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Abstract 
 
We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505). 
It includes raw data and derivatives of high-density EEG, structural MRI, diffusion weighted 
images (DWI) and single-trial behavior (accuracy, reaction time). Visual evoked potentials 
(VEPs) were recorded while participants (n=20) discriminated briefly presented faces from 
scrambled faces, or coherently moving stimuli from incoherent ones. EEG and MRI were 
recorded separately from the same participants. The dataset contains pre-processed EEG of 
single trials in each condition, behavioral measures, structural MRIs, individual brain 
parcellations at 5 spatial resolutions (83 to 1015 regions), and the corresponding structural 
connectomes computed from fiber count, fiber density, average fractional anisotropy and 
mean diffusivity maps. For source imaging, VEPCON provides EEG inverse solutions based on 
individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain 
region, for each parcellation level. The BIDS-compatible dataset can contribute to multimodal 
methods development, studying structure-function relations, and to unimodal optimization of 
source imaging and graph analyses, among many other possibilities.  
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Background & Summary 
 
Visual evoked potentials (VEPs) have a long record of shedding light on the spatial and 
temporal dynamics of large-scale neural processing in the brain1,2. EEG potentials registered 
at scalp electrodes result from synchronous activity in large populations of neurons that are 
distributed across cortical and subcortical areas3,4. Visual stimulation gives rise to a fast 
sequence of well-known EEG components that reflect initial processing at latencies before 
~100 ms5,6, subsequent object and recurrent processes7–9, and later components that reflect 
target detection, integration and decisions10–12. The VEP provides a millisecond by millisecond 
recording of whole-brain activity dynamics, and has a rich distribution of temporal frequencies 
that provides further insight into the functionality of brain processes13,14. 
 
From VEPs recorded across the scalp, the underlying distributed patterns of brain activity can 
be estimated using an inverse solution based on anatomical constraints15–18. The anatomical 
constraints determine what electrical fields from a neural activity source would look like at the 
recording electrodes on the scalp, given the conductivities of various tissues and fluids lie in 
between. An inverse solution translates the recorded electrical potential field back to a pattern 
of distributed source activity in the brain. Source localizations from EEG are necessarily coarse, 
as compared to fMRI, and improving them further is an active field of research and helps 
understand the activity dynamics within areas, and their inter-relatedness19–22. 
 
Activity in each area can influence activity throughout the brain in a few steps, due to the 
dense connectivity of cortico-cortical and cortico-subcortical fibers23–26. This structural 
connectivity can be inferred with diffusion weighted imaging (DWI)27,28. The resulting 
connectome constitutes a road map of sorts over which activity can propagate between areas, 
and in an important sense constrains how activity within an area can evolve through the 
influences it receives from others29,30. 
 
The VEPCON dataset combines VEPs, T1-weighted (T1w) MRI, and DWI for 20 human 
participants, with as derivatives inverse solution matrices, brain parcellations and 
connectomes at 5 different spatial scales (Figure 1). These data were recorded to study the 
dynamics of functionally specialized processes that support face and motion perception. High-
density EEG was recorded in two active paradigms where participants categorically 
discriminated face images from scrambled counterparts, or coherent from incoherent motion 
in random dot kinematograms. VEP sources for face stimuli are known to include inferior 
temporal and lateral occipital cortex and for motion stimuli they include dorsal area MT8,9. Part 
of these data were previously used for improving and validating EEG source imaging methods31 
and time-varying functional connectivity methods32,33, for using connectomes to inform 
inverse solutions34,35, as well as for developing the multi-modal imaging platform Connectome 
Mapper 336. 
 
The dataset is publicly available as OpenNeuro Dataset ds003505, and structured following 
the MRI and EEG Brain Imaging Data Structure standards (BIDS)37,38. We expect the data to be 
useful for the development and benchmarking of multimodal analysis methods that combine 
functional and structural information, for exploring structure-function relations, and for 
controlling whether and how the level of parcellation affects results. We also expect unimodal 
reuse value for development and benchmarking of EEG source-imaging approaches and 
functional connectivity analyses. Beyond this, the availability within the same participant of 
single-trial behavior, EEG data, inverse solutions, anatomical and diffusion MRI, and 
connectomes based on four different indices allows for many types of analyses that can 
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generate new hypotheses about dynamic brain function in human visual processing and 
behavior. 
 

 
 
Figure 1. Schematic overview of the study design and data. a) Stimuli and temporal structure of trials 
in the Motion and Face task. b) Illustrates 128-channel EEG recording and a grand-average visual 
evoked potential at the scalp level, with corresponding source activity time-series from three areas at 
parcellation Level 3. c) Sample defaced T1w images and illustration of brain parcellations and 
corresponding connectomes based on fiber density at three spatial scales. 

 
 

Methods 

Participants 
Twenty participants (3 males, mean age = 23 ± 3.5) took part that were recruited from the 
local student population (University of Fribourg, Switzerland). Participants had normal or 
corrected-to-normal vision. Before the experiment visual acuity was tested with the Freiburg 
Acuity test, and a value of 1 had to be reached with both eyes open 39. Nineteen participants 
were right handed, one was left handed. All participants provided written informed consent 
before the experiment. The experimental procedures complied with the Declaration of 
Helsinki and were approved by the regional ethics board (CER-VD, Protocol Nr. 2016-00060). 
 
 
 

Stimuli, display and procedures 

EEG data were recorded while participants performed a face detection and a motion 
discrimination task (see Figure 1). The order of the two tasks was counterbalanced across 
participants. 
 
Face stimuli were female and male faces (4° by 4° of visual angle) taken from online 
repositories and cropped with a Gaussian kernel to smooth the borders. Scrambled images 
were obtained by fully randomizing the phase spectra of the original images 40.  In the face 
detection task, each trial lasted 1.2 s and started with a blank screen (500 ms). After the blank 
screen, one image (either a face or a scramble image of a face) was presented at the center of 
the screen for 200 ms and participants had the remaining 1000 ms to respond. The task was 
to report whether they saw a face or not (yes/no task) by pressing one of two buttons in a 
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response box with their right hand. After the response and a random interval (from 600 to 900 
ms), a new trial began. The experiment consisted of four blocks of 150 trials each, for a total 
of 600 trials, i.e., 300 with faces and 300 with scrambled faces. Faces and scrambled faces 
were randomly interleaved across trials. 
 
In the motion discrimination task, motion stimuli were dot kinematograms presented on a 
circular frame at the center of the screen (dot field size = 8°; dot size = 12 pixels; lifetime = 10 
frames; average number of dots inside the field = 75; dot speed in displacements per frame = 
0.01°; mean dot luminance =50%). For coherent motion, 80% of the dots were moving toward 
either the left or right, with the remaining 20% moving in random directions. For incoherent 
motion stimuli, all dots moved randomly. Each trial started with a blank interval of 500 ms 
followed by a centrally presented stimulus for 300 ms (Figure 1). Participants discriminated 
whether the presented motion was coherent or incoherent by pressing one of two buttons of 
a response box. After the response there was a random interval (from 600 to 900 ms) before 
the next trial began. There were four blocks of 150 trials each, for a total of 600 trials (300 
with coherent motion). The two conditions were randomly intermixed within each block. 
 
Stimuli were generated using Psychopy41,42 and presented on a VIEWPixx/3D display system 
(1920 × 1080 pixels, refresh rate of 100 Hz). Responses were collected using a ResponsePixx 

response box (VPixx technologies). 

 

EEG recording and preprocessing 
EEG data were recorded at a sampling rate of 2048 Hz with a 128-channel Biosemi Active Two 
EEG system (Biosemi, Amsterdam, The Netherlands) in a dimly lit and electrically shielded 
room. Signal quality was ensured by monitoring and maintaining the offset between the active 
electrodes and the Common Mode Sense - Driven Right Leg (CMS-DRL) feedback loop under a 
standard value of ±20 mV. After each recording session, individual 3D electrode positions were 
digitized using an ultrasound motion capture system (Zebris Medical GmbH).  
 
Offline, data were preprocessed using EEGLAB 14.1.143. EEG data were downsampled to 250 
Hz and detrended (antialiasing filter: cut-off = 112.5 Hz, bandwidth = 50 Hz, detrending at <1 
Hz). Line noise (50 Hz) was removed via spectrum interpolation44. Data were then segmented 
into epochs and time locked from -1500 to 1000 ms from the stimulus onset in both tasks. 
Data from participant 05 (Face and Motion dataset) and 15 (Motion dataset) was not further 
processed due to excessive noise. Bad channels and epochs were identified and removed 
before preprocessing. Remaining physiological artifacts were isolated using an independent 
component analysis (ICA) decomposition (FastIca). Bad components were labelled by crossing 
the results of a machine-learning algorithm (MARA, Multiple Artifact Rejection Algorithm in 
EEGLAB) with the criterion of >90% of total variance explained and removed manually. Bad 
channels were then interpolated using the nearest-neighbour spline method and data were 
re-referenced to the average reference.  
 

EEG source imaging 

EEG source imaging was performed using Cartool (v3.80)45 and custom-made scripts (see 
Matlab and Python examples in the code/ directory). Source reconstruction was based on 
Cartool-segmented individual MRI T1w data, co-registered individual electrode positions, and 
the LORETA46 and LAURA15 algorithms (regularization = 6; spherical model with anatomical 
constraints, LSMAC). Leadfields were calculated for each of the around 5000 freely oriented 
dipoles while limiting the solution space to gray matter voxels45. 
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MRI recording and processing 
MR data from the same 20 subjects was acquired on a General Electrics Discovery MR750 3T 
MRI clinical scanner at the cantonal hospital in Fribourg, Switzerland, using a 32-channel head 
coil. The acquisition included anatomical T1-weighted images and DTI. T1-weighted images 
were acquired as rapid-gradient echo (MPRAGE) volumes using a COR FSPGR BRAVO pulse 
sequence (flip angle = 9°; echo time = 2.8 ms; repetition time = 7300 ms; inversion time = 0.9 
s, FOV = 220 mm, matrix size = 256x256, number of slices = 276, slice thickness = 1 mm, in-
plane resolution = 0.9x0.9 mm2). DTI data were acquired with a spin echo single shot EPI pulse 
sequence and a diffusion sensitizing gradient set of 30 different directions and 5 diffusion-free 
B0 scans (echo time = 87 ms; repetition time = 8000 ms; interleaved slice order; b-weighting 
of 1000, FOV = 260 mm, matrix size = 128x128, number of slices = 60; slice thickness = 2.0 mm; 
slice spacing = 0.2 mm, in-plane resolution = 2.0x2.0 mm2).  
 
Processing of all T1w and DTI data was performed using the Connectome Mapper v3.0.0-beta-
RC1 pipelines36. All T1w scans were resampled to 1mm3 isotropic resolution from which gray 
and white matter were segmented using Freesurfer 6.0.1 47, and parcellated into 83 cortical 
and subcortical areas48. The parcels were then further subdivided following the method 
proposed by49 into 129, 234, 463 and 1015 approximately equally sized parcels according to 
the Lausanne anatomical atlas. DTI data were corrected from motion and eddy current 
distortions using mcflirt and eddy_correct provided by FSL 5.0.9 and resampled to 1mm3 
resolution using mrconvert from MRtrix 3.0.0-RC1. Diffusion directions per voxel were then 
reconstructed using the algorithm of constrained spherical deconvolution implemented in 
MRtrix 3.0.0-RC150 with a maximal order of 4, enabling the estimation of multiple directions 
per voxel. 
 
For sharing purposes, all raw T1w and DTI data were anonymized during BIDS conversion and 
all anatomical T1w data were de-identified by removing facial features using Quickshear51. 
 

Structural connectomes 
For each participant, structural connectivity matrices were estimated from the reconstructed 
fiber orientation distribution (FOD) image using the SD_stream deterministic streamline 
tractography algorithm implemented in MRtrix 3.0.0-RC150. Fiber streamline reconstruction 
started from seeds in the white-matter that were spatially random and the whole process 
completed when a number of 1M fiber streamlines were reconstructed. At each streamline 
step of 0.5mm, the local FOD was sampled, and from the current streamline tangent 
orientation, the orientation of the nearest FOD amplitude peak was estimated via a Newton 
optimization on the sphere. Fibers were stopped if a change in direction was greater than 45 
degrees. Fibers with a length not in the 5mm to 200mm range were discarded. The streamline 
reconstruction process was complete when both ends of the fiber left the white matter mask. 
Then, for each scale, the parcellation was projected to the native DTI space after symmetric 
diffeomorphic co-registration between the T1w scan and the diffusion-free B0 using the 
Advanced Normalization Tools (ANTs) 2.2.0. Finally, connectivity matrices at 5 different spatial 
scales were built by considering all fiber streamlines connecting parcels according to the 
following  connectivity measures: number of fibers, fiber density, average and median 
Fractional Anisotropy (FA), and Mean Diffusivity (MD). 
 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435599
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

Data Records 
 
The VEPCON dataset is available via the Open Neuro repository (doi: 
10.18112/openneuro.ds003505.v1.0.1), and is fully BIDS compatible (v1.4.1). Below, we 
describe all data records following the directory structure.  
 
The main directory contains for each participant the MRI T1w data and diffusion weighted 
images (DWI) files, with acquisition parameters as a JSON file. It also contains a JSON file 
detailing age and sex of each participant. 
 
The derivatives/ directory contains EEG derivatives obtained with EEGLAB (eeglab_) and 
Cartool (cartool_) in their respective folders. The output reports generated by mriqc (mriqc_), 
and anatomical and diffusion MRI derivatives are in the Connectome Mapper 3 (cmp_) folder, 
where the version of each software used is encoded in the folder name (e.g. cmp_v3.0.0-beta-
RC1). 
 
In the eeglab/ directory, each participant’s folder contains the single trial epochs (.fdt, .set). 
The FACES files contain epochs for face stimuli and control stimuli, the MOTION files contain 
epochs for coherent and incoherent motion stimuli. A corresponding Matlab file contains a 
table with behavioral data for each single trial, listing stimulus specifiers, response made, 
response evaluation, reaction time and whether trial was discarded or not in preprocessing. 
Trials with behavioral errors or reaction times slower than 200 ms are marked as outliers. The 
same behavioral data is also included in the EEG epoch files. The files 
MOTION_preprocessing_summary.mat and FACE_preprocessing_summary.mat summarize 
the proportions of channels, epochs and ICA components removed during preprocessing for 
each participant. 
 
The cartool/ directory holds a text file (.xyz) with individual electrode positions in mm, co-
registered to the participant’s head (x, y, z, Biosemi electrode name). The .spi file is a similar 
text file listing x, y, z coordinates and a text label for each sourcepoint for which an inverse 
solution was calculated. The inverse solution matrices for LAURA and LORETA 15,46 are in the 
respective .is files, they map observed patterns of EEG potentials to a distribution of 3D dipoles 
across source points. The rois/ folder lists files that indicate which source points belong to 
what area (region of interest, ROI), according to each parcellation level, with a Cartool 
readable (.rois) and a Python readable version (.pickle.rois). 
 
The cmp/ directory contains anatomical, diffusion and structural connectivity data for each 
participant. All T1w-derived data are placed in the anat/ folder, which includes the brain 
segmentations and parcellations in the native T1w space and in the native DTI space (_space-
DWI_). All DTI-derived data are placed in the dwi/ folder. It includes the preprocessed DTI, the 
FOD image and the final tractogram used to build the connectivity matrices. The connectivity/ 
folder holds connectomes at each parcellation level, with a Matlab readable (.mat) and Python 
readable (.gpickle) version. Each connectome file contains the following metrics: 
number_of_fibers, fiber_density, mean_FA and median_FA, mean_MD and median_MD. The 
transformations from the native T1w space to the native DTI space applied to the parcellations 
are stored in the xfm/ folder. The generated .pdf in the group folder visualizes each individual’s 
connectome using the number of fibers metric, for parcellation scale 1.  
 
The code/ directory lists example code with dependencies to derive time-series of activity per 
ROI from the preprocessed EEG data, and example code used for removing facial features from 
T1w images 51. 
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All outputs generated by MRIQC to support quality assessment of T1w data can be found in 
the mriqc/ directory 52. 
 
 

Technical Validation 
 

Behavioral variables 
Analysis of proportion correct and reaction times showed that participants behaved according 
to task instruction. In the face detection task the average accuracy was 97 ± 2% of correct 
responses, with mean reaction times of 501 ± 60 ms. Trials with behavioral errors or reaction 
times slower than 200 ms were marked as outliers (mean proportion of outliers 0.03 ± 0.02). 
 
In the motion discrimination task, the average accuracy was 90 ± 14% and mean reaction times 
were 680 ± 90 ms. The mean proportion of outliers was 0.10 ± 0.14. One participant (number 
16) inverted the response keys for several trials in the motion task, leading to an outlier 
accuracy value (36% of correct responses). 
 

VEPs 
EEG data were visually inspected and noisy trials and channels were excluded from further 
analysis (see EEG recording and preprocessing). Remaining ocular, muscle and other artifacts 
were removed using ICA. The average proportion of channels removed across participants was 
0.12 ± 0.07, range 0.02-0.28; mean proportion of epochs removed due to non-stereotyped 
artifacts, peristimulus eye blinks and eye movements: 0.04 ± 0.06, range 0.002-0.26); 
proportion of ICA components removed: 0.05 ± 0.03, range 0.01-0.15. 
 
The dataset includes detailed summaries of preprocessing and data cleaning on the subject 
and single trial level (see Data Records). 
 
Figure 2 shows the grand-average VEPs for the Face, Scrambled Face, Coherent Motion and 
Incoherent Motion conditions, showing robust evoked responses with components that 
conform the existing literature.  
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Figure 2. Grand-average VEPs for each of the four stimulus conditions, with corresponding scalp 
potential maps. 
 

MRI and connectomes 
After recording MRI data were visually inspected and checked for neurological anomalies by 
the radiologist. Quality of T1w data was further inspected quantitatively by running MRIQC 
v0.16.1, an automated and robust quality control tool for T1w data which derives a set of 56 
different image quality metrics to characterize image quality at different levels such as noise, 
motion or imaging artifacts 52. Results were summarized in reports at both individual and 
group levels, which are included in the mriqc/ derivatives folder. 
 
De-identification of T1w data was checked individually and supported by the creation of a PDF 
report that is available in the code/ folder. 
 
For each participant, the quality of the output after each processing step of the Connectome 
Mapper 3 pipelines was assessed using its graphical user interface, where we inspected 
individually the different Freesurfer outputs, brain parcellations, DTI data after preprocessing, 
co-registered T1w-derived parcellations with DTI data, the estimated FOD image, the 
reconstructed tractogram, and the reconstructed connectomes. Visual inspection did not 
reveal any artifacts. 
 
 

Usage Notes 
For optimal sharing and re-usability, the dataset conforms to BIDS standards for MRI 37 and 
EEG 38. 
 
Python and Matlab example code shows how to import the various files. This assures 
compatibility with commonly used EEG and MRI software, including MNE-Python 53, 
NeuroPycon 54, Fieldtrip 55 and SPM 56. The code also shows how to calculate one time-series 
of activity from all source points contained in a region using singular-value decomposition. 
Source activity for around 5000 freely oriented dipoles was extracted from all the source 
points inside each cortical area, as defined by the parcellation, and projected to a 
representative single direction using singular-value decomposition 31.  
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For creating new inverse solutions, new forward models can be created from the T1w images, 
using the individual electrode coordinate files. When new leadfields are generated using the 
defaced MRIs, small differences can occur, but are unlikely to pose problems for the intended 
reuse purposes 57. 
 
 

Code Availability 
The dataset contains a code/ folder with scripts, and .ini files for generating each derivative. 
Connectome Mapper 3 is freely available at https://connectome-mapper-3.readthedocs.io, 
the Cartool software via https://sites.google.com/site/cartoolcommunity. 
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