better), for the same classifiers as in a) and b).

Additional classification results 244

The fact that, when looking at classifiers trained without known RAMs , “Fisher” 245

classifiers perform as well as the machine learning ones, leads us to believe that there is 246

little interaction between mutations that would explain resistance better than taking 247
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each mutation separately. It is therefore likely that the kind of epistatic phenomena we 248

were looking for, combining several mutations that do not induce any resistance when 249

taken separately, do not come into play here. We are in a classical scheme where 250

primary DRMs confer resistance and associated mutations reinforce the strength of the 251

resistance and/or compensate for the fitness cost induced by primary DRMs. 252

It is important to remember that in the previous section we were trying (as usual, e.g. 253

see [10]) to find novel mutations associated with resistance by discriminating RTI-naive 254

from RTI-experienced sequences, both with the statistical tests and the classifiers. 255

However, this is intrinsically biased and noisy. Indeed, a RTI-naive sequence is not 256

necessarily susceptible to RTIs as a resistant strain could have been transmitted to the 257

individual. Conversely, an RTI-experienced sequence may not be resistant to treatment, 258

due to poor ART adherence for example. We must therefore keep in mind that the noisy 259

nature of the relationship between resistance and treatment status is partly responsible 260

for the lower performance of classifiers trained on the UK sequences with reduced signal. 261

Moreover, as all the additional resistance signal we detected is associated to the 262

sequences having at least one known RAM (see above), we performed another analysis 263

trying to discriminate between the sequences having at least one known RAM and those 264

having none. The goal was to check that the mutations we discovered by discriminating 265

RTI-experienced from RTI-naive samples, are truly accessory and compensatory 266

mutations. As can be seen in Fig 2 a and b, the classifiers trained to discriminate 267

sequences that have at least one known RAM from those that have none, on datasets 268

from which all features corresponding to known RAMs were removed, perform much 269

better than classifiers trained to discriminate RTI-experienced from RTI-naive 270

sequences. This increase in performance is especially visible for classifiers tested on UK 271

sequences (more difficult to classify than the African ones, see above), with an AMI 272

often almost one order of magnitude higher for the known-RAM presence/absence 273

classification task. This further reinforces our belief that all there is a fairly strong 274

residual resistance-signal in sequences that contain known RAMs, due to new accessory 275

and compensatory mutations identified by our classifiers and Fisher tests. As a side 276

note, Logistic regression (LR) consistently outperforms other classifiers, a tendency 277

already observed in Fig 1. 278
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Fig 2. Discrimination between sequences having at least one RAM, and
those having none on sequences with training features corresponding to
known RAMs removed. NB: naive Bayes, LR: Logistic Regression with Lasso
regularization, RF: Random Forest, FC: Fisher Classifier. a) Adjusted mutual
information (higher is better) for classifiers trained without features corresponding to
known RAMs. The classifiers are either trained to discriminate RTI-naive from
RTI-experienced sequences (blue), or sequences with at least one known RAM from
sequences that have none (orange). Hatching and braced annotations indicate the
training and testing sets resulting in a given performance measure. b) Balanced
accuracy, i.e. average of accuracies per-class for the same classifiers as in a) (higher is
better). The red line at y = 0.5 is the expected value for a classifier only predicting the
majority class as well as a random uniform (50/50) classifier.

Identifying new mutations from classifiers 279

We assessed the importance of each mutation in the learned internal model of all the 280

classifiers, in the setting where all known RAMs have been removed from the training 281

dataset. For the Fisher classifier, we used one minus the p-value of the exact Fisher test 282

as the importance value, therefore the more significantly associated mutations have the 283
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higher importance value and were ranked first. For a given classification task, we ranked 284

each mutation according to the appropriate importance value for each classifier (see 285

above), trained on the B or C subtypes, with the highest importance value having a 286

rank of 0. We then computed the average rank for each mutation and each classification 287

task (RTI-naive/RTI-experienced and RAM present/RAM absent). This gave us, for 288

each classification task, a ranking of mutations potentially associated with resistance 289

that took into account the importance given to this new mutation by each classifier 290

trained on this task. Mutations that were in the 10 most important mutations for both 291

of the classification tasks were considered of interest. Based on these criteria we selected 292

the following potentially resistance-associated mutations (w.r.t. the HXB2 reference 293

genome): L228R, L228H, E203K, D218E, I135L and H208Y. These mutations are 294

referred to as “new mutations” in the rest of this study. 295

To check the epistatic nature of these selected mutations we defined the following 296

ratio ρ(new,X) between a new mutation and a binary character X: 297

ρ(new,X) =
prevalence (new mutation | X = 1)

prevalence (new mutation | X = 0)
(1)

This ratio gives us a measure for how over-represented each of our new mutations is 298

in sequences that have the X character compared to those that don’t. 299

To get a general idea of this over-representation, for each new mutation we 300

computed ρ(new, treatment) comparing the prevalence of the new mutation in 301

RTI-experienced and RTI-naive sequences. We also computed ρ(new,withRAM) 302

comparing the prevalence the new mutation in sequences having at least one known 303

RAM and sequences that have none. Both of these ratios are shown in Table 3 for each 304

new mutation. 305

We then computed the ρ(new,RAM) ratios for each known RAM present in more 306

than 0.1% of UK sequences and the new mutations. In Fig. 3 we see these ratios for 307

which the lower bound of the 95% confidence interval, computed on 1000 bootstrap 308

samples from the UK dataset, were greater than 4. 309
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Detailed analysis of potentially resistance-associated mutations 310

As can be seen in Table 3, all of these new mutations except for I135L, are highly 311

over-represented in RTI-experienced sequences and sequences that already have known 312

RAMs, with lower bounds on the 95% ratio CI always greater than 5, and often 313

exceeding 10. When looking at the ratios computed for individual RAMs on the UK 314

dataset (Fig 3), this impression is confirmed with very high over-representation of these 315

new mutations potentially associated with resistance in sequences that have a given 316

known RAM, with 95% ratio lower CI bounds sometimes greater than 80 317

(H208Y/L210W and D218E/D67N), and most of the time greater than 10. with the 318

noticeable exception of I135L where only 2 known RAMs give ratios with lower CI 319

bounds greater than 4. The ratios computed on the African dataset (S2 Fig) tell a 320

similar story albeit with smaller ratio values due to a smaller number of occurrences of 321

both new mutations and known RAMs. 322

The genetic barrier to resistance for each of these new mutations is quite low, with a 323

minimum of 1 base change for each of them (Table 3). We also computed the average 324

codon distance (i.e. number of different bases), weighted by the prevalence of wild and 325

mutated codons at the given positions in the UK (Table 3) and Africa (Sup Mat) 326

datasets, and in each case the average codon distance was always close to 1. In other 327

words, at the DNA level these mutations are expected to be relatively frequent. 328

However, their frequencies are much higher in treated/with-RAM sequences than in 329

naive/without-RAM ones (Table 3). Moreover, if we look at the BLOSUM62 scores 330

(Table 3) some of these mutations change radically the physicochemical properties of the 331

amino acids, which reinforces again the likelihood that these mutations are associated to 332

resistances. 333

To gain more insight on these new mutations we also observed their spatial location 334

on the 3-D HIV-1 RT structure using PyMol [25]. HIV-1 RT is a heterodimer with two 335

subunits translated from the same sequence with different lengths and 3-D structures. 336

The smaller p51 subunit (440 AAs) has a mainly structural role, while the larger p66 337

(560 AAs) subunit has the active site at positions 110, 185 and 186. The p66 subunit 338

also has a regulatory pocket behind the active site: the non-nucleoside inhibitor binding 339

pocket (NNIBP) formed of several sites of the p66 subunit as well as site 138 of the p51 340
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Table 3. Analysis of new potential RAMs.

codon distance
UK

ρ(new,X)

min avg B62 count treatment any RAM p-value

L228R 1 1.16 -2 227 (0.4%)
18.1 115.7

2.0 · 10−30
[12.9;27.3] [55.1;507.3]

E203K 1 1.31 1 256 (0.5%)
11 20.1

6.4 · 10−14
[8.2;15.1] [13.7;32.1]

D218E 1 1 2 168 (0.3%)
13.1 27

2.0 · 10−09
[9.0;19.6] [16.3;57.0]

L228H 1 1.12 -3 287 (0.5%)
6.4 9.2

2.7 · 10−15
[5.1;8.4] [6.9;12.6]

I135L 1 1.16 2 540 (1.0%)
1.8 2.4

2.6 · 10−07
[1.5;2.1] [2.0;2.8]

H208Y 1 1.10 2 205 (0.4%)
8.8 14.9

7.3 · 10−05
[6.5;12.5] [9.9;23.6]

codon distance: For each new mutation we computed the minimum number of
nucleotide mutations to go from the wild amino acid codons to those of the mutated
amino acid, as well as the average codon distance between both amino acids, weighted
by the prevalence of each wild and mutated codon at the given position in the UK
dataset. B62: BLOSUM62 similarity values (e.g. D218E = 2, reflecting that E and D
are both negatively charged and highly similar). Count: We looked at the number of
apparitions of each new potential RAM in the UK dataset and the corresponding
prevalence in parentheses. Ratios: We computed the prevalence ratio
ρ(new, treatment) (e.g. L228R is 18.1 times more prevalent in RTI-experienced
sequences compared to RTI-naive sequences in the UK dataset). We also computed the
prevalence ratio ρ(new, any RAM) (e.g. L228R is 115.7 times more prevalent in
sequences that have at least one known RAM than in sequences that have none in the
UK dataset). The 95% confidence intervals shown under each ratio were computed with
1000 bootstrap samples of size n = 55, 000 drawn with replacement from the whole UK
dataset. p-values: Fisher exact tests were done on the African dataset to see if each of
these new mutations were more prevalent in RTI-experienced sequences; p-value were
corrected with the Bonferroni method for the six simultaneous tests.

subunit. Nucleoside RT Inhibitors (NRTI) are nucleotide analogs and bind in the active 341

site, blocking reverse transcription. Non-Nucleoside RT Inhibitors (NNRTI) bind in the 342

NNIBP, changing the protein conformation and blocking reverse transcription. More 343

details on the structure and function of HIV-1 RT can be found in [26]. A general view 344

of where the new mutations are situated with regards to the other important sites of 345

HIV-1 RT is shown in Fig. 4, and is detailled below. 346

L228R / L228H 347

L228R is the most important of these new mutations according to the feature 348

importance ranking done above. This is reflected in the very high over-representation in 349
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Fig 3. Prevalence ratios of the new mutations with regards to known
RAMs on the UK dataset. (i.e. the prevalence of the new mutation in sequences
with a given known RAM divided by the prevalence of the new mutation in sequences
without this RAM). Ratios were only computed for mutations (new and RAMs) that
appeared in at least 0.1% (=55) sequences. 95% confidence intervals, represented by
vertical bars, were computed with 1000 bootstrap samples of UK sequences. Only ratios
with a lower CI boundary greater than 4 are shown. The shape and color of the point
represents the type of RAM as defined by Stanford’s HIVDB. Blue circle: NRTI, orange
square: NNRTI, green diamond: Other. Ratio values are shown from left to right, by
order of decreasing values on the lower bound of the 95% CI.

RTI-experienced sequences and sequences with known RAMs shown in Table 3. When 350

looking at the detailed ratios shown in Fig. 3, we observe that L228R presents high 351

ratio values with mainly NRTI RAMs, but also has high ratio values for NNRTI RAMs 352

such as Y181C and L100I, and this is even more so for ratios computed on the African 353

dataset (S2 Fig). L228H is very similar in all regards to L228R, however its highest 354

ratios are exclusively with NRTI RAMs. 355

Site 228 of the p66 subunit is located very close to the active site of RT, where 356

NRTIs operate (Fig. 4 and S4 Fig) which could explain the role that L228R and L228H 357
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Fig 4. Structure of HIV-1 RT with highlighted important sites. The p66
subunit is colored dark gray and the p51 subunit white. The active site is highlighted in
blue, and the NNIBP is highlighted in yellow. The sites of new mutations are colored in
red.

seem to have in NRTI resistance. However, site 228 of the p66 subunit is also between 358

sites 227 and 229 which are both part of the NNIBP. Furthermore, both L228H and 359

L228R have very low BLOSUM62 score, of -3 and -2 respectively (Table 3). Arginine 360

(R) and Histidine (H) are both less hydrophobic that Leucine (L), and have positively 361

charged side-chains. This important change in physicochemical properties could explain 362

the role they both seem to have in NRTI resistance. However, while both Arginine and 363

Histidine are larger than Leucine, Arginine is also fairly larger than Histidine, which is 364

aromatic. This difference between both residues might indicate an association L228R 365

seems to have with NNRTI resistance that L228H does not. 366

E203K / H208Y 367

Both E203K and H208Y are highly over-represented in RTI-experienced sequences and 368

sequences with known RAMs. They both have high ratio values for NRTI RAMs. 369

Furthermore the most highly valued RAM ratios in Fig 3, are very similar for E203K 370
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and H208Y. Structurally they are close to each other on an alpha helix which is close to 371

the active site. 372

Both E203K and H208Y have positive, albeit not maximal, BLOSUM62 scores, 373

meaning they are fairly common substitutions. However, these mutations induce some 374

change in physicochemical properties with Tyrosine (Y) being less polar than Histidine 375

(H), and the change from Glutamic Acid (E) to Lysine (K) corresponding to a change 376

from a negatively charged side chain to a positively charged one. 377

All this, combined with their structural proximity and the shared high ratio values 378

for single RAMs, suggests a similar role in NRTI resistance. 379

I135L 380

In Table 3 and Fig 3, we observe that I135L has the lowest ratio values of all the new 381

mutations, with CI bounds lower than 2 in Table 3’s general ratios. However, it is the 382

most prevalent of the new mutations. If we look at the detailed ratios of Fig 3, we see 383

that I135L is significantly over-represented in sequences with NNRTI RAMs, specifically 384

A98G and P225H. Structurally this makes sense: On the p66 subunit, site 135 is on the 385

outside, far from both the active site and the NNIBP. However, site 135 on the p51 386

subunit is located very close to the NNIBP (Fig 3, and S3 Fig). 387

The BLOSUM62 score for this substitution is quite high (Table 3), which is expected 388

since both residues are very similar to one another, differing only by the positioning of 389

one methyl group. However, Leucine (L) is less hydrophobic than Isoleucine (I), despite 390

they are still both classified as hydrophobic residues (S5 Table). 391

The proximity between site 135 and the pocket in which NNRTI RAMs bind, as well 392

as the high ratio values for these NNRTI RAMs leads us to believe that I135L could 393

play a subtle accessory role in NNRTI resistance, either by enhancing the effect of some 394

NNRTI RAMs (typically, A98G and P225H), or by compensating for loss of fitness. 395

D218E 396

D218E is also highly over-represented in both RTI-experienced sequences and sequences 397

with known RAMs. It has infinite ratio values in the African dataset (Table 3), because 398

it is quite rare in this dataset, and all of its 25 occurrences are in sequences that have at 399

least one known RAM and are RTI-experienced. In fact, from the UK dataset we can 400
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see that D218E has some of the highest ratio values for individual RAMs (along with 401

H208Y). The majority of these very high ratio values occur for NRTI RAMs. Site 218 402

on the p66 subunit is quite close to the RT active site, which could explain the role 403

D218E seems to have in NRTI resistance. Aspartic acid (D) and Glutamic acid (E) are 404

very similar amino acids, both acidic with negatively charged side-chains, as reflected in 405

their fairly high BLOSUM62 score, the main difference between both being molecular 406

weight, with E being slightly larger than D. 407

Discussion and perspectives 408

Our method has allowed us to identify six mutations that might play a role in drug 409

resistance in HIV. These mutations are significantly over-represented in 410

RTI-experienced sequences, as well as sequences exhibiting at least one other known 411

RAM. The fact that models trained on the UK are still performant on such a different 412

dataset as the African one proves that the learned classifier models have acquired 413

generalized knowledge on resistance. For all of these new mutations their spatial 414

positioning on HIV-1 RT is consistent with our conclusions, as all were either close to 415

the active site or the regulatory binding pocket. 416

Some of the mutations we have identified as potentially associated with resistance 417

have been mentioned in previous studies. L228R/H have been observed before [27] and 418

were suggested to be associated with reduced susceptibility to didanosine [28, 29]. I135L 419

has been observed in sequences with reduced susceptibility to NNRTIs [30]. H208Y has 420

been associated with NNRTI and NRTI resistance [31] and it has been suggested that it 421

has an accessory role in NRTI resistance [32]. E203K, D218E, L228RH and H208Y have 422

all been mentioned in [33] as probably linked to phenotypic resistance to NRTI and 423

NNRTI. 424

However, none of these mutations has been experimentally confirmed as conferring 425

or helping with drug resistance to the best of our knowledge. The fact that we find 426

them again with a big data analysis of highly different sequences and involved statistical 427

selection procedure combining multiple testing and machine learning, and that we have 428

very high significance clearly indicates their potential role in resistance. Therefore, we 429

believe they are sufficiently linked to drug resistance that they garner a closer 430
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inspection either in-vitro or in-vivo to determine the mechanisms that could allow them 431

to play a role in resistance. 432

By using machine learning classifiers that can detect interactions between features 433

we should be able to detect epistasis as we defined it above. However, by treating the 434

Fisher exact tests as the internal model for a very simple baseline classifier, and 435

observing little performance gain for more sophisticated classifiers, it is likely that 436

epistasis plays a limited role in drug resistance in HIV-1 RT, beyond the standard 437

scheme where DRMs are associated to auxiliary and compensatory mutations. However, 438

one advantage of machine learning classifiers, is that they are probabilistic, meaning 439

that they can give more nuanced insights into the nature or resistance level of a given 440

sequence than the classical binary presence/absence of RAMs approach. In this regard 441

logistic regression appears as a method of choice, showing similar or better performance 442

than other classifiers, and an easy interpretation that is facilitated by the lasso 443

regularization which performs a simple feature selection and retains the most important 444

ones. Similar results were already observed on other sequence analysis tasks [34]. 445

Even though we did not find any evidence of epistasis, with the now used pluripotent 446

therapeutic strategies, there might be some epistatic effects with other regions of the 447

HIV genome that are targeted by some of the drugs. These potential effects however, lie 448

outside the scope of this study. 449

Because of the lack of detailed treatment history metadata, we did not distinguish 450

mutations arising from NRTIs or NNRTIs. We believe that a large amount of high 451

quality sequence data, along with a sufficiently detailed log of treatments and drugs the 452

sequences were exposed to, could allow us to use our machine-learning approach to find 453

mutations related to specific drugs and thus furthering our knowledge of HIV drug 454

resistance, giving clinicians more tools to manage and help infected patients. 455
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Supporting information

S1 Appendix. Technical appendix Technical details about the implementation

and options for used tools.

S2 Fig. Prevalence ratios of the new mutations with regards to known

RAMs on the African dataset (i.e. the prevalence of the new mutation in

sequences with a given RAM divided by the prevalence of the new mutation in

sequences without the RAM). Ratios were only computed for mutations (new and

RAMs) that appeared in at least 30 sequences, which is why ratios were not computed

for H208Y and D218E. 95% confidence intervals, represented by vertical bars, were

computed with 1000 bootstrap samples of the African sequences. Only ratios with a

lower CI boundary greater than 2 are shown. The shape and color of the point

represents the type of RAM as defined by Stanford’s HIVDB. Blue circle: NRTI, orange

square: NNRTI, green diamond: Other. For the prevalence ratio of L228H with regards

to M184V, the upper CI bound is infinite. The new RAMs have high ratio values for

known RAMs similar to those obtained on the UK dataset. We also arrive at similar
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conclusions, I135L being associated with NNRTIs, E203K and L228H to NRTI and

L228R to both. Ratio values are shown from left to right, by order of decreasing values

on the lower bound of the 95% CI.

S3 Fig. Closeup structural view of the entrance of the NNIBP of HIV-1

RT The p66 subunit is colored in dark gray, the p51 subunit in light gray. The NNIBP

is highlighted in yellow. The active site is colored in blue. We can see the physical

proximity of I135 (red) to the entrance of the NNIBP. We can also see how L228 (red) is

between 2 AAs of the NNIBP.

S4 Fig. Closeup structural view of the active site of HIV-1 RT. The p66

subunit is colored in dark gray, the p51 subunit in light gray. The active site is

highlighted in blue. The NNIBP is colored in yellow. L228, E203 and D218 (red) are

also very close on either side of the active site.

S5 Table. Detailed table of ”new mutation” characteristics.

S6 File. List of known DRMs. A .csv file containing all the known RAMs used in

this project as well as the corresponding feature name in the encoded datasets.

Obtained from (hivdb.stanford.edu/dr-summary/comments/NRTI/) and

(hivdb.stanford.edu/dr-summary/comments/NNRTI/).

S7 Web-page. Code repository for this project. The different classes and

methods used in the study’s pipeline were organized in a python module that can be

accessed at github.com/lucblassel/utils hiv. The pipeline as well as additional tab

delimited files can be found at github.com/lucblassel/HIV-DRM-machine-learning.
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S1 Appendix. Technical appendix

Data

Data Availability

The policy of the UK HIV Drug Resistance Database is to make information available to any bona 

fide researcher who submits a scientifically robust proposal, provided data exchange complies with 

Information Governance and Data Security Policies in all the relevant countries. This includes 

replication of findings from published studies, although the researcher would be encouraged to work 

with the main author of the published paper to understand the nuances of the data. Enquiries 

should be addressed to iph.hivrdb@ucl.ac.uk in the first instance. More information on the UK 

dataset is also available on the UK CHIC homepage: www.ukchic.org.uk

The West and central African dataset is available as supplementary information along with a 

metadata file containing HIV subtype, treatment information and known RAM presence/absence 

for each sequence. A similar metadata file, containing the same information is also made available

for the UK dataset.

Predictions made for each sequence of both datasets, by all of the trained classifiers are made 

available on the folloqing GitHub repository: github.com/lucblassel/HIV-DRM-machine-learning, as well 

as the importance values for each mutation and each trained classifier.

Data Preprocessing

For both the African and UK datasets, the sequences were truncated to keep sites 41 to 235 of 

the RT protein sequence before encoding. This truncation was needed to avoid the perturbation 

to classifier training due to long gappy regions at the beginning and end of the UK RT alignment 

caused by shorter sequences. These positions were determined with the Gblocks software [35] with 

default parameters, except for the Maximum number of sequences for a flanking position, set to 

50,000, and the Allowed gap positions, which was set to ”All”. The encoding was done with the 

OneHotEncoder from the category-encoders python module [36].
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Classifiers

We used classifier implementations from the scikit-learn python library [37], RandomForestClassifier

for the random forest classifier, MultinomialNB for Näıve Bayes and LogisticRegressionCV for

logistic regression.

RandomForestClassifier was used with default parameters except:

• "n jobs"=4

• "n estimators"=5000

LogisticRegressionCV was used with the following parameters:

• "n jobs"=4

• "cv"=10

• "Cs"=100

• "penalty"=’l1’

• "multi class"=’multinomial’

• "solver"=’saga’

• "scoring"=’balanced accuracy’

MultinomialNB was used with default parameters.

For the Fisher exact tests, we used the implementation from the scipy python library [38],

and corrected p-values for multiple testing with the statsmodels python library [39] using the

"Bonferroni" method.

Scoring

To evaluate classifier performance several measures were used. We computed balanced accuracy

instead of classical accuracy, because it can be overly optimistic, especially when assessing a highly

biased classifier on an unbalanced test set [23].The balanced accuracy is computed using the following

formula, where TP and TN are the number of true positives and true negatives respectively, and

FP and FN are the number of false positives and false negatives respectively:
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balanced accuracy =
1

2

(
TP

TP + FP
+

TN

TN + FN

)
We also computed adjusted mutual information (AMI). We chose it over mutual information

(MI) because it has an upper bound of 1 for a perfect classifier and is not dependent on the size of

the test set, allowing us to compare the performance for differently sized test sets [24]. The adjusted

mutual information of variables U and V is defined by the following formula, where MI(U, V ) is

the mutual information between variables U and V , H(X) is the entropy of the variable X (= U or

V ) and E{MI(U, V )} is the expected MI, as explained in [40].

AMI(U, V ) =
MI(U, V )− E{MI(U, V )}

1
2 [H(U) +H(V )]− E{MI(U, V )}

MI was used to compute the G statistic, which follows the chi-square distribution under the

null hypothesis [41]. This was used to compute p-values for each of our classifiers and assess the

significance of their performance. G is defined by equation below, where N is the number of samples.

G = 2 ·N ·MI(U, V )

Finally, to check the probabilistic predictive power of the classifiers we also computed the Brier

score which is the mean squared difference between the ground truth and the predicted probabil-

ity of being of the positive class for every sequence in the test set (therefore lower is better for

this metric). The Brier score is defined in equation below, where pt is the predicted probability

of being of the positive class for sample t and ot is the actual class (0 or 1, 1=positive class) of sample t:

Brier score =
1

N

N∑
t=1

(pt − ot)2

We used the following implementations from the scikit-learn python library [37] with default

options:

• balanced accuracy score

• mutual info score
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• adjusted mutual info score

• brier score loss

We used the following ratio to observe the relationship between one of our new mutations and a

binary character X such as treatment status or presence/absence of a known RAM.

ρ(new,X) =
prevalence (new mutation | X = 1)

prevalence (new mutation | X = 0)

=
|(new = 1) ∩ (X = 1)|

|(X = 1)| ÷ |(new = 1) ∩ (X = 0)|
|(X = 0)|

Additional References

23. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The Balanced Accuracy and Its

Posterior Distribution. In: 2010 20th International Conference on Pattern Recognition; 2010.

p. 3121–3124.

24. Vinh NX, Epps J, Bailey J. Information Theoretic Measures for Clusterings Comparison:

Variants, Properties, Normalization and Correction for Chance. Journal of Machine Learning

Research. 2010;11:18.

35. Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their

Use in Phylogenetic Analysis. Molecular Biology and Evolution. 2000;17(4):540–552.

doi:10.1093/oxfordjournals.molbev.a026334.

36. McGinnis W, Hbghhy, Tao W, Andrethrill, Siu C, Davison C, et al.. Scikit-Learn-

Contrib/Categorical-Encoding: Release For Zenodo; 2018. Zenodo. doi:10.5281/zenodo.1157110

37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-Learn:

Machine Learning in Python. Journal of Machine Learning Research. 2011;12(Oct):2825–2830.

38. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020;17(3):261–

272. doi:10.1038/s41592-019-0686-2.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435621
http://creativecommons.org/licenses/by/4.0/


39. Skipper Seabold, Josef Perktold. Statsmodels: Econometric and Statistical Modeling with

Python. In: Stéfan van der Walt, Jarrod Millman, editors. Proceedings of the 9th Python in

Science Conference; 2010. p. 92 – 96.

40. Vinh NX, Epps J. A Novel Approach for Automatic Number of Clusters Detection in

Microarray Data Based on Consensus Clustering. In: 2009 Ninth IEEE International Conference

on Bioinformatics and BioEngineering; 2009. p. 84–91.

41. Harremoes P. Mutual Information of Contingency Tables and Related Inequalities. In: 2014

IEEE International Symposium on Information Theory. Honolulu, HI, USA: IEEE; 2014. p.

2474–2478.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435621doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435621
http://creativecommons.org/licenses/by/4.0/


S2 Fig. Prevalence ratios of the new mutations with regards

to known RAMs on the African dataset
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Prevalence ratios of the new mutations with regards to known RAMs on the African
dataset (i.e. the prevalence of the new mutation in sequences with a given RAM divided by the
prevalence of the new mutation in sequences without the RAM). Ratios were only computed for
mutations (new and RAMs) that appeared in at least 30 sequences, which is why ratios were not
computed for H208Y and D218E. 95% confidence intervals, represented by vertical bars, were
computed with 1000 bootstrap samples of the African sequences. Only ratios with a lower CI
boundary greater than 2 are shown. The shape and color of the point represents the type of RAM
as defined by Stanford’s HIVDB. Blue circle: NRTI, orange square: NNRTI, green diamond: Other.
For the prevalence ratio of L228H with regards to M184V, the upper CI bound is infinite. The new
RAMs have high ratio values for known RAMs similar to those obtained on the UK dataset. We
also arrive at similar conclusions, I135L being associated with NNRTIs, E203K and L228H to NRTI
and L228R to both. Ratio values are shown from left to right, by order of decreasing values on the
lower bound of the 95% CI.
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S3 Fig. Closeup structural view of the entrance of the NNIBP

of HIV-1 RT

Closeup structural view of the entrance of the NNIBP of HIV-1 RT The p66 subunit is
colored in dark gray, the p51 subunit in light gray. The NNIBP is highlighted in yellow. The active
site is colored in blue. We can see the physical proximity of I135 (red) to the entrance of the
NNIBP. We can also see how L228 (red) is between 2 AAs of the NNIBP.
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S4 Fig. Closeup structural view of the active site of HIV-1

RT

Closeup structural view of the active site of HIV-1 RT. The p66 subunit is colored in dark
gray, the p51 subunit in light gray. The active site is highlighted in blue. The NNIBP is colored in
yellow. L228, E203 and D218 (red) are also very close on either side of the active site.
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S5 Table. Detailed view of the characteristics of new potential RAMs

rank codon distance
UK Africa

B62
Dayhoff
category
shift

Change in

count
ratio

count
ratio

p-value
net
charge

polarity
hydrophobicity
index

molecular
weightT/N W/W min UK Africa ρ(new, treatment) ρ(new,with RAM) ρ(new, treatment) ρ(new,with RAM)

L228R 0 0 1 1.16 1.21 227 (0.4%) 18.1 [12.9;27.3] 115.7 [55.1;507.3] 98 (2.5%) 32.5[15.4;147.1] 42.4 [17.8;∞] 2.0E-30 -2 e → d 1 5.6 -0.93 43.03
E203K 1 1 1 1.31 1.33 256 (0.5%) 11.0 [8.2;15.1] 20.1 [13.7;32.1] 56 (1.4%) 14.1[6.7;71.9] 17.4 [8.2;83.7] 6.4E-14 1 c → d 2 -1 0.68 -0.94
D218E 2 3 1 1 1 168 (0.3%) 13.1 [9.0;19.6] 27.0 [16.3;57.0] 25 (0.6%) ∞ [∞;∞] ∞ [∞;∞] 2.0E-09 2 c → c 0 -0.7 0.01 14.03
L228H 3 4 1 1.12 1.17 287 (0.5%) 6.4 [5.1;8.4] 9.2 [6.9;12.6] 53 (1.3%) 23.1[9.4;∞] 34.1 [12.0;∞] 2.7E-15 -3 e → d 0 5.5 -0.92 23.99
I135L 4 6 1 1.16 1.13 540 (1.0%) 1.8 [1.5;2.1] 2.4 [2.0;2.8] 134(3.4%) 2.6 [1.8;3.8] 2.4 [1.7;3.4] 2.6E-07 2 e → e 0 -0.3 -0.69 0
H208Y 8 9 1 1.10 1.12 205 (0.4%) 8.8 [6.5;12.5] 14.9 [9.9;23.6] 13 (0.3%) ∞ [∞;∞] ∞ [∞;∞] 7.3E-05 2 d → f 0 -4.2 1.27 26.03

Rank: For each new mutation we computed the aggregate feature importance ranks for the RTI-naive / RTI-experienced and known RAM present / known RAM absent classification tasks. Codon
distance: We computed the minimum number of nucleotide mutations to go from the wild amino acid codons to those of the mutated amino acid, as well as the average codon distance between both
amino acids, weighted by the prevalence of each wild and mutated codon in the UK and the African datasets. Count (both UK and Africa): We looked at the number of apparitions of each new
potential RAM in the UK and African datasets and the corresponding prevalence in parentheses. Ratio (both UK and Africa): We computed the prevalence ratio ρ(new, treatment) (e.g. L228R
is 18.1 times more prevalent in RTI-experienced sequences compared to RTI-naive sequences in the UK dataset). We also computed the prevalence ratio ρ(new, anyRAM) (e.g. L228R is 115.7 times
more prevalent in sequences that have at least one known RAM than in sequences that have none in the UK dataset). The 95% confidence intervals shown under each ratio were computed with 1000
bootstrap samples of size n = 55, 000 drawn with replacement from the whole UK dataset (The same procedure was done on the African dataset with size n = 3990). p-values: Fisher exact tests
were done on the African dataset to see if each of these new mutations were more prevalent in RTI-experienced sequences; p-value were corrected with the Bonferroni method for the six simultaneous
tests. B62: BLOSUM62 similarity values (e.g. D218E = 2, reflecting that E and D are both negatively charged and highly similar). Dayhoff category shift: The change in Dayhoff amino acid
category is written thusly: “starting category → ending category”. These categories are as follows: a: Sulfur polymerization. b: Small, c: Acid and amide, d: Basic, e: Hydrophobic and f: aromatic.
Physico-chemical change: Change in physicochemical properties was obtained by subtracting the property value of the wil-type amino acid from the mutated amino acid. All values were obtained
from the AAindex database (Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino acid index database, progress report 2008. Nucleic acids research.
2007 Nov 12;36(suppl 1):D202-5.)
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